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SUMMARY 

Fundamental to the recently-proposed hypothesis that females mate with more than one male as a hedge 
against genetic incompatibility is the premise that mechanisms are available to polyandrous females 
which enable them to safeguard their reproductive investment against the threat of incompatibility 
between maternal and paternal genomes. Accumulation of sperm from several males shifts the arena for 
sexual selection from the external environment to the female reproductive tract where, we suggest, 
interactions at the molecular and cellular levels provide females with direct mechanisms for assessing 
genetic compatibility. We present examples from the literature to illustrate how sperm competition and 
female choice of sperm can enable polyandrous females to minimize the risk of fertilization by genetically- 
incompatible sperm. Polyandry and multiple paternity also create the opportunity to reduce the cost of 
genetic incompatibility by reallocation of maternal resources from defective to viable offspring. This is 
likely to be a critically important post-copulatory mechanism for viviparous females whose intimate 
immunological relationship with developing embryos makes them particularly vulnerable to genetic 
incompatibility arising from intragenomic conflict and other processes acting at the suborganismal level. 

1. INTRODUCTION 

In his classic paper on sexual selection, Trivers (1972) 
recognized genetic complementarity as a potentially 
important criterion for female choice of mate. How- 
ever, the full significance of genetic incompatibility as 
a force driving female mating strategies is only now 
becoming apparent, as evidence accumulates that 
cellular endosymbionts, transposable elements, seg- 
regation distorters, maternal-effect lethals, hyper- 
variable DNA and imbalances between genomically- 
imprinted genes can all undermine female fitness by 
rendering certain combinations of maternal and 
paternal haplotypes incompatible within the 
developing embryo (Zeh & Zeh 1996). Sexual re- 
production thus involves the merging in embryos of 
parental genomes likely to vary in the extent to which 
they are genetically compatible. 

Unlike other ideas presented in Trivers' (1972) 
paper, female choice based on genetic complementarity 
has received little attention, at least in part because it 
has not been obvious how females could recognize 
genetically incompatible males. Pre-copulatory mate 
choice based on male phenotype appears to provide 
little scope for females to match male genotype against 
their own (Parker 1992; but see Drickamer & 
Lenington (1987) and Lenington et al. (1994) for an 
important exception). Similarly, strong mating order 
effects on sperm utilization (Birkhead & Hunter 1990) 
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appeared to provide little opportunity for mechanisms 
operating at the post-copulatory stage. However, this 
view is now being called into question by increasing 
molecular evidence that multiple paternity is wide- 
spread in nature, with data currently available on 
many species of birds (reviewed in Birkhead & Moller 
1995), several mammals {Inouc et al. 1990; Tegelstrom 
et al. 1991; Amos et al. 1993; Schenk & Kovacs 1995), 
as well as some snakes (e.g. Stitle et al. 1986; Schwartz 
etal. 1989), turtles (Galbraith 1993), isopods (Heath et 
al. 1990), insects (Gromko et al. 1984; Moritz et al. 
1995; Oldroyd et al. 1995), spiders (Martyniuk & 
Jaenike 1982; Oxford 1993), and pseudoscorpions 
(Zeh & Zeh 1994). In addition, recent research has 
shown that last-male sperm precedence can be an 
artifact of two-male, laboratory mating experiments 
(Zeh & Zeh 1994), and that mating order effects can 
vary with mating context (Siva-Jothy & Tsubaki 1989; 
Radwan 1991; Bauer 1994; Otronen 1994). This 
relaxation of mating order constraints on sperm 
utilization suggests that the opportunity for post- 
copulatory sexual selection may be much greater in 
nature than was previously supposed. 

In a recent paper, we proposed that females mate 
with more than one male as a hedge against genetic 
incompatibility arising as a secondary consequence of 
various agents of intragenomic conflict and other forces 
acting at the suborganismal level (Zeh & Zeh 1996). 
Fundamental to this hypothesis is the premise that 
post-copulatory mechanisms are available to poly- 
androus females which enable them to safeguard their 
reproductive investment against the threat of genetic 
incompatibility. Were this not the case, a polyandrous 
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female would, on average, suffer the same reproductive 
cost of incompatibility as a female randomly mated to 
a single male. Here, we propose that accumulation of 
sperm from several males shifts the arena for sexual 
selection from the external environment to the female 
reproductive tract, where interactions at the molecular 
and cellular levels can provide females with direct 
mechanisms for assessing genetic compatibility. We 
present examples from the literature to illustrate how 
sperm competition and female choice of sperm, as well 
as reallocation of maternal resources from defective 
to viable offspring, can serve as post-copulatory 
mechanisms for minimizing the risk and/or cost of 
fertilization by genetically-incompatible sperm. 

