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300 million years apart: the extreme case of macromorphological 
skeletal convergence between deltocyathids and a turbinoliid coral 
(Anthozoa, Scleractinia) 
C. F. VagaA,B,C,* , I. G. L. SeiblitzB,C, J. StolarskiD , K. C. C. CapelB,E, A. M. QuattriniA, S. D. CairnsA ,
D. HuangF,G, R. Z. B. QuekG,H and M. V. KitaharaA,B,C,*

ABSTRACT 

The integration of morphological and molecular lines of evidence has enabled the family 
Deltocyathidae to be erected to accommodate Deltocyathus species that were previously 
ascribed to the family Caryophylliidae. However, although displaying the same morphological 
characteristics as other species of Deltocyathus, molecular data suggested that D. magnificus was 
phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To 
elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, 
the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using 
nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and 
mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within 
turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae 
species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the 
scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene 
order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated 
in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids 
and deltocyathids do not differ in microstructural organisation of the skeleton that consists of 
densely packed, individualised rapid accretion deposits and thickening deposits composed of 
fibres perpendicular to the skeleton surface. Therefore, although both families are clearly 
evolutionarily divergent, macromorphological features indicate a case of skeletal convergence 
while these may still share conservative biomineralisation mechanisms. 

ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E

Keywords: Deltocyathidae, Dennantotrochus, mitochondrial genome, phylogeny, stony corals, 
systematics, Turbinoliidae, ultraconserved elements. 

Introduction 

Since the seminal molecular-based evolutionary reconstructions of the order Scleractinia 
(Chen et al. 1995; Romano and Palumbi 1996, 1997; Veron et al. 1996), the systematics 
of the order have been in revision. Although morphological data suggested that 
Scleractinia was subdivided into 5 (Wells 1956) or even 13 suborders (Veron 1995), 
molecular data have pointed to only 2 (Romano and Palumbi 1996; Fukami et al. 2008;  
Quattrini et al. 2020; Quek et al. 2023) or 3 main clades (Kitahara et al. 2010; Stolarski 
et al. 2011; Seiblitz et al. 2020). Apart from indicating that the supposed morphological 
synapomorphies of suborders were not consistent, molecular data have also revealed that 
several families are para- or even polyphyletic (e.g. Fukami et al. 2008; Huang et al. 
2011; Arrigoni et al. 2014; Kitahara et al. 2016). As a result, several studies have been 
tackling these discrepancies using integrative approaches that combine molecular analy-
ses and morphological observations (e.g. Arrigoni et al. 2021; Seiblitz et al. 2022). 
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More recently, high-throughput sequencing has enabled 
the inclusion of vast amounts of data in large-scale phylo-
genomic studies (Goodwin et al. 2016; Kulkarni and 
Frommolt 2017). Among the most recent methods, the tar-
get enrichment of nuclear ultraconserved elements (UCEs) 
and exons has been used to successfully untangle the sys-
tematic and evolutionary history at different taxonomic 
levels, including in cnidarians (e.g. class Anthozoa 
Ehrenberg, 1834; Quattrini et al. 2018, 2020; McFadden 
et al. 2021; subclass Octocorallia Haeckel, 1866; Erickson 
et al. 2021; McFadden et al. 2022; and family Acroporidae 
Verrill, 1901; Cowman et al. 2020; Bridge et al. 2023). 
Moreover, target enrichment and low coverage sequencing 
methods can also be used to recover entire or nearly entire 
mitogenomes (e.g. Seiblitz et al. 2020; Quattrini et al. 2023). 
Although most scleractinian mitochondrial (mt) genomes 
show the same mt gene order (herein called canonical 
order), some rearrangements have been found across 
lineages (Chen et al. 2008; Emblem et al. 2011; Lin et al. 
2012; Flot et al. 2013). Recently, Seiblitz et al. (2022) 
proposed that mt gene transpositions could be used as addi-
tional taxonomic characters and synapomorphies of specific 
lineages and could therefore help resolve the evolutionary 
history of some non-monophyletic taxa. 

