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ABSTRACT. Adult sipunculans are currently placed within Annelida, mainly on the basis of mo-
lecular phylogenetic analyses. Here, we review recent advances in morphogenetic studies that have
revealed numerous shared features between sipunculans and other annelids, including a metameri-
cally formed nervous system, supporting the notion of a sipunculan/annelid clade. Similar to anne-
lids, sipunculan myogenesis starts with the formation of four separate longitudinal muscle strands
that develop from anterior to posterior, suggesting that this mechanism of myogenesis was present
in the last common ancestor of both taxa. A dense arrangement of longitudinal body wall muscles
in the vicinity of the retractor muscles suggests that the latter evolved from fused longitudinal body
wall muscles. Although circular body wall muscles do not develop in a segmental manner during
sipunculan ontogeny, traits of segmentation during neurogenesis strongly support recent molecular
analyses and argue for a segmented last common ancestor of sipunculans and annelids. The estab-
lishment of a detailed morphogenetic sipunculan framework enables a careful interpretation of gene
expression patterns that might shed further light on the evolution and partial loss of segmentation
in Sipuncula and Annelida.

INTRODUCTION

Adult sipunculan worms uniformly exhibit an unsegmented body that is subdivided
into a posterior trunk and a retractable anterior introvert. Internally, a U-shaped gut lead-
ing to a dorsally placed anus, a pair of nephridia (in some genera only a single nephrid-
ium), an unpaired ventromedian nerve cord, one to four introvert retractor muscles, and
an undivided trunk coelom are present (Rice, 1993; Jaeckle and Rice, 2002; Kristof and
Maiorova, 2016). Although morphological characters and molecular data strongly sup-
port the monophyly of Sipuncula, their internal relationships are still debated (Maxmen et
al., 2003; Schulze et al., 2005, 2007; Kawauchi et al., 2012). The majority of sipunculan
species for which development has been examined have planktotrophic larvae with either
one (trochophore) or two (trochophore and pelagosphera) larval stages, but direct devel-
opment has been described as well, whereby the embryo develops inside the egg envelope
into the crawling juvenile worm (Rice, 1967, 1975a, 1975b, 1976). The spiral cleav-
age pattern, a trochophore larva with an apical tuft, a circumferential ring of prototroch
cells, and other shared developmental traits (e.g., a “molluscan cross”) place Sipuncula
morphologically close to spiralian taxa such as Annelida and Mollusca (Rice, 1985; Schel-
tema, 1993, 1996; Cutler, 1994; Westheide and Rieger, 2007; Schulze and Rice, 2009a).
Recent molecular studies place Sipuncula as the sister group to Annelida (Mwinyi et al.,
2009; Sperling et al., 2009) or even inside Annelida (Boore and Staton, 2002; Bleidorn et
al., 2006; Struck et al., 2007, 2011, 2015; Dunn et al., 2008; Hejnol et al., 2009; Shen
et al., 2009; Zrzavy et al., 2009; Dordel et al., 2010; Lemer et al., 2015; Weigert and

Bleidorn, 2016). In congruence with the latter data, neurogenesis and the distribution of
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proliferating cells show transitional stages of segmentation dur-
ing development, thus supporting a sipunculan-annelid atfiliation
(Wanninger et al., 2005, 2009; Kristof et al., 2008, 2011; Kristof
and Maiorova, 2016). Herein, we review published data on neu-
romuscular development in Sipuncula and discuss the significance
of Sipuncula in deducing the ancestral conditions and develop-
mental processes of the last common sipunculan-annelid ancestor.

SIPUNCULAN DEVELOPMENT AND ANCESTRY

Immunocytochemistry and F-actin labeling in conjunction
with confocal microscopy have proven to be useful for reconstruct-
ing possible ancestral neuromuscular features and thus may pro-

vide important msights into body plan evolution (Hessling and
Westheide, 2002; Raikova et al., 2004; de Rosa et al., 2005; Miiller,

2006; Denes et al., 2007; Wanninger, 2009; Boyle and Seaver, 2010;
Kristof and Klussmann-Kolb, 2010; Nielsen and Worsaae, 2010;
Kristof et al., 2016). So far, eight sipunculan species representing
two families and three different developmental modes have been in-

vestigated using the abovementioned methods (Table 1; Wanninger
et al., 20035; Kristof et al., 2008; Schulze and Rice, 2009b; Kristof,

2011; Kristof et al., 2011; Kristof and Maiorova, 2016).

