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ABSTRACT. Sipunculan pelagosphera larvae are represented by many distinct morphotypes that
can be distinguished by size, color, ciliation pattern, texture of the body surface, and head morphol-
ogy. Some larval types have been reared to adulthood in the lab, but for many of the morphotypes
species identification has previously not been possible. We sequenced larvae of 14 different morpho-
types for mitochondrial and nuclear markers and performed phylogenetic analyses including larval
and adult sequences. The adult sequences covered 16 of the 17 currently recognized sipunculan
genera and more than one-third of the 150 known sipunculan species. Analyses were conducted in
two phases: the first phase involved the full data set of adult sequences and eight larval morpho-
types; in the second phase, individual clades were analyzed separately on the basis of only one of
the markers. Of the 14 larval morphotypes included in this study, 11 were identified to species, and
3 were identified only to genus level. We also reconciled the terminology for the larval types used in
this study with that of previous studies.

INTRODUCTION

Sipunculan pelagosphera larvae can be common in plankton samples from surface
or near-surface tows, especially in warmer waters. Pelagospheras are easily recogniz-
able as such because they tend to be relatively large and often stand out because of their
brilliant coloration. They may remain planktonic for months and are regarded as the
primary means of dispersal in sipunculans (Scheltema and Hall, 1975).

Larval development is not uniform throughout Sipuncula. Some species are direct
developers or have abbreviated larval development (Rice, 1967, 1975a, 1975b, 1976).
However, the majority of species for which development has been studied go through
two consecutive larval stages: a lecithotrophic trochophore and a planktotrophic pelago-
sphera. The trochophore is small, relatively short-lived, and not usually found in plank-
ton samples. In this chapter, we consider only the pelagosphera larvae.

The spherical to elongate body of the pelagosphera is separated from the retractable
head region by a distinct constriction (Figure 1). Swimming is accomplished by ciliary
action of a pronounced metatroch that is located just anterior to the constriction. A
prototroch is usually also present but is less conspicuous than the metatroch. The head
morphology, with a characteristic lower lip, is distinctive as well. The posterior end often
has a telescopic terminal organ, which is used for temporary attachment and possibly
other purposes. Following disturbance, the larvae can retract the entire head region, in-
cluding the metatroch, into the trunk. This behavior temporarily renders them incapable
of swimming. Many other unique behaviors have been observed in pelagosphera larvae
and are described in more detail by Rice et al. (this volume).
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FIGURE 1. Morphology of a sipunculan pelagosphera larva, belonging to Sipunculus polyniyotus (large transparent or
type S; modified from Hall and Scheltema, 1975). Abbreviations: a = anus, in = intestine, Il = lower lip, Imb = longitudi-
nal muscle bands, m = metatroch, n = nephridium, nc = nerve cord, st = stomach.

Many different morphotypes of pelagosphera larvae can be
distinguished. Detailed descriptions of their morphology, devel-
opment, and behavior can be found in Rice et al. (this volume).
They differ with regard to body shape and texture, pigmenta-
tion, ciliation patterns of the head, and the shape of the lower
lip and of the terminal organ, if present. Some of these morpho-
types are more common than others and, consequently, have
been observed and described in more detail. The larvae do not
readily metamorphose in culture and usually die before show-
ing any adult characteristics. However, some attempts at cul-
tivating oceanic sipunculan larvae have been successful (Rice,
1986, 1988, unpublished data). Hall and Scheltema (1975) de-
scribed 10 larval morphotypes from open-ocean plankton tows
taken throughout the Atlantic but could only identify one of
them to species on the basis of the number of longitudinal body
wall muscles.

We have utilized a DNA barcoding approach to identify in-
dividual larvae to species. Species identification of pelagosphera
larvae will contribute to a better understanding of zooplankton
diversity and provide new insights into population connectivity
of geographically widespread species. Furthermore, given the
relatively simple and conserved body plan of adult sipunculans,

larval morphology reveals an additional suite of characters use-
ful for phylogenetic studies.

Identification of pelagosphera larvae via DNA barcoding is
possible because an extensive database of DNA sequences from
caretully 1dentified adult sipunculans has been generated in sev-
eral phylogenetic studies (Maxmen et al., 2003; Staton, 2003;
Schulze et al., 2005, 2007; Kawauchi et al., 2012). The reterence
sequences encompass six gene regions, more than one-third of all
sipunculan species, and all but one of the currently recognized
sipunculan genera.

