
Molecular Ecology (2007) doi:10.1111/j.l365-294X.2007.03341.x 

Extreme long-distance dispersal of the lowland tropical 
rainforest tree Ceiba pentandra L. (Malvaceae) in Africa 
and the Neotropics 

CHRISTOPHER W. DICK,*t ELDREDGE BERMINGHAM/r MARISTERRA R. LEMESJand 
ROGERIOGRIBELJ 
*Department of Ecology and Evolutionary Biology and Herbarium, University of Michigan, 830 North University Avenue, 
Ann Arbor, MI 48109, USA, tSmithsonian Tropical Research Institute, Unit 0948 APO AA 34002-0948, USA, %lnstituto Nacional 
de Pesquisas da Amazonia (INPA), Laboratorio de Genetica e Biologia Reprodutiva de Plantas (EabGen), CP 478, CEP 69.011-970 
Manaus, AM Brazil 

Abstract 

Many tropical tree species occupy continental expanses of rainforest and flank dispersal 
barriers such as oceans and mountains. The role of long-distance dispersal in establishing 
the range of such species is poorly understood. In this study, we test vicariance hypotheses 
for range disjunctions in the rainforest tree Ceiba pentandra, which is naturally widespread 
across equatorial Africa and the Neotropics. Approximate molecular clocks were applied to 
nuclear ribosomal [ITS (internal transcribed spacer)] and chloroplast (psbB-psbT) spacer 
DNA sampled from 12 Neotropical and five West African populations. The ITS (N = 5) 
and psbB-psbT (N = 2) haplotypes exhibited few nucleotide differences, and ITS and 
psbB-psbf1 haplotypes were shared by populations on both continents. The low levels of 
nucleotide divergence falsify vicariance explanations for transatlantic and cross-Andean 
range disjunctions. The study shows how extreme long-distance dispersal, via wind or 
marine currents, creates taxonomic similarities in the plant communities of Africa and 
the Neotropics. 
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Introduction 

The species richness of tropical rainforest plant commun- 
ities has been well documented (Wallace 1878; Leigh et al. 
2004). Until recently, however, little was known about the 
geographical ranges of most rainforest plant species. 
Comparisons of regional floras (Ruokolainen et al. 2005) 
and tree inventory plots from the Amazon basin (Pitman 
et al. 1999; Pitman et al. 2001) have shown that many rainforest 
plant species are widespread and flank biogeographical 
barriers such as oceans and mountains. In lowland Ecuador, 
for example, approximately 30% of the vascular plant species 
have populations on both slopes of the Andean cordilleras 
(N = 1431 disjunct species) (Jorgensen & Leon-Yanez 
1999), and in Panama up to 60% of the rainforest tree 
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species cross the Andes and are widespread in the Amazon 
basin (Dick et al. 2005). 

There are also, remarkably, many taxonomic similarities 
between Neotropical and African rainforests (Gentry 
1993) despite the passage of nearly 100 million years 
since the fragmentation of western Gondwana (Pitman 
et al. 1993). At least 110 angiosperm genera (from 53 
families) and 108 species are restricted to Africa and 
tropical America (Thome 1973), of which only 20-25 are 
weedy or are cultivated by humans. At the scale of two 
50-ha forest inventory plots, more than 30 genera and several 
tree species are shared between rainforests of Ecuador and 
Cameroon (Pennington & Dick 2004). 

The discontinuous ranges of so many tropical rainforest 
tree species raise fundamental biogeographical questions. 
Are widespread species the 'weedy' components of 
rainforest floras most likely to disperse over geographical 
barriers, as suggested by Gentry (1982)? Or are widespread 
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Fig. 1 Ceiba pentandra clockwise from left 
(1) emergent Amazon tree with a person 
beside the characteristic buttress trunk 
(photo credit R. Gribel); (2) dehiscing fruit 
with kapok (photo credit A. Gentry); (3) seed 
enveloped in kapok (photo credit C. Dick). 

