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Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous 
systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using 
intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, 0. virilis, Calliphora vicina, and 
Sarcophaga carnaria, we measured the rates at which homologous R1-6 photoreceptors of these species transmit 
information from the same stimuli and estimated the energy they consumed. In all species, both information rate and 
energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to 
maintain the dark resting potential. This substantial fixed cost, —20% of a photoreceptors maximum consumption, 
causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest 
information rates, achieved at bright daylight levels, differed according to species, from —200 bits s ' in D. 
melanogaster to —1,000 bits s ' in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the 
unit cost (cost per bit) all increase with a photoreceptors highest information rate to make information more 
expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures 
by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons 
because they are subject to similar biophysical constraints on information throughput. 
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Introduction 

The balance between cost and benefit plays an important 
role in directing the evolution of biological systems [1,2]. 
Costs and benefits are many and various; for example, the 
elongated tail of the male long-tailed widow bird is very 
effective at attracting females, but it also makes the male 
more conspicuous to predators and greatly increases the 
energetic cost of flight [3,4]. Many of the costs that are 
incurred in the manufacture, maintenance, operation, and 
carriage of systems can be reduced to a common currency, 
the expenditure of metabolic energy, while the benefits can 
be measured in terms of a system's performance. A system's 
energy cost and its performance interact, within the context 
of the organism and its habitat, to determine fitness. 

Relationships between cost and performance have un- 
doubtedly shaped the evolution of nervous systems [5-7]. The 
enlargement of structures for particularly important and 
demanding behavioural tasks, such as the auditory system of a 
bat [8], and the reduction of redundant structures, such as the 
thalamo-cortical visual system of the subterranean mole rat 
Spalax [9], suggest that larger structures perform better and 
cost more. Economical wiring patterns and layouts [10-12] 
and mechanisms that improve the energy efficiency of 
neurons [13,14], circuits [15], and codes [16-19] have evolved 
in nervous systems, and these adaptations suggest that there is 
pressure on nervous systems to maximise performance and 
minimise expenditure on materials and metabolic energy 
[20]. 

Much of the metabolic energy consumed by a nervous 

system is used to generate and transmit signals, and most of 
this goes to the Na+/K+ pump, to restore the ionic concen- 
tration gradients that drive rapid electrical signalling and 
neurotransmitter uptake [21]. This energy usage is directly 
related to performance— more power is required to transmit 
signals at higher rates [22-24]. Furthermore, the quantities of 
energy used by neurons are sufficiently large to limit the 
coding, processing, and transmission of information. Thus 
the limited availability of energy not only constrains the size 
and total number of neurons in the brain [7,25], it limits 
representational capacity by placing a remarkably low ceiling 
on mean firing rates [21,26]. Although the balance between 
energy costs and performance could well play a formative 
role in the evolution of nervous systems, to our knowledge no 
single study has set out to establish these relationships by 
measuring both costs and performance across a set of 
comparable neurons. 

Fly photoreceptors  offer several  advantages  for such  a 
systematic   comparative   study   of  the   trade-offs   between 
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Author Summary 

Many animals show striking reductions or enlargements of sense 
organs or brain regions according to their lifestyle and habitat. For 
example, cave dwelling or subterranean animals often have reduced 
eyes and brain regions involved in visual processing. These 
differences suggest that although there are benefits to possessing 
a particular sense organ or brain region, there are also significant 
costs that shape the evolution of the nervous system, but little is 
known about this trade-off, particularly at the level of single 
neurons. We measured the trade-off between performance and 
energetic costs by recording electrical signals from single photo- 
receptors in different fly species. We discovered that photoreceptors 
in the blowfly transmit five times more information than the smaller 
photoreceptors of the diminutive fruit fly Drosophila. The blowfly 
pays a high price for better performance; its photoreceptor uses ten 
times more energy to code the same quantity of information. We 
conclude that, for basic biophysical reasons, neuronal energy 
consumption increases much more steeply than performance, and 
this intensifies the evolutionary pressure to reduce performance to 
the minimum required for adequate function. Thus the biophysical 
properties of sensory neurons help to explain why the sense organs 
and brains of different species vary in size and performance. 

neuronal energy costs and neuronal performance. The 
biochemical and electrical signalling mechanisms, the photo- 
transduction cascade [27], and the photoreceptor membrane 
[28,29], are exceptionally well described [30-32]. High quality 
intracellular recordings from identified photoreceptors in 
intact retina allow one to measure both cost and performance 
in the same cell. Performance can be measured directly, as the 
rate at which the photoreceptor transmits information, from 
recordings of voltage signals [33]. The metabolic cost of this 
information can be obtained by measuring membrane voltage 
and conductance, and then applying these measurements to a 
membrane model to calculate the ionic currents used to 
generate responses and the rate at which Na+/K+ pumps must 
consume ATP to maintain the ionic concentration gradients 
that drive electrical signalling. This empirical method yields 
the unit cost of information, measured in ATP molecules 
hydrolysed per bit of information coded [14,34], 

We present a systematic comparative study of fly photo- 
receptors, which sets out to discover how neuronal energy 
costs change with neuronal performance. We compare 
homologous photoreceptors taken from four species of 
Diptera, the blowfly Calliphora, the fleshfly Sarcophaga, and 
two Drosophilids. The blowfly and the fleshfly have larger 
eyes with better spatial and temporal resolving power, 
presumably because these large flies fly faster and further 
and are more manoeuvrable than the Drosophilids. Photo- 
receptor performance is measured directly, as information 
throughput in bits s~ , and energy costs are estimated as the 
rate at which the Na /K pump must hydrolyse ATP 
molecules in order to sustain signalling. We confirm that 
blowfly Rl-6 photoreceptors achieve higher bit rates than D. 
melanogaster [31,33] at greater cost [14,34], and we extend this 
comparison to the full operating range of background light 
levels. Furthermore, by applying identical methods to four 
species, we describe how costs scale against performance. We 
find that it is costly to improve performance, because 
membrane conductance increases supralinearly with max- 
imum bit rate, and this makes information more expensive in 

higher capacity cells. Our measurements confirm theoretical 
findings [16,18,35] that the fixed cost of maintaining a cell at 
rest, ready to signal, is a major determinant of metabolic 
efficiency and also establish a basic microeconomic relation- 
ship; namely that the fixed cost of maintaining a cell ready to 
signal increases with its maximum information rate. In this 
sense fly photoreceptors resemble cars; a high performance 
Porsche Carrera GT consumes three times as much fuel km~ 
as a lower performance Honda Civic [36], even when driven at 
the same low speeds (urban cycle). Because this new example 
of a neuronal law of diminishing returns appears to be 
enforced by the basic biophysics of electrical signalling, we 
suggest that it operates in many neurons and could, there- 
fore, play a significant role in determining the function, 
design, and evolution of nervous systems. 

Results 

Information Rates in Fly Photoreceptors 
We compared information rates with energy costs in Rl-6 

photoreceptors from four species C. vicina, S. carnaria, D. 
virilis, and D. melanogaster. C. vicina and D. melanogaster Rl-6 
were chosen because they are known to transmit at very 
different rates. In daylight the large Calliphora cells transmit 
approximately 1,000 bits s [30,33,34], whereas the smaller D. 
melanogaster cells transmit at just over 200 bits s~ [31,32,37]. 
We developed a new preparation, the intact retina of D. virilis, 
to provide Rl-6 cells of intermediate size and information 
rate. We also recorded from the large Rl-6 photoreceptors of 
another vigorous fly with a large eye, S. carnaria, in order to 
confirm that the high costs measured in Calliphora Rl-6 are 
associated with high information rates. 