Among the scleractinian families revealed to be polyphy-
letic, the Caryophylliidae Dana, 1846 deserves particular 
attention. This family comprises 42 extant genera that har-
bour hundreds of species (B. Hoeksema and S. Cairns, World 
Register of Marine Species, see https://www.marinespecies. 
org, accessed 20 July 2023) that have been recovered in at 
least 9 clades (Kitahara et al. 2010, 2016) from the 2 main 
coral groups – ‘Complex’–Refertina and ‘Robust’–Vacatina. To 
reconcile molecular and morphological data within caryo-
phylliids, Kitahara et al. (2012) elevated the genus 
Deltocyathus Milne Edwards & Haime, 1848 to family rank 
(i.e. Deltocyathidae Kitahara, Cairns, Stolarski & Miller, 2012) 
within vacatinian corals. The latter family currently comprises 
27 extant species (World Register of Marine Species, see 
https://www.marinespecies.org) that are within the more 
commonly sampled deepwater scleractinians, with unique 
and congruent macro and micromorphological features. 
However, molecular results repeatedly recovered the Indo- 
Pacific species Deltocyathus magnificus Moseley, 1876 within 
the refertinian family Turbinoliidae Milne Edwards & Haime, 
1848 (Kitahara et al. 2010, 2012; Stolarski et al. 2011;  
Campoy et al. 2020; Quek et al. 2023). This position was 
not supported by morphology (i.e. D. magnificus shares mor-
phological characteristics with other species of Deltocyathus), 
thereby suggesting a possible case of morphological conver-
gence at macro- and micromorphological levels (see Kitahara 
et al. 2012). In terms of divergence time, the most recent 
common ancestor between Deltocyathidae and Turbinoliidae 
is estimated to be c. 332–382 Ma (Campoy et al. 2020;  
Quattrini et al. 2020). Although D. magnificus was retained 
in the Deltocyathidae, the corallum completely encapsulated 

by tissue was suggested to be a character not shared with 
congeners but with turbinolids (Kitahara et al. 2010, 2012). 
While morphological convergence has already been proposed 
as a possible reason for obscuring taxonomy within species 
belonging to the same genus (e.g. Acropora Oken, 1815; van 
Oppen et al. 2001; Stylophora Schweigger, 1820; Flot et al. 
2011), this has not been reported between scleractinian spe-
cies belonging to such phylogenetically distant lineages. 

The recent recognition that the scleractinian skeleton is 
likely biologically controlled and not easily perturbed by envir-
onmental factors at the microstructural level – skeleton organic 
matrices composed of proteins and polysaccharides control 
nucleation, spatial delineation and organisation of micro-
structural units (see Cuif et al. 2003; Janiszewska et al. 
2011, 2013) – has led to more detailed subcorallite observa-
tions (Budd et al. 2012; Kitahara et al. 2012, 2013; Huang 
et al. 2014; Janiszewska et al. 2015). Indeed, greater attention 
has been given to previously overlooked micromorphological 
and microstructural characters that have elucidated the taxon-
omy and evolutionary history of several scleractinian taxa (e.g.  
Benzoni et al. 2012; Stolarski et al. 2021; Juszkiewicz et al. 
2022; Seiblitz et al. 2022; Arrigoni et al. 2023). 

To further investigate the potential of such an extreme 
case of morphological convergence, both macro and micro-
morphological features were coupled with phylogenies 
based on mitogenomes, and nuclear UCEs and exons. Our 
results uncovered a novel mt gene order for representatives 
of the genus Deltocyathus and confirmed the early-diverging 
position within vacatinian corals. Based on the results of this 
integrative approach, we also propose that D. magnificus is a 
Turbinoliidae with unique morphological characteristics. 
Therefore, to accommodate this species within turbinolids, 
we propose a new genus named Dennantotrochus Kitahara, 
Vaga & Stolarski, gen. nov. 

Material and methods 

DNA extractions, library preparation and 
sequencing 

Total genomic DNA extraction of specimens analysed in this 
study (details in Table 1) was performed using the DNeasy 
Blood and Tissue kit (Qiagen) following the manufacturer’s 
animal tissue protocol. DNA purity and integrity were 
assessed on a spectrophotometer (Nanodrop, ThermoFisher 
Scientific) and in a 1% agarose gel electrophoresis respec-
tively. Libraries were prepared using the TruSeq DNA Nano 
library preparation kit (Illumina) with modifications in 
index adapter concentration and number of PCR cycles as 
proposed by Seiblitz et al. (2022). DNA concentrations 
before and after library preparation were quantified on a 
Qubit fluorometer (ver. 2.0, ThermoFisher Scientific) and 
size distributions were assessed on a Bioanalyser (Agilent). 
For three turbinolids (i.e. Cryptotrochus brevipalus Cairns, 
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1999, Notocyathus venustus (Alcock, 1902) and 
Thrypticotrochus petterdi (Dennant, 1906)), the MyBaits pro-
tocol (ver. IV, Arbor BioSciences) was used to target and 
enrich UCEs and exons with the hexacoral–scleractinian 
combined baits set developed by Quattrini et al. (2018),  
Cowman et al. (2020) and Quek et al. (2020). The remaining 
species were sequenced using a genome skimming method. 
Illumina sequencing was performed either on a MiSeq (ver. 3, 
300-bp PE reads) at the Genome Investigation and Analysis 
Laboratory of the Centro de Facilidades para a Pesquisa 
(GENIAL-CEFAP, USP) or a NovaSeq. 6000 (150-bp PE 
reads) at the Human Genome and Stem Cell Research 
Center (CEGH-CEL, USP) (details in Table 1). 