Rainforest form Cultivated form Savannah form 

Trunk spiny (prickles) 
Buttress large 
Branches horizontal 
Trunk straight 
Reproduction superannual 
Leaves narrow 
Fruit capsule dehiscent 
Chromosomes In = 80, 88 

Trunk usually spineless 
Buttress small 
Branches ascending 
Trunk straight 
Reproduction annual 
Leaves broader 
Fruit capsule indehiscent 
In = 72-80 (variable) 

Trunk spineless 
Buttress none 
Branches strongly ascending 
Trunk often forked 
Reproduction annual 
Leaves broadest 
Fruit capsule dehiscent 
2n = 72 

Table 1 List of morphological and cyto- 
logical character differences between three 
forms of Ceiba pentandra. Only the rainforest 
form (column 1) is found in Africa and 
Neotropics. The cultivated form, which 
shows intermediate features, is widely 
planted is Southeast Asia (modified from 
Table 1 in Baker 1965) 

species old members of rainforest corrrmuriities, as suggested 
by vicariance models? Such questions have broad implica- 
tions for ecology and evolution. For example, if > 30% of 
Ecuador's lowland flora evolved prior to the rise of the 
northern Andes, according to vicariance models (Jorgensen 
et al. 1999; Raven 1999), then conspecific populations of 
more than 1400 species have diverged in genetic isolation 
and without apparent morphological change for several 
million years, in a biome renowned for intense adaptive 
pressures (Dobzhansky 1950; Schemske 2002; Leigh et al. 
2004). 

In this study, we examined the biogeographical history 
of the widespread rainforest tree Ceiba pentandra L. (Fig. 1). 
Ceiba pentandra, also known as the kapok or silk-cotton 
tree, is widespread in the Neotropics (east and west of 
the Andes), and in equatorial Africa. We performed a 
phylogeographical analysis of C. pentandra using individuals 
sampled from throughout the natural geographical range. 
We then examined levels of cpDNA and nDNA divergence 
to test vicariance hypotheses for the amphi-Atlantic and 
cross-Andean disjunctions. 

Ceiba pentandra L. Gaertner (Malvaceae) 

Neotropical C. pentandra L. is a buttressed, canopy-emergent 
tree that can grow to 70 m in height (Fig. 1). There are two 
distinctive natural forms of C. pentandra in Africa, and one 
hybrid. The rainforest form is a massive tree with a spiny 
trunk, as shown in Fig. 1. This is the only form found in the 
Neotropics and it is the focus of this study. The savanna 
form is restricted to West African savannas. It is a smaller 
tree, with a smooth trunk, and its reproductive timing does 
not coincide with that of the rainforest form. The cultivated 
form is a cross between the rainforest and savanna forms. 
The cultivated form has low branches and indehiscent 
fruits, which facilitate the harvest of kapok fibers used to 
stuff mattresses, pillows and life preservers. The cultivated 
form is widely planted outside of the parental species 
range (e.g. 'Java kapok'), but has apparently not established 
natural populations (Baker 1965; Baker 1983). Under a 
more refined taxonomy, the savanna and rainforest forms 
might be classified as separate species based on numerous 
morphological and cytological differences (Table 1). 
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Table 2 The observed (Kobs) and expected (K) levels of nucleotide divergence between disjunct Ceiba pentandra populations is presented 
for ITS and cpDNA under as a test of vicariance hypotheses. The expectations are conservatively based on the slowest published rates of 
nucleotide substitution for ITS (Hamamelis), and the published rate for Adansonia, which is close to the mean of published ITS rates. The 
cpDNA expectations are based on slowest estimates for synonymous substitutions in the chloroplast genome. All values represent 
percentages of pairwise nucleotide divergence 