MATERIALS AND METHODS
COLLECTIONS

Larvae were collected from zooplankton tows with nets of
100-200 um mesh size, towed behind small boats or larger re-
search vessels (Table 1). Zooplankton samples were microscopi-
cally sorted, and pelagosphera larvae were separated from other
planktonic organisms. Larvae were relaxed in a 1:1 solution of
7.5% magnesium chloride and seawater or by adding drops of
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menthol dissolved in ethanol in a small petr1 dish with seawater
and chilling it. Larvae usually showed reduced movement and
ciliary beating after 1020 min and no longer retracted their
heads. However, the relaxation techniques were not always suc-
cessful. Whenever possible, the larvae were photographed by
light microscopy and scanning electron microscopy. Photographs
of all but four larval types included in this analysis are shown in
Rice et al. (this volume: figs. 4-32). They show representatives of
the morphotypes but not necessarily the specimen that was used
to generate DNA sequences. Larvae were fixed in 95% ethanol
and stored at -80°C or directly frozen at —-80°C with a minimal
amount of seawater. The larval types considered in this paper,

their collection information, and abbreviations used in the fig-
ures are listed in Table 1.

SEQUENCE (GENERATION

DNA extraction from individual larvae was accomplished
using the DNeasy Blood and Tissue kit (Qiagen), following the
instructions of the manufacturer. The desired gene regions were
amplified from the genomic DNA using polymerase chain reaction
(PCR) following protocols described in Schulze et al. (2007; Table
2). Amplified gene regions include the mitochondrial cytochrome ¢
oxidase subunit I gene (COI; 649 bp), the nuclear histone H3 gene
(327 bp), and a portion of the nuclear 18S ribosomal RNA gene
(744 bp). In the case of COI, several combinations of forward
and reverse primers were used, as some of them yielded results
for only a limited number of samples. PCR products were cleaned
using ExoSap-IT (Affymetrix). Cycle sequencing with BigDye Ter-
minator version 3.1 (Applied Biosystems) was conducted using the
same primers as for the PCRs. Sequence reactions were cleaned
using the BigDye Exterminator (Applied Biosystems) chemistry,
and sequences were analyzed on an ABI 3130 Genetic Analyzer.

Electropherograms were visualized in Sequencher 4.8, and
forward and reverse fragments were assembled. In the case of
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18S rRNA, the two fragments were joined into a single se-
quence. External primer sequences were cropped and dis-
carded. Sequences were aligned in BioEdit Sequence Alignment
Editor (Hall, 1999) using the ClustalW algorithm. There were
no alignment ambiguities for COI and H3. The 18S rRNA se-
quences were manually aligned using the alignment in Schulze
et al. (2007) as a reference. This alignment is based on a di-
rect optimization analysis and has annotations for secondary
structure. The annotations are based on a secondary structure
model of 18S rRNA for Katharina tunicata, available from the
European Ribosomal RNA Database (Van de Peer et al., 2000).
The final data set contained the alignment of the complete 18S
rRNA sequence (2,053 bp) even though the larval sequences
were shorter. All larval sequences were deposited in GenBank
under accession numbers EU266987 through EU267000 and
JX989041 through JX989070.

ANALYSIS

All sequences were submitted to a BLAST (Basic Local
Alignment Search Tool) search in GenBank to confirm that they
were, indeed, sipunculan sequences and to identify the closest
matches within the Sipuncula. This enabled us to assign all the
larval sequences to the major clades of the Sipuncula. We felt
comfortable with the quality of the GenBank sequences because
the majority originated from the Giribet lab at Harvard Univer-
sity, where various experienced sipunculan taxonomists identi-
fied the species and performed the sequencing work.

Phylogenetic analyses were performed in two phases. In a
first step, eight larval morphotypes for which COI, 18S, and H3
sequences were available were analyzed together with sequences
from the data set previously generated by Schulze et al. (2007).
The 1nitial analysis was performed using Bayesian statistics, fol-
lowing protocols from Schulze et al. (2007). The present analy-
ses include fewer terminals while maintaining the same number

TABLE 2. Primer sequences used for PCR and cycle sequencing of the three markers used in this study. Abbreviations:

F, forward; R, reverse.