We measured information rates from intracellular record- 
ings of voltage responses to optical signals (Figure 1) [33]. The 
photoreceptor was first adapted to a background light whose 
effective intensity had been calibrated as an effective photon 
rate by counting that same photoreceptor's discrete re- 
sponses to single photons (see Materials and Methods; Figure 
1A). This calibration takes account of differences in accept- 
ance angle and sensitivity and enables us to compare the 
performance of photoreceptors receiving the same number 
of photons. Once stably adapted, the photoreceptor was 
presented with multiple repeats of the same brief sequence of 
pseudorandom modulation of the light around the back- 
ground intensity (Figure IB and 1C). The mean contrast of 
this modulation (standard deviation/mean) was 0.32, a value 
close to that of natural scenes (see Materials and Methods). 
Photoreceptors encode the fluctuations in stimulus contrast 
as a graded (analogue) modulation of membrane potential 
that is contaminated by noise. We extracted the photo- 
receptors voltage signal (Figure IB and 1C) by averaging the 
responses (averaging eliminates noise) and then extracted the 
noise by subtracting our estimate of the signal from the 
response to each stimulus repeat. Our estimate of the signal 
was transformed into the signal power spectrum S(f). Each of 
the extracted noise traces was transformed, and the resulting 
ensemble of spectra was averaged to generate the noise power 
spectrum N(f). Both signal and noise were distributed 
normally, allowing the rate at which the photoreceptor 
transmits information 7 in bits s~ to be determined by 
applying Shannon's formula [38] to the power spectra of the 
signal S(f) and noise N(f): 
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Figure 1. Intracellular Recordings of Voltage Responses and the 
Distribution of Information across Frequencies in R1-6 Photoreceptors 
of D. melanogaster and S. carnaria 
(A) Quantum bumps (*) recorded from D. melanogaster in response to 
continuous illumination by the white-noise stimulus (lower trace, grey), 
which was attenuated by 5.5 log units to give a mean effective photon 
rate of 9 s '. 
(B) Average responses of a D. melanogaster R1-6 photoreceptor to 50 
repetitions of a randomly modulated light of mean contrast 0.32. 
(C) The corresponding average response of an R1-6 photoreceptor from 
5. carnaria. Note that the responses in (B) and (C) have dissimilar 
waveforms because they were generated by different random sequences 
of intensity modulation, shown in grey beneath each voltage record. In 
both (B) and (C) the mean stimulus intensity was set to approximately 5 
x 106 effective photons s-1. Note that S. carnaria R1-6 responses (C) vary 
more rapidly than D. melanogaster (B). 
(D) This faster response gave the S. carnaria R1-6 a wider bandwidth, as 
demonstrated in (D) by plotting the distribution of information across 
response frequency for the two cells. 
doi:10.1371 /journal.pbio.0050116.g001 
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The logarithmic term in this equation is the distribution of 

information across frequencies, as plotted in Figure ID. 

At the lowest photon rates (10 —10 effective photons s~ ) 

the information rates of all four photoreceptors were almost 

identical, suggesting that under these conditions the in- 

formation rates in all four species were limited by photon 

noise, rather than response bandwidth (Figure 2). At higher 

photon rates (>10 effective photons s ) the information 

rates of the photoreceptors diverged (Figure 2). At the highest 

effective photon rates ~10 s , which are within 0.7 log units 

of the highest daylight intensities [39], Calliphora and 

Sarcophaga photoreceptors attained throughputs close to 

1,000 bits s_1 (955 ± 70, n = 3 for Calliphora and 1,130 ± 67, 

n = 11 for Sarcophaga), compared with ~510 bits s~ in D. virilis 

photoreceptors (512 ± 26, n = 21) and ~200 bits s in D. 

melanogaster photoreceptors (197 ± 31, n = 26). Note that, as 

explained in the Materials and Methods, our set of values 

from 26 D. melanogaster photoreceptors includes data from 21 

cells that were published in an earlier study [32]. The rates 
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Figure 2. Comparison of Information Rates in R1-6 Photoreceptors from 
Four Dipteran Species 
Information rates (mean ± standard error of the mean) are measured 
from the response to a randomly modulated light of mean contrast 0.32, 
presented at five background (average) light levels to: S. carnaria (blue), 
C. vicina (red), D. virilis (green), and D. melanogaster (black). Each 
adapting light background was converted to effective photons s_1 to 
allow the photoreceptors to be compared under equivalent conditions. 
doi:10.1371/journal.pbio.0050116.g002 

measured in Calliphora and D. melanogaster Rl-6 photo- 

receptors are similar to those measured previously with 

comparable methods [31,34,37]. The information rate of D. 

melanogaster Rl-6 photoreceptors saturated at our highest 

intensities, but the information rates in the other species did 

not (Figure 2). Nonetheless, because our highest photon rate 

is close to that experienced in full daylight [39], the 
photoreceptors are operating close to their natural intensity 

limit. 

The Rl-6 photoreceptors of the larger more active flies, 
Calliphora and Sarcophaga, code information at higher rates 

because they maintain a higher signal-to-noise ratio (SNR) 

over a broader bandwidth of response. The contributions of 

SNR and bandwidth to performance are illustrated by 

comparing a plot of information versus frequency for the 
highest information rate photoreceptor, Sarcophaga Rl-6, with 

a plot for the lowest information rate photoreceptor, D. 

melanogaster Rl-6 (Figure ID). At any given frequency the 

Sarcophaga Rl-6 carries more information than the D. 

melanogaster Rl-6 because its SNR, S(f)/N(f) in Equation 1, is 

larger. The Sarcophaga Rl-6 codes almost half of its informa- 

tion at frequencies in the range 100-300 Hz but, because of its 
poorer bandwidth, D. melanogaster Rl-6 codes very little 

information at frequencies above 100 Hz (Figure ID). 

Metabolic Costs of Fly Photoreceptors 
We used an established electrical model of the photo- 

receptor membrane to estimate the rate at which photo- 
receptors consume metabolic energy (see Materials and 

Methods). The model [14,34] incorporates the two major 

conductances, light-gated and potassium, as well as the 

electrogenic Na+/K+ pump, and calculates the flux of ions 
through these components from measurements of total 

conductance and membrane potential (Figure 3). The flux 
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Figure 3. Measurements of Photoreceptor Membrane Properties Allow the Calculation of Metabolic Cost 
(A) The membrane potential (mean ± standard error of the mean) of R1-6 photoreceptors in the dark and at different effective photon rates, measured 
in four species S. carnaria (blue), C. vicina (red), D. virilis (green), and D. melanogaster (black). 
(B) The corresponding resistances (mean ± standard error of the mean) of R1-6 photoreceptor in the dark and at different effective photon rates. 
(C) The electrical model circuit of the photoreceptors. The model calculates from the measurements of membrane potential and resistance the rate at 
which the Na^/K^ pump, P, hydrolyses ATP molecules: gL — light-gated conductance; EL = reversal potential for light-gated current; iL = light-gated 
current; gK = potassium conductance; EK — potassium reversal potential; iK — potassium current. 
(D) The rate of hydrolysis of ATP molecules calculated at each effective photon rate for R1-6 photoreceptor of the four species (mean). 
doi:10.1371/journal.pbio.0050116.g003 

of ions through the Na+/K+ pump gives the rate at which ATP 
is hydrolysed in order to maintain ionic concentration 
gradients, and ATP hydrolysis rate in molecules s is our 
measure of metabolic energy cost. 