Vicariance event Time T 
ITSKexp 
Hamamelis Adansonia 

ITS 
Xobs 

cpDNA cpDNA 

Kobs 

Gondwana vicariance 
Boreotropical dispersal 
Andean uplift 

> 96 ma 
> 35 ma 

> 3 ma 

>7.30 
>2.66 
>0.23 

> 54.91 
> 20.02 
>1.72 

0-0.4 
0-0.4 
0 

>19.2 
>7.0 
>0.6 

0 
0 
0-0.1 

Ceiba pentandra (sensu lato) is one of nine species in the 
genus Ceiba. Ceiba is a member of the Malvacean subfamily 
Bombacoideae, which contains two Palaeotropical genera, 
Adansonia (Baobab trees) and Bombax, and seven Neotropical 
genera. Most authors have assumed a Neotropical origin 
of C. pentandra (Baker 1965; Gentry 1993; Baum et al. 2004) 
because the Neotropics harbours all Ceiba except the African 
populations of C. pentandra. Thome (1973) suggested that 
'often-cultivated plants (in Africa) like C. pentandra (L.) 
Gaertner may represent very early and intentional intro- 
ductions by man'. In addition to morphological divergence 
within African Ceiba, however, two further lines of evidence 
indicate that Ceiba was not introduced into Africa by European 
traders: (i) fossil pollen of Ceiba occurs in 13 000 years old 
deposits in Lake Bosumtwi in Ghana (Maley & Livingstone 
1983); and (if) Arab trade of a cultivated form of C. pentandra 
from West Africa dates to the 10th century (Baker 1965). 

The rainforest form of C. pentandra colonizes riverbanks 
and grows in both terra firme and floodplain habitats. It 
grows up to 2 m per year in open habitat and can set seed 
in as little as 2-6 years (Baker 1965). The dehiscent fruits 
(up to 30-cm long and 5-cm wide) contain large quantities 
of cottony kapok fibers, which entangle the small seeds as 
they are transported through wind and water (Fig. 1). A 
corky floating structure in the oily seed facilitates marine 
dispersal. During its flowering period, C. pentandra attracts 
bat and moth pollinators with nectar production in excess 
of 10 L per tree per night, or an estimated 200 L per 
flowering season (Gribel et al. 1999). Phyllostomid bats 
(Microchiroptera) pollinate Neotropical C. pentandra while 
pteropid bats (Megachiroptera) pollinate C. pentandra in 
Africa (Baker & Harris 1959). Ceiba pentandra (sensu lato) is 
fully capable of self-fertilization (Baker 1965; Murawski & 
Hamrick 1992; Lobo et al. 2005). Reproduction is limited to 
temperatures above 20 °C during the flowering period 
(Baker 1965). Breeding populations are therefore restricted 
to tropical latitudes and to elevations < 1500 m (Baker 1965). 

Vicariance models 

We evaluated two vicariance hypotheses for the amphi- 
Atlantic disjunction: (i) Gondwana vicariance (ii) Boreotropical 

dispersal + vicariance (Table 2). Gondwana vicariance 
posits that the ancestor of an amphi-Atlantic taxon was 
widely distributed across the western Gondwana landmass 
prior to its separation into South America and Africa 
approximately 96 million years ago (Ma) (Pitman etal. 
1993). The Boreotropical hypothesis references a warm 
phase in the Earth's climatic history (Eocene period; 54- 
35 Ma) during which time frost-intolerant (megathermal) 
vegetation occupied high latitudes (< 50 degrees N), and 
crossed a land bridge between Europe and North America 
that disappeared in the late Oligocene (Tiffney 1985; Morley 
2000; Davis etal. 2002). Both the Boreotropical and 
Gondwana vicariance hypotheses have been invoked to 
explain the amphi-Atlantic distribution of C. pentandra 
(Baker 1965). Low levels of nucleotide divergence (see 
molecular-clock methods) that correspond to « 35 Ma of 
genetic isolation would falsify both of these hypotheses. 

The cross-Andean distribution of C. pentandra is also of 
biogeographical interest. The northern Andes of Ecuador, 
Colombia and Venezuela average more than 2000 m in 
elevation, while reproductive populations of C. pentandra 
are largely confined to elevations below 1500 m. There are 
currently no contiguous populations of C. pentandra that 
span the Andes. Large error bars surround estimates of 
northern Andean palaeo-elevations (Gregory-Wodzicki 
2000) but, in broad terms, the uplift of the northern Cordilleras 
began in the early Miocene (-24 Ma) and reached modern 
elevations > 3 Ma (Lundberg et al. 1998). To evaluate the 
hypothesis of cross-Andean vicariance, we anticipated 
genetic divergence corresponding to > 3 Ma of genetic 
isolation. 