Mitochondrial genome analyses 

Quality control of sequencing data was performed on 
Trimmomatic (ver. 0.39, see http://www.usadellab.org/cms/ 
index.php?page=trimmomatic; Bolger et al. 2014). Trimmed 
sequences were assembled either with MITObim (ver. 0.39, see 
https://github.com/chrishah/MITObim; Hahn et al. 2013) or 
into contigs using SPAdes (ver. 3.14.0, see https://github.com/ 
ablab/spades; Bankevich et al. 2012; with the --careful param-
eter). Genes were annotated using the MITOS2 online tool 
(ver. 2.1.8, see http://mitos.bioinf.uni-leipzig.de/; Bernt 
et al. 2013) with the parameters genetic code 4 (mold) and 
RefSeq. 89 Metazoa. Annotation was manually verified using 
Geneious Prime (ver. 2022.2.1, Biomatters Ltd, Auckland, New 
Zealand). For Deltocyathus cameratus Cairns, 1999, 
Deltocyathus rotulus (Alcock, 1898) and Deltocyathus magni-
ficus, mitogenome fragments previously determined using 
Sanger sequencing on the same specimens (primer sequences 
and PCR settings from Lin et al. 2011) were compared to 
assemblies obtained with Illumina sequencing data using 
BLAST (Altschul et al. 1990). Boundaries of all genes were 
confirmed using BLAST against either the NCBI nucleotide 
database or non-redundant protein sequences database. Once 
mitogenomes were fully annotated, these were included in a 
phylogenetic reconstruction together with 60 published mito-
genomes (see Supplementary Table S1). Sequence alignments 
of protein coding, transfer RNA and ribosomal RNA genes were 
performed with MUSCLE (ver. 3.8.425, see http://www. 
drive5.com/muscle/; Edgar 2004). Alignments were visually 
inspected for ambiguous sites and successively concatenated 
resulting in a final alignment of 14,976 bp. 

Bioinformatic processing, assembly and alignment 
of UCEs 

Resulting contig files from the SPAdes assembler were used 
for processing nuclear data. Assembled reads were processed 
using the Phyluce pipeline (Faircloth 2016). At this stage, 
previously published genomic and transcriptomic scleracti-
nian data and corallimorpharian species (as outgroup taxa) 
were included in the analyses (see Supplementary Table S1). Ta
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‘Phyluce_assembly_match_contigs_to_probes’ was used to match 
the bait set (combined hexacoral and scleractinian bait set 
developed by Quattrini et al. 2018, Cowman et al. 2020 and  
Quek et al. 2020) to the contigs to identify loci with a mini-
mum coverage of 70% and a minimum identity of 70%. Loci 
were subsequently extracted into separate FASTA files using 
‘phyluce_assembly_get_fastas_from_match_counts’ and aligned 
with default parameters using ‘phyluce_align_seqcap_align’ in 
MAFFT (ver. 7, see https://mafft.cbrc.jp/alignment/software/;  
Katoh et al. 2002). Loci were internally trimmed with ‘phylu-
ce_align_get_gblocks_trimmed_alignments_from_untrimmed’ 
that uses GBlocks (ver. 0.91, see http://phylogeny.lirmm.fr/ 
phylo_cgi/one_task.cgi?task_type=gblocks; Castresana 2000). 
Multiple data matrices of locus alignments were created using 
‘phyluce_align_get_only_loci_with_min_taxa’, in which each 
locus had either 60 or 75% species occupancy and ‘phyluce_a-
lign_get_informative_sites’ was applied to calculate the num-
ber of parsimony informative sites. 

Phylogenomic analyses 

Prior to the phylogenetic analyses, a saturation test was run 
on the nuclear loci (PhyloMad; Duchêne et al. 2021), using 
entropy models on all sites. All loci displaying substitution 
saturation were removed from further analyses. For both the 
mitochondrial and nuclear datasets a partitioned phyloge-
nomic analysis was conducted using maximum likelihood 
(ML) in IQ-TREE (ver. 2.1, see http://www.iqtree.org/;  
Nguyen et al. 2015). The best-fit models and best partition 
scheme were selected by ModelFinder (Kalyaanamoorthy 
et al. 2017) implemented in the IQTree (ver. 2.1). Ultrafast 
bootstrap approximation (UFBoot) (-B 1000; Hoang et al. 
2018) was conducted as was the Sh-like approximate likeli-
hood ratio test (-alrt 1000; Anisimova et al. 2011). Both 
reconstructions utilised Corallimorpharia as outgroup. 

