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Abstract 

A dataset of spectral signatures (leaf level) of tropical dry forest trees and lianas and an airborne hyperspectral image (crown level) are used to 
test three hyperspectral data reduction techniques (principal component analysis, forward feature selection and wavelet energy feature vectors) 
along with pattern recognition classifiers to discriminate between the spectral signatures of lianas and trees. It was found at the leaf level the 
forward waveband selection method had the best results followed by the wavelet energy feature vector and a form of principal component 
analysis. For the same dataset our results indicate that none of the pattern recognition classifiers performed the best across all reduction techniques, 
and also that none of the parametric classifiers had the overall lowest training and testing errors. At the crown level, in addition to higher testing 
error rates (7%), it was found that there was no optimal data reduction technique. The significant wavebands were also found to be different 
between the leaf and crown levels. At the leaf level, the visible region of the spectrum was the most important for discriminating between lianas 
and trees whereas at the crown level the shortwave infrared was also important in addition to the visible and near infrared. 
© 2007 Elsevier Inc. All rights reserved. 
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1. Introduction 

Recently, the importance of lianas (non-self supporting 
parasitic climbers) has been recognized as an important 
contributor to tropical forest structure and biodiversity and the 
life histories of numerous tropical trees (Avalos & Mulkey, 1999; 
Gentry & Dobson, 1987; Perez-Salicrup, 2001). Lianas have been 
considered a significant fingerprint of the effects of global 
environmental change in tropical environments (Lewis et at, 
2005). Field studies indicate liana coverage is increasing in 
neotropical forests (Phillips et at 2002; Wright et at, 2004), which 
may be a biological signal of higher CO2 concentration, increased 
disturbance or decreased precipitation (Schnitzer, 2005). Lianas 
have been shown to alter both old-growth and secondary forest 
structure (Laurance et at, 2001; Perez-Salicrup, 2001; Perez- 
Salicrup & de Meijere, 2005; Putz, 1984; Schnitzer & Bongers, 
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2002) and because lianas' impact on trees varies according to the 
tree's phytogeny and ecology, an increase in liana loading could 
alter tropical forest biodiversity (Phillips et at, 2002). Due to their 
different pollination and seed dispersal mechanisms (Gentry, 
1992), their increase would also impact conservation of fauna and 
flora (Phillips et at, 2002). Moreover, lianas have been found to 
impact the carbon cycle with their high productivity, selective 
suppression of the growth and regeneration of non-pioneers and 
increased mortality risk for large trees (Hegarty & Caballe, 1992; 
Phillips et at, 2005; Schnitzer & Bongers, 2002). 

In the years to come, remote sensing will be critical to 
quantifying the extent and dynamics of liana coverage at the 
landscape level. Currently large scale censuses of liana commu- 
nities are carried out using stem diameter as indicator of canopy 
coverage (Makana et at, 2004; Chuyong et at, 2004), an approach 
that is a poor measure of the size and functional importance of 
lianas and with significant limitations regarding the percentage of 
the total crown area that they cover once they reach the top of the 
canopy. Satellite data can cover large areas with frequent temporal 
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sampling and can potentially measure canopy coverage by lianas 
directly from above rather than using stem diameter as a proxy. In 
the context of current remote sensing technological developments, 
hyperspectral data has become a potentially feasible area of 
research for the quantification of the extent of liana coverage 
(Castro-Esau et al, 2004) because it offers a large number of 
bands; discrimination can potentially be facilitated because of 
subtle spectral features that are manifested in hyperspectral data as 
well as the inherent multiplicity of bands to choose from. 

The majority of previous studies have focused on the 
separability among a limited number of species using leaf 
spectral properties (e.g. Cochrane, 2000; Castro et al., 2006; Lee 
& Graham, 1986; Lee et al., 1990) and from airborne imagery 
(Clark et al., 2005; Zhang et al., in press). The body of literature 
focusing on the spectral properties and separability of lianas 
from trees is scarce in comparison (Avalos et al., 1999; Castro- 
Esau et al., 2004). Castro-Esau et al. (2004), comparing spectral 
properties of liana and tree leaves from a tropical dry and 
tropical rainforest site have demonstrated that lianas and host 
tree spectra can be separated with greater accuracy at the 
tropical dry forest site. The transfer of the liana leaf spectral and 
biochemical traits to canopy scales have been demonstrated by 
Sanchez-Azofeifa and Castro-Esau (2005) for a site in Panama. 
They also showed that the reflectance of Anacardium excelsum 
canopies increases at 550 nm with an increase in liana loading, 
which correlates with a lower chlorophyll concentration in liana 
leaves in comparison to their host tree leaves. The separability 
of lianas and trees is also affected by the high density of species 
that can be present on a given crown. Castro-Esau et al. (2004) 
documented the presence of up to 27 species of lianas in one 
single crown, many of which covered small areas and displayed 
highly dynamic behavior throughout the year. The former 
observation tends to preclude the spectral identification of lianas 
at the species level on a tree crown basis from imagery (i.e. 
satellite or airborne). Furthermore, the former poses an additional 
challenge to the detection of lianas using remotely sensed data 
and suggests that most likely, the key to their detection is to focus 
on communities (groups of species) occupying a given canopy 
rather than the identification of individual species. 