To obtain the data used to estimate metabolic costs, we 
measured a photoreceptor's membrane potential and input 
resistance (see Materials and Methods), first in the dark and 
then at each of the background light intensities at which we 
measured the information rate (Figure 3A and 3B). All 
photoreceptors were depolarised by light, and the steady- 
state depolarisation produced by a sustained background 
light increased with background intensity (Figure 3A). At 
lower backgrounds, below 10 effective photons s~ , Calliphora 
Rl-6 photoreceptors were most depolarised, and Sarcophaga 
Rl-6   photoreceptors  were   least  depolarised,   whereas   at 

higher backgrounds, above 10 effective photons s~ , D. 
melanogaster Rl-6 photoreceptors were most depolarised, and 
D. virilis Rl-6 photoreceptors were least depolarised (Figure 
3A). Photoreceptor input resistance dropped with increasing 
light intensity (Figure 3B) because of increased activation of 
light-gated channels and voltage-gated potassium channels 
[28,32]. In the dark, and at any particular photon rate, D. 
melanogaster Rl-6 photoreceptors had the highest input 
resistance, D. virilis Rl-6 were intermediate, and the 
Calliphora and Sarcophaga Rl-6 photoreceptors had the lowest 
input resistances (Figure 3B). 

Putting these measurements of membrane potential and 
resistance into our electrical model (Figure 3C), we obtained 
the rate of ATP consumption (Figure 3D). In the dark and at 
any particular photon rate, Calliphora and Sarcophaga Rl-6 

PLoS Biology | www.plosbiology.org 0004 April 2007 | Volume 5 | Issue 4 | e116 



Energy-Information Trade-Offs 

1- 

8 '« to 

.£•§ 
= o 

S o 
"I 0.1 

0.01 

S. carnaria T 

C. v/c/na • 

D. virilis 

D. melanogaster • 

102 

B 

„ o 

10 

m k    6 

o w 

2- 

o 
U 

ro 
Q 
i= to o 
U 
~B 

103 10" 105 

Effective photons s_1 

106 107 

y=-0.33 + 4.65x 

R2=0.87 

 1 1 1 1 1— 
0.4 0.8 1.2 

Dark Cost (ATP molecules s-1 * 109 

1.6 

T 
103 1Q4 105 

Effective photons s_1 

107 

Figure 4. The Relationship between the Signalling Cost and the Fixed 
(Dark) Cost for R1-6 Photoreceptors from the Four Species S. carnaria, C. 
vicina, D.virilis, and D. melanogaster 

(A) The rate of hydrolysis of ATP molecules during signalling at each 
effective photon rate. 
(B) The maximum signalling cost versus the fixed cost for each of the four 
R1-6 photoreceptor types. The maximum is the signalling cost measured 
at the brightest light levels. 
(C) The ratio of total cost to fixed cost of each photoreceptor type at 
each effective photon rate. 
doi:10.1371/journal.pbio.0050116.g004 

photoreceptors had the highest rate of ATP consumption, D. 
virilis Rl-6 were intermediate, and D. melanogaster Rl-6 

photoreceptors had the lowest rate of ATP consumption 
(Figure 3D). Thus small photoreceptors that transmitted at 
lower bit rates (Figure 2) had lower energy costs (Figure 3D). 

Signalling Costs and Fixed Costs 
We can separate photoreceptor energy cost into two 

components, dark and signalling. The dark cost is the rate 
at which ATP is hydrolysed to maintain the cell's resting 
potential in the dark. The signalling cost is the increase in 
ATP hydrolysis rate induced by light, i.e., 

Signalling cost = Total cost — Dark cost (2) 

The signalling cost is, in microeconomic terms [40], a 
variable cost that increases with the level of output, whereas 
the dark cost is a fixed cost that, like the rent on a factory, is 
paid at a fixed rate, irrespective of output. In nervous systems 
the fixed cost of maintaining an inactive neuron's resting 
potential is an important determinant of the metabolic 
efficiency of distributed neural codes [16], of spike trains in 
single cells [18], and of stochastic signalling mechanisms such 
as ion channels and synapses [35]. 

The Rl-6 photoreceptors of all four species have signifi- 
cant fixed costs—all photoreceptors consume substantial 
quantities of ATP in the dark (Figure 3D). This fixed cost 
differs greatly between species, according to photoreceptor 

input resistance and membrane potential. Comparing the 
photoreceptors of different species, although there are 
appreciable differences (up to 10 mV) in the dark resting 
potential (Figure 3A), the dark input resistances vary by more 
than an order of magnitude (Figure 3B) and are, therefore, 
primarily responsible for the large differences in ATP 
consumption rates in the dark (Figure 3D). The dark 

consumption is approximately 2 X 10" ATP molecules s in 
Calliphora and Sarcophaga Rl-6 photoreceptors, whereas in D. 
melanogaster Rl-6 the dark consumption is approximately 

twenty times less, 1 X 10   ATP molecules s~ . 
Illumination increases the rate of ATP consumption in all 

of the Rl-6 photoreceptors and, as in the dark, those with the 
lowest input resistances (Calliphora and Sarcophaga) consumed 
the most ATP (Figure 3D). The similarity between the log-log 
plots of the total cost versus the effective photon rate suggests 
that the signalling costs of the photoreceptors from the 
different species have similar dependencies on light level and 
scale with the dark cost (Figure 3D). This suggestion led us to 
compare the dark costs and the signalling costs at different 
light levels, in the Rl-6 photoreceptors of the four species. 

In each of the four species, the photoreceptor signalling 

cost rises with intensity and approaches an asymptote at 
bright daylight levels (Figure 4A). Even though there was an 
approximately 25-fold difference in both the total and the 
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Figure 5. The Metabolic Cost of Information Decreases with Increasing 
Light Intensity 

(A) A double logarithmic plot of metabolic cost per bit at each effective 
photon rate and (B) a double logarithmic plot of the metabolic cost of 
signalling per bit at each effective photon rate are shown. Measurements 
are from R1-6 photoreceptors from four species, S. carnaria (blue), C 
vicina (red), D. virilis (green), and D. melanogaster (black). 
doi:10.1371/journal.pbio.0050116.g005 

signalling ATP consumption at the brightest light intensities 
across the four species, the ratio between the signalling cost 
at the brightest light levels (the maximum signalling cost) and 
the dark cost was similar in each photoreceptor and was, on 
average, 4.7 (Figure 4B). This scaling suggests that the energy 
consumption in the dark is directly related to the highest 
rates of consumption in bright light. When the signalling cost 
of a photoreceptor type is normalized with respect to dark 
consumption and plotted against the log of photon rate 
(Figure 4C), the curves for the different photoreceptor types 
are similar but not identical, as expected of a set of 
homologous photoreceptors that use similar mechanisms to 
generate and regulate responses, but fine tune these 
mechanisms to their particular requirements. 