MYOGENESIS

Adult sipunculans may exhibit one (e.g., Phascolion cryp-
tum; Schulze and Rice, 2009b) to four (e.g., Sipunculus nudus;
Gibbs, 1977; Figure 1A) longitudinal introvert retractor muscles,
but their myogenesis commonly starts with the simultaneous
formation of four introvert retractor muscles that develop from

TABLE 1. List of species investigated by the fluorescense markers serotonin and FMRFamide for neurotransmitters and peptides, phal-
loidine for F-actin of the musculature, and EAU (5-ethynyl-2'-deoxyuridine) for proliferating cells. Sipunculan family classification is
sensu Kawauchi et al. (2012). Developmental modes are I, direct development; II, indirect development with a single pelagic lecithotro-
phic stage; III, indirect lecithotrophic stage; and IV, indirect planktotrophic stage. A dash (—) indicates not investigated.

Species (family) and developmental mode Neurogenesis Myogenesis Cell proliferation
Phascolion strombus” (Golfingiidae), 111 Serotonin, FMRFamide F-actin —
Phascolion psammuphﬂusb (Golfingiidae), III — F-actin —
Phascolion c:ryptumb (Golfingiidae), I — F-actin —
Nephasoma pe!!ncfdumb (Golfingiidae), IV — F-actin —
Themiste Iag'enifﬂrmisb (Golfingiidae), III — F-actin —
Themiste pym.ide'sc’d’e (Golfingiidae), II1 Serotonin, FMRFamide F-actin EdU
Thysanocardia nrfgmﬁ’d’e (Golfingiidae), 11 Serotonin, FMRFamide F-actin EdU
Phascolosoma ﬂgﬂssfzfzﬂ’e’f’ (Phascolosomatidae), IV Serotonin, FMRFamide F-actin —

; Kristof and Maiorova (2016).
Kristof et al. (2008).

“ Kristof et al. (2011).

; Wanninger et al. (2005). p
Kristof (2011).

b Schulze and Rice (2009b).

FIGURE 1. (Opposite page) Sipunculans in evolutionary developmental biology. Anterior faces upward, and scale bars represent 150 um in (B) and
(C) and 50 pum 1in the inset and in (D)—(G). Dorsoventral views are given in all aspects, except in (D) and (F), where ventral is to the right. (A) Schematic
drawing of an adult sipunculan (Golfingia spp.) with tentacles (t) around the mouth opening (asterisk) and a lobed nuchal organ (no) on the dorsal side.
Internally, one ventral pair (virm) and one dorsal pair (drm) of retractors are shown, along with the nonmetameric ventral nerve cord (vnc; redrawn
from Strand and Sundberg, 2010). (B) Phascolion psammophilum juvenile with tentacles anlagen (ta) and lip (1) showing cell nuclei (blue) and F-actin
(green; musculature) labeling. The fusion process of the dorsal retractor muscles (drm) has begun in the anterior region, whereas posteriorly, they are still
separated (arrows). Larvae have one dorsal and one ventral pair of retractors initially, whereas adults exhibit a single large dorsal and one small ventral
retractor muscle (Schulze and Rice, 2009b); Im marks the longitudinal body wall muscles, and cm marks the circular body wall muscles. The inset shows
a slightly older juvenile with four tentacles, hooks (h) on the anterior part of the introvert, and a prominent fused dorsal retractor muscle. (C) Same
juvenile as in (B), showing the serotonergic nervous system with the prominent cerebral ganglion (cg) and ventral nerve cord (vnc) with few associated
perikarya (double arrowheads), lip neurites (In), and peripheral neurites (pn). (D) Slightly older juvenile with developed hooks and developing primary
tentacles (prt), which are innervated by serotonergic neurites (tn). (E) Themiste pyroides, early trochophore larva (2 days after fertilization) showing
expression of Tp-mbc (myosin heavy chain) in the developing retractor muscles (arrowheads). (F) Themiste pyroides, pelagosphera larva (3 days after
fertilization) with Tp-mbc expression in the retractor muscles; pt marks the ciliated prototroch, and mt marks the metatroch. (G) Same stage as in (E),
showing the rudiments of the paired ventral and dorsal longitudinal retractor muscles, as well as numerous circular body wall muscles. Musculature is
shown in red, and cell nuclei are illustrated in blue.
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anterior to posterior (Akesson, 1958; Hall and Scheltema, 1975;
Wanninger et al., 2005; Schulze and Rice, 2009b; Kristof et al.,
2011). Hence, the reduced number of adult retractor muscles is
a secondary condition due to loss and/or fusion processes dur-
ing later juvenile stages (Akesson, 1958; Figure 1B and inset),
suggesting that the last common sipunculan ancestor had four
separate longitudinal retractor muscles that developed from an-
terior to posterior. At the same time as the formation of the four
retractor muscles, a considerable number of outer circular body
wall muscles develop. The circular muscles develop simultane-
ously along the anterior-posterior axis and always earlier than
the inner longitudinal retractor muscles (Wanninger et al., 2005;
Schulze and Rice, 2009b; Kristof et al., 2011). Interestingly, lon-
gitudinal body wall muscle fibers increase in number throughout
sipunculan ontogeny and form a pattern of dense arrangement
in the area of the retractor muscles, whereas they are loosely ar-
ranged toward the mid-body region (Kristof et al., 2011). This
pattern might suggest that the longitudinal retractor muscles
have evolved from fused longitudinal body wall muscles. Myo-
genesis follows a similar pattern in all investigated sipunculan
species, although minor differences do occur. Directly or indi-
rectly developing lecithotrophic species (e.g., Themiste pyroides
and Thysanocardia nigra; Kristof et al., 2011), for instance, lack
a terminal organ (this structure enables pelagosphera larvae to
attach to substrates) and develop the buccal organ (a vertable
pharyngeal pouch used for feeding) considerably later than the
species with planktotrophic development (e.g., Phascolosoma