Marker Primer a Primer sequence Reference

COI F: LCO-1490 5"GGTCAACAAATCATAAAGATATTGG-3' Folmer et al. (1994)
R: HCO-2198 5S"TAAACTTCAGGGTGACCAAAAAATCA-3 Folmer et al. (1994)
F: COIL-7 S5-ACNAAYCAYAARGAYATYGGNAC-3' Kojima et al. (1997)
R: COI-D 5-TCNGGRTGNCCRAANARYCARAA-3' Kojima et al. (1997)

H3 F: H3aF 5-ATGGCTCGTACCAAGCAGACIACG]|GC-3' Colgan et al. (1998)
R: H3aR 5" ATATCC TT[AG]GGCAT[AG]AT[AG]GTGAC-3’ Colgan et al. (1998)

18S rRNA Eiak S-GTTCGATTCCGGAGAGGGA-3 Giribet et al. (1996)
R: 18Sbi S-“GAGTCTCGTTCGTTATCGGA-3' Giribet et al. (1999)
F: 185a2.0 S“ATGGTTGCAAAGCTGAAAC-3' Giribet et al. (1999)
R: 9R S-“GATCCTTCCGCAGGTTCACCTAC-3' Giribet et al. (1996)




of species. Multiple individuals per species were included in cases
where cryptic speciation was suspected.

The three markers were analyzed simultaneously under
mixed models. The choice of models was estimated using
MrModeltest 2.2 (Nylander, 2004). The COI and H3 sequences
were analyzed under a general time reversible model. The loop
regions of the 185 rRNA were analyzed under a symmetrical
model that assumes equal base frequencies (Zarkihk, 1994),
whereas the stem regions were analyzed under a doublet model
(Schoniger and von Haeseler, 1994). Two runs with four chains
each were performed for 1,500,000 generations, and the initial
500,000 generations were discarded as burn-in.

During the second phase, phylogenies for five clades recov-
ered in the first step were reconstructed separately on the basis
of only H3 because a complete data set was available for this
marker. Analyses included additional larval morphotypes as well
as additional adult sequences available from GenBank (primar-
ily from Schulze et al., 2007, and Kawauchi et al., 2012). His-
tone H3 is conserved at the amino acid level but shows sufficient
variation in the nucleotide sequences to resolve families and gen-
era in sipunculans (Maxmen et al., 2003; Schulze et al., 2007;
Kawauchi et al., 2012). This phase of the analysis included a
total of 14 larval morphotypes, some of them represented by
several individuals. Outgroups were chosen to represent the sis-
ter groups to the clades under analysis. All individual clades were
analyzed under a general time reversible model with Bayesian
inference in MrBayes 3.2, using two runs of four Monte Carlo
Markov chains with 1 million generations each, sampling every
100th tree. The first 500,000 generations were discarded as
burn-in. All trees are presented as 50% majority consensus trees
generated from the tree distribution after discarding the burn-in.

Average genetic distances within species or clades, as indi-
cated in Figure 2, were calculated for COI and H3 in MEGA
5 (Tamura et al., 2011) under a Kimura two-parameter (K2P)
model (Table 3).

NOMENCLATURE

Both Hall and Scheltema (1975) and Rice et al. (this vol-
ume) have created their own nomenclatures for the larval mor-
photypes. In this chapter, we adopt Rice et al.’s nomenclature
of descriptive names (e.g., smooth orange and smooth small
transparent) but reconcile the names from previous publications
and assign them to taxonomic species. We based the matches on
descriptions, as well as light and scanning electron microscopic
1mages.

