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ABSTRACT

Most bees forage for floral resources during the day, but temporal patterns of foraging activity vary extensively,

and foraging in dim-light environments has evolved repeatedly. Facultative dim-light foraging behaviour is known

in five of nine families of bees, while obligate behaviour is known in four families and evolved independently at

least 19 times. The light intensity under which bees forage varies by a factor of 108, and therefore the evolution of

dim-light foraging represents the invasion of a new, extreme niche. The repeated evolution of dim-light foraging

behaviour in bees allows tests of the hypothesis that behaviour acts as an evolutionary pacemaker. With the

exception of one species of Apis, facultative dim-light foragers show no external structural traits that are thought

to enable visually mediated flight behaviour in low-light environments. By contrast, most obligate dim-light

foragers show a suite of convergent optical traits such as enlarged ocelli and compound eyes. In one intensively

studied species (Megalopta genalis) these optical changes are associated with neurobiological changes to enhance

photon capture. The available ecological evidence suggests that an escape from competition for pollen and nectar

resources and avoidance of natural enemies are driving factors in the evolution of obligate dim-light foraging.

Key words: foraging behavior, nocturnal, crepuscular, matinal, vespertine, evolution, niche shifts, niche con-

struction, neurobiology of night vision, Apoidea.
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I. INTRODUCTION

Bees are generally regarded as sun-loving creatures
(Michener, 2007). Indeed, most bees fly under full sun but
some have evolved an ability to fly in very dim light
conditions—including moonlight and even starlight—and
so bees of different species experience foraging environ-
ments in which average light intensity varies by a factor of
more than 108 (i.e. the difference between sunlight and
starlight; see Lythgoe, 1979; Warrant, 2004). Thus, for day-
flying species the evolution of dim-light foraging represents
the invasion of an extreme environment, and provides an
opportunity to look at the relative roles of behavioural,
physiological, and structural changes in facilitating these
niche shifts.
Mayr (1960, p. 371) argued that the invasion of a new

niche invariably establishes a new array of selection
pressures, and that such shifts require ‘‘almost without
exception’’ a change in behaviour. Changes in behaviour
may then lead to subsequent evolutionary changes in other
features favourable for life in the new environment,
although they are not inevitable (e.g. Darwin, 1872;
Mayr, 1958; Evans, 1966; Wcislo, 1989; Prum, 1998;
Odling-Smee, Laland & Feldman, 2003; West-Eberhard,
2003). The hypothesis that behaviour shapes selective
environments, and acts as a pacemaker of evolution, dates
to Lamarck (1809) and subsequent Darwinian formula-
tions by Baldwin (1902) and others (see reviews in
Lewontin, 1983, 2000; Wcislo, 1989; West-Eberhard,
2003; Odling-Smee et al., 2003; Weber & Depew, 2003).
Odling-Smee et al. (2003) review methods to test for the
relative importance of organism-induced modifications of
their selective environment, which they termed ‘‘niche
construction’’ (following Lewontin, 2000). One test
involves comparative methods: if facultative behaviour
takes the lead in initiating evolutionary change, then the
distribution of character states across a phylogeny should
reveal that traits associated with the new environment are
concentrated in those branches of the tree where the novel
(niche constructing) behaviour is obligatory (cf. Fig. 1 of
Wcislo, 1989).
Here we first review the phyletic distribution of dim-

light foraging in bees, both facultative and obligate, as
well as the phenotypic traits that enable such activity. We
then use these comparative data to test the relative
importance of temporal niche construction in shaping the
evolution of foraging patterns of bees, and the structural
and physiological traits associated with the novel
behaviour.

II. METHODS

(1) Ethological comparisons

Data on dim-light foraging behaviour were taken from the
ethological literature. Published reports vary in the extent to
which they present quantitative data on foraging times, and
few present quantitative data on light levels (see Roberts,
1971; Burgett & Sukumalanand, 2000; Kelber et al., 2006;
Somanathan et al., 2008). Naturalists have traditionally used
categories corresponding to varying light levels to classify
dim-light foraging in bees (summarised by Linsley & Cazier,
1970). For our purposes, we consider species as being:
matinal- if authors specified that bees were active before
sunrise; vespertine– if bees are active in post-sunset twilight;
crepuscular- if bees are active during both of the above
periods; and nocturnal- if they are active between evening
and morning twilight. Collectively we refer to these taxa as
dim-light bees. References to activity around twilight
periods are often ambiguous because most authors do not
specify whether they refer to civil, nautical or astronomical
twilight; presumably most naturalists used an approxima-
tion to civil twilight as assessed by their own eyes.
Furthermore, categorical classifications alone may not
accurately reflect light levels experienced by the bees. For
example, due to both latitude and plant canopy architec-
ture, a bee active at sunrise/sunset in a temperate desert
will experience strikingly different light levels than one
active at the same times in a tropical evergreen forest (e.g.
Kelber et al., 2006), or a tropical dry forest, even though all
would be categorized as crepuscular. Furthermore, some
bees [e.g., Lasioglossum (Sphecodogastra) texanum (Halictidae)]
are usually crepuscular, but will extend their evening
activity later into the night when reflectance from the
moon is bright (Kerfoot, 1967a; also Somanathan et al.,
2008).

(2) Phylogenetic comparisons

The dearth of relevant phylogenetic hypotheses is an
impediment to detailed species-level comparisons among
dim-light taxa. The halictid tribe Augochlorini is the taxon
with the greatest diversity of dim-light foragers for which
phylogenetic data are available (Eickwort, 1969; Engel,
2000; see Wcislo et al., 2004). We used Engel’s (2000)
consensus phylogenetic hypothesis for the Augochlorini,
with the modifications described below. This tree includes
39 genera and subgenera, and is based on 72 anatomical
characters and 12 behavioural characters. Rather than
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using species as terminal taxa, we used genera and
subgenera. Maddison’s test for concentrated changes does
not allow for polytomies, so the several polytomies in the
tree were randomly resolved as bifurcating trees. Maddison
(1990) discusses several assumptions that are unlikely to be
met in this analysis (see also Read & Nee, 1995).