The Metabolic Cost of Information 
By dividing the total rate of energy consumption (Figure 

3D) by the corresponding rate of information transmission 

(Figure 2) at each light level, we derived the metabolic cost of 
information, as ATP molecules bit . This measure allows us 
to assess how economically each type of photoreceptor 
transmits information (Figure 5A). We discovered that all 
four photoreceptors showed the same behaviour: increasing 
the light intensity not only increases information rate (Figure 
2), it also decreases the total cost per bit (Figure 5A). The 
proportional decrease is smallest in D. melanogaster Rl-6, 
approximately 3:1, and largest in Sarcophaga Rl-6 and 
Calliphora Rl-6, approximately 10:1. A substantial part of 
this decrease in the total cost per bit can be attributed to the 
dark cost. At low light levels the dark cost is a substantial 
fraction of the total, and dividing this fixed cost by the low bit 
rate produces a high cost per bit, which then decreases as bit 
rate increases. At the highest light intensities the cost per bit 
starts to level out (Figure 5A), suggesting that under daylight 
conditions Rl-6 photoreceptors are operating close to their 
minimum cost per bit. 

To see if other factors contribute to the fall in bit cost with 
increasing light level we calculated the signalling cost per bit, 
by dividing the rate at which ATP molecules are consumed 
for signalling by the bit rate. In the two high bit rate 
photoreceptors, Sarcophaga Rl-6 and Calliphora Rl-6, the 
signalling cost per bit is highest at low light intensities and 
then declines over the intensity range 10 -10 effective 
photons s~ to approximately 30% of its original value 
(Figure 5B). This increase in efficiency with photon rate is not 
observed in the two lower bit rate photoreceptors. In D. 
melanogaster Rl-6 the signalling cost per bit first rises slightly 
with increasing intensity, peaks between 10 and 10 photons 
s~ and then falls back to the previous level, while in D. virilis 
the signalling cost per bit doubles over the range 10 to 10 
photons s~ and then dips slightly (Figure SB). Note, however, 
that over most of the intensity range the signalling cost per 
bit is lower in the low bit rate cells (Figure SB). The signalling 
cost per bit could be falling with increasing light level in the 
Calliphora and Sarcophaga Rl-6, because these photoreceptors 
expand their bandwidth to higher frequencies (e.g., Figure 
ID) to achieve higher bit rates. Contributions to a fall in cost 
per bit could also be made by the improvement in photo- 
receptor SNR and by light adaptation of the phototransduc- 
tion cascade, which, by reducing the light-gated conductance 
activated per photon [41], reduces the energy cost per 
photon. 

Cost and Performance 
By plotting bit cost versus bit rate (Figure 6) we are able to 

compare the efficiency of cells operating at the same 
information rate. The total cost per bit varies consistently 
between the different species. At a given information rate D. 
melanogaster Rl-6 photoreceptors encode most economically, 
it is approximately three times more expensive to operate D. 
virilis Rl-6 photoreceptors at the same information rate, and 
approximately ten times more expensive for Calliphora and 
Sarcophaga Rl-6 photoreceptors. These proportional differ- 
ences in cost are, to a first approximation, maintained over 
the range of bit rates, and this suggests that the higher total 
cost per bit in the two larger flies, Calliphora and Sarcophaga 
(Figure 6A), is primarily associated with their higher dark 
cost. Because signalling cost tends to increase with dark cost 
(Figure 4), the signalling costs per bit are also substantially 
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Figure 6. The Metabolic Cost of Information in R1-6 Photoreceptors 
Decreases When the Information Rate Is Increased by Raising the Light 
Level 

(A) The metabolic cost per bit plotted logarithmically versus the bit rate 
for R1-6 photoreceptors of the four species S. carnaria (blue), C. vicina 
(red), D. virilis (green), and D. melanogaster (black). 
(B) The metabolic cost of signalling per bit plotted logarithmically versus 
the bit rate for R1-6 photoreceptors in the four species. 
doi:10.1371 /journal.pbio.0050116.g006 

higher in Calliphora and Sarcophaga Rl-6 than in Drosophilid 
photoreceptors operating at the same bit rate (Figure 6B). 

The information rates measured with our brightest stimuli 
are indicative of a photo receptor's maximum performance. 
Comparing metabolic costs with these highest rates, we see 
that both the total cost and the dark cost increase supra- 
linearly with performance. Plots of the logarithms of costs 
against the logarithms of highest rates (Figure 7) suggest that 
the total cost increases as (performance) , and the dark cost 
increases close to (performance) ' , but with only four species 
these exponents are preliminary estimates. Nonetheless, 
there is no doubt that both the unit cost of information 
(the total cost per bit) and the dark cost are directly related to 
a photoreceptor's ability to transmit information (Figures 5 
and 6); the higher a photoreceptor's maximum bit rate, the 
higher the dark cost, the higher the signalling cost, and the 
higher the total cost per bit. 

In   conclusion,   our   recordings   from   intact   fly   photo- 
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Figure 7. The Scaling of Metabolic Cost with Performance in Dipteran 
Rl-6 Photoreceptors 

The logarithms of the total cost (open symbols) and the fixed cost (solid 
symbols) are plotted against the logarithm of maximum information rate. 
Costs are in ATP molecules hydrolysed per photoreceptor per second. 
Each data point represents the mean values from Rl-6 photoreceptors in 
one of the four dipteran species used in this study. The linear fits suggest 
that the total cost of photoreceptor signalling (dashed line) increases as 
(information rate)1'7, and the fixed cost of maintaining the photoreceptor 
in the dark (solid line) increases as (information rate)1'47. 
doi:10.1371/journal.pbio.0050116.g007 

receptors demonstrate that the cost per bit varies with bit 
rate in two ways. In any single photoreceptor (e.g., a Calliphora 
Rl-6), bit rate increases with light level while the total cost 
per bit falls (Figure 5). This fall is due to two factors, 
offsetting the dark cost (the substantial fixed cost of 
maintaining the photoreceptor's resting potential in dark- 
ness) and in the high bit rate photoreceptors, a substantial 
reduction in signalling cost per bit (Figure 5). However, when 
we compare homologous Rl-6 photoreceptors in different 
species, we see that the energy cost per bit increases with a 
photoreceptor's performance (Figure 6), where performance 
is assessed from the highest information rate measured with 
our brightest stimulus. Again, the relatively high fixed cost of 
the dark resting potential (Figures 3, 4, and 7) is implicated in 
this relationship between maximum bit rate and bit cost. 

Discussion 

We have investigated relationships between information 
rate and energy expenditure in single neurons by comparing 
homologous Rl-6 photoreceptors from four species of fly. 
The highest throughput of information varied according to 
species, from ~200 bits s~ in D. melanogaster Rl-6 photo- 
receptors to -—1,000 bits s~ in Sarcophaga and Calliphora Rl-6 
photoreceptors. This 5-fold increase in performance is 
accompanied by a 25-fold increase in energy consumption, 
an order of magnitude increase in the energy cost per bit and 
a similar increase in the cost of maintaining the photo- 
receptor's resting potential in the dark. This dark consump- 
tion constitutes a fixed cost because it is paid continuously, 
irrespective of the rate at which the photoreceptor is 
transmitting information. These results demonstrate that 
information is more expensive in high performance neurons, 
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because both the fixed cost and the signalling cost increase 
supralinearly with signalling ability. Thus efficiency declines 
with increasing capacity, as found in two other physiological 
systems, mitochondria [42] and muscle fibres [43]. 

We will discuss the validity of the experimental methods 
that we applied to photoreceptors in order to establish that 
cost increases with capacity. We then turn to the biophysical 
basis of the relationship between energy cost and perform- 
ance and its possible effects on photoreceptor structure and 
function. We will conclude by considering how our measure- 
ments of energy-information trade-offs might advance our 
understanding of the design and evolution of nervous 
systems. 