RESULTS

The first phase of analysis revealed that the eight larval
morphotypes fall into five distinct clades within the sipunculan
phylogeny (Figure 2). The trees from the analyses of individual
clades are shown in Figure 3. Four larval morphotypes (large
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transparent, smooth transparent, smooth yellow-green, and
smooth orange) fall into the most basal clade in the sipuncu-
lan phylogeny, consisting of Sipunculus and Xenosiphon (Figure
3A). The transverse groove and knobby larvae groups are as-
sociated with Siphonosoma cumanense and Siphonosoma vas-
tum, respectively (Figure 3B). The white blackhead and spotted
velvet larvae both group with Apionsoma misakianum (Figure
3C). The only larval type associated with members of the genus
Phascolosoma is white white, which falls into a clade of Phasco-
losoma nigrescens (Figure 3D). Three larval types (yellow pap,
white orange metatroch, and white papillated) are associated
with Aspidosiphon laevis (Figure 3E). Pinkish papillated is most
closely related to Aspidosiphon albus. Pink white papillated
falls into a clade containing several Aspidosiphon parvulus but
also Aspidosiphon gosnoldi and Aspidosiphon gracilis.

We were able to match seven of the larval types described in
Hall and Scheltema (1975) to larval forms described in Rice et al.
(this volume) and thus assign them to species or genera (Table 4).

DISCUSSION

PHYLOGENETIC ANALYSES

The initial phylogenetic analysis of three molecular mark-
ers resulted in a tree (Figure 2) similar to that of Schulze et al.
(2007) with many commonalities to that of Kawauchi et al.
(2012). As our goal was not to reanalyze sipunculan phylogeny
but to assign larval morphotypes to sipunculan species or clades,
we will focus our discussion on those clades that contain larval
sequences. Only one major clade in the sipunculan phylogeny
does not include any sequences from larval morphotypes. This
clade 1s represented by multiple genera, primarily Golfingia, Ne-
phasoma, Phascolion, and Themiste, and corresponds to clade
[II in Schulze et al. (2007). It 1s uncertain whether typical telep-
lanic larvae do not exist in this clade or whether they have sim-
ply not been sampled. Several members of this clade are known
to have abbreviated development, such as Phascolion cryptum
(Rice et al., 1983), Phascolion strombus (Akesson, 1958), Phas-
colion psammophilum (Rice, 1993), Themiste lageniformis (Pil-
ger, 1987), Themiste pyroides (Rice, 1967), and Thysanocardia
nigra (Rice, 1967). Nephasoma pellucidum, another member of
the clade, does produce planktotrophic pelagosphera larvae, but
they are small and comparatively short-lived (Schulze and Rice,
2009) and have not been reported from plankton samples.

L ARVAL |DENTIEICATIONS

The large transparent pelagosphera 1s usually not abundant
in plankton samples, but it is very conspicuous if present. Our
observations of this larval type match very closely the description
of larval type S by Hall and Scheltema (1975) in terms of size,
pigmentation, and internal anatomy visible through the trans-
parent body wall (Table 4, Figure 1). Primarily on the basis of
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TABLE 3. Average genetic distances (Kimura two-parameter model) for H3 and COI within species or clades as de-

fined in the phylogenetic analyses, including the larval sequences, if available. A dash (—) indicates not applicable.

Average distance

Species and clade Group in Figure 3 H3 COlI
Sipunculus phalloides/Sipunculus polymyotus 1 0 0.050
Sipunculus nudus 2 0.075 0.257
Xenosiphon branchiatus 3 0.049 0.193
Siphonosoma vastum 4 0.005 0.003
Siphonosoma cumanense 5 0.019 0.220
Apionsoma misakianum, spotted velvet clade 6 0.014 0.162
Apionosoma misakianum, white blackhead clade ¥, 0.001 0.007
Apionsoma misakianum 8 0.025 0.190
Phascolosoma nigrescens 9 0.049 0.240
Aspidosiphon laevis 10 0.032 0.216
Aspidosiphon albus 1 0.006 —

Aspidosiphon spp. 12 0.013 -

the large number of bands in the longitudinal body wall muscu-
lature, these authors concluded that the larva belonged to Sipun-
culus polymyotus. This larval type was first described by Fisher
(1947). Our analyses did not resolve whether the large transpar-
ent larva represented S. polymyotus or S. phalloides (Figures 2,
3A). The H3 and 18S sequences are identical for S. polymyotus
and S. phalloides. For COI, the two species are 5% different
(K2P), but no COI sequence is available for the larva. The two
species are morphologically similar, with the number of longitu-
dinal muscle bands being the main distinguishing characteristic
(35-41 in S. phalloides and 42-55 in S. polymyotus). On the
basis of this feature, we agree with Hall and Scheltema (1975)
that the large transparent pelagosphera corresponds to Sipuncu-
lus polymyotus. The large transparent pelagosphera utilized for
this study was collected at Carrie Bow Cay, Belize. This occur-
rence is within the reported distribution range of S. polymyotus,
which occurs in the western Atlantic, the Caribbean, and the
Gulf of Mexico, as well as in the eastern Pacific (Cutler, 1994;
Kawauchi and Giribet, 2014).