Consequently, a second analysis was performed by first
identifying a putative or hypothesised sister taxon for each
taxon with dim-light foragers. Effectively this sets up a
matched-pairs comparison, with one sister taxon showing the
focal trait (i.e. dim-light foraging) and the other taxon not
expressing this trait (i.e. diurnal foraging) (Read & Nee, 1995).

(3) Relative body size

Body size of dim-light bees relative to diurnal ones was
examined using the 169 genera of Central and North
America, which Michener, McGinley & Danforth (1994,
pp. 125–172) classified as ranging within five categories
(minute, small, moderate, large, very large). Taxa with body
sizes that ranged across more than one category (e.g. minute
to moderate) were counted in each one. We then broadly
classified the foraging habits of each genus as ‘diurnal’,
‘facultative dim-light’, or ‘obligate dim-light’. This typology
is problematic due to the occurrence of genera that contain
both diurnal and dim-light species, so the following caveats
apply. First, we considered a genus to be ‘dim-light’ if it
contained at least one dim-light foraging species, and if
a dim-light genus contained both facultative and obligate
dim-light foraging species, we considered it to be an
‘obligate’ dim-light clade. Furthermore, a genus was
categorised as ‘facultative’ or ‘obligate’ only if dim-light

foraging members of the clade exist in the region covered
by Michener et al.’s (1994) monograph. For example,
in Megommation the subgenera M. (Cleptommation) and
M. (Megaloptina) are distributed in Panamá and Costa Rica,
but the sole dim-light species, M. (Megommation) insigne
Smith, is restricted to the southeastern tropics of South
America, and thus for our analysis Central and North
American Megommation s.l. are categorised as diurnal.

III. OVERVIEW OF DIM-LIGHT FORAGING
IN BEES

(1) Facultative dim-light foraging

The true frequency of facultative dim-light foraging is
unknown, because most bee biologists, like most bees, are
active during the day, and numerous species have never been
studied in any detail (Michener, 2007). Facultative dim-light
foraging occurs in species representing nearly all the major
lineages (Fig. 1, Table 1). Diurnal bees, such as some
carpenter bees (Xylocopa spp.), can be heard flying in the
pre-dawn darkness, collecting pollen from diurnal flowers
with early anthesis, and have been collected at light traps
(Rau, 1933; Hurd, 1958; Wolda & Roubik, 1986).
X. (Mesotrichia) tenuiscapa Westwood is primarily diurnal and
seasonally switches to crepuscular foraging (Somanathan &
Borges, 2001; Somanathan et al., 2008). Temporal versatility
with respect to foraging is known for several species of
halictine bees: Agapostemon angelicus Cockerell, for example,
regularly uses pollen or nectar from diurnal flowers, but also
collects resources from plants before sunrise or around sunset
(Linsley, 1960; see Roberts, 1969, 1972). Female foragers of
the Old World honey bee (Apis dorsata Fabricius) are normally
day-active, yet continue foraging into the night during a half
to full moon (Dyer, 1985). Males of this species consistently
fly at dusk for mating flights (see Section III. 1a). Conversely,
in the deserts of the southern USA, Martinapis occidentalis
Zavortink & La Berge (¼luteicornis of Hurd & Linsley, 1975),
for example, collects pollen at dawn from creosote bush
(Larrea tridentata) and palo verde (Parkinsonia florida), but also
has been recorded collecting pollen during the day (see
Linsley & Hurd, 1959; Zavortink & LaBerge, 1976). Of the
estimated 187 species of bees on Barro Colorado Island
(Panamá) catalogued by Michener (1954), 45 diurnal species
have been collected at black light traps, suggesting facultative
dim-light foraging behaviour (Wolda & Roubik, 1986). Many
of these species are stingless bees (Meliponini), which often
begin foraging before sunrise and collect the dregs of pollen
that remain on night-blooming plants (Roubik 1989; Wolda
& Roubik 1986), but some stingless bees have also been
collected at lights during a full moon (post-vespertine) in
northwestern Panamá (S. M. Tierney, personal observation).

(a ) Phenotypic changes associated with facultative dim-light
foraging

In all but one case, there are no evident external features of
the visual system that are associated with a facultative

Spheciformes

Halictidae

Apidae

Dasypodaidae

Meganomiidae

Melittidae s.s.

Megachilidae

Stenotritidae

Colletidae

Andrenidae

obligate & facultative dim-light

facultative dim-light

diurnal only
FORAGING ENVIRONMENTS

Fig. 1. Cladogram of the families of bees (Apoidea) (adapted
from Michener, 2007, p. 92), with the phyletic distribution of
facultative and obligate dim-light taxa.
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ability to forage under dim-light conditions, suggesting that
the move into the new temporal environment is a behav-
ioural response to exploit new resources. Apis dorsata
Linnaeus have a raised vertex so that ocelli are more
pronounced, and this trait is more noticeable in drones than
workers, which is hypothesised to be related to mating
flights that are consistently restricted to a very brief
vespertine window (Koeniger et al., 1994; Otis, 1996;
Koeniger & Koeniger, 2000). Ocellar size of A. dorsata,
however, is not proportionally larger than their closest
diurnal relative, A. laboriosa Smith (Maa, 1953; Sakagami,
Matsumura & Itô, 1980). We lack detailed studies on the
sensory ecology of facultative dim-light foragers, and
therefore it is possible that there are slight differences in
ocular or ommatidial size, and neuroanatomy or neuro-
physiology that might promote facultative dim-light forag-
ing. Warrant, Porombka & Kirchner (1996), for example,
suggest that neural processing at a higher level enables
photon summation in honey bees (Apis), which enables
foraging activity under dim light. Both among and within
species, bees with larger bodies have larger compound eyes
with larger ommatidia, and thus can fly at lower light levels
(Jander & Jander, 2002; Spaethe & Chittka, 2003; Kelber
et al., 2006; Kapustjanskij et al., 2007; Somanathan et al.,
2008). Large body size therefore might be a pre-adaptation
to the evolution of dim-light foraging because the larger
facet diameter will allow higher overall sensitivity.