Relevance and Reliability of Our Measures 
It is important that our measures of information rate and 

metabolic cost are biologically relevant and reliable. We 
argue that information rate, in bits s , is both a convenient 
and an appropriate measure of photoreceptor performance, 
despite the fact that Shannon's treatment of information rate 
(Equation 1) treats all parts of the signal equivalently, 
irrespective of the features they represent. Most of the 
features extracted by fly visual systems are unknown to us, 
nonetheless there are three reasons why we are confident that 
the "feature-free" measure, information rate in bits per 
second, is appropriate. First, unlike the Rl-6 photoreceptors 
of the male housefly lovespot, which are specialised to detect 
rapidly moving high contrast targets [44], the Rl-6 photo- 
receptors in our species do not appear to be adapted to 
detect particular features. Second, Rl-6 photoreceptors 
support many aspects of vision because they feed a variety 
of parallel circuits in the optic lobes [45]. Third, even when 
visual systems are devoted to processing a small number of 
biologically relevant objects, photoreceptors still have to code 
a wide range of signals. The range is wide because a 
photoreceptor signals the presence of an object in its field 
of view as a change in photon rate. This change varies greatly 
in relative amplitude (contrast) and time course, depending 
on the object's position, illumination, orientation, distance, 
movement, and the background against which the object is 
viewed. Thus, because viewing conditions cause a single 
object to generate a range of photoreceptor signals, the 
general measure of performance, bit rate, is appropriate. The 
argument for this general measure is strengthened still 
further by the fact that synaptic transfer from photoreceptors 
to interneurons is optimised to maximize bit rate [46-48]. 
Finally, bit rate takes account of the basic biophysics of 
coding by combining two more fundamental determinants of 
signal quality: the accuracy of response and the ability to 
follow rapidly changing signals. Accuracy contributes to 
information rate through the SNR, and response speed 
contributes by determining the bandwidth over which signals 
can be transmitted (Equation 1). 

Given that information rate, in bits per second, is an 
appropriate measure of photoreceptor performance, are the 
highest bit rates reached in bright light (Figure 2) adequately 
representing the different abilities of the four photorecep- 
tors to code information? Our experiments were designed to 
apply the two determinants of information rate, bandwidth 
and SNR, equally to all photoreceptors. White noise tests the 
full bandwidth by injecting equal power at frequencies that 
extend well beyond each cell's cutoff. By using photon counts 

to compare photoreceptors from different species, we 
ensured that our comparisons are not biased by optical 
differences (e.g., in facet lens diameter, focal length, and 
rhabdomere width) that influence the number of photons 
individual photoreceptors receive from the same stimulus 
[49,50] and hence the photon noise limit to SNR. 

Although our stimuli enable us to compare photoreceptors 
on equal terms, there are two reasons why our measured 
information rates fall short of full capacity. With the 
exception of D. melanogaster, we were unable to saturate 
photoreceptors' information rates (Figure 2), even though our 
highest intensities are within a factor of five of the photon 
rates experienced in full daylight [39]. In addition, the 
information capacity is, by definition, determined using a 
stimulus that is tailored to distribute power optimally across 
the photoreceptor bandwidth. Our bit rates in Calliphora 
(Figure 2) are 50% below the capacities measured at the same 
photon rates [33] but, although our white-noise stimuli 
underestimate information capacity, they overestimate the 
rates generated under natural conditions because natural 
stimuli have less power at high frequencies. However, the 
overestimate appears to be small (10%-20%) [51] compared 
with the 5-fold differences in the highest rates measured in the 
photoreceptors of the four species (Figure 2). We conclude 
that, although the highest information rates we measured 
underestimate full capacities, our data reflect the highest rates 
expected under natural conditions. We can, therefore, 
conclude that our measured bit rates adequately describe 
differences in photoreceptor performance between species. 

Turning to our comparison of metabolic cost, the measure- 
ments of input resistance and membrane potential used to 
calculate energy consumption were consistent from cell to 
cell and agreed with previous studies of Calliphora and D. 
melanogaster [28,30,32,52]. As expected, the larger photo- 
receptors with lower input resistance consume more energy. 
Our conductance-based method underestimates total energy 
consumption, because it neglects both the intermediate 
processes in the phototransduction cascade that consume 
energy [27] and essential maintenance processes, such as 
macro molecular synthesis. However, the intermediate pro- 
cesses of phototransduction are likely to add less than 10% to 
the total energy cost because ion flux is the final stage in signal 
amplification [34] and, in active neural tissue, macromolec- 
ular synthesis contributes less than 10% to the total energy 
consumption [21]. Most importantly, our estimate of energy 
consumption for a fully light-adapted Calliphora photorecep- 
tor, 7 X 10 ATP molecules s~ , agrees remarkably well with 
the most recent value obtained from measurements of retinal 
oxygen consumption, 6.5 X 10   ATP molecules s     [53]. 

The Biophysical Basis of Trade-Offs between Energy and 
Information 

A number of studies suggest that energy cost and perform- 
ance are related to photoreceptor structure and biophysics 
via two fundamental measures of signal quality, SNR and 
bandwidth. These two measures determine the measure of 
performance adopted in this study, information rate (Equa- 
tion 1), and the photoreceptors that achieve higher rates do 
so because they have a better SNR in bright light and a wider 
bandwidth (Figure ID). Photoreceptor SNR rises with the rate 
at which photons are being transduced, and in insect 
photoreceptors the SNR often tends to plateau at the highest 
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light levels, as photomechanical mechanisms attenuate the 
incoming photon flux to prevent saturation. The proposal 
that the maximum attainable SNR has a structural basis, the 
number of photoreceptive microvilli in a photoreceptor [54], 
is strongly supported by more recent evidence. A microvillus 
contains all of the signalling molecules of the phototrans- 
duction cascade, and a single photon hit appears to produce 
an all or nothing response, a quantum bump, from one entire 
microvillus [27,41]. The corollary that the maximum rate of 
photon conversion, and hence the maximum SNR, is limited 
by the number of microvilli, is supported by measurements of 
SNR under saturated conditions [39] and by the observation 
that photoreceptors with more microvilli achieve higher 
SNRs [31,32,55]. 

The second determinant of information rate, bandwidth, is 
regulated by two sets of factors, the molecular dynamics of 
phototransduction and the electrical properties of the 
photoreceptor membrane [56-58]. Photoreceptors regulate 
their bandwidth by controlling the dynamics of the photo- 
transduction cascade and by tuning the frequency response 
of the membrane with voltage-gated potassium channels 
[28,31,32,59]. In a given photoreceptor, the bandwidth is 
adjusted according to light level to improve information 
throughput, and, comparing different photoreceptors, the 
maximum bandwidth varies systematically according to 
retinal position, colour type, and visual ecology [30,55,60]. 
Thus photoreceptor bandwidth is carefully regulated to adapt 
response dynamics to operating conditions. 