The smooth small transparent larva falls into a diverse
clade of specimens labeled Sipunculus nudus (Figure 3A), but
the basal branches in this clade are not fully resolved. Kawauchi
and Giribet (2014) have shown that S. nudus represents a species
complex with a worldwide distribution but have not formally
described any new species. At this point, the best species assign-
ment for the smooth small transparent larva is S. nudus, keeping
in mind that future work may result in the erection of multiple
new species within the S. nudus complex.

The genetic diversity within the clade that contains Xeno-
siphon branchiatus, the smooth yellow-green and the smooth
orange larvae, 1s also fairly high (K2P_,, = 19.3%; Figure 3A).

Cutler (1994) lists two species of Xenosiphon, X. branchiatus
and X. absconditus, but expresses doubts about the validity of
X. absconditus, which was described on the basis of museum
material from uncertain localities. Although adult Xenosiphon
spp. are large, they are never encountered in high densities, prob-
ably because they burrow very deeply into sediment. It would
therefore be ditficult to conduct a thorough analysis of the ge-
netic structure of this species throughout its distribution range on
the basis of adults alone. However, the presence of two distinct
larval forms provides further support that the clade includes at
least two species. Interestingly, one of the three smooth yellow-
green larvae (YG3) is divergent (K2P,, = 6.8%) from the other
two (YG1 and YG2) and appears to be more closely related to
the smooth orange larvae and the single adult of X. branchiatus.
The apparent paraphyly of the smooth yellow-green larval type
could indicate that it is the ancestral larval form within the clade,
but a larger sample size of individuals and molecular markers
are desirable to appropriately address this question. The smooth
orange larva corresponds to Hall and Scheltema’s (1975) larval
type B, smooth, on the basis of the smooth cuticle and charac-
teristic pigmentation, although Jagersten’s original description of
the “smooth” larva encompasses other smooth-skinned pelago-
sphera larvae as well (Jagersten, 1963).

The analysis of the Siphonosoma clade (Figure 3B) con-
firmed that the transverse groove larva belongs to Siphonosoma
cumanense. This athiliation was previously shown in rearing ex-
periments (Rice and Reichardt, 1984; Rice, 1988). The circular
annulations in the trunk region of this larva and the greenish
intestine are very characteristic and have also been described
for the type E larva in Hall and Scheltema (1975), which we
have matched to the transverse groove. Average genetic distances
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TABLE 4. Species identifications of pelagosphera larval morphotypes, using Rice et al.’s (2018) and Hall and Scheltema’s (1975) termi-

nology. A dash (—) indicates not applicable.

Larval type Figure nos. in Larval type

(Rice et al.) Rice et al. (Hall and Scheltema) Species

Large transparent 4,5 Type S Sipunculus polymyotus
Smooth small transparent 6,7 — Sipunculus nudus
Smooth orange 8-11 Type B, smooth Xenosiphon branchiatus
Smooth yellow-green 12-15 — Xenosiphon branchiatus
Transverse groove 16-19 Type E Siphonosoma cumanense
Knobby 2 2] Type F Siphonosoma vastum
Spotted velvet 22-24 Type | Apionsoma misakianum
White blackhead 25,28 Type C, Baccaria oliva Apionsoma misakianum
White white 27-29 — Phascolosoma nigrescens
Yellow pap 30-32 Type A, Baccaria citrinella Aspidosiphon laevis