Morphological analyses 

The structural analyses of skeletons of some of the coral 
species we sequenced were performed to provide additional 
information relevant for nesting D. magnificus within the 
turbinolid clade. Kitahara et al. (2013) provided ultrastruc-
tural skeletal data of diverse deltocyathid species (D. cam-
eratus, D. corrugatus, D. crassiseptum, D. heteroclitus, 
D. inusitatus, D. ornatus, D. rotulus and D. suluensis) that 
were also compared with those of D. magnificus. Focusing on 
skeletal characters potentially informative in a phylogenetic 
context (such as distribution pattern of Rapid Accretion 
Deposits, pattern of fibre distribution in Thickening 
Deposits; Stolarski 2003), the growing edges of septa, the 
etched transverse sections, and septal granulation patterns 
from deltocyathids (D. rotulus, D. cameratus and D. suluen-
sis), turbinolids (Cyathotrochus pileus, Notocyathus venustus 
and Cryptotrochus brevipalus) and D. magnificus were 
compared qualitatively. All structural components were 

visualised with Philips/FEI XL20 Scanning Electron 
Microscopy; the samples were sputter coated with platinum 
and photographed; and polished sections were lightly 
etched in Mutvei’s solution following the protocol of  
Schöne et al. (2005). Skeletal fragments that were analysed 
are housed in the Institute of Paleobiology, Polish Academy 
of Sciences (ZPAL abbreviation, Table 1). 

Results 

Nuclear data 

For the nuclear dataset, a total of 2479 loci (out of 2490) 
were recovered from the assembled contigs. The final align-
ment included 58 scleractinian species (one representative 
per species), 10 of which were sequenced for this study 
(sequences deposited as a Targeted Locus Study (TLS) at 
DDBJ/EMBL/GenBank under the BioProject PRJNA1071668, 
BioSamples #SAMN39709812-21, Accession numbers 
KIFA00000000–KIFJ00000000) and five corallimorpharians 
that were used as outgroup. The number of loci recovered 
from each species ranged from 90 to 1649 per sample 
(mean ± s.d. 780 ± 365 loci), with a range between 90 
and 1320 (795 ± 473 loci) for the species newly sequenced, 
and from 195 to 1649 (778 ± 347 loci) for the previously 
published data. As expected, the three species sequenced for 
this study that had UCEs and exon loci captured in vitro 
prior to sequencing held a higher average number of recov-
ered loci irrespective of the Illumina platform used (see  
Table 1), as compared to species sequenced through the 
genome skimming approach. On the other hand, species 
that were sequenced through the MiSeq platform and not 
previously target-enriched had fewer loci recovered. This 
result is due to the lower quantities of raw data per sample 
retrieved with the MiSeq platform (compared to NovaSeq). 
Only 3% of the loci had a risk of substitution saturation and 
were therefore removed from further analyses. The 60 and 
75% taxon occupancy matrices resulted in similar, well- 
supported ML topologies. The final 60% matrix (resulting 
ML tree shown in Fig. 1) included a concatenated alignment 
of 298 UCE and exon loci with an alignment length of 
54,969 bp of which 42.5% were phylogenetically informative. 

In the final ML phylogeny, 94% of the nodes had support 
equal to or higher than 90% (SH-aLRT and UFBoot values;  
Fig. 1). D. cameratus, D. heteroclitus, D. rotulus and 
D. suluensis were recovered in a clade with maximum 
support (SH-aLRT = 100, UFBoot = 100) together with 
Paraconotrochus antarcticus (SH-aLRT = 100, UFBoot = 100), 
and as sister to the remaining species of the ‘Robust’–Vacatina 
group (SH-aLRT = 100, UFBoot = 100). D. magnificus and 
the sequenced turbinolids were recovered as a clade (SH- 
aLRT = 100, UFBoot = 100) within the ‘Complex’–Refertina 
group. Specifically, D. magnificus was sister to Cyathotrochus 
pileus (SH-aLRT = 98, UFBoot = 97). 
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Mitochondrial data 