In order to quantify liana coverage on a landscape scale, it 
will be necessary to continue to develop new approaches to 
further the discrimination of lianas and trees at the crown scale. 
Such analyses could subsequently be used for the quantification 
of the changes of liana extent over time. A variety of data 
analysis techniques such as wavelet decomposition (Chan & 
Peng, 2003; Misiti et al., 1996), feature selection (De Backer 
et al., 2005; Duin, 2000) and pattern recognition (Bishop, 1995; 
Fukunaga, 1990; Ripley, 1996) have been developed that can 
take advantage of the large amount of data from hyperspectral 
sensors. Here we address which common and readily available 
techniques are most appropriate for the discrimination of the 
spectra of a community of lianas from canopy trees at the leaf 
and crown levels. The objective of this study is to evaluate 
which combination of data reduction technique and pattern 
recognition classifier best discriminates between the reflectance 
spectra of tropical dry forest trees and lianas at the leaf 
(spectrometer data) and canopy levels (airborne hyperspectral 

imagery). We use some standard and readily accessible data 
reduction techniques to address this issue. Specifically we have 
compared Principal Component Analysis (PCA), Wavelet 
Energy Feature Vectors (WT) and Stepwise Feature Reduction 
(FFS) with some standard classifiers previously shown to be 
useful in separating the spectra of lianas and trees at the leaf 
level (Castro-Esau et al., 2004). 

2. Methods 

2.1. Study site 

The study area for these analyses is the seasonally dry forest 
of Parque Natural Metropolitano (PNM) in Panama City, 
Republic of Panama. The forest at PNM receives approximately 
1740 mm of precipitation per year. The canopy was accessed by 
a gondola attached to a 42 m construction crane (boom length 
51 m) which allows for access to an area encompassing 
approximately 80 species of trees and lianas (Avalos & Mulkey, 
1999; Kitajima et al., 2005; Phillips et al., 1999). Of the total 
number of tree species at the crane site, 15% are understory 
species and 85% are mid-canopy or canopy species (Table 1). 
The area accessible by the crane (8167 m ) is dominated by 
A. excelsum ((Bertero & Balb. ex Kunth) Skeels), with various 
levels of liana coverage (Sanchez-Azofeifa & Castro-Esau, 
2005). We focused on collecting spectral data from canopy and 
exposed mid-canopy trees and the lianas present on those 
crowns because they are the most relevant for remote sensing 
studies making use of airborne or satellite imagery. Data was not 
collected from trees in the understory because they do not 
contribute to the question of detecting liana communities from 
airborne or satellite imagery. In addition, due to the large 
number of liana species on each host tree, this work focuses on 
exploring differences between crowns that are infested with 
lianas and those without lianas; we do not intend in this study to 
explore differences that may exist between species. 

2.2. Collection of leaf level reflectance spectra 

In December 2004, we collected reflectance spectra for 
8 emergent tree species and 25 liana species (Fig. la, Table 1) 
with an ASD FieldspecFR spectrometer (Analytical Spectral 
Devices, Boulder CO) over the course of two days. The spectral 
range for this instrument is 350-2500 nm with a resolution of 
3 nm in the 350-1000 nm range and 10 nm in the 1000- 
2500 nm range. A total of 10 mature sunlit leaves were collected 
for each species, which were identified in-situ and then 
transported within one hour to a laboratory where their spectral 
reflectance was measured. The time elapsed from collection to 
measurement is within the range recommended by Foley et al. 
(2006). The collection permit from the Panamanian Ministry of 
the Environment stipulated that a maximum of ten leaves per 
species could be collected. Because the goal of the study is to 
differentiate between life forms rather than species, we believe 
the sample size is adequate given the logistical constraints. 