(2) Obligate dim-light foraging

In general bees are most diverse in regions with Mediter-
ranean or xeric climates, and are relatively less diverse in
the world’s tropics (Michener, 2007). A striking observation
on the evolution of dim-light foraging is that it recurs
frequently in deserts and tropical forests (Table 1), so its
evolution does not track diversity per se. Hurd & Linsley
(1975), for example, list 90 species of bees that visit Larrea in
the southwest deserts of the U.S.A.; of these species, 12
(13.3%) visited the host plant almost exclusively under dim-
light conditions. One of the largest radiations of dim-light
foragers occurs in the genus Megalopta (Halictidae), which is
exclusively neotropical, except for species that extend north
to sub-tropical M�exico and below the Tropic of Capricorn
in Brazil and northern Argentina (Moure & Hurd, 1987;
Moure, Urban & Melo, 2007; Santos, Melo & Silveira,
2008). This obligate behaviour, however, is not restricted to
xeric or tropical regions (Linsley 1958, 1960): Lasioglossum
(Sphecodogastra) (Halictidae), for example, occurs at mid-
latitudes in North America, extending into southern
Canada (McGinley, 2003; Zayed & Packer, 2007).

Obligate dim-light foraging has evolved at least 19 times,
and is known from the Colletidae, Andrenidae, Halictidae
and Apidae (Fig. 1, Table 1). The extent to which taxa of dim-
light bees have diversified varies considerably (see Table 1). A
number of taxa are monotypic (e.g. Halictidae - Rhinetula
denticrus Friese and Megommation insigne). Others are relatively
speciose, such as the Diphaglossinae, which is a subfamily of
mainly crepuscular bees (reviewed in Rozen, 1984). Some
parasitic bees, such as Megalopta (Noctoraptor), have been

reared from dim-light hosts (e.g. Biani & Wcislo, 2007), or
have been collected at light traps, and have similar flight
times to their hosts (T. Gonzales-Ojeda, S. M. Tierney & W.
T. Wcislo unpublished data). The parasite Odyneropsis apicalis
Ducke was reared from nests of Ptiloglossa fulvopilosa
Cameron (F. D. Bennett, cited in Rozen, 1966), which
may be fully nocturnal (Vesey-Fitzgerald, 1939). Rozen
(1984) reports that O. apicalis have enlarged ocelli, as do
other species of Odyneropsis in the collections of the
American Museum of Natural History, suggesting they also
are dim-light parasites. Other dim-light parasitic species
have enlarged ocelli (e.g. Megalopta: Engel, Brooks &
Yanega, 1997; Biani & Wcislo, 2007). By contrast, parasitic
Triepeolous that are associated with the matinal P. arizonensis
Timberlake have normal-sized ocelli and were collected
after sunrise (Rozen, 1984).

(a ) Phenotypic changes associated with obligate dim-light foraging

( i ) Optics and the visual system. Natural historians have
long recognised that some bee lineages were active under
dim-light conditions because of their enlarged simple eyes
(ocelli) and their enlarged compound eyes (e.g. Bingham,
1897; Cockerell, 1923; Graenicher, 1911; Rau, 1933).
Jander & Jander (2002) showed that the following ocular
traits of diurnal bees are invariant when scaled to body
size: size and shape of the compound eyes; number of
ommatidia per eye; average size of ommatidia; visual acu-
ity (as measured by inter-ommatidial angle); and resolu-
tion (as measured by the eye parameter, the product of
the inter-ommatidial angle and lens diameter; for
criticisms of this parameter, see Horridge, 2005). Set
against these allometric patterns, deviations seen in dim-
light bees are conspicuous (also see Kelber et al., 2006).
Enlarged ocelli and compound eyes are diagnostic for
dim-light foraging in bees, but not all dim-light foraging
bees have enlarged ocelli and compound eyes.

These optical changes are derived traits that should
enable the capture of more photons (e.g. Kerfoot, 1967a;
Jander & Jander, 2002; Warrant et al., 2006; Kelber et al.,
2006; Warrant, 2008). In one dim-light species, Megalopta
genalis Meade-Waldo (Halictidae, Augochlorini), derived
optical traits increase sensitivity by about 27 times, but by
themselves do not provide a sufficient increase in photon
capture to sustain visually mediated tasks, such as homing to
the nest (Warrant et al., 2004). Additional neurophysiolog-
ical traits also enhance sensitivity. For example, photo-
receptors in M. genalis are larger and have a wider angle of
acceptance and a slower integration time, both of which
further increase the sensitivity of the visual system (Warrant
et al., 2004; Greiner, Ribi & Warrant, 2005). At most light
levels the photoreceptors of M. genalis encode less informa-
tion than do those of a diurnal Lasioglossum (Halictidae,
Halictini), but the former possess much greater contrast
gain (response per unit contrast), so that information
capacity is sacrificed for increased sensitivity (Fredericksen,
Wcislo & Warrant, 2008). Neuroanatomical studies of M.
genalis show that neurons (short visual fibres) descending
from photoreceptors have extensive lateral branches, which
are unknown in diurnal bees (e.g. Warrant et al., 2004;
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Greiner et al., 2005). These neuroanatomical changes are
consistent with the hypothesis that photoreceptors share
information among adjacent ommatidia (e.g. Warrant et al.,
2004; Theobald et al., 2006), which theoretically enhances
sensitivity at the cost of reduced acuity (Theobald et al.,
2007). Detailed neurobiological studies are needed for other
dim-light taxa to assess the generality of these findings,
although there is limited corroborating evidence from other
Hymenoptera (e.g. Greiner, 2006; Greiner et al., 2007b).
Nothing is known of the molecular evolution of photore-
ceptor and visual pigment genes in dim-light bees relative to
diurnal taxa (see Yokoyama & Yokoyama, 1996, for a review
on vertebrates).
In addition to compound eyes, bees possess three ocelli