The average assembly coverages ranged from 16.3 to 3292.4× 
(Table 1). The mitogenomes of D. cameratus, D. heteroclitus, 
D. rotulus and D. suluensis (GenBank Accession numbers 
OR625182–OR625185) are circular and very similar to each 
other, ranging between 16,267 and 16,301 bp in length and 
having the GC content varying from 38.6 to 39.0%. The mito-
genomes of the Turbinoliidae and D. magnificus were more 
diverse among these (complete mt genomes: GenBank Accession 
numbers OR625186–OR625188; protein coding genes from 
the incomplete mt genomes: GenBank Accession numbers 
PP376102–PP376128). These mitogenomes ranged in length 
between 19,736 and >21,300 bp with a GC content from 
37.8 to 39.1% (Table 1). Circularising the mitogenomes 
of Cryptotrochus brevipalus, Notocyathus venustus and 
Thrypticotrochus petterdi was not possible as some parts 
were missing. Therefore these are considered to be incomplete 
with mt genomes longer than the observed lengths. Distinct 
from the sequenced Deltocyathus, D. magnificus and the turbi-
nolids have an intron in the cox1 gene that has been previously 
observed in other scleractinians (Celis et al. 2017; Chuang et al. 

2017). Moreover, all Deltocyathus have the genes cox3 and 
cox2 positioned between the nad3 and nad5-3′, whereas in 
the scleractinian canonical order (including those found in 
turbinolids and D. magnificus), these genes are found between 
the 12S and nad4l (Fig. 2). This particular mt gene transposi-
tion and order has not been detected in scleractinians. 

In the final ML phylogeny, 92% of the nodes had support 
equal to or higher than 95% in both SH-aLRT and UFBoot 
values (Fig. 3). The species with the mt gene rearrangement 
mentioned were recovered as a group within the 
‘Robust’–Vacatina clade (SH-aLRT = 100, UFBoot = 100) 
as sister to all remaining robust corals, mirroring the nuclear 
based results. On the other hand, D. magnificus and the 
turbinolids were recovered as a group (SH-aLRT = 100, 
UFBoot = 100) in the ‘Complex’–Refertina clade but differ-
ently from the topology based on nuclear data. D. magnificus 
was sister to the turbinolids species. 

Skeletal data 

Macromorphologically, all 26 extant species that belong to 
the genus Deltocyathus are characterised by solitary, 

0.06

Seriatopora hystrix

Flabellum alabastrum

Discosoma santahelenae

Dendrogyra cylindrus

Siderastrea siderans

Meandrina meandrites

Desmophyllum pertusum

Tropidocyathus labidus

Porites panamensis

Mussismilia hispida

Agaricia lamarcki

Deltocyathus cameratus

Montastraea cavernosa

Acropora palmata

Orbicella faveolata

Fimbriaphyllia ancora

Orbicella annularis

Dendrophyllia sp.

Porites divaricata

Astreopora expansa

Pocillopora damicornis

Astrangia sp.

Platygyra sinensis

Deltocyathus rotulus

Ricordea florida

Madrepora oculata

Acropora millepora

Oculina varicosa

Enallopsammia profunda
Enallopsammia rostrata

Pavona decussata

Platygyra carnosa

Favia fragum

Cyathotrochus pileus

Deltocyathus suluensis

Porites evermanni

Notocyathus venustus

Thrypticotrochus petterdi

Porites lobata
Porites lutea

Stylophora pistillata

Thecopsammia sp.

Acropora digitifera

Corynactis chilensis

Oculina robusta

Corallimorphus profundus

Cryptotrochus brevipalus

Galaxea astreata

Dennantotrochus magnificus gen. nov.

Deltocyathus heteroclitus

Turbinaria mesenterina

Montipora aequituberculata

Balanophyllia elegans

Lobophyllia radians

Eguchipsammia fistula

Caryophyllia scobinosa

Acropora muricata

Goniopora columna

Oculina patagonica

Paraconotrochus antarcticus

Discosoma carlgreni

Alveopora japonica

Acropora hyacinthus

74/75

62/71

–/71
58/56

‘Complex’–Refertina

‘Robust’–Vacatina

Outgroup

Turbinoliidae

Deltocyathidae
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discoidal to patellate coralla (examples in Fig. 4a1,2–c1,2). By 
contrast, all traditional turbinolid species have cylindrical 
(often the result of transverse division), bowl-shaped or 
conical coralla (examples in Fig. 4e1,2–f1,2, 5f1,2). Distal 
septal edges of deltocyathid and turbinolid taxa are 
straight–undulated and rather smooth but consist of densely 
packed, individualised rapid accretion deposits (RADs) that 
are visible as densely packed hollowed-out regions 
(Fig. 4a3,4–c3,4, e4, f4, 5b2,3) in transverse etched sections. 
Septal faces of deltocyathids and turbinolids are covered 

with numerous granulations of variable shapes i.e. sharp 
or with slightly rounded tips, narrow or slightly broader 
spines (Fig. 4a3–c3, e3, f3, 5b4). Organisation pattern of 
thickening deposits (TDs) is also similar in deltocyathids 
and turbinolids: bundles of fibres are arranged approxi-
mately perpendicularly to the septal surface. Although 
Dennantotrochus, gen. nov. differs macromorphologically 
in corallum shape from typical turbinolids, ultrastructurally 
this is not distinguishable from either turbinolids or 
deltocyathids. 
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Systematic account Zealand. The suffix is from the Greek trochus (round), a 
common suffix used in coral generic names. 