A total of three spectral reflectance measurements were taken 
of the leaf laminas (distal, middle and proximal) proximal to the 
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Table 1 
List of tree and liana species examined at the leaf and canopy levels 

Family Species Life form Position Accessible by crane Leaf level Canopy level 

Anacardiaceae Anacardium excelsum Tree Canopy Yes 
Anacardiaceae Astronium graveolens Tree Canopy Yes 
Anacardiaceae Mangifera indica Tree Mid-canopy No 
Anacardiaceae Spondias mombin** Tree Canopy No 
Annonaceae Annona spraguei** Tree Mid-canopy Yes 
Apocynaceae Forsteronia spicata Liana - Yes 
Araliaceae Schefflera morototni Tree Mid-canopy No 
Arecaceae Palm - Tree Mid-canopy No 
Aristolochiaceae Aristolochia maxima Liana - Yes 
Asteraceae Mikania leiostachya Liana - Yes 
Bignoniaceae Amphilophium paniculatum Liana - Yes 
Bignoniaceae Arrabidaea candicans Liana - Yes 
Bignoniaceae Phryganocydia corymbosa Liana - Yes 
Bignoniaceae Stizophyllum corymbosa Liana - Yes 
Bignoniaceae Tabebuia rosea** Tree Canopy No 
Bombacaceae Cavanillesia plantanifolia** Tree Canopy No 
Bombacaceae Pseudobombax septenatum** Tree Canopy Yes 
Boraginaceae Cordia alliodora Tree Canopy Yes 
Burseraceae Bursera simaruba** Tree Canopy No 
Cecropiaceae Cecropia obtusifolia Tree Canopy No 
Cecropiaceae Cecropia peltata** Tree Mid-canopy No 
Cecropiaceae Ceropia longipes Tree Canopy No 
Combretaceae Terminalia amazonia Tree Canopy No 
Convolvulaceae Bonamia trichantha Liana - Yes 
Convolvulaceae Jacquemontia perryana Liana - Yes 
Dilleniaceae Doliocarpus dentatus Liana - Yes 
Dilleniaceae Doliocarpus major Liana - Yes 
Dilleniaceae Tetracera portobellensis Liana - Yes 
Fabaceae/Caes. Hymenaea courbaril Tree Canopy No 
Fabaceae/Mim. Albizia adinocephala Tree Canopy No 
Fabaceae/Mim. Enterolobium cyclocarpum}f Tree Canopy No 
Fabaceae/Mim. Machareium milleflorum Liana - Yes 
Fabaceae/Mim. Pithecoctenium crucigerum Liana - Yes 
Fabaceae/Pap. Andira inermis Tree Mid-canopy No 
Flacourtiaceae Zuelania Guidonia** Tree Mid-canopy No 
Hippocrateaceae Hippocratea volubilis Liana - Yes 
Hippocrateaceae Prionostemma aspera Liana - Yes 
Lauraceae Phoebe cinnamomifolia Tree Mid-canopy No 
Malpighiaceae Hiraea reclinata Liana - Yes 
Malpighiaceae Stigmaphyllon hypargyreum Liana - Yes 
Moraceae Castilla elastica** Tree Mid-canopy Yes 
Moraceae Ficus insipida Tree Canopy Yes 
Moraceae Madura tinctora Tree Mid-canopy No 
Passifloraceae Passiflora vitifolia Liana - Yes 
Phytocalaceae Trichostigma octandrum Liana - Yes 
Rhamnaceae Gouania lupuloides Liana - Yes 
Rubiaceae Antirhea tricantha Tree Canopy No 
Rubiaceae Calycophyllum candidissimum * * Tree Canopy No 
Sapindaceae Serjania atrolineata Liana - Yes 
Sapindaceae Serjania mexicana Liana - Yes 
Sapotaceae Chrysophyllum cainito Tree Canopy Yes 
Sterculiaceae Guazuma ulmifolia** Tree Mid-canopy No 
Tiliaceae Luehea seemannii Tree Canopy No 
Urticaceae Myriocarpa longipes Tree Mid-canopy No 
Verbenaceae Tectona grandis** Tree Canopy No 
Vitaceae Vitis tiliifolia Liana - Yes 

X X 
X X 
- X 
- X 

X X 
X ttt 
- X 
- X 

X ttt 
X ttt 
X ttt 
X ttt 
X ttt 
X ttt 
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- X 
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X ttt 
X ttt 
X X 
X X 
- X 
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- X 
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- X 

X ttt 
X indicates the sampling level (i.e. leaf and/or canopy), * * indicates the most distinct deciduous tree species, ttt the species of lianas at the crown level could not be 
distinguished because lianas occur in multiple species, occur on most host trees and could not be identified from the ground. It is also not possible to state which species 
of lianas occur in what quantity on which specific host tree. \%Enterolobium cyclocarpum was the only species with a crown of entirely newly flushed leaves. 

leaf acumen (where present) using a leaf probe (12° illumination 
angle and 32° viewing angle) and clip developed specifically for 
the ASD. The final reflectance for each measurement spot was 

determined from the average of 20 scans (reduces noise in the 
spectra). The final average for each sample was the mean of the 
3 samples. Due to the commingled nature of lianas in their 
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Fig. 1. a) Mean leaf level spectra for lianas (grey) and trees (black), b) Mean canopy level spectra extracted from the HYDICE image for crowns with over 40% liana 
coverage (grey) and crowns with less than 40% liana coverage (black). Insets are a close-up of the green peak of the spectra. 

growth pattern it is uncertain how many individuals the leaves 
came from. For the tree species, data collection was limited to 
the crowns that are accessible by the crane, resulting in one to 
two trees being sampled per species. 