on the dorsal surface of the head, which are single-lens eyes
arrayed in a triangle. Although they likely have different
roles in different insects, it is commonly believed that they
play a major role in stabilising flight, by detecting and
comparing changes in light intensity and thereby controlling
pitch, yaw and roll (see Mizunami, 1994). The ocelli of
nocturnal bees are larger than those of crepuscular species,
which in turn are larger than those of diurnal species
(Kerfoot, 1967a; McGinley, 2003; Warrant et al., 2006;
Somanathan et al., 2008). Relative to diurnal species, the
ocelli of Megalopta are centered very dorsally, as is also true
for a nocturnal wasp, Apoica (Warrant et al., 2006).
Measurements of the back focal distance show that the
ocelli of Megalopta are highly under-focused and therefore
unable to resolve spatial detail; they also have compara-
tively very large and tightly packed rhabdoms (light
receptors). These two facts suggest that their ocelli are very
sensitive to just noticeable differences in ambient light
intensity. At present, however, behavioural data are lacking
to corroborate these anatomical observations.
( ii ) Body size and colouration. Crepuscular and nocturnal

bees are often thought of as being quite large in body size,
relative to related diurnal taxa (Linsley & Cazier, 1970;
Hurd & Linsley, 1975; Linsley, 1978; Eickwort & Gins-
berg, 1980). Colletes stepheni, for example, is a rare colletid
bee that is active in dim light, and is one of the larger Col-
letes in America north of Mexico (Hurd & Powell, 1958).
Most Perdita (Andrenidae) are small to minute bees, but
the dim-light P. (Xerophasma) is relatively large (Fig. 2).
Among the nearly 20,000 species, bee body size (length)
varies extensively among diurnal species, from minute (1.8
mm) to very large (39 mm), while bees known to forage
under dim light range in length from approximately 8 to
33 mm (Fig. 2).
Using categorical comparisons of body size distributions

for the genera of North and Central America (N ¼ 169), the
proportions of the diurnal and dim-light fauna with
‘‘moderate’’ body sizes are very similar, while there are
proportionally fewer dim-light taxa with minute and small
body sizes, and proportionally more dim-light taxa with
large and very large body sizes, relative to diurnal taxa
(Table 2). Using all size categories, a goodness of fit
likelihood ratio G-test with William’s correction showed
that the deviation in body size of dim-light taxa from the
expected distribution derived from diurnal taxa was not
significant (Gadj 4 ¼ 8.283, P > 0.05). Expected values for the

minute and very large size categories were low (approxi-
mately 5.19 and 0.9, respectively), so following Sokal &
Rohlf (1995) we pooled these categories (minute ] small,
and large ] very large) and found a significant deviation in
body size distributions of diurnal and dim-light taxa in
North and Central America (Gadj 2 ¼ 6.416, P < 0.05).

The fact that many dim-light taxa are relatively large-
bodied, and there are no extremely small dim-light species
(Fig. 2), may be associated with two physical constraints.
First, both intra- and inter-specifically, larger bees tend to
have larger compound eyes with larger ommatidia (see
Section III. 1a). Large body size may be conducive to dim-
light activity because of the concomitant increase in photon
capture (Jander & Jander, 2002). Secondly, dim-light species
are often active at cooler temperatures, especially pre-
matinal foragers in deserts, montane regions or higher
latitudes (e.g. LaBerge & Thorp, 2005). The facultatively
dim-light Xylocopa (M.) tenuiscapa (body length: approxi-
mately 33 mm), for example, can fly at night in the Western
Ghats of India, where night-time temperatures are as low as
2°C, and is larger than the sympatric and nocturnal X.
(Nyctomelitta) tranquebarica (Somanathan & Borges, 2001;
Somanathan et al., 2008). Large bees tend to lose heat
more slowly than smaller ones (see e.g. Pereboom &
Biesmeijer, 2003), and are better overall at thermoregula-
tion (e.g. Bishop & Armbruster, 1999), which would be
advantageous when foraging at cooler temperatures. Some
exceptions to these patterns are found in unusual environ-
ments. Both workers and drones of the facultatively dim-
light honey bee, A. dorsata, for example, are significantly
smaller than those of their diurnal sister species, the giant
honey bee Apis laboriosa (Sakagami et al., 1980; McEvoy &
Underwood, 1988). In this case, the larger size of A. laboriosa
is purported to be a response to environmental extremes of
the sub-alpine Himalayas where A. laboriosa endure temper-
atures between [5° and 10° C for much of the year
(Sakagami et al., 1980; Roubik, Sakagami & Kudo, 1985;
Otis, 1996), which approaches the critical limit for bees.
A. laboriosa are not known to fly under dim-light conditions
(Kirchner et al., 1996; Otis, 1996).

Some studies allude to a relationship between time of
foraging and body size and colour in diurnal bees, such that
larger or darker species are the first to visit flowers in the
morning, and as the day proceeds progressively smaller and
lighter coloured taxa arrive (e.g. Hurd & Linsley, 1975;
Smith & Knapp, 2002). Many dim-light taxa are also
relatively pale in body colour, though again exceptions exist.
Indeed, a montane species of Megalopta (M. atra Engel) is
particularly dark-coloured relative to congeneric species
(Engel, 2006; Tierney, Gonzales-Ojeda & Wcislo, 2008a),
and the diurnal sister genus to Megalopta, Xenochlora, has
both light- and dark-coloured species (Engel et al., 1997;
Tierney, Gonzales-Ojeda & Wcislo, 2008b). All nocturnal
Xylocopa females are dark, yet so are many diurnal Xylocopa.
Consequently, pale colouration is not a consistent diagnostic
marker for dim-light foraging. Melanisation plays important
roles in thermoregulation and protection from ultraviolet
light (UV) in insects (see Ellers & Boggs, 2004), but no
studies are available to assess whether reduced exposure to
UV helps explain colouration trends in dim-light bees.
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( iii ) Wing morphology. Aspects of wing morphology of bees
scale with body size, such that larger species have decreased
relative stigma area; distal extension of wing vein compo-
nents; increased aspect ratio; and a proximal shift in the cen-
troid of the wing area (Danforth, 1989). The exceptions to
these nearly universal scaling rules are dim-light bees and
other nocturnal Hymenoptera. Perdita (Xerophasma) bequaerti-
ana Cockerell is one of the largest species of Perdita, yet its
wing morphology is typical of a small species, having a large
stigma, a low aspect ratio and low wing loading (Danforth,
1989). Similar features characterise the wings of other dim-
light bees such as Megalopta and Lasioglossum (Sphecodogastra),
and other nocturnal Hymenoptera like Ophion (Ichneumoni-
dae) and Macrocentrus (Braconidae) (Danforth, 1989), even
though they tend to be larger bodied than their diurnal rela-
tives. In comparison with related diurnal taxa (Augochlorini),
the wings of dim-light Megalopta have relatively more hooks
(hamuli) that hold the fore- and hind-wings together in flight
(Eickwort, 1969), presumably creating a more rigid flight sur-
face. Nothing is known about the aerodynamic flight behav-
iour of dim-light bees, though the traits described above may

be associated with slower flight speeds needed to avoid colli-
sions in the dark. Slower flight speeds, in turn, might be
related to the speed at which photoreceptors process infor-
mation, but detailed studies are lacking.