2. POST-COPULATORY DEFENCES AGAINST 
INCOMPATIBILITY 

(a) Sperm competition 

While behavioural ecologists have generally viewed 
sperm competition as a mechanism enhancing female 
reproductive success (henceforth, RS) through selec- 
tion for sperm of high genetic quality (e.g. Madsen et 
al. 1992; Birkhead et al. 1993), sperm competition can 
also enable females to reduce the probability of 
fertilization by genetically incompatible sperm. In 
Drosophila meiotic drive systems, for example, het- 
erozygous males may be at a disadvantage in sperm 
competition since they produce up to 50 % fewer viable 
sperm per ejaculate than males not carrying the drive 
allele (Wu 1983). Haig & Bergstrom (1995) have 
argued that if females mate with several males, this 
handicap restrains the spread of drive alleles, with 
genes that promote polyandry being selected to reduce 
the advantage of the distorter allele. From the 
standpoint of meiotic drive's negative impact on female 
RS, sperm competition is most advantageous for 
females who are themselves heterozygous at the drive 
locus. In addition to producing heterozygous sons of 
lower competitive ability, heterozygous females face 
the more immediate risk of mating with a heterozygous 
male and producing offspring which are homozygous 
at the drive locus, and consequently inviable or infertile 
(see Zeh & Zeh 1996). 

(b) Female choice of sperm 

Crosses between closely-related and partially repro- 
ductively compatible species of grasshoppers (Hewitt et 
al. 1989), crickets (Howard & Gregory 1993) and 
beetles (Wade et al. 1994) suggest that post-copulatory 
sexual selection may play an important role in 
preventing the production of defective offspring. In 
these studies, although at least some viable, hybrid 
offspring were produced from heterospecific crosses, 
any mating order effects were overridden when females 
mated with both a conspecific and a heterospecific 
male, and eggs were fertilized by conspecific sperm (the 
most genetically compatible). This could result from 
sperm competition in which conspecific sperm are 
better adapted to negotiate the female reproductive 
tract (Eberhard 1996). Alternatively, females may- 
recognize differences between sperm genotypes and 

either actively choose sperm to be used in fertilization 
or bias against certain genotypes through inhibition or 
preferential sperm loss (Zimmering et al. 1970). 
Although few studies have directly investigated the 
mechanisms of non-random sperm utilization, there is 
evidence for compatibility-based discrimination 
against sperm genotypes in the female reproductive 
tracts of Drosophila (Zimmering & Fowler 1968; 
Childress & Hard 1972), flour beetles (Lewis & Austad 
1990), mice (Bateman 1960), rabbits (Cohen & 
Werrett 1975), Swedish sand lizards (Olsson et al. 
1996) and humans (Dondero et al. 1978). 

How might such female choice of sperm genotype 
occur? It is now known that, in mammals, several cell- 
surface proteins of spermatozoa are synthesized 
through haploid gene expression during spermiogenesis 
(e.g. Klemm et al. 1989; Erickson 1991; Penttila et al. 
1995; Choudhary et al. 1995). These macromolecules 
can stimulate production of auto-antibodies in males, 
and are normally sequestered from the immune system 
by the blood-testis barrier (Bellve et al. 1990). After 
transfer to the female, sperm are perceived as antigens 
and must run the gauntlet of a female reproductive 
tract populated by large numbers of anti-sperm 
leucocytes and antibodies (see Birkhead et al. 1993). Of 
the 40 to 1800 million sperm deposited, for example, in 
the human vagina, approximately only 300 reach the 
site of fertilization (Austin 1995). The sperm antigens 
responsible for anti-sperm immune infertility in 
humans have been identified as a small group (3-5) of 
sperm-surface glycoproteins (Primakoff et al. 1990). In 
mice, sperm antigens induce cell-mediated immune 
factors that decrease sperm motility and affect em- 
bryonic development (Naz & Mehta 1989). In 
addition, anti-sperm antibodies can impair sperm 
function both at the level of cervical mucus-penetrating 
ability (Bronson et al. 1987; Jager et al. 1987) and 
gamete interaction (Clarke et al. 1985; Mandelbaum et 
a/. 1987; D'Almeida ff a/. 1989). 