2.3. Hyperspectral image (HYDICE) processing 

For the crown-level analyses, we used an airborne hyper- 
spectral image collected by the Hyperspectral Digital Imagery 
Collection Experiment (HYDICE) sensor in March 1998 for 
Parque Metropolitano. The image has a spatial resolution of 1 m 
and has 210 bands with a range of 400-2500 nm. Eight 5 x 5 m 
plywood calibration panels painted with matte paint (white, 
black and two shades of grey) were used at the time of the image 
collection in order to apply an 'Empirical Line Method' cali- 
bration to the data (Bohlman & Lashlee, 2004). The average 
radiance values of each of the panels (from the image) were 
used for regression equations relating image radiance and 
reflectance measured in the field with a handheld spectrometer 
(ASD FieldSpec from Analytical Spectral Devices, Boulder 
CO, USA) which were subsequently applied to each pixel in the 
image (Bohlman & Lashlee, 2004). Tree crowns in the image 
were identified in the field to species and characterized by 
percentage liana coverage. The percentage of the crowns co- 
vered by lianas was estimated visually from the ground during 
the dry season. 

For this study we group the crowns into two classes: >40% 
liana coverage (44 crowns) and <40% liana coverage (244 
crowns) (Table 1). While arbitrary, this threshold was used to 
maximize the contribution of the lianas to the spectral reflec- 
tance of the crowns, while still maintaining a dataset large 
enough to conduct the analysis. For example, with a cutoff of 80 
or 90% liana coverage there would not have been enough tree 
crowns in that class to conduct the analysis. In addition, Meyer 
et al. (1996) found favourable results with a threshold of 35%. 
The purpose of this analysis is to determine whether crowns 
with relatively high coverage can be identified spectrally from 
trees with minimal to no liana coverage, regardless of species. 
The pixels representing the crowns of each individual were 
extracted and averaged. The wavebands representing atmo- 
spheric water absorption were subsequently removed as well as 
those below 450 nm and above 2270 nm. The average spectra of 
the individuals were then subjected to a wavelet energy feature 
vector transformation (Bruce et al., 1999; Li et al., 2001) and 
forward feature selection data reduction techniques (van der 
Heijden et al., 2004) prior to being analyzed with the parametric 
and non-parametric classifiers (see below). 

2.4. Processing of the spectra 

Principal component analysis (PCA) is a common technique 
for reducing the data dimensionality and highlighting variation 
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(Schowengerdt, 1996). The effects of PC A are the orthogonal- 
ization of the components of the input data (i.e. outputs from 
PCA will be uncorrelated with each other), the ordering of the 
components from those with the greatest variation to those with 
the least and the elimination of the components that have the 
least contribution to the variation in the dataset. In this analysis, 
we conducted two types of PCA analysis as per Castro-Esau 
et al. (2004) for the leaf level data. The first PCA approach 
(PCA1) uses an array of the full spectra of lianas and trees 
which is split in half using every other spectrum for training and 
testing datasets. The first four weighted eigenvectors are then 
used as inputs for the classifiers. The second PCA approach 
(PCA2) splits the array of liana and tree spectra twice, once into 
the respective life forms (i.e. lianas and trees) and secondly into 
training and testing datasets (i.e. separate training and testing 
datasets for lianas and trees). For this PCA2 analysis, PCA is 
carried out separately for the liana and tree datasets. The first 
four weighted eigenvectors are then used as inputs for the 
classifiers. 

With wavelet transforms for spectral analysis, signals 
(spectra) are decomposed into a hierarchical set of approxima- 
tions and details (Bruce et al., 2002). For each level of the 
decomposition (_/), approximation Aj and detail Dj coefficients 
are calculated. The original spectrum is similar to the approxi- 
mation at level 0 (A0) (Bruce et al., 2001; Mallat, 1989; Misiti 
et al., 1996). At level 1, the approximation coefficient (Ai) is an 
approximation of the low frequencies of A0 and the detail 
coefficient (Dj) is the high frequency correction for A0 (Bruce 
et al., 2002), and so on for each subsequent level. One 
dimensional wavelet analysis (such as for signals or spectra) is 
based on a mother wavelet (of various forms) and an associated 
scaling function as opposed to two dimensional wavelet 
analysis (such as for image processing) which is based on an 
associated scaling function and three wavelets (Mallat, 1989; 
Misiti et al., 1996). We conducted a discrete wavelet transform 
of the leaf and canopy level spectra using a third order mother 
wavelet from the Daubechies family (db3) (Daubechies, 
1992). This multilevel decomposition (11 levels for the leaf 
level and 7 levels for HYDICE pixel values) was implemented 
in Matlab v.6.5 resulting in 11 and 7 detail coefficients (cD,) 
and the largest approximation coefficient (cAy). Subsequently, 
scalar energy feature vectors of the wavelet coefficients were 
calculated (Bruce et al., 1999; Li et al., 2001; Pu & Gong, 
2004): 