White orange metatroch e

White pap —
Pinkish papillated -
Pink white papillated =

within this clade are moderate for H3 (K2P = 1.9%) but high
for COI (K2P = 22%). This species might be another candi-
date for future studies of genetic population structure, as it has
a wide geographic distribution in the Atlantic, Pacific, and In-
dian Oceans. The knobby larva unambiguously groups with the
second species in the genus, Siphonosoma vastum. On the basis
of our limited sample size, genetic diversity within this clade is
low for both markers used (K2P,, = 0.3%; K2P,; = 0.5%). The
distinct projections (knobs) on the body surface of this larva in-
dicate that it matches the type F larva in Hall and Scheltema
(1975). These authors mention similarities in the head structures
between type E and type F larvae, providing further support that
they both belong to the same genus. Cutler (1994) reported S.
vastum only from the Pacific, primarily from the western por-
tion, but Cutler and Schulze (2002) provided a first report from
the Caribbean island of Barbados. Its presence in Caribbean wa-
ters might have previously been overlooked. A resident popula-
tion of S. vastum in the Caribbean would explain the presence of
its larva in the Florida Current and Gulf Stream.

High genetic diversity (K2P_,, = 19%) also exists in Apion-
soma misakianum (Figure 3C). The white blackhead and spotted

— Aspidosiphon cf. laevis
— Aspidosiphon sp.

— Aspidosiphon albus

— Aspidosiphon sp.

velvet larvae fall into two clearly separated clades, suggesting
that A. misakianum is not a single, cohesive species. Whereas the
white blackhead larva has been successtully reared through meta-
morphosis to adulthood in the lab (Rice, 1986), the species des-
ignation for the spotted velvet larva has not been confirmed. Hall
and Scheltema (1975) maintained cultures of their type C, Bac-
caria oliva, and type | larvae through metamorphosis but were
not able to identify them to species at the juvenile stage. How-
ever, their morphological descriptions of the larvae and juveniles,
especially of the pigmentation and the papillae, including SEM
images, leave no doubt that their type C larva is the same as the
white blackhead and that type ] corresponds to the spotted velvet
larva. The names “Baccaria oliva” and “Baccaria citrinella” (see
below) go back to Hicker (1898), who recognized that they were
sipunculan larvae but did not know their atfinities.

Staton and Rice (1999) have suggested the presence of two
cryptic species in Apionsoma misakianum on the basis of allozyme
analysis. They found that the population at Sebastian Pinnacles,
off the Atlantic coast of south central Florida, has an allozyme
signature distinct from the more southern populations in the Flor-
ida Keys and the Bahamas. The southern populations appear to

FIGURE 3. (Opposite page) Detailed analysis of individual clades (only H3). (A) Sipunculidae, (B) Siphonosomatidae, (C) Apionsoma misakianum,
(D) Phascolosoma, and (E) Aspidosiphon. Colors correspond to the colored clades in Figure 2. Branch support is given as Bayesian posterior probabili-
ties in percentages. Asterisks indicate 100% posterior probability. Only values over 70% are shown. Larval samples are in bold; for abbreviations, refer
to Table 1. Adult sequences are listed with their GenBank accession numbers. Vertical bars to the right of the trees delimit groups for which average

genetic distances were calculated (see Table 3).
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produce the white blackhead larvae, which might drift northward
in the Florida Current and Gulf Stream but do not contribute to
the recruitment at Sebastian Pinnacles. Our study indicates that
the Sebastian Pinnacles population produces the spotted velvet
larva. Although the two larval types have many commonalities—
their papillae are indistinguishable—their pigmentation patterns
are very distinct. They also difter slightly in developmental timing
(Rice, 1981; Rice et al., this volume). In our analyses, the white
blackhead clade includes one adult from Belize and another one
that was reared in the lab from a white blackhead larva from the
Florida Current. The adults that group with the spotted velvet
larvae are from Sebastian Pinnacles (EU266986), from the Red
Sea (JN865155), and from New Caledonia (DQ300052). The
spotted velvet clade has high branch support, but more extensive
studies are required to examine the genetic structure within this
clade throughout its vast distribution range and to study the lar-
val forms from different populations.

The white white (Belize) larva falls into a clade of Phascolo-
soma nigrescens (Figure 3D). As 1s obvious from the tree, many
of the species designations within the genus Phascolosoma be-
come questionable when analyzed with molecular tools (see also
Kawauchi and Giribet, 2010). However, the only species with
multiple representatives that appears to be monophyletic in our
analysis is Phascolosoma nigrescens, although genetic diversity
within this species (K2P.,, = 24 %) 1s nearly as high as in Sipuncu-
lus nudus (Table 3). Again, future studies might reveal that P. #i-
grescens represents a species complex, but at the present time, the
white white larva can confidently be assigned to this clade.