These two factors, the number of microvilli and the 
membrane bandwidth, link information rate to energy 
consumption. Increasing the number of microvilli to improve 
the SNR will increase the photoreceptor's membrane area 
and hence its total conductance and capacitance, leading to 
larger ionic currents. Increasing the membrane's potassium 
conductance to widen its bandwidth (by reducing its time 
constant) also increases the flow of ions across the membrane. 
Indeed, the high metabolic cost of increasing membrane 
bandwidth has been invoked to explain why slowly flying 
insects, exemplified by Tipulid flies, have slow photoreceptors 
with a low potassium conductance, long time constant, and 
narrow bandwidth [59,60]. The low potassium conductance of 
slow cells is achieved by inactivation [58], and the contribu- 
tion of potassium channel inactivation to energy efficiency 
has been demonstrated directly by genetically manipulating 
and modelling photoreceptors in D. melanogaster. When the 
rapidly inactivating Shaker K+ -channel of Rl-6 photo- 
receptors is deleted by mutation, there is an increase in 
tonic conductance, and the cost of information, in ATP 
molecules bit , increases [14]. These findings strongly suggest 
that the biophysics of SNR and bandwidth link information 
rate to energy consumption to produce the trade-off between 
cost and performance observed here. However, this sugges- 
tion must be confirmed by relating measurements of SNR, 
microvillus number, membrane conductance, and membrane 
bandwidth to measurements of cost and capacity. Such a 
detailed analysis of photoreceptor structure, biophysics, and 
performance will reveal whether large increases in bandwidth 
explain the fall in signalling cost per bit seen in high bit rate 
photoreceptors (Figures 5B and 6B). This detailed compar- 
ison will also decide whether fly photoreceptors divide their 
energy investment between SNR and bandwidth optimally, 
to maximize energy efficiency. 

The Significance of Fixed Costs 
To the best of our knowledge, this is the first study to 

measure the fixed cost of maintaining a neuron ready to 
signal and then relate this fixed cost to performance and 
metabolic efficiency. The fixed cost of maintaining a photo- 
receptor's dark-resting potential is high (approximately 20% 
of the cost in full-daylight) and, following earlier calculations 
[39], we find that in Calliphora this dark current amounts to 
approximately 2% of a blowfly's total resting metabolic rate. 
Although photoreceptor fixed costs vary between species by 
more than an order of magnitude, they are a remarkably 
constant proportion, between a fifth and a quarter, of the 
energy consumed in full daylight (Figure 4). This proportion 
suggests that the metabolic scope of insect photoreceptors 
(the ratio between the maximum sustainable metabolic rate 
and the resting metabolic rate) lies between four and five. 
Fixed costs increase with capacity (Figure 7), as also observed 
in comparative studies of energy throughput and metabolic 
rate in mice [61]. Species of mice that are adapted to live in 
areas where food is more plentiful convert food to energy at 
higher rates than species that live in areas where food is 
scarce. The high-energy users also have higher basal 
metabolic rates, presumably to support the extra fixed cost 
of the larger organs, such as gut and heart, needed to handle 
higher rates of energy throughput [61]. 

The reasons why Rl-6 photoreceptors have a high fixed 
cost are unclear, but the proximate cause is a dark resting 
potential that is approximately 20 mV less negative than the 
potassium reversal potential [28]. The inward currents that 
produce this depolarisation have not been identified, but the 
limited evidence suggests two possibilities, both of which are 
related to maintaining a high sensitivity. The first source is 
spontaneous activation of the phototransduction machinery 
[62,63]. Because this spontaneous activity increases with the 
number of microvilli, its cost will increase with capacity. The 
second source of inward current could be voltage-sensitive 
conductances and feedback synapses associated with signal 
amplification and band pass filtering at the photoreceptor's 
high sensitivity output synapses [64,65], which are tonically 
active in the dark [66]. We note in passing that strictly diurnal 
insects could economise on energy consumption by down- 
regulating the phototransduction cascade and reducing 
synaptic activity at night. The fact that a photoreceptor's 
fixed costs could be related to both its input and its output 
emphasises that energy efficiency is a systems' property that 
depends upon relationships within and between components 
[15,35,67]. 

Energy, Information, and the Evolutionary Adaptation of 
Insect Retina 

The energy-information trade-offs that we have described 
in photoreceptors have implications for the design and 
evolution of insect retinas. The cost of increasing the 
maximum rate at which a photoreceptor can handle 
information is substantial and involves large increases in 
both the cost per bit and the fixed cost of maintaining the 
photoreceptor in the dark. This leads to a law of diminishing 
returns whereby a small increase in information capacity 
requires a larger proportional increase in energy cost. This 
law increases evolutionary pressure to reduce photoreceptor 
performance to the minimum required for satisfactory 
visually-guided behaviour by penalizing excess capacity. The 
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result, allocation of resources according to need, could help 
to explain why, in males of Calliphora vicina, the Rl-6 
photoreceptors that look ahead at approaching objects 
through superior optics have higher information rates than 
those looking sideways and backwards through inferior optics 
[30]. 

The fixed costs of phototransduction could be particularly 
important for nocturnal insects. Their photoreceptors often 
have a large area of photosensitive membrane to improve 
photon capture [49,68,69], and this could create problems 
due to high fixed costs. Furthermore, nocturnal photo- 
receptors operate at extremely low light levels where fixed 
costs make each bit of information extremely costly (Figures 4 
and 5). Because the membrane area of the photoreceptive 
microvilli cannot be sacrificed without losing photons, the 
only way to reduce fixed costs is to reduce membrane 
conductance. In extreme circumstances this could result in 
the photoreceptor membrane having such a long time 
constant that this, rather than the number of microvilli, 
limits information capacity at higher light levels. The photo- 
receptors of nocturnal Tipulids have high resistances and 
long time constants [58,60] and may well, therefore, be 
implementing this strategy. 

Energy, Information, and the Design and Evolution of 
Nervous Systems 

The relationships between energy and information ob- 
served here in fly photoreceptors will apply to signalling 
systems that share similar biophysical relationships between 
SNR, bandwidth, and energy cost. Although neurons use 
synapses as discrete signalling units, rather than microvilli, 
they too are subject to the stochastic activation of con- 
ductance, and are constrained by membrane time constant 
[70]. Consequently, improvements in neuronal reliability, 
speed of response, and information rate will probably involve 
increased energy consumption; namely the additional signal- 
ling cost of operating extra channels and synapses and the 
additional fixed cost of this extra signalling machinery. 
Recent experiments on spiking neurons support the sugges- 
tion that additional signalling and fixed costs make informa- 
tion more expensive in neurons that transmit at higher rates 
[71]. Comparing the different classes of ganglion cell in 
guinea pig retina, brisk cells transmit information at higher 
rates than sluggish cells, because brisk cells fire spikes more 
frequently with greater temporal precision. Information will 
be more expensive in a brisk cell because, as expected of a cell 
that fires at a higher rate, a spike in a brisk cell carries less 
information than a spike in a sluggish cell [71]. In addition, 
because brisk cells are larger than sluggish cells, a brisk cell 
spike will use more energy. By analogy with fly photo- 
receptors, we further suggest that fixed costs will be higher in 
brisk cells, because their superior temporal precision requires 
more channels and synapses leading to a higher baseline 
conductance. This extra conductance will also increase the 
signalling cost of generating spikes. For these reasons 
information will cost more in the higher rate brisk cells than 
in the lower rate sluggish cells. This cost differential could 
help to explain why the retinal output is divided among 
different classes of ganglion cell with over 60% of the 
information being transmitted by low cost sluggish cells [71]. 
Thus, this classic example of parallel coding could be 
improving  energy  efficiency  by  directing  the  signals  that 

require less temporal precision into lower cost channels 
[72,73]. This design principle could well extend beyond the 
retina to higher visual centres and to the coding of other 
sensory modalities, such as hearing. 