Fj 
\ JC=1 

where K is the number of coefficients at level j, Wjt is the kl 

coefficient at level j. The length of the vector is (p +1) (i.e. the 
detail coefficients and the approximation coefficient) where p 
is the maximum number of decomposition levels. For the leaf 
level spectra there were 2101 bands available (following 
preprocessing) from the ASD Fieldspec Pro spectrometer, 
therefore, p is equal to 11 (/? = log2Af, where N = length of 
original signal: 2101) and the energy feature vector to 12. With 

this method, the original 2101 dimensions of the data have 
been reduced to 12. For the crown-level spectra from the 
HYDICE image, there were 124 bands available (following 
preprocessing), therefore, p is equal to 7 and the energy feature 
vector to 8. 

Stepwise feature selection is another alternative for dimen- 
sionality reduction of hyperspectral data. Forward stepwise 
selection is initiated by finding the best single waveband 
(referred to as "feature" from this point forward) for predicting 
group membership. Subsequent features are added according to 
which improves performance the most. The selection is guided 
by a criterion such as F value or by effect on classification 
accuracy (Duin, 2000; van der Heijden et al., 2004). The result 
of both types of stepwise feature selection is a smaller set of 
highly effective features for discriminating between groups. The 
maximum number of features (wavebands in this case) that can 
be used without overfitting is F=(n—g)/3 where n is the 
number of spectra and g is the number of classes (Defernez & 
Kemsley, 1997). For both the leaf level and crown-level data 
we used forward feature selection to reduce the 2101 bands 
from the leaf level analysis to sets of 10-100 features in 
increments of 10 and the 124 wavebands from the HYDICE 
data to sets of 10-80 features (wavebands) in increments of 10. 
For the crown data, the water absorption bands had been 
previously removed. 

The reduced data from each of the four aforementioned 
techniques were subsequently used as inputs for nine parametric 
and non-parametric pattern recognition classifiers using 
PRTools (Castro-Esau et al., 2004; Duin, 2000). The classifiers 
included were the log linear classifier (logic), quadratic 
classifier (qdc), decision tree classifier (treec), neural network 
classifier (lmnc) with 2-5 layers and the k-nearest neighbour 
classifier with 2 and 3 nearest neighbours (Castro-Esau et al., 
2004; Duin, 2000; van der Heijden et al., 2004). 

The logic classifier is a linear classifier with a logistic 
function to separate classes; qdc is a quadratic classifier which 
assumes normal densities for the classes; treec is a decision tree 
classifier the fundamental goal of which is to continually split 
the data into subsets that are subsequently purer classes; lmnc is 
a feed forward neural network using the Levenberg Marquardt 
optimization with two to five layers [lmnc2-5] (Hagan & 
Menhaj, 1994). Finally, the knnc classifier examines the closest 
2 or 3 neighbours to determine the class of each new object (i.e. 
spectrum) [knnc2, knnc3]. The data were divided equally into 
training (165 for leaf level and 144 for canopy level) and testing 
datasets (165 for leaf level and 144 for canopy level). The 
training datasets were used to train the classifiers as well as to 
provide an error estimate. The testing datasets provided an 
indication of how well each classifier discriminated between the 
two classes and provided error estimation for each classifier. For 
the feature selection process specifically, in order to determine 
the ideal number of features to use with each classifier, training 
and testing errors were plotted on a dual y-axis plot against 
number of features (10-100 for the leaf level data and 10-80 for 
the crown-level data). The ideal number of features was selected 
to be the number where the two measurements of error reached 
global minima (Fielding, 1999). 
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3. Results 

3.1. Leaf level 

At the leaf level for the feature selection analysis, the optimal 
number of features ranged from 10 to 100 features. The lowest 
overall error was achieved with the lmnc5 classifier with fifty 
features (0.4% overall error; 0% training error, 0.86% testing 
error). The knnc2 (ten and twenty features) and qdc (forty 
features) classifiers achieved the next lowest overall error rates 
of 0.6% and 0.75% respectively (0% training error and 1.2% 
testing error for both). All other classifiers also achieved good 
discrimination between the spectra of tree and liana leaves with 
overall error rates below 4% with a range of optimal number of 
features from ten to one hundred. Due to the computational 
intensity however, when examining more than forty features, 
the knnc2 classifier with only ten features is preferred at the leaf 
level. 