Diagnosis 

Corallum solitary, discoidal to hexagonal, free and encapsu-
lated by tissue. Base flat to slightly concave. Corallum white. 
Septotheca costate. Costae slightly dentate and extend 
nearly equally beyond calicular margin. Septa arranged 
hexamerally, only S1 being independent. Axial edges of 
higher cycle pali join to faces of adjacent septa. Pali before 
all but last cycle. Columella papillose. 

Remarks 

Dennantotrochus, gen. nov. can be easily identified by unique 
characteristics not shared with any other turbinolid genera. 
The genus can be distinguished from Cyathotrochus, sister 
genus in the nuclear-based phylogeny, by the corallum shape, 
flat in Dennantotrochus, gen. nov. v. cuneiform in 
Cyathotrochus and the septa arrangement, always indepen-
dent in Cyathotrochus whereas only S1 is independent in 

Fig. 4. Skeletal features of selected representatives of deltocyathid (‘Robust’–Vacatina) and turbinoliid (‘Complex’–Refertina) scleractinian coral 
clades. Deltocyathids: (a) Deltocyathus rotulus. (b) Deltocyathus cameratus. (c) Deltocyathus suluensis. Turbinoliids (d) Dennantotrochus 
magnificus. (e) Cyathotrochus pileus. (f) Notocyathus venustus.Overall basal–lateral (subscript 1) and distal (subscript 2) views of coralla. Distal 
edges of septa are straight–undulating and rather smooth but consisting of densely packed, individualised rapid accretion deposits (RAD) that 
are visible as densely packed hollowed-out regions in transverse etched sections (subscript 4, arrows); lateral sides of septa are covered with 
numerous granulations (subscript 3, variable shapes – sharp or slightly rounded tips, narrow or slightly broader spines). Microstructural 
organisation of thickening deposits is similar in deltocyathids and turbinolids: bundles of fibres are arranged perpendicularly to the septal 
surface. Microstructural details of the following specimens: (a) ZPAL H.25/158 (b) ZPAL H.25/159 (c) ZPAL H.25/160 (d) ZPAL H.25/161 (e) ZPAL 
H.25/162 (f) ZPAL H.25/163.
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Fig. 5. Direct comparison between skeletal features of turbinolids with (a) flat and (b) conical coralla: Dennantotrochus magnificus 
and Cryptotrochus brevipalus. Overall basal–lateral (subscript 1) and distal (subscript 2) views of coralla. Close-ups of distal edges of 
septa with densely packed, individualised rapid accretion deposits (RAD; subscript 2, arrows) that sections are visible as densely 
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numerous granulations (subscript 4). Thickening deposits composed of bundles of fibres arranged approximately perpendicularly to 
the septal surface (subscript 3). Microstructural details of the following specimens: (a) ZPAL H.25/161, (b) H.25/164.    
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ZooBank:  urn:lsid:zoobank.org:act:0C22700D-5172-4DF2-AB89-0014
FAE50C0  

Order SCLERACTINIA Bourne, 1900 

‘Complex’–REFERTINA scleractinian group 

Family TURBINOLIIDAE Milne Edwards & Haime, 1848 

Genus Dennantotrochus Kitahara, Vaga & Stolarski, 
gen. nov. 

(Fig. 4, 5.) 

Type species 

Deltocyathus magnificus Moseley, 1876, by monotypy. 

Etymology 

Named in honor of John Dennant for extensive work on 
extant and fossil turbinolids from Australia and New 

https://zoobank.org/NomenclaturalActs/0C22700D-5172-4DF2-AB89-B0014FAE50C0


Dennantotrochus, gen. nov. The genus is also easily distin-
guished from the other Deltocyathus species by being the only 
taxon to show a flat to slightly concave base. The distribution 
is restricted to the Western Pacific, from southern Australia to 
South Korea, and Hawaii (see Kitahara and Cairns 2021). 

Discussion 

Integrative approaches combining mitogenomes, nuclear 
UCEs and exon loci, and morphological data were used to 
elucidate the intriguing position of a previously named 
Deltocyathus species repeatedly recovered by molecular 
data within the family Turbinoliidae (Kitahara et al. 2010,  
2012; Stolarski et al. 2011). 