The relationships between fixed costs, signalling costs, and 
bit rate could have a significant impact on coding and neural 
circuit design. In fly Rl-6 photoreceptors, the fixed and total 
costs increase as power functions of maximum bit rate, with 
exponents of approximately 1.5 and 1.7, respectively (Figure 
7). Thus the relationship between cost and performance 
follows the law of diminishing returns. Similar examples of 
this law have been observed in theoretical studies of spiking 
neurons, synaptic arrays, and neural circuits [15,16,34]. In 
general [18], this law makes it advantageous to implement 
energy efficient neural codes [17] that distribute information 
among spikes or neurons so as to avoid high rates. The 
relationship between costs and capacity measured in fly 
photoreceptors demonstrate that this law applies not only to 
signalling costs, but also to fixed costs. Again, theoretical 
studies have shown that fixed costs are important determi- 
nants of energy efficiency, which help set the optimum 
numbers of synapses and channels [35] and the optimum 
sparseness of energy-efficient neural codes [16]. Thus the 
empirical data presented in this study (Figure 7) demonstrate 
a relationship between representational capacity (i.e., highest 
bit rate) and fixed cost, which will influence the energy 
efficiency of circuits and codes. 

Information rate is not the only measure of neuronal 
performance by which to judge efficiency. The measures that 
are most appropriate for a neuron will be defined by the role 
the neuron plays, processing signals in circuits, and deter- 
mining behaviour. Relevant measures of performance could 
include the sharpness of frequency tuning in auditory systems 
[74], latency in reflex arcs [75], and storage capacity in 
cortical networks [76]. Just as the basic biophysical constraints 
of bandwidth and noise link photoreceptor information rate 
to energy consumption, so might improvements in these 
other performance measures involve additional costs. As 
examples, frequency tuning could be linked to ion flux by the 
conductances used to regulate the membrane time constant 
and to actively suppress or amplify particular frequency 
bands, while rapid responses and high temporal precision are 
associated with shorter time constants, larger diameter cells, 
and larger synapses [77]. On this basis, we suggest that 
comparative studies of neuronal cost and performance, 
similar to the experiments presented here, will confirm that 
trade-offs between energy cost and performance are wide- 
spread. 

The balance between energy cost and performance appears 
to have played a significant role in determining the evolution 
of nervous systems [5,6]. Numerous examples exist of the 
relative reduction or expansion of the whole brain or 
particular brain regions during evolution [7,78]. For example, 
in the extinct bovid genus Myotragus, brain size was reduced 
by 50% relative to similar bovids of comparable body mass 
following isolation on a Mediterranean island. It is argued 
that this reduction was a response to two factors; reduced 
predation pressure and increased competition for a limited 
food supply [79]. In birds the degree of specialization for food 
hoarding correlates with the volume of the hippocampus, 
expressed relative to both body mass and telencephelon 
volume   [80].   Thus   both   energetic   costs   and  behavioural 
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requirements are likely to be important selective pressures 
influencing relative brain size [7]. Improvements in behav- 
ioural performance can come about in at least three ways; by 
acquiring more information from the environment, by 

improving the nervous system's ability to process and 
represent information, and by finer or more appropriately 
coordinated control of motor outputs and muscles. The 
energy-information trade-offs discovered in fly photorecep- 

tors Rl-6 demonstrate that even small improvements in the 
ability of single cells to acquire and transmit information, 
and hence to process information more accurately and 
rapidly, come at a high energetic cost. Costs rise more 
rapidly than performance and this intensifies selection on 
neural structures and promotes evolutionary adaptation by 
increasing the sensitivity of trade-offs between costs and 
benefits. 

Materials and Methods 
Animals and preparation. We used four species of fly for this study; 

C. vicina, S. carnaria, D. virilis, and D. melanogaster. Populations of three 
of these species C. vicina, D. virilis, and D. melanogaster were maintained 
in the Department of Zoology, University of Cambridge, United 
Kingdom. Individuals of S. carnaria were obtained from wild 
populations near Cambridge between May and September, 2004. 
The two larger fly species, C. vicina and S. carnaria, were mounted with 
their dorsal surface uppermost on a wax platform. Additional wax 
was used to fix the head and thorax but not the abdomen, which was 
left free to allow breathing. Both Drosophila species were mounted in a 
custom-built holder, and their head and thorax fixed using wax. In all 
species a small window (no more than a few facets in diameter) was 
cut manually into the top of the right compound eye and sealed 
immediately with silicon grease to prevent dehydration. The grease is 
soft enough to allow intracellular microelectrodes to be inserted 
through the seal, without damage. A second window was cut into the 
left compound eye to allow access for the indifferent electrode, a 50- 
u,m-diameter silver wire. 

Intracellular recordings. In vivo intracellular microelectrode 
recordings were obtained from Rl-6 photo receptors of C. vicina, S. 
carnaria, D. virilis, and D. melanogaster. All recordings were made using 
borosilicate glass electrodes filled with 3 M KC1. The electrode 
resistance varied considerably depending on the species from which 
the recording was being made; electrodes with resistances of 100-130 
Q were used for C. vicina and S. carnaria Rl-6 photo receptors, whereas 
200 Q. or greater resistance electrodes were used for Rl-6 photo- 
receptor recordings from D. virilis and D. melanogaster. The pipettes 
were pulled from 10-cm borosilicate glass capillaries (1.0 mm outer 
diameter, 0.58 mm inner diameter; GC100F-10, Harvard Apparatus, 
http://www.harvardapparatus.co.uk) using a Sutter P97 puller (Sutter 
Instruments, http://www.sutter.com) and inserted into the eye, 
through the silicon grease seal using a Zeiss Jena grease-plate 
micromanipulator. All recordings were made using an Axoclamp 
2A amplifier (Molecular Devices, http://www.moleculardevices.com). 
Throughout recordings the temperature of the flies was maintained 
between 22 °C and 24 °C. 

Photo receptors were considered for analysis only if their mem- 
brane potentials were hyperpolarised by more than —55 mV in the 
case of photoreceptors from the drosophilid species and —60 mV in 
the case of photoreceptors from C. vicina and S. carnaria. Additional 
criteria such as the amplitude of the saturating impulse response in 
dark-adapted conditions and the photoreceptor input resistance 
were also used to determine recording quality. The photoreceptor 
responses to light were recorded in bridge mode. To determine the 
input resistance, current was injected, and the voltage response 
measured in switched current clamp mode. Stimulus generation and 
data acquisition were carried out using a digital computer and a 
purpose-built interface. Both stimuli and responses were usually 
digitised at 2 kHz and, to prevent aliasing, responses were low pass 
filtered by a four-pole Butterworth with a cutoff at half the Nyquist 
frequency, i.e., 500 Hz. 

Optical stimulation. Photoreceptors were stimulated by a point 
source, the tip of a light guide that was positioned on the optical axis 
and subtended six degrees at the cornea. In the setup used for 
Calliphora Rl-6, white light was provided by a 450-W high-pressure 

xenon arc lamp (PRA model 301s), which was stabilised with optical 
feedback to suppress unwanted fluctuations in the light intensity 
delivered to the waveguide to below 0.5% (root mean square). To 
provide white-noise stimulation, the arc was modulated by feeding a 
voltage command waveform from the computer to the optical 
feedback unit. In the setup used for the other photoreceptors, the 
light source was a high intensity LED (505 nm, LEDtronics, http:// 
www.ledtronics.com) whose output was controlled directly by a 
voltage to current converter, driven directly by the computer. All 
voltage commands were corrected for the nonlinear characteristics of 
the LED. Light was attenuated by calibrated neutral density filters to 
provide a series of background light levels. 