The ability of the immune system to distinguish 
between proteins differing by only a single amino acid, 
or even between optical isomers of the same protein 
(Alberts et al. 1994), makes it highly likely that, in any 
particular female, sperm from different males may- 
differ in the extent to which they are perceived as non- 
self Strong support for this hypothesis is provided by 
clinical testing of apparently infertile human couples in 
which the male produced normal semen with no anti- 
sperm auto-antibody. In one third of such couples, the 
female's cervical mucus agglutinated her partner's 
spermatozoa but not donor spermatozoa (Dondero et 
al. 1978). While an invertebrate analogue to T- and B- 
cell immune recognition has not been found, experi- 
ments on metazoans ranging from sponges to colonial 
tunicates have documented a natural invertebrate 
immunity capable of rapid allorecognition and have 
shown that the processes involved in invertebrate 
immunity are dependent on an ' exquisite recognition 
specificity' (Humphreys & Reinherz 1994). 

Birkhead et al. (1993) have proposed that female 
anti-sperm responses provide mechanisms by which 
females ensure that their eggs are ' fertilized by the 
fittest sperm, or minimize the risk of being fertilized by 
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the 'worst' sperm in the population'. Whereas their 
hypothesis posits female choice based on inherent male 
genetic quality, the genetic incompatibility hypothesis 
asserts that sperm quality is a relative characteristic 
which depends, at least in part, on the genotype of the 
female herself. Consistent with the hypothesis that the 
female anti-sperm immune response discriminates 
against genetically-incompatible sperm is the fact that 
some spermatozoan cell-surface antigens are the 
products of loci critically important in embryonic 
development (Van Blerkom 1977). In mice, for 
example, F9 antigen, present on spermatozoa and also 
expressed by pre-implantation embryos, is associated 
with the abnormal development of primitive terato- 
carcinoma cells and is thought to be the product of the 
developmentally critical mouse (-locus (see Van 
Blerkom 1977). Since meiotic drive alleles sabotage 
alternative alleles during spermiogenesis, it is not 
surprising that genes known to exhibit haploid ex- 
pression in spermatids include genes located within the 
mouse (-complex meiotic drive region (Schimenti et al. 
1988). Particularly intriguing from the point of view of 
cell recognition is the finding that also included in the 
(-complex region is a gene encoding a polypeptide 
likely to facilitate the species-specific binding of sperm 
to eggs (Silver 1993). 

Histocompatibility genes also exhibit parent-of- 
origin-dependent patterns of expression, with maternal 
non-H2 alloantigens evident at all stages of mouse 
embryogenesis from the two-cell to the 4.5-day-old 
blastocyst stage, but with paternal antigens only 
becoming obvious at the six- to eight-cell stage 
(Muggleton-Harris & Johnson 1976). As Van Blerkom 
(1977) points out, such differential expression could 
have a central role in establishing cell-to-cell com- 
munication within the embryo and between embryonic 
and maternal cells. In humans, the presence in females 
of circulating anti-sperm antibodies is associated with 
an increased incidence of spontaneous abortion, while 
in female cattle, guinea-pigs, mice and rabbits, 
immunization with sperm caused an increased inci- 
dence of post-fertilization infertility resulting from pre- 
implantation embryo mortality (reviewed in Menge 
1980). Prefertilization interaction between sperm 
genotype and the female immune system may thus 
provide a reliable indicator of post-fertilization com- 
plementarity between maternal and paternal geno- 
types. 

The extent to which female mammals can dis- 
criminate between individual sperm produced by a 
single male remains controversial (see Austin 1995). 
Although haploid gene expression does occur, 
immunocyto-chemical analyses have established that 
gene products can move through the intercellular 
bridges connecting spermatids developing within a 
common syncytium (Braun et al. 1989). However, this 
study has demonstrated only that products diffuse 
down a concentration gradient to spermatids which 
completely lack a gene. It did not show that alternative 
forms of the same haploid-expressed gene product are 
mixed and shared equally between all the member 
spermatids of a syncytium (Barratt 1995). The finding 
that X- and Y-bearing sperm in mice exhibit pro- 

nounced variation in quantity of histocompatibility-Y 
(H-Y) antigen present on the sperm head strongly 
suggests that haploid-expressed gene products are not 
equally shared (reviewed in Koo et al. 1977). Whether 
sperm phenotype reflects haploid or diploid gene 
expression is, in any case, relatively unimportant vis-a- 
vis the post-copulatory potential for females to 
recognize genetic incompatibility generated by selfish 
genetic elements. Essentially all the viable sperm 
produced by a male heterozygous for a meiotic drive 
allele carry the drive allele (Lyttle 1991). Similarly, the 
modifications to sperm genotype caused by trans- 
posable elements and cellular endosymbionts are likely 
to affect all the sperm produced by a male carrying 
such a genetic element. 