Materials and methods 

Collections 

Leaf material for DNA extraction was obtained from fresh 
leaves or herbarium specimens of rainforest Ceiba pentandra 
in West Africa (Cameroon N = 3; Gabon N = 6; Ghana 
N=l), Mesoamerica (Panama N = 4; Costa Rica N = 4; 
Mexico N=l) South America (Brazil, N=18; Ecuador, 
N = 12; French Guiana, N = 2) and the Caribbean (Puerto 
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Fig. 2 Geographical distribution of ITS (upper semicircle) and psbB-psfcF (lower semicircle) haplotypes sampled from Neotropical and 
Western African Ceiba pentandra. The square haplotype (site 17, Senegal) represents the savanna form. Numbered collection sites correspond 
to column one in Table 3. Hatches correspond to numbers of nucleotide substitutions in the haplotype networks. Identical psbB-psbF and 
ITS haplotypes across the Andes and between Africa and the Neotropics are evidence of long-distance dispersal. 

Rico, N = 3) (Fig. 2 and Table 3). We obtained a single 
collection of the savanna form from Senegal. Leaf sampling 
focused on adult trees separated by at least 100 m, to avoid 
sampling of closely related individuals. Leaves were 
collected from massive individuals using slingshots. Most 
sampling within the sites designated in Fig. 2 spanned 
large distances. For example, sampling of trees in Panama 
(site 3) spanned approximately 200 km; west Ecuador 
samples (site 5) spanned 80-100 km. Sampling within 
Gabon (site 15) spanned 300 km. The overall Neotropical 
sampling spanned 5088 km (between Mexico and Rio 
Madeira, Brazil). The African sampling spanned 1655 km 
between sites in Senegal and Gabon and sampled Guinean 
and Congolese rainforest regions, which are separated by 
the arid Dahomey gap (Fig. 2). The DNA aliquot from each 
leaf sample was assigned a unique identification num- 
ber (Laboratory ID), which is linked to information on 
geographical location, herbarium specimen number, or tag 
numbers in the case of trees sampled in permanent 
inventory plots. 

Laboratory methods 

DNA was extracted using the DNeasy kit (QIAGEN 
Corporation) following manufacturer protocols. The internal 
transcribed spacers ITS1 and ITS2 and the 5S ribosomal 
gene were amplified using the primers ITS4, ITS5 (White 
et al. 1990) and ITSi (Urbatsch et al. 2000), which anneal to 
the flanking 18S and 26S ribosomal genes. Chloroplast 
intergenic spacers were amplified using the psbB and psfeF 

primers of Hamilton (1999a). Polymerase chain reactions 
(PCR) for ITS and psbB-psbF were performed on an MJ 
Research thermal cycler with the following conditions: 
94 °C for 4 min, followed by 30 cycles of 94 °C for 45 s, 
55 °C for 45 s and 72 °C for 3 min. Amplification products 
were extracted from low melting point agarose, cleaned up 
with Gelase (Epicentre Technologies), and sequenced using 
Big Dye chemistry [ABI (Applied Biosystems Incorporated)] 
on an ABI automated DNA sequencer. Chromatograms 
were aligned and edited with SEQUENCHER 4.1 (Gene Codes 
Corporation). All polymorphisms were confirmed by 
sequencing with forward and reverse primers. Absolute 
and maximum-likelihood (ML) genetic distances were 
calculated in PAUP* 4.10b. The near complete lack of 
nucleotide divergence among haplotypes obviated the 
need for additional DNA sequence analyses. 

Substitution rates 

As there are no estimates of nucleotide substitution rates 
for Ceiba, we used an approximate molecular clock based 
on a broad range of published ITS and noncoding 
chloroplast DNA (cpDNA) nucleotide substitution rates. 
Estimated substitution rates for the ITS region (ITSI, 5.8S, 
and ITS2) range from 0.38 to 8.34 x 10-9 substitutions per 
site per year (subs/site/year), based on surveys of 29 
time-calibrated phylogenies of herbaceous and woody 
plant lineages drawn from 22 angiosperm families (reviewed 
in Richardson et al. 2001; Dick et al. 2003; Kay et al. 2006). 
The ITS rate estimate for Adansonia (Bombacoideae) of 