agassizii and Nephasoma pellucidum; Schulze and Rice, 2009a,
2009b; Kristof et al., 2011).

NEUROGENESIS

Regardless of the mode of development (indirect lecithotro-
phic or indirect planktotrophic versus direct), neurogenesis is re-
markably similar in all investigated sipunculans and always gives
rise to the adult with a nonmetameric ventral nerve cord and an
anteriorly positioned dorsal brain (Figure 1A; Wanninger et al.,
20035; Kristof et al., 2008; Kristof, 2011; Kristof and Maiorova,
2016). Early neuronal development in all investigated sipuncu-
lans 1s restricted to the apical organ, which 1s immunoreactive
against the neurotransmitters serotonin and FMRFamide and
exhibits two flask-shaped cells in Themiste pyroides, Thysano-
cardia nigra, and Phascolion strombus (only FMRFamide) and
up to four flask-shaped cells in Phascolosoma agassizii (Wan-
ninger et al., 2005; Kristof et al., 2008; Kristof, 2011; Kristof
and Maiorova, 2016). During subsequent development two neu-
rites grow posteriorly and form a scaffold for the future ventral
nervous system, while formation of the adult cerebral ganglion
starts at the base of the apical organ (Wanninger et al., 2005;
Kristof et al., 2008; Kristof, 2011; Kristof and Maiorova, 2016).
In addition, all but one (P. strombus) investigated species have a
neurite that underlies the metatrochal ciliary bands and that 1s
immunoreactive against serotonin and FMRFamide. Phascolion