Molecularly, Turbinoliidae mitochondrial genomes 
(including that from Dennantotrochus magnificus – Table 1) 
match the GC content of those of the ‘Complex’–Refertina 
taxa (~36.2 to ~40.5%; e.g. Kitahara et al. 2014). However, 
these are longer than those of other species of this group 
(~17.0 to ~19.5 kbp, e.g. Kitahara et al. 2014), especially for 
the species Cyathotrochus pileus, Notocyathus venustus, 
Thrypticotrochus petterdi and Tropidocyathus labidus that 
have mitogenomes as long as those from Corallimorpharia 
(Lin et al. 2014). By contrast, Deltocyathus species have 
mitochondrial genome lengths similar to those of 
‘Robust’–Vacatina taxa (from ~14.9 to ~17.8 kbp, e.g.  
Chen et al. 2008) but a GC content most similar to refertinian 
species. Seiblitz et al. (2022) already showed that some 
Caryophylliidae taxa have GC content more similar to 
‘Complex’–Refertina representatives than ‘Robust’–Vacatina 
taxa. Therefore results from this study corroborate the 
hypothesis that the GC content in vacatinian mitogenomes 
is more variable than previously considered. Furthermore, 
both the scleractinian ‘Basal’ clade (sensu Stolarski et al. 
2011 but see Quattrini et al. 2020 and Quek et al. 2023) 
and corallimorpharians (sister group to the order 
Scleractinia) show a higher GC content. Considering that 
the families Deltocyathidae and Caryophylliidae occupy 
early-diverging positions within vacatinian corals, a higher 
mitogenome GC content could be hypothesised to be an 
ancestral condition of the order Scleractinia but further 
analyses are needed to assess this conjecture. 

Rearrangements of the mt gene order in scleractinian 
corals and hexacorals in general are purported to be rare 
compared to other cnidarian groups (e.g. octocorals;  
Quattrini et al. 2023). However, new transpositions have 
been recently uncovered in some vacatinian representatives 
such as the deep-water Paraconotrochus antarcticus (see  
Stolarski et al. 2021). More recently, the mt gene 
rearrangement has been proposed to be a synapomorphy 
of a specific clade (i.e. family Caryophylliidae; Seiblitz 
et al. 2022), thereby indicating the ‘taxonomic’ value. 
Indeed, our results show that all sequenced Deltocyathus 
species in the ‘Robust’–Vacatina clade have the same mt 

gene rearrangement (Fig. 2). This specific mt gene transpo-
sition is not present in the mitogenome of Dennantotrochus 
magnificus and has never been observed in any other scler-
actinian taxa. We therefore propose this to be one of the 
potentially informative characters of the genus Deltocyathus 
and consequently of the family Deltocyathidae. Nonetheless, 
as Deltocyathus comprises 26 extant species of which 22 do 
not have the complete mitogenome sequenced to date and 
considering that different mt gene organisations have 
already been observed in species belonging to the same 
family (Chen et al. 2008), further analyses are necessary 
to assess the pervasiveness of the aforementioned 
Deltocyathidae mt gene transposition. The phylogenetic 
reconstructions resulting from both nuclear and mt data 
confirmed the monophyly and unique mt gene 
rearrangement of Deltocyathidae/Deltocyathus in the 
‘Robust’–Vacatina clade, and the inclusion of 
Dennantotrochus magnificus in the Turbinoliidae. 

We found some discrepancies between our nuclear and 
mitochondrial phylogenies. Although in the nuclear 
reconstruction D. magnificus was recovered as sister to 
Cyatotrochus pileus, the mitochondrial reconstruction places 
this as sister to all the sequenced turbinolids. Additional 
data from other turbinolid genera and additional UCE loci 
may shed further light on the position of this newly erected 
turbinolid genus. This discrepancy could be driven by the 
fact that a comparatively low number of UCEs and exon loci 
were recovered for Deltocyathus rotulus and Tropidoyathus 
labidus (131 and 90 respectively). Nonetheless, studies (e.g.  
Derkarabetian et al. 2019) have shown that specimens with 
very few loci in the final matrices are successfully placed 
with congeners in phylogenetic reconstructions. Moreover, 
although species relationships may change within lineages – 
relationships within Deltocyathus species are also different 
between the two topologies –, noticing that family relation-
ships and monophyly are congruent between the two phy-
logenies is important. Both the nuclear and mitochondrial 
phylogenomic reconstructions mirror those from Kitahara 
et al. (2010, 2013) and Stolarski et al. (2011) with repre-
sentatives of the genus Deltocyathus forming an early- 
diverging vacatinian clade that is not closely related to the 
family Caryophylliidae. 