(3) Onset of activity in dim-light bees

At least in some bees increasing light levels cue the onset of
matinal foraging behaviour (e.g. Lutz, 1931; Kelber et al.,
2006), although circadian clocks also entrain rhythmic
activity (e.g. Moore, 2001; Fuchikawa & Shimizu, 2007;
Yuan et al., 2007). Anecdotal observations suggest that the
precocious onset of foraging inMegalopta (Kelber et al., 2006;
W. T. Wcislo personal observations) and Xylocopa (S. M.
Tierney personal observations) can be induced by means of
artificial illumination. Nothing is presently known about
genetic mechanisms associated with circadian rhythms in
dim-light bees, but in a vertebrate, the subterranean mole rat
(Spalax ehrenbergi Nehring), a shift from diurnal to nocturnal
activity is associated with an uncoupling of light input as
a zeitgeber and the circadian clock (Oster et al., 2002).
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(4) Homing and orientation behaviour and
nocturnal flight

Based on studies of M. genalis and Xylocopa tranquebarica,
females use visual cues such as local landmarks to orient to
their nest (Warrant et al., 2004; Somanathan et al., 2008), as do
diurnal bees (e.g. see references in Wcislo, 1992). Nothing is
known about long-distance orientation, though the omma-
tidia along the dorsal rim of the compound eye of M. genalis
are highly sensitive to polarized light (Greiner et al., 2007a),
and are typical of hymenopterans that use polarized light for
long-distance orientation. Light is strongly polarized in the
tropics, including at dawn and dusk (Shashar et al., 1998;
Cronin, Warrant & Greiner, 2006). Comparative studies are
lacking for most other dim-light bees.

IV. CORRELATED EVOLUTION IN
DIM-LIGHT BEES

Using Engel’s (2000) phylogeny for the tribe Augochlorini
(Halictidae) there is a strong association between characters
associated with dim-light foraging such that changes in the
size of ocelli and foraging times (relative to light levels) are
concentrated at certain nodes of the tree (P < 0.001). This
result is stable under different random resolutions of
polytomies. Given observations of facultative dim-light
foraging in taxa without enlarged ocelli or compound eyes,
this pattern suggests that the behavioural trait (i.e. foraging
time) drives the subsequent evolution of anatomical traits.
There is no evidence that any of the external morphological
traits for dim-light foraging occur in sister taxa with diurnal
foraging behaviour within Halictidae.
Information on bee taxa with obligate dim-light foraging

(Table 1) is consistent with results from a concentrated
changes test for the Augochlorini. For 11 comparisons at

least some members of a taxon with obligate dim-light
foraging show anatomical features that underlie the novel
behaviour. The other comparisons either show no conspic-
uous anatomical features or they have not been reported;
these latter cases all involve taxa that fly at or near sunrise
and sunset, at moderately bright light levels. Derived
anatomical features that are associated with dim-light
foraging (e.g. enlarged compound eyes or ocelli) do not
occur in diurnal species. Likewise, there are no cases of
obligate dim-light foraging in lineages that do not also
contain facultative dim-light foraging.

Within lineages degree of anatomical change is associated
with the dimness of the environment. The speciose sweat
bee genus Lasioglossum (Halictini), for example, contains
numerous subgenera (e.g. McGinley, 1986; Michener, 2007;
Danforth, Conway & Ji, 2003a), and nearly all Lasioglossum
s.l. have diurnal foraging. The subgenus L. (Sphecodogastra),
however, comprises eight species, all of which are
crepuscular or nocturnal (Chandler, 1961; Kerfoot,
1967b,c; McGinley, 2003). Bee taxonomists have long used
the ratio of the lateral ocellus diameter (simple eye) to the
distance between the ocellus and the compound eye, to
describe ocellar size relative to head shape. For crepuscular
species of L. (Sphecodogastra) this ratio ranges from 1.18 to
2.0, while in two species (probable sister species) that are
thought to have nocturnal activity the ratio ranges from
0.33 to 0.35 (McGinley, 2003). The diurnal sister taxon to
L. (Sphecodogastra) is L. (Evylaeus) (Danforth et al. 2003a), and
in the latter this ratio ranges from 1.9 to 2.25. We lack
a phylogenetic hypothesis for L. (Sphecodogastra) species and
do not know if there was progressive evolution towards
increasingly large ocelli, but it is clear that species that are
active under the dimmest conditions have the largest ocelli.
Similar variation in ocelli size with respect to light
environments is known for some carpenter bees (Xylocopa)
(Minckley, 1998; Somanathan et al., 2008).

Table 2. Categorical body size distributions of North and Central American bee genera (from Michener et al., 1994). Data are
tabulated giving overall size distributions, and again according to the light environments in which they forage

Body size categories

TotalMinute Small Moderate Large Very large

Frequency of genera 23 79 95 53 7 257
% of 169 genera 13.61% 46.75% 56.21% 31.40% 4.14%
Light conditions
Dim-light
Obligate 2 4 5 3 0 14
Facultative 0 8 15 11 3 37
Pooled: 2 12 20 14 3 51

Diurnal 21 67 75 39 4 206
G-test expected value: 5.2 16.59 18.57 9.65 0.99 51

Proportion by size
Dim-light
Obligate 14.29% 28.57% 35.71% 21.43% 0.00%
Facultative 0.00% 21.62% 40.54% 29.73% 8.11%
Pooled: 3.92% 23.53% 39.22% 27.45% 5.88%

Diurnal 10.19% 32.52% 36.41% 18.93% 1.94%
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V. THE ECOLOGY OF DIM-LIGHT FORAGING:
ESCAPE FROM ENEMIES AND COMPETITORS?