In theory, choice of sperm could enable females to 
minimize the risk to their RS posed by cellular 
endosymbionts (Zeh & Zeh 1996). For example, in the 
presence of feminizing agents or male killers, selection 
on nuclear genes should favour mutations which 
suppress the activity of the cytoplasmic sex ratio 
distorters (Hurst 1991), as occurs in the isopod, 
Armadillidium vulgare (Juchault et al. 1993) and several 
neotropical Drosophila species (Williamson & Poulson 
1979). Infected females could therefore enhance their 
RS through polyandry and choice of sperm carrying 
neutralizing nuclear alleles. In the case of Wolbachia- 
generated cytoplasmic incompatibility, the endo- 
symbiont appears to cause protein composition changes 
in the reproductive tissues of infected males (Karr 
1994). Polyandrous, uninfected females could con- 
ceivably recognize these endosymbiont effects on sperm 
phenotype and discriminate against such sperm. 
Polyandry, however, appears to have the reverse effect 
in Tribolium confusum beetles (Wade & Chang 1995). In 
uninfected females, post-copulatory sexual selection 
apparently favours sperm from males infected with 
Wolbachia pipiens over sperm from antibiotically cured 
males, even though such fertilization results in embryo 
inviability. However, interpretation of these results is 
complicated by potential antibiotic effects on sperm 
mitochondrial function in cured males. Moreover, the 
female founders of the infected laboratory stock 
presumably became infected through an inability to 
respond to the cellular endosymbiont. Consequently, 
the uninfected females derived from this stock by 
antibiotic treatment (Wade & Chang 1995) would not 
be expected to exhibit a response to the bacterium. 

Particularly intriguing is the evidence that female 
choice of sperm may occur even after sperm have 
penetrated eggs. In the ctenophore, Beroe ovata, egg 
penetration by several sperm (polyspermy) is common 
and can delay first cleavage by several hours. During 
this interval, each sperm remains immobilized at its 
point of entry while the egg pronucleus '...acts as if it 
was choosing a mate' (Carre & Sardet 1984; Carre et 
al. 1991). It may fuse with the first sperm pronucleus 
encountered or may migrate back and forth between 
the maturation pole and as many as three sperm 
penetration sites before fusing with one sperm pro- 
nucleus. In birds and reptiles, a similar process may- 
occur : several sperm may be allowed to penetrate the 
egg and form pronuclei but only one fuses with the egg 
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pronucleus (Birkhead etal. 1993). Although infrequent, 
polyspermy also occurs in mammals (Kovacs et al. 
1991; Navara et al. 1994). Further evidence of the 
ability of eggs to discriminate between sperm genotypes 
comes from crosses between closely-related species of 
mice. Kaneda et al. (1995) present compelling evidence 
that elimination of paternal mitochondria is triggered 
by the egg cytoplasm recognizing species-specific, 
nuclear encoded proteins in the sperm midpiece. 

A final example, involving one of the few known 
cases of meiotic drive in females, suggests that a general 
feature of vertebrate meiosis, postponement of the 
second meiotic division in eggs until after fertilization, 
may provide females with an additional opportunity 
for incompatibility avoidance. In female mice het- 
erozygous for a meiotic drive locus on chromosome 1, 
chromatid segregation depends on the haplotype of the 
fertilizing sperm (Agulnik et al. 1993). While egg 
penetration by wild-type sperm results in strong 
meiotic drive, with 85 % of wild-type chromatids being 
diverted to polar bodies, segregation normalizes to 
50:50 when a drive-haplotype sperm enters the egg. 
This ability to modify segregation patterns in response 
to sperm genotype has major fitness benefits for 
heterozygous females since it reduces the proportion of 
offspring which fail because they are homozygous for 
the drive allele. 