Morphological convergence at the macromorphological 
level has already been proposed to explain similar morpho-
types in several cnidarian taxa (e.g. corallites of species in 
the family Merulinidae; Huang et al. 2009; coiled growth 
form in octocorals and whip black corals; Bavestrello et al. 
2012; and convergent functional morphology of the mar-
ginal musculature in zoantharians; Swain et al. 2015). 
Convergent morphologies and adaptations of a specific 
structure in phylogenetically distant lineages could be the 
result of a similar biological function or pressures from 
similar environmental conditions. Components of the family 
Turbinoliidae and Deltocyathidae have already been col-
lected from the same location (see Kitahara and Cairns 
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2021) and identical substrate. However, as these are mainly 
restricted to deep waters, very little is known about the 
living habits of the representatives of these two families 
and the functions of different structures of the scleractinian 
corallum are still largely obscure. The only anatomical char-
acteristic in common between Dennantotrochus magnificus 
and turbinolids is the complete investiture of the skeleton in 
the polyp tissue that has been proposed to be an adaptation 
to a semi-burrowing or interstitial habit (see Cairns 1997), a 
hypothesis later confirmed by Sentoku et al. (2016). 
Nevertheless, this characteristic is not exclusive to this 
clade, having also been observed in other scleractinian 
taxa, including some deep-water solitary species such as 
those of the families Micrabaciidae and Fungiacyathidae. 

Many molecularly resolved clades of scleractinian corals 
are well supported by ultrastructural features (e.g. Stolarski 
2003; Benzoni et al. 2012; Kitahara et al. 2012). 
Ultrastructural analysis of deltocyathid and turbinolid 
(including Dennantotrochus, gen. nov.) representatives 
does not indicate any major differences that would be 
expected for scleractinian clades (i.e. ‘Complex’–Refertina, 
turbinolids, and ‘Robust’–Vacatina, deltocyathids) separated 
by more than 300 Ma of divergence. Although molecular 
clock results vary depending on the molecular markers 
adopted and the set of species included in the analysed 
datasets, there is consensus that the onset of the order 
Scleractinia is placed between 415 and 383 Ma (Stolarski 
et al. 2011; Quattrini et al. 2020) and that the divergence of 
the two main clades occurred between 382 and 332 Ma 
(Campoy et al. 2020; Quattrini et al. 2020). Both clades 
are somewhat early-diverging scleractinian clades, therefore 
the shared ultrastructural characteristics may indicate the 
ancestral character state of earliest scleractinian corals, i.e. 
fairly smooth septal edges consisting of densely packed, 
individualised rapid accretion deposits (RAD). Indeed, 
among the earliest well-differentiated Triassic (c. 240 Ma) 
scleractinians, numerous representatives share such ultra-
structural organisation (traditionally called ‘minitrabecular 
organisation’ e.g. Roniewicz 1984; Roniewicz and 
Morycowa 1993). These Triassic corals also had relatively 
simple organisation of the Thickening Deposits (i.e. arrange-
ment of biomineral fibres more or less perpendicular to 
septal faces) that contrasts with the more recent families 
(e.g. acroporiid and flabellid mineral shingles whose fibres 
are parallel to skeletal surfaces) but is shared with delto-
cyathids and turbinolids. This suggests that some lineages of 
ancestral scleractinian corals, even if separated by 300 Ma of 
evolutionary history, could still share some conservative 
biomineralisation mechanisms. 

Conclusions 

Through an integrative approach that coupled morphologi-
cal and molecular analysis, the phylogenetic position and 

traits of the enigmatic species Deltocyathus magnificus were 
investigated. The position with representatives of the family 
Turbinoliidae was confirmed by phylogenies built using 
both the complete mt genomes and hundreds of UCEs and 
exon loci. The species was therefore accommodated in the 
new turbinolid genus Dennantotrochus, gen. nov. Our results 
indicate that deltocyathid species are characterised by a 
specific mt gene rearrangement not observed in any other 
scleractinians, therefore possibly being a synapomorphy of 
the family. Interestingly, D. magnificus and deltocyathids 
have congruent macromorphological features (see Kitahara 
et al. 2012), and species from both families, belonging to 
phylogenetically distant scleractinian clades, do not differ in 
micromorphological characters, thereby indicating a possi-
ble ancestral character state of the earliest scleractinian 
corals. Our study represents an enhancement of our under-
standing of the systematics of two speciose azooxanthellate 
scleractinian families and fills some gaps in our understand-
ing of the evolutionary history of Scleractinia. 

Supplementary material 

Supplementary material is available online. 
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