At the leaf level as well, the neural network and k-nearest 
neighbour classifiers discriminated between the liana and leaf 
spectra consistently across all data reduction techniques with 
the lowest error. However, there was very little difference 
between the classification accuracy of all classifiers with the 
feature selection method of data reduction when the optimal 
number of features are considered (i.e. less than 4% overall 
error). For the wavelet energy feature reduction method, lmnc4 
had the best discrimination with 1.7% training error and 5.4% 
testing error. The same classifier also had the best discrimina- 
tion with the two PCA techniques; 2.9% training error and 8.1% 
testing error for PCA1 and 2.6% training error and 4.6% testing 
error for PCA2. The better performance of PCA 2 over PCA 1 is 
attributed to its inherent technique which is similar to the 
Karhunen-Love Transformation Method described in (Cher- 
iyadat & Bruce, 2003) where class specific matrices are used 
rather than an overall matrix. 

The top ten wavebands for separating the liana and tree leaf 
spectra include the visible (405 nm, 535 nm, 688 nm), near 
infrared (987 nm), and shortwave infrared regions (2252 nm, 
1389 nm, 1376 nm, 1661 nm, 1350 nm, 1888 nm). When the 
top one hundred bands are considered (i.e. maximum without 
overfitting at the leaf level — if a model with too many 
parameters is used the model's performance may be artificially 

Table 2 
Percentage of bands from the different spectral regions chosen by the five 
classifiers with the lowest overall error at the leaf level 

Table 3 
Percentage of bands from the different spectral regions chosen by the five 
classifiers with the lowest overall error at the crown level 

Classifier    Optimal        Overall    Visible    Near Shortwave    Shortwave 
number of   error        (%) infrared    infrared 1      infrared 2 
features       (%) (%) (%) (%) 

Classifier Optimal Overall Visible Near Shortwave Shortwave 
number of error (%) infrared infrared 1 infrared 2 
features (%) (%) (%) (%) 

Max" 100 - 62 4 24 10 
lmnc5 60 0.43 57 7 20 17 
knnc2 10 0.60 30 10 40 20 
knnc2 20 0.60 35 10 40 20 
lmnc4 50 0.72 54 8 18 20 
Qdc 40 0.75 48 8 20 25 

Max" 80 - 50 12 10 28 
knnc2 K0 7.0 50 12 10 28 
knnc2 30 7.1 33 0 3 64 
lmnc5 40 8.1 40 3 3 54 
lmnc2 40 8.4 40 3 3 54 
lmnc4 40 8.7 40 3 3 54 

a Max indicates the maximum number of bands for the dataset without 
overfitting. 

a Max indicates the maximum number of bands for the dataset without 
overfitting. 

inflated), 62% are in the visible, 4% are in the near infrared 
and 34% are in the shortwave infrared areas of the spectrum 
(Table 2). If the top fifty wavebands are considered (i.e. ones 
used by the lmnc5 classifier for the optimal classification 
results), 54% are from the visible, 8% are from the near infrared 
and 38% from the shortwave infrared regions. Table 2 presents a 
summary of the more relevant wavelength regions as function 
of the number of bands used in the analysis. 

Because of the stronger performance of the wavelet energy 
feature and the forward feature selection techniques at the leaf 
level, we subsequently restricted the analysis of the airborne 
data to those two techniques. 

3.2. Canopy level 

At the canopy level using spectra extracted from the 
HYDICE image, the optimal number of features for the feature 
selection method ranged from 20 (treec) to 80 (knnc2). The 
lowest overall error rate was achieved by the knnc2 classifier 
with 80 features (7% overall; 0% training, 14.1% testing errors) 
and with 30 features (7.1% overall; 0% training, 14.1 testing 
errors) followed by the lmnc5 classifier with 40 features (8.1% 
overall; 1.3% training, 14.8% testing errors). All non-paramet- 
ric classifiers performed better than the parametric classifiers 
with overall error rates below 10% with the exception of knnc3 
(12.4%). With the wavelet energy features technique, the best 
results were obtained with the treec classifier (7.7% overall; 
0% training, 15.4% testing errors) following by the lmnc2 
classifier (9.7% overall; 2.6% training, 16.8% testing errors). 