strombus lacks a metatrochal neurite, probably because of its
short-lived pelagosphera stage (12-24 hours at 12°C-16°C),
which is considerably shorter than in T. pyroides, T. nigra (10—
14 days at 17°C-19°C), and P. agassizii (several months in the
open ocean; Wanninger et al., 2005; Kristof et al., 2008; Kristof,
2011; Kristof and Maiorova, 2016). However, during subse-
quent development, interconnecting commissures and pairs of
perikarya appear in an anterior to posterior progression along
the paired ventral nerve cord, resulting in a rope-ladder-like ven-
tral nervous system, thus indicating the presence of a posterior
growth zone (Wanninger et al., 2005, 2009; Kristof et al., 2008;
Kristof, 2011; Kristof and Maiorova, 2016). A median neurite
appears in the FMRFamidergic ventral nervous system toward
metamorphosis, whereas the serotonergic longitudinal neurites
gradually fuse and the metameric arrangement of the associated
perikarya disappears. At the same time, the adult cerebral gan-
olion elaborates, whereas the serotonergic and FMRFamidergic
cells in the larval apical organ slowly disappear (Wanninger et
al., 2005, 2009; Kristof et al., 2008; Kristof, 2011; Kristof and
Maiorova, 2016). Moreover, the fusion and cell migration pro-
cesses seem to continue also into the first juvenile stages before
the adult condition of the ventral nervous system 1s achieved
(Figure 1C,D). Taken together, the currently available data
strongly suggest a serotonergic neurite that innervates a ciliated
locomotory organ (e.g., prototroch, metatroch), a serotoner-
gic (and maybe also FMRFamidergic) apical organ comprising
approximately four flask-shaped cells, a paired ventral neurite
bundle with metamerically formed pairs of perikarya, and a
median neurite as part of the ancestral sipunculan body plan.
Interestingly, the sipunculan metameric mode of neurogenesis is
coherent with findings of a transient, metameric distribution pat-
tern of mitotic cells. These originate from the ventral posterior
trunk area, thus indicating a posterior growth zone and thereby

further supporting a segmented ancestry of Sipuncula (Kristof et
al., 2008, 2011; Wanninger et al., 2009).

GENE EXPRESSION

The first, and so far only, gene expression study on a si-
punculan, Themiste lageniformis, was published by Boyle and
Seaver (2010). This study found a similar expression pattern of
the genes FoxA and GATA456 between the polychaete Chae-
topterus and the sipunculan T. lageniformis. The genes FoxA
and GATA456 are known to be involved in gut development
throughout Metazoa (Roberts, 2000; Stainier, 2002). In both spe-
cies, FoxA appears to define the anterior and posterior regions of
the digestive system since it is expressed in the area of the foregut
and hindgut before the definite gut tube is formed. GATA456,
by contrast, is largely expressed in the developing midgut and
the associated mesoderm as well as along the entire hindgut re-
gion (Boyle and Seaver, 2010). It has to be noted, however, that
there are species-specific differences such as the FoxA expression
in a patch of ectodermal cells outside the gut that persist after



metamorphosis in T. lageniformis and GATA456 expressing cells
in the anterior ectoderm of Chaetopterus. FoxA and GATA454
are expressed in distinct regions that correspond to the three di-
gestive system compartments (e.g., foregut, midgut, and hindgut)
of both worms, resembling the patterns reported for mouse, fly,
nematode, and mollusk embryos and larvae (Boyle and Seaver,
2008, 2010, and references therein). Hence, this study suggests a
core role of FoxA and GATA454 in gut development of annelids
including sipunculans and provides further support for this pat-
tern being a shared feature throughout the Bilateria.

FUTURE PERSPECTIVES

The ontogenetic establishment and loss of a metamerically
arranged organ system has never been described for any animal
betore, thus rendering Sipuncula and its body plan formation in-
teresting for developmental studies. Since modern high-throughput
sequencing technologies (e.g., 454 FLX Genome Sequencer, Illu-
mina genome analyzer, PacBio) are becoming less expensive, they
provide exciting opportunities to investigate nonmodel organisms
such as sipunculans from a molecular perspective. The abovemen-
tioned morphogenetic data enable detailed interpretations of gene
expression patterns in larvae and juveniles for ongoing, initiated,
and future studies that aim to unravel molecular mechanisms in
sipunculan body plan formation (see Boyle and Seaver, 2010; Fig-
ure 1E-G). In this context the putative sipunculan “segmentation”
process can be assessed by analyzing the role of developmental
genes involved in body plan patterning, which are known from
model system animals (e.g., Drosophila [fly|, Tribolium |[beetle],
Mus [mouse], and Danio [fish]), and such studies may also reveal
possible new functions of some of these genes. With such studies,
the visibility of Sipuncula in evolutionary developmental biology
should increase significantly by contributing to our understand-
ing of developmental patterns and mechanisms in metazoan ani-
mals—a key question in the field of “evodevo.”
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