The evolution of dim-light foraging in bees may be driven
by ecological advantages associated with an escape from
competitors and natural enemies (e.g. Wcislo et al., 2004),
although much of the supporting evidence is circumstantial.

(1) Pollen competition and resource utilisation

Bees that forage at night are presumed to face reduced
competition for resources (e.g. Wcislo et al., 2004; Kato,
2006). The role of competition in explaining resource
specialization in bees has been inferred mainly from
visitation rates (e.g. Minckley et al., 1994; Minckley, Cane
& Kervin, 2000; reviewed in Wcislo & Cane, 1996), but no
studies have linked differential visitation rates to pollen
harvesting and rates of cell provisioning. A Mexican species
of Megalopta, for example, visits Ipomoea wolcottiana Rose
before sunrise, after which 20 diurnal species visited to
collect pollen (Bullock et al., 1987). The crepuscular desert
bee Xylocopa (Proxylocopa) olivieri Lepeletier shows a small
peak of foraging activity in the morning before sunrise
when no other bees are flying except for very small numbers
of honeybees (Apis mellifera L.). X. (P.) olivieri are mostly
inactive during the day when other bees are foraging, and
have a larger peak of activity in the evening after sunset
when there are no other bees active (Gottlieb et al., 2005; for
other examples, see Roulston, 1997; Bullock et al., 1987).

Unlike many diurnal bees (e.g. Minckley et al., 1994),
obligate dim-light bees do not always track resource
availability. Species of Megalopta in central Panama cease
foraging at a time in the evening (near astronomical
twilight), even though pollen is still abundant (W.T. Wcislo
personal observations), presumably because of visual
constraints (see Section III. 2ai). By contrast, according to
Somanathan & Borges (2001), the facultative dim-light bee,
X. tenuiscapa, tracks resource availability to some extent. It
was the major nocturnal visitor to flowers of the night-
blooming tree, Heterophragma quadriloculare (Bignoniaceae),
and bee visitation was significantly highest at peak anthesis
near sunset, although smaller numbers of bees were
recorded at other times throughout the night, well after
astronomical twilight. A subsequent study from the same
site presented contradictory observations that the flight
activity of X. tenuiscapa was largely diurnal, with occasional
extensions of foraging activity into crepuscular periods
(prior to astronomical twilight) (Somanathan et al., 2008).
The giant honey bee (Apis dorsata) is another facultative dim-
light forager that extends its foraging activity when night-
blooming flowers are available, but the extent to which it
tracks diel resource availability of the night-blooming flora
is not known (Momose et al., 1998).

Roulston (1997) noted that many of the flowers used by
Megalopta as pollen sources are frequently associated with
bats, which often have pollen with relatively high protein
content. He hypothesised that access to particularly rich
pollen sources may favour the evolution of nocturnal
behaviour. A more recent study, however, casts doubt on

this hypothesis because the protein content of pollen from
bat-pollinated or other zoophilous flowers is not different,
on average, from that of anemophilous plants, once
phylogeny is taken into account (Roulston, Cane &
Buchmann, 2000). A related idea is that many tropical
trees associated with bats have relatively long flowering
phenologies (Wright & Calderón, 1995; Borchert, 1983),
and each flower typically has large quantities of pollen, so
quantity and predictability of resources may be more
important than quality (e.g. Somanathan & Borges, 2001).

A conventional assumption is that the evolution of bats
and bat-pollinated trees (Park, 1940; Baker & Harris, 1957;
Baker, 1961; Marshall, 1983; Hopkins, 1984; Eguiarte &
Burquez, 1987; Gribel & Hay, 1993) opened a niche for
bees to exploit. This hypothesis is likely to be true in some
cases, but in other cases phylogenetic evidence casts doubt
on it. The pantropical tree genus Parkia (Leguminoceae)
contains a clade of species with flowers that are character-
istic of bat pollination, while another clade has entomoph-
ilous flowers (Hopkins, 1984; Luckow & Hopkins, 1995). A
phylogenetic study of Parkia indicates that the bat-pollinated
clade is derived relative to the insect-pollinated clade
(Luckow & Hopkins, 1995). Hopkins, Hopkins & Sothers
(2000) report that the primary visitors to flowers of
a Brazilian species of Parkia are Megalopta sp., and they
suggest that pollination by a nocturnal bee such as Megalopta
may facilitate a shift to bat pollination. By contrast, a species
of Parkia (P. clappertoniana Keay) in Ghana is pollinated by
bats, and although bees (Apis mellifera) collect its pollen at
dusk and dawn, it is thought they play no role in pollination
because they confined their visits only to the staminate parts
of the inforescences (Baker & Harris, 1957).

(2) Escape from natural enemies

Rydell & Speakman (1995) suggested that the evolution of
nocturnal behaviour in bats might be associated with
advantages that accrue from moving into enemy-free space,
at least early in their evolution (see also Beauchamp, 2007,
for other vertebrates). A similar suggestion has been made
for dim-light bees (e.g. Wcislo et al., 2004). For bees, scant
evidence for this hypothesis is equivocal. Various insects
attack nests and brood of Megalopta, including ants, flies,
beetles, wasps and parasitic Megalopta (e.g. Biani & Wcislo,
2007; Cambra, Gonzalez & Wcislo, 2005; Smith, Wcislo &
O’Donnell, 2003; Falin, Arneson & Wcislo, 2000; Smith,
Wcislo & O’Donnell, 2008), as does an unidentified
predator, presumably an anteater-like vertebrate (W. T.
Wcislo personal observations). Survivorship curves for
colonies of dim-light Megalopta are not different in shape
from those of several diurnal halictine bees, and 50%
survivorship rates are slightly better or roughly comparable
(Smith et al., 2003; Wcislo et al., 2004; Batra, 1966;
Michener & Wille, 1961; Sakagami & Fukuda, 1989),
suggesting that there is at best a modest escape from
enemies. Rates of cell parasitism, however, are approxi-
mately 5-6% for Megalopta (Wcislo et al., 2004), while mean
rates of cell parasitism for diurnal bees range from 24 to
29% (Wcislo, 1996). Lower cell parasitism rates could be
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interpreted as an escape from enemies by nocturnal species.
Alternatively, the narrow foraging window (approximately 1
h post-sunset and 1 h pre-sunrise) of Megalopta in Panamá
(Warrant et al., 2004; Wcislo et al., 2004; Kelber et al., 2006),
relative to diurnal species, means that even solitary nests
will be un-occupied less frequently than in diurnal species,
and more frequently will have a de facto guard.