The difference in season when the leaf level data and the 
HYDICE image were collected may contribute to the higher 
error rate at the crown level. The HYDICE image was taken at 
the peak of the dry season, when most species that are deci- 
duous in the dry season have shed their leaves. The leaf spectra 
were taken at the very beginning of the dry season, when many 
dry season deciduous species have not yet dropped their leaves. 
Three of the five crowns (from two species Pseudobombax 
septenatum and Cecropia peltata) with less than 40% liana 
coverage that were misclassified (feature selection technique) 
were deciduous when HYDICE image was taken. Of the crowns 
with greater than 40% lianas that were misclassified, only two 
of twelve crowns (from the species Bursera simaruba and 
Calycophyllum candidissimum) were deciduous. 
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The top ten wavebands with the greatest discriminatory 
power at the crown-level were all above 2000 nm. However, 
when the distribution of the top 80 wavebands are considered 
(i.e. maximum without overfitting, and ones used by the knnc2 
classifier), 50% are from the visible, 12% from the near infrared 
and 38% from the shortwave infrared regions (Table 3). If the 
top 30 wavebands are considered (i.e. ones used by the knnc2 
classifier), 33% are from the visible and 67% from the short- 
wave infrared regions. Table 3 presents a summary of the most 
relevant bands as function of wavelength region and classifi- 
cation technique. 

4. Discussion 

The different wavelength regions between the leaf and crown 
levels with the greatest discriminatory power indicate that some 
of the pigment and structural differences between dry forest 
liana and tree leaves (i.e. lower chlorophyll concentration, lower 
carotenoid concentration, 50% more inter-cellular space, higher 
water content, and thinner leaves for lianas, Sanchez-Azofeifa 
et al., unpublished data) that account for their different spectral 
signatures may not be as important at the canopy level. For 
separating liana from tree leaves, the top ten bands for 
discrimination were dominated by the visible (3 bands) and 
the shortwave infrared (6 wavebands), with the near infrared 
region being less important (1 band) in contrast to the canopy 
level for which the top ten wavebands were from the shortwave 
infrared (Table 2). Our results contrast with those presented by 
Clark et al. (2005) when comparing wavelengths, which in the 
case of Clark et al. (2005) was aimed to separate among leaves 
of different tropical wet forest species. Clark et al. (2005) found 
that nine of the top ten significant wavebands were in the near 
infrared and mid-infrared regions; areas where they found large 
variations in the absolute reflectance values. A possible ex- 
planation for these differences is that chlorophyll and other 
pigments vary more than photon scattering in the internal 
cellular structures between tree and liana leaves, whereas the 
opposite may be true for discriminating leaves of different tree 
species. In terms of separating lianas from trees, Sanchez- 
Azofeifa et al. (unpublished data) document that differences in 
inter-cellular space between lianas and trees for over 60 species 
are not significant in either the dry or wet forest tree or liana 
species. 

At the crown level, the most important bands for discriminat- 
ing lianas versus trees were overwhelmingly in the short infrared 
with contribution from the visible range as well. Similarly, 
Sanchez-Azofeifa and Castro-Esau (2005) found the 550 nm 
waveband to be important in discriminating liana loads in one 
species (A. excelsum) at the same study location. In a separability 
analysis between trees species examined at the crown level from 
HYDICE data, Clark et al. (2005) found that the most significant 
bands were spread out over the entire spectral range from the 
visible to the shortwave infrared. This is contrary to our findings 
for differentiating lianas from trees (regardless of species), where 
at the crown level the most significant wavebands are clustered in 
both the visible and shortwave infrared (Table 3). However, 
because a different methodology was used to analyze the spectra, 

it not possible to say conclusively whether actual different 
wavelength regions are important for differentiating between 
species and life forms, or whether that difference is an artifact of 
the differences in sampling and analysis methodologies (Castro 
et al., 2006). Again, Clark et al. (2005) were discriminating 
crowns of different tree species, whereas here we are discrimi- 
nating crowns with high and low liana loads. We expect liana 
loads to lead to the orientation of elements (leaves, branches) 
within a tree crown to be different than variations among tree 
species (discussed below). 

It is also important to consider that the leaf level data is of 
higher 'spectral purity' than the data from the HYDICE image, 
which at 1 m spatial resolution is an average not only of leaves, 
but also exposed branches, tree trunks and, in some cases where 
the canopy is sparse or has openings, the ground or other 
vegetation below (Asner, 1998). The reflectance is also affected 
by crown architecture, leaf orientation, leaf area index, etc., 
whereas the leaf level data is free from such complicating 
factors (Asner, 1998). Gamon et al. (2005), discussing the role 
of photosynthesis and leaf angle distribution at the same crane 
site, demonstrate the significant impact of those variables on 
spectral reflectance. In addition, we considered the entire 
spectra at the leaf level while for the HYDICE image, the bands 
corresponding to the atmospheric absorption were removed and 
the average for each crown was used. These differences partly 
account for the higher error rates seen in the classification of the 
spectra from the image. Other forthcoming band selection 
techniques such as those presented by De Backer et al. (2005) 
and Huang and He (2005) or the selection of the most 
significant wavelet approximation and detail coefficients (rather 
than the energy feature vector) may also improve classification 
accuracy at the crown level. The effects of scale are an im- 
portant determinant of the information that can be derived from 
the spectra. In the process of scaling up from the leaf to the 
crown level, such differences in the main components of reflec- 
tance must be taken into consideration. Asner (1998) demon- 
strates at the canopy level that the nonphotsynthetic elements of 
the canopy can significantly alter reflectance spectra. Contrarily, 
lianas in full foliage may obscure the contribution of these 
elements. 