(c) Reallocation of maternal investment 

Compatibility between maternal and paternal 
genomes is likely to be particularly critical for species in 
which both fertilization and embryonic development 
occur within the female. For a viviparous female, the 
optimal sperm genotype is likely to be one which 
interacts with her reproductive tract without gen- 
erating a strong immunological anti-sperm response 
yet, at the same time, is sufficiently different at critical 
recognition loci to establish the immunological detente 
between mother and foetus essential for normal 
development (Beer et al. 1982). In their review, Beer et 
al. (1982) discuss several lines of evidence that 
incompatibility can result from a lack of distinction 
between maternal and paternal genotypes. For 
example, it has been shown that a significantly higher 
proportion of women experiencing repeated mis- 
carriages shared common major histocompatibility 
complex (MHG) antigens with their husbands when 
compared to control groups, indicating that foetuses 
not possessing alleles distinct from their mothers' may- 
be less capable of triggering a protective blocking 
antibody response. Similarly, the finding that, in 
couples with recurrent spontaneous abortion of 
karyotypically-normal foetuses, there was a signifi- 
cantly depressed response of the female's lymphocytes 
when stimulated by the respective spouse's lympho- 
cytes but not when stimulated by the donor lympho- 
cytes, led to the suggestion that this resulted from a 
failure of the mother's cellular immune system to 
respond to the paternal histocompatibility antigens. 
This hypo-responsiveness was not detected in abortions 
involving karyotypically abnormal foetuses. These 
clinical data support the controversial view (see Pusey 

& Wolf 1996) proposed by Shields (1982) and Bateson 
(1983) that optimal outbreeding, a phenomenon 
known to occur in plant populations (reviewed in 
Marshall & Folsom 1991), may also be a factor 
favouring polyandry in animals. 

Polyandry provides females of viviparous species 
with a mechanism for reducing the cost of fertilization 
by incompatible sperm which is not available to 
females that lay eggs. By mating with several males and 
producing mixed paternity litters, viviparous females 
have the opportunity to shunt resources from 
genetically-defective to viable embryos. This mech- 
anism is likely to be particularly effective if females 
typically produce more zygotes per litter than can 
survive to birth. Consider, for example, the intriguing 
case of asymmetrical, reproductive incompatibility 
exhibited by the DDK mouse strain, in which the 
embryos of DDK females mated to non-DDK males 
failed before or soon after implantation (see Renard et 
al. 1994). Since female mice eliminate as many as one 
third of their fertilized eggs without affecting total 
litter size (Hull 1964), reallocation of maternal 
resources should, on average, result in a DDK female 
mated to both a DDK and a non-DDK male, suffering 
a negligible impact on her RS compared to a randomly- 
mated, monogamous DDK female. 

Ironically, it is this capacity of viviparous females to 
reallocate resources which also makes them especially 
vulnerable to intragenomic conflict. Indeed, Haig & 
Graham (1991) have argued that genomic imprinting 
can only evolve in the context of post-zygotic maternal 
investment and multiple paternity. A theoretical model 
by Hurst (1991) has also shown that redirection of 
nutrients to female offspring following death of male 
embryos is critical for the spread of cytoplasmic male 
killers. In addition, in meiotic drive systems, the ability 
of females to reallocate resources may have the 
counter-intuitive effect of generating selection that 
favours recessive, lethal alleles at loci closely linked to 
the drive locus. In the (-complex system, for example, 
since any sons homozygous for the distorter allele 
would be completely sterile, early homozygote death 
and reallocation can be to the benefit of both the 
female and the drive allele (Lyttle 1991; Charlesworth 
1994). 

3. CONCLUSIONS 

In this review of data from diverse biological and 
clinical sources, we have found extensive circumstantial 
evidence that post-copulatory mechanisms do exist 
which may enable polyandrous females to reduce the 
threat of genetic incompatibility. Elsewhere, we have 
shown that the cumulative effects of intragenomic 
conflict and other processes operating at the sub- 
organismal level may significantly undermine the 
reproductive cohesiveness of natural populations (Zeh 
& Zeh 1996). This raises the question of why all 
females do not engage in polyandry. Whether or not 
females opt to mate with more than one male will 
depend, of course, on whether the reproductive benefits 
to polyandry outweigh the costs. Such costs include 
increased time allocated to mating and increased risk 
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of predation, greater exposure to sexually-transmitted 

diseases and potentially harmful seminal products, as 

well as retribution and/or withdrawal of paternal care 

by the female's first mate (see Keller & Reeve 1995). It 

is increasingly evident from molecular data showing 

high levels of mixed paternity in the offspring of 

females previously thought to be monogamous that 

females can reduce these latter costs by concealing 

their polyandrous behaviour from males. The discreet 

nature of polyandry may explain why, although 

complementarity has long been recognized as a 

important factor influencing gamete competition and 

differential abortion in plants (reviewed in Marshall & 

Folsom 1991), the implications of genetic incom- 
patibility for female mating behaviour have not been 

fully appreciated in animals. 
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