VI. DISCUSSION

Among bees a recurrent facultative phenotype involves
opportunistic dim-light foraging (see Fig. 1). Such behaviour
is presumably advantageous in that it enables access to
floral resources when most competitors are not foraging
(e.g. Roubik, 1989; Wcislo et al., 2004; Somanathan, Borges
& Chakravarthy, 2004; Gottlieb et al., 2005; Somanathan
et al., 2006). In desert regions these activity patterns may
also minimise exposure to unfavourable thermal conditions
(e.g. Willmer & Stone, 1997; Gottlieb et al., 2005). Likewise,
tropical diurnal species sometimes fly at high ambient
temperatures, and run the risk of overheating as they reach
thoracic temperatures near lethal limits (see Pereboom &
Biesmeijer, 2003). Presumably such advantages would
accrue to individuals that facultatively exploit dim-light
environments, although relevant data are scarce.
Beauchamp (2007) reviewed studies of predation in birds

and mammals, and showed that qualitative levels of pre-
dation were higher during the day than at night for 78% and
73% of the populations of the two taxa, respectively. Detailed
quantitative studies are generally lacking, however, but in
general these results are consistent with the hypothesis that
the evolution of nocturnalism is associated with reduced
predation risk. Mougeot & Bretagnolle (2000) showed that
predation risk in nocturnal seabirds was higher on moonlit
nights than dark nights, suggesting that darkness provides
cover against visually guided predators. As reviewed above,
data on cell parasitism rates for bees are consistent with this
hypothesis, but overall rates of nest survival are sometimes
inconsistent with it.
For insects with apposition eyes a shift into a dim-light

environment creates a substantial problem in sensory
ecology (see Section III. 2). Due to a trade-off between
sensitivity and acuity in the design of compound eyes,
diurnal species typically have high-resolution eyes with low
sensitivity (Jander & Jander, 2002), and thus performance is
reduced under low-light conditions (see Theobald et al.,
2007). Consequently, at least some dim-light bees evolved
a suite of optical traits that increase the numbers of photons
captured, providing a better signal to noise ratio in dim
light, and neural changes increase sensitivity as well (for
examples in ants, see Menzi, 1987; Greiner et al., 2007b).
Functionally equivalent optical changes have been demon-
strated for other dim-light insects and vertebrates, including
wasps (Apoica) (Greiner, 2006), alates of leaf-cutting ants
(Atta) (Moser et al., 2004), army ants (Coody & Watkins,
1986), mosquitos (Land et al., 1999; Kawada et al., 2006),
butterflies (Yack et al., 2007), birds (Garamszegi, Møller &
Erritzoe, 2002; Thomas et al., 2006; Hall & Ross, 2007) and

primates (Ross & Kirk, 2007). Vision in dim-light conditions
is clearly enhanced by having larger eyes, but increases in
eye size are associated with significant energetic costs. A law
of diminishing returns applies to sensory systems because
excess functional capacity is strongly penalised due to
increased energetic costs associated with information
processing (see Niven & Laughlin, 2008). Consequently,
dim-light bees face strong selective pressures to evolve eye
sizes that just meet functional demands but do not exceed
them (see Frediksen & Warrant, 2008, for an example from
butterflies).

Light sensitivity varies among dim-light bee taxa, as
inferred from behavioural evidence (Table 1). Some dim-
light bees are sensitive to lunar phases and prolong their
foraging activity when the moon is bright (e.g. Kerfoot,
1967a), while others do not (e.g. Kelber et al., 2006;
Somanathan et al., 2008). We lack comparative data to
assess whether these behavioral differences are associated
with differences in neural design that limit photon capture
(e.g. Warrant et al., 2004; for an example in birds, see Martin
et al., 2004). In addition, some of the behavioural differences
may be due to environmental factors. Obligate dim-light
bees that are sensitive to lunar periodicity (Kerfoot, 1967a)
forage in relatively open areas, while those that are
apparently insensitive (e.g. Megalopta genalis) nest in the
understorey of a tropical forest where moonlight is blocked
by the canopy. Other Megalopta that live in forests with
a more open canopy (e.g. tropical dry forests of Jalisco and
Nayarit, Mexico) continue to fly into the night (R. Ayala,
personal communication). Similar variation is known within
species. In India, for example, X. tranquebarica continues to
fly at night after astronomical twilight (Somanathan et al.,
2008), while the same species in Thailand flies on moonlit
nights but not moonless ones (Burgett & Sukumalanand,
2000). Comparative neurobiological and ecological data are
not available to assess whether inter- and intra-specific
differences in foraging patterns are due to differences in the
visual systems of bees in different populations and species,
or to differences in forest canopy architecture and resulting
light environments. Experimental manipulations indicate
that decreased light levels retard onset of activity in
Megalopta, indicating that bees can respond to local variation
in light levels (T. Gonzales-Ojeda, S. M. Tierney & W. T.
Wcislo, unpublished data).

Dim-light foraging appears to be especially common in
two life zones: tropical forests and desert regions. What
factors may help to explain why dim-light foraging has
apparently gone to fixation (obligate dim-light species) more
often in the tropics, as is true for other taxa such as paper
wasps (Vespidae) (Hunt, Jeanne & Keeping, 1995), as well as
in xeric temperate regions? Important sources of pollen for
neotropical Megalopta are plants (e.g. Ceiba, Pseudobombax)
that are typically associated with vegetarian bats, although
a number of other plants are used as well (Wcislo et al.,
2004; A. Smith & W.T. Wcislo, unpublished data). Baker
(1961) and Stebbins (1970) discuss features of tree and floral
architecture that are required for bat pollination (e.g. large
nectar-producing flowers set on sturdy branches; free-flying
space around the flowers; flower availability over an
extended time period), and they note that species with such
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traits are restricted to tropical and sub-tropical regions.
Night-blooming plants represent a greater percentage of the
local flora in the tropics relative to the temperate zone
(Endress, 1994). Thus, resource availability per se may help
explain this biogeographic pattern, but would not account
for why traits go to fixation.