We attribute the overall success of these classification tech- 
niques not only to the intrinsic differences in leaf spectra 
between lianas and trees but also to architectural changes 
imposed by lianas at the canopy level (Fig. 2). Lianas tend to 
form a continuous mat of leaves over a single tree crown with 
leaf angles close to horizontal. Tree leaves, especially at the top 
of the crown, tend to be at angles off horizontal and even 
changing during the day for certain species (Gamon et al., 
2005). The steeper angles cause more within-crown shadowing. 
Thus, the surface of trees with high liana loads may be viewed 
by the airborne sensors as smoother than liana-free crowns and 
more closely resembling a large mat of green vegetation (with 
an increased green leaf area visible) (Fig. 3). The large con- 
tribution of the shortwave infrared (an area sensitive to water 
content) to the separability of the canopy level spectra also tends 
to indicate that differences in water content between crown with 
and with and without liana loading is an important factor for 
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Fig. 2. Photographs of the lianas at a) ground level, b) covering crowns and 
reducing the branch and crown architecture of the tree crowns and c) tree crowns 
with minimal to no liana coverage d) subset of the HYDICE Image (909 nm: 
615 nm: 529 nm) with f indicating examples of crowns with >40% lianas and 
§ indicating examples of crowns with <40% liana coverage. 

mapping liana coverage. Sanchez-Azofeifa et al. (unpublished 
data) have shown that at the leaf level, lianas have significantly 
higher water content than tree leaves. And based on the 
importance of the shortwave infrared this difference may 
translate to the canopy level as well. A combination of spectral 
and texture analysis of satellite or airborne imagery may aid in 
future investigations of liana coverage at the canopy level to 

Fig. 3. a) HYDICE image from 1998 (909 nm: 615 nm: 529 nm) b) Quickbird 
image from 2000 c) results from a 5 x 5 variance filter on the panchromatic band 
of the Quickbird image from 2000. Yellow oval highlights a set of crowns that 
are individually distinguishable in 1998 but appear to be a single crown from the 
2000 image because of becoming completely covered by lianas. As illustrated in 
Fig. 2d, two of the crowns highlighted by the yellow oval in (a) have a 40% or 
greater coverage of lianas in 1998. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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locate crowns with broad liana coverage. The separation of 
lianas from tress at the canopy scale is also important for canopy 
metrics. As illustrated in Fig. 3, when lianas cover several 
canopies as a continuous mat, the estimation of crown area may 
become inflated. Rather than measuring the area of the three 
separate crowns infested by lianas (Fig. 3a), one would assume 
that there is only one crown (Fig. 3b) which is much larger. 

The deciduous nature of the canopy in this dry forest site also 
complicates the separability of the tree crowns with and without 
liana loading. The deciduous trees have a higher risk of being 
misclassified because the leaves of the lianas are the only leaves 
being seen (i.e. the classifier is not separating tree and liana 
leaves as at the leaf level) since in many cases lianas lose their 
leaves after the host trees (Kalacska et al., 2005) or may 
maintain leaves through the dry season (Schnitzer, 2005). A 
possibility (though not investigated in this study) is that because 
of intra-species spectral variability, the aggregated spectra from 
those canopies resembled that of the trees with less than 40% 
liana coverage (Zhang et al., in press). 

5. Conclusions 

Despite greater error than at the leaf level discrimination, 
lianas were separable with a relatively high degree of accuracy 
at the crown level (7.1% overall error) when a threshold of 40% 
liana coverage was considered. We have illustrated four data 
reduction techniques for discriminating between leaf level 
vegetation spectra (lianas and trees) as well as two techniques 
with crown-level airborne hyperspectral data (trees with and 
without significant liana coverage). Our results have shown that 
at the leaf level there is little difference (less than five 
percentage points) in the best results that may be achieved by 
using different reduction techniques and classifiers; results 
which are superior to what can be achieved from the airborne 
data. Nevertheless, if the feature selection technique is chosen 
with the optimal number of features, the difference in classifier 
performance is even less (three percentage points). We have also 
shown that when considering the airborne data, there is no 
"optimal" data reduction technique, but that the same result in 
terms of classifying trees with and/or without significant liana 
loading can be achieved with both feature selection and wavelet 
energy features. The waveband regions important for separating 
lianas from trees at the leaf level are different than at the canopy 
level implying that pigment and leaf structural differences 
between the two life forms are not the only important factors at 
the canopy level, where the overall architecture and water 
content also become factors affecting separability. 
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