Calibrating photoreceptors by counting quantum bumps. The 
effective intensity of the light source was determined for each 
photoreceptor by counting its responses to single photons, quantum 
bumps [81]. The photoreceptor was dark-adapted for at least 20 min, 
until it was sufficiently sensitive to produce clearly resolvable bumps 
(Figure 1A). The light level was then adjusted to produce from three 
to ten quantum bumps per second, by inserting neutral density filters, 
and the bump rate determined by counting at least 100 bumps in a 
measured time interval. The background light level was increased in 
steps by removing neutral density filters, and the effective photon 
rate at each background was extrapolated by multiplying the bump 
rate by the reduction in filter attenuation. 

Measuring information rates. Information rates were measured 
from a photoreceptor's voltage response to Gaussian white noise [33] 
using well-established procedures [30-32,34]. The light source was 
modulated randomly for 0.512 s with a contrast c(t) — I(t)/I0, where I{t) 
and c(f) specify the intensity and contrast with time t, and /0 is the 
mean light level. The root mean square contrast was 0.32, which is 
close to the mean value of 0.4 measured for natural scenes [46]. The 
voltage waveform used to modulate the light source was generated 
digitally, by inverse Fourier transformation of a spectrum with 
constant amplitude and random phase, up to a cutoff frequency of 
500 Hz. To iron out small inconsistencies in signal power spectra, 
three pseudorandom Gaussian time traces, I{t) were used, each 
repeated 50 times. This was reduced to two pseudorandom traces in 
D. melanogaster, where controls showed that this reduction had a 
negligible effect on measured information rates. The ensemble 
average of the photoreceptor voltage response to each sequence 
was derived to give the voltage signal S(t) (Figure IB and 1C), and this 
estimate of signal was subtracted from each of the responses to derive 
50 noise traces. The noise traces were transformed to power spectra 
and ensemble averaged to give the noise power spectrum, N(f), which 
was corrected for recording noise by subtracting the noise spectrum 
recorded with the electrode outside the cell. The two or three signal 
traces were transformed, and the spectra averaged to give the signal 
power spectrum, S(f). A four-term Blackmann-Harris window was 
applied to the signal traces and the noise traces prior to trans- 
formation to the frequency domain, and the SNRs, S(f)/N(f), were 
corrected for statistical bias [82]. The amplitude distributions of 
signal and noise were approximately Gaussian and could, therefore, 
be used to calculate the information rate according to Equation 1. To 
improve the reliability of our conclusions, the measurements of 
information rates made in the five D. melanogaster photoreceptors Rl- 
6 recorded for this study were supplemented with published data 
from 21 cells [32], giving 26 cells in all. The information rates 
obtained from the five new cells were very similar to those obtained 
earlier, despite having been obtained on a different setup. 

Measuring membrane resistance. The membrane resistance was 
measured from recordings of the photoreceptor membrane's voltage 
response to current that was injected via the recording electrode, 
using a discontinuous switched clamp. In the experiments performed 
on Calliphora the resistance was estimated from the response to 
injected white-noise current, because this method also measures the 
dynamic impedance of the membrane [83]. The current was 
modulated using digitally generated waveforms, as described above 
for the white-noise optical stimulus. The pseudorandom current 
sequences had a zero mean, and their root mean square amplitude 
was adjusted to recording conditions, to generate a peak-to-peak 
membrane response of 2-4 mV. The average voltage response to 
current v(t) was calculated by ensemble averaging 200 repeats of the 
pseudorandom white-noise stimulus and transformed to the response 
power spectrum V(j). Dividing V(f) by the power spectrum of applied 
current i(f), yielded the impedance Z(f). The membrane resistance, 
RM, was estimated from the zero frequency asymptote of Z(/). In the 
other three species, the photoreceptor membrane resistance was 
measured from the change in membrane potential produced by a low 
amplitude current pulse. The pulse's duration was adjusted so that it 
fully charged the  membrane capacitance and,  to ensure that  the 
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activation of voltage-sensitive conductance had a negligible effect on 
these measurements, the current was reduced to a level (~50 JJ.A), 
where positive and negative pulses produced symmetrical responses. 
The responses to several hundred current pulses were averaged to 
generate a reliable estimate of the voltage change. By using very small 
currents, this second method returns a value of membrane resistance 
that is closer to the steady state because it reduces artefacts due to 
rectification. This may explain why the resistances measured in 
Sarcophaga Rl-6 using current pulses are slightly higher than those 
measured in Calliphora, using white-noise current (Figure 3), even 
though Sarcophaga achieves high information rates (Figure 2). In 
addition the smaller currents have less of a deleterious effect on 
recording stability. 

Calculating photoreceptor ATP consumption. ATP consumption 
was estimated by applying measurements of membrane resistance 
and potential to a standard membrane model (Figure 3) of the insect 
photoreceptor [34]. Additional data on the membrane resistance and 
potential of D. melanogaster photo receptors were obtained from the 
literature as follows. The single set of values of membrane resistance 
versus background intensity reported byjuusola and Hardie [31] were 
added to the measurements from five cells obtained for the present 
study, to give sets of values for six cells. We took 21 sets of 
measurements of membrane potential versus background light 
intensity from an earlier study by Niven et al. [32], which, with the 
five new cells recorded for this study, gave 26 sets of values in all. 

The model incorporates the three dominant membrane mecha- 
nisms, a light-gated conductance £L with reversal potential E^ — —5 
mV [84], a potassium conductance gK with reversal potential EK — — 85 
mV [28], and a standard Na+/K+ pump that generates a pump current, 
ip by exporting three Na ions and importing two K ions per ATP 
molecule hydrolysed [85,86]. When the photoreceptor is in the steady 
state and has a membrane potential EM, the light-gated conductance 
and the potassium conductance produce transmembrane currents Z'L 
— (Em — E]JgL and zK — (Em — EK)gK. In order to maintain ionic 
homeostasis the pump current must be ip — 2K/2. 

The pump current can be derived from the membrane model by 
equating currents across the model membrane r% + Z'L + ip — 0 setting 
gk + gL — 1/#M where RM is the measured membrane resistance, and 
inserting the measured membrane potential, EM. The rate of ATP 
hydrolysis required to generate this steady-state pump current is our 
estimate of the rate at which the photoreceptor consumes energy. 

Measurement protocols. Following a stable electrode penetration, 
the photoreceptor was dark adapted for at least 20 minutes and then 
calibrated by counting quantum bumps  (Figure   1A),  as described 

above. A neutral density filter was removed from the light beam to set 
the first background light level, the background light was switched on, 
and the cell was adapted for at least 2 min, until its membrane 
potential reached a stable steady state. Once the photoreceptor was 
stably light adapted, the membrane potential EM, the impedance Z(f), 
and the information rate were successively measured, using the 
procedures described above. The membrane potential was then 
checked for drift. The light was then extinguished, the stability of the 
resting potential was checked for 30 s-1 min, and following 
withdrawal of another neutral density filter, the next highest 
background was switched on. This sequence of stable light adaptation 
and measurement was repeated until the maximum effective intensity 
was reached. The light was then extinguished, and the cell left in the 
dark to check that the resting potential returned to a value that was 
within 2 mV of that measured at the start of the experiment. Data 
from cells that failed this final test were rejected. Finally, the 
electrode noise was measured with the electrode just outside the cell, 
in a position where the noise amplitude was at a minimum. 
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