Like in Phascolosoma, the molecular analyses of the genus As-
pidosiphon also reveal many uncertainties in species delimitations
(Figure 3E; see also Schulze et al., 2007; Kawauchi et al., 2012).
Three larval types (yellow pap, white orange metatroch, and white
papillated) are most closely related to Aspidosiphon laevis (Figure
3E). Among those, yellow pap is connected to adults of A. lae-
vis from Belize and Bermuda by very short branch lengths, and
its species designation is the most obvious. Yellow pap probably
corresponds to type A, Baccaria citrinella, in Hall and Scheltema
(1975). Although they do not include a detailed description of this
larval type, scanning electron micrographs of the body wall pa-
pillae closely match ours (Rice et al., this volume). Furthermore,
in the key to the larval types, Hall and Scheltema (1975) describe
the color as “light pink-yellow to orange brown.” White orange
metatroch falls between the clade that contains yellow pap and a
divergent sequence of A. laevis from New Caledonia, but branch
support for this placement 1s low. White orange metatroch is quite
distinct morphologically from yellow pap. As the name implies,
this larva is white with a distinct orange ring in the metatrochal re-
gion, and its body surface is densely papillated. At the present time,
we regard its designation as A. laevis as preliminary. The remaining
papillated larvae associated with Aspidosiphon species are difficult
to distinguish from each other. The distinctions are primarily based
on subtle color differences detected under light microscopy. Ad-
ditional differences may exist in the shape of the papillae under
scanning electron microscopy, but once a specimen is prepared for

SEM, it is no longer available for DNA analysis, preventing in-
dependent verification of its taxonomic identity. White papillated
forms the most basal branch in the Aspidosiphon laevis clade and
most likely represents a sister species not represented in our data
set. Pink white papillated falls into a clade consisting of Aspidosi-
phon parvulus, A. gracilis, A. gosnoldi, A. fischeri, and A. elegans,
none of which are monophyletic. The closest matches in GenBank
for this larva species are A. parvulus tor H3 and A. gosnoldi tor
COI. Until we have clearer delimitations for the Aspidosiphon spe-
cies in question, we cannot confidently assign pink white papillated
to any species, but it clearly belongs to the genus Aspidosiphon.

CONCLUSIONS AND FUTURE DIRECTIONS

Some morphotypes of pelagosphera larvae are more distinc-
tive than others. Easily recognizable forms include all the larvae
that fall into the Sipunculus-Xenosiphon clade, the two Sipho-
nosoma larvae, and those belonging to Apionsoma misakianum.
The relatively small, papillated larvae of Aspidosiphon and
Phascolosoma tend to be more ditficult to identify on the level of
light microscopy, especially if they lack distinctive pigmentation.
The papillae are usually distinctive when examined with SEM,
but the conundrum is that once a larva is used for SEM, it can-
not be used for DNA extraction any longer and vice versa. The
best solution is to collect as many individuals as possible and
process several for each of the two methods to confirm that the
results are consistent. Unfortunately, although long-term records
of pelagosphera larvae in plankton tows from the Florida Cur-
rent exist, which larval types are caught on a particular day and
how abundant they will be are still unpredictable. Theretfore, this
type of research depends to a large degree on fortuitous findings.

In this study, our larval sampling was restricted to the Ca-
ribbean and northwest Atlantic, but from the work of Hall and
Scheltema (1975) and Scheltema and Hall (1975) we know that
some of the larval types occur across the north Atlantic. It would
be interesting to examine the genetic signatures of the larvae from
different parts of the Atlantic, which could provide valuable in-
sight into dispersal ranges and population connectivity. Additional
sampling in other oceans and climatic zones might reveal new lar-
val types that have not been considered in this study. Recent data
indicate that populations of several North Pacific shallow-water

sipunculan species are genetically very distinct between the eastern
and western boundaries of their distribution, suggesting that larval
dispersal across the Pacific basin is limited or nonexistent (Schulze

et al., 2012; Johnson and Schulze, 2016; Johnson et al., 2016).
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