Close to the equator (e.g. Panama, ;90 N latitude)
sunrise and sunset are associated with sharp changes in light
intensity that span almost four orders of magnitude over
approximately one hour, and at the steepest part of the
slope light levels change by a factor of 10 in approximately
10 min (Theobald et al., 2007). By contrast, twilight is
considerably longer at higher latitudes during the summer.
Slight differences in timing of activity should have greater
consequences in the tropics relative to the temperate zone
therefore, because of more intense selection in the former.
Differences in timing of foraging activity, relative to
unfavourable environmental conditions, also may help
explain the recurrence of obligate dim-light foraging in
xeric areas, where the bee fauna is particularly diverse
(Michener, 2007) and many species are pollen specialists
(oligolectic) (e.g. Linsley, 1958; Hurd & Linsley, 1964, 1975;
Wcislo & Cane, 1996; Minckley et al., 2000). Local popu-
lations of oligolectic bees show high degrees of genetic
differentiation (e.g. Danforth, Ji & Ballard, 2003b), including
the dim-light species, Lasioglossum (Sphecodogastra) oenetherae
(Zayed & Packer, 2007). Population genetic structure
presumably arises because local populations track local
variation in flowering phenology (e.g. Danforth, 1999),
which in turn is related to local variation in rainfall (e.g.
Minckley et al., 2000). Plant taxa that are pollen sources for
many dim-light xeric species (e.g. Onagraceae and Curcur-
bitacae; Linsley, MacSwain & Raven, 1963, 1964; Hurd &
Linsley, 1964) show divergent reproductive traits associated
with local variation in aridity (e.g. Evans et al., 2005).
Stebbins (1970) discussed how the environment can be
a limiting factor for angiosperm reproduction because of its
influence on how much time is available for flower
development under the particular conditions at the time
of pollination. He illustrated this point by discussing how
floral adaptations to moth pollination, including changes
from diurnal to matinal, vespertine or nocturnal flowering,
are expected to occur more often in hot dry climates, where
day-time conditions are unfavourable for flowering and
pollination. Thus, the repeated evolution of dim-light
foraging in xeric areas may be related to bees tracking
shifting flowering phenologies. These considerations also
raise the question of what factors facultatively induce
individuals to invade an extreme environment?

In the temperate zone, inter-annual variation in rainfall
and other abiotic factors is associated with variation in
resource availability for bees (e.g. Minckley et al., 1994;
Minckley et al., 2000). A popular misconception holds that
such abiotic factors are relatively unimportant, or at least
they are more stable in the tropics. In an influential paper,
Dobzhansky (1950, p. 220) wrote that in the tropics
‘‘physical conditions are easy.’’ In fact, inter-annual
variation in abiotic conditions, particularly the El Niño
Southern Oscillation (ENSO), recurrently leads to severe
stress in many parts of the humid tropics (e.g. Wright, 2005).

ENSO events have important consequences for plant
reproduction due to changes in rainfall, temperature and
irradiance (Wright and Calderón, 2006). Mild El Niño
events tend to increase flowering, which should be
advantageous for bees, but severe events will decrease plant
reproduction. Although such events should cause famine
among animals that depend on floral resources for food, as
it does for mammals that depend on fruits (Wright et al.,
1999), evidence for bees is mixed (see e.g. Roubik, 2001;
Frankie et al., 2005 and references therein).

Rau (1933) postulated that innovation, with respect to
feeding, was especially likely in times of stress, which may
force individuals to switch to novel resources in an
opportunistic way, facilitated by learned associations (see
also Wcislo, 1989; West-Eberhard, 2003). Specialist bees,
Andrena (Diandrena) Cockerell, for example, usually collect
pollen only from one or a few plant species, but use
alternative resources when their preferred pollen sources
are absent or rare due to environmental stresses (Thorp
1979). Bees are well known for their abilities to learn when
food is available (e.g. Frisch, 1967; Boisvert, Veal & Sherry,
2007) and track it subsequently (Momose et al., 1998). If
stress conditions force individuals to forage outside their
normal window of foraging times, then learning could
stabilise the novel foraging activity, and set up conditions
that modify selective pressures and promote phenotypic
innovation, as discussed by Mayr (1960) and others (e.g.
Wcislo, 1989; West-Eberhard, 2003, pp. 337ff.; Beltman,
Haccou & ten Cate, 2004).

VII. CONCLUSIONS

(1) Temporal patterns of the foraging behaviour of bees
vary extensively; individuals of most species are diurnal
foragers and fly under bright sun, although facultatively
dim-light foraging has evolved repeatedly in most major
lineages.

(2) Obligate dim-light foraging has a more restricted
phyletic distribution, yet has evolved independently a min-
imum of 19 times. Some dim-light taxa restrict their
foraging behaviour to early morning (matinal), others to
early evening (vespertine) or both (crepuscular), while some
species are fully nocturnal (i.e. forgaging after astronomical
twilight).

(3) Facultative dim-light foragers show no external
structural traits in their visual systems (with one exception)
that enable visually mediated flight behaviours in low-light
environments, while most obligate dim-light foragers show
a suite of convergent optical traits, including enlarged
simple eyes (ocelli) and compound eyes, as well as larger
ommatidia in the compound eyes.

(4) Intensive neurobiological studies of Megalopta genalis
(Halictidae) show that a dim-light species has also evolved
a series of neurological traits that enhance photon capture,
including larger photoreceptors with slower integration
times and greater contrast gains. The generality of these
neurobiological observations remains to be determined.
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(5) Escape from competition for pollen and nectar
resources, and escape from natural enemies, are hypoth-
esised to be driving factors in the evolution of obligate dim-
light foraging, but few data are available to test these
hypotheses.
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JÖRGENSEN, P. (1912). Beitrag zur biologie einiger südamerika-
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