© 2007 The Authors 
Journal compilation © 2007 Blackwell Publishing Ltd 



LONG-DISTANCE DISPERSAL OF RAINFOREST TREES 5 

Table 3 Voucher information for sequenced individuals of Ceiba pentandra. The laboratory ID is a voucher number for the leaf tissue and 
DNA maintained at the University of Michigan. The GenBank Accession nos for psbB-psbF and the ITS region are presented in the last two 
columns 

Map Collection site Coordinates Laboratory ID psbB-psbF ITS accession 

4 Camuy, Puerto Rico 18°22'N, 66°45'W 690 DQ284781 DQ284818 
4 Camuy, Puerto Rico 18°22'N, 66°45'W 662 n/a AY635499 
4 Quebradillas, Puerto Rico 18°22'N, 67°00'W 663 AY642683 n/a 
4 Quebradillas, Puerto Rico 18°22'N, 67°00'W 691 DQ284782 DQ284819 
1 Morelos, Mexico 18°51'N, 99°05'W 1110 DQ284783 DQ284820 
2 La Suerte, Costa Rica 10°26'N, 83°46'W 893 n/a DQ284821 
2 La Suerte, Costa Rica 10°26'N, 83°46'W 894 DQ284784 DQ284822 
2 La Suerte, Costa Rica 10°26'N, 83°46'W 895 DQ284785 DQ284823 
2 La Suerte, Costa Rica 10°26'N, 83°46'W 896 n/a DQ284824 
2 Tobero, Panama 07°36'N, 80°33'W 518 AY642675 AY635497 
2 Tobero, Panama 07°36'N, 80°33'W 519 AY642682 AY635498 
3 Tobero, Panama 07°36'N, 80°33'W 520 DQ284786 DQ284825 
3 Naos Causeway, Panama 08°55'N, 79°32'W 879 DQ284787 DQ284826 
5 Endesa reserve, Ecuador 00°08'N, 79°03'W 63 n/a AY635495 
5 Endesa reserve, Ecuador 00°08'N, 79°03'W 298 AY642681 AY635494 
5 Borbon, Ecuador (km 29) 01°05'N, 78°06'W 867 DQ284788 DQ284827 
5 Borbon, Ecuador (km 31) 01°05'N, 78°06'W 871 DQ284789 DQ284828 
5 Borbon, Ecuador (km 10) 01°05'N, 78°06'W 875 DQ284790 DQ284829 
5 Borbon, Ecuador (km 31) 01°05'N, 78°06'W 883 DQ284791 DQ284830 
6 Yasuni park, Ecuador 00°38'S, 76°30'W 64 DQ284792 n/a 
6 Yasuni park, Ecuador 00°38'S, 76°30'W 65 DQ284793 AY635500 
6 Yasuni park, Ecuador 00°38'S, 76°30'W 66 DQ284794 AY635501 
6 Yasuni park, Ecuador 00°38'S, 76°30'W 67 DQ284795 DQ284831 
6 Yasuni park, Ecuador 00°38'S, 76°30'W 68 DQ284796 DQ284832 
6 Yasuni park, Ecuador 00°38'S, 76°30'W 1021 DQ284797 DQ284833 
7 Tabatinga, Brazil 00°03'S, 69°40'W 914 AY642680 DQ284834 
7 Tabatinga, Brazil 00°03'S, 69°40'W 915 DQ284798 AY635493 
10 Manaus, Brazil 02°50'S, 59°49'W 910 AY642676 DQ284835 
10 Manaus, Brazil 03°04'S, 60°00'W 911 AY642677 DQ284836 
10 Manaus, Brazil 03°04'S, 59°50'W 1088 DQ284799 AY635504 
10 Manaus, Brazil 03°04'S, 59°58'W 1089 DQ284800 DQ284837 
10 Manaus, Brazil 03°12'S, 59°57'W 1095 DQ284801 DQ284838 
9 Caracarai, Brazil (Rio Branco) 01°36'N, 61°13'W 916 DQ284802 DQ284839 
9 Caracarai, Brazil (Rio Branco) 01°36'N, 61°13'W 917 DQ284803 DQ284840 
9 Caracarai, Brazil (Rio Branco) 01°36'N, 61°13'W 1098 n/a DQ284841 
11 Castanhal Veado, Brazil (Rio Trombetas) 01°18'S, 56°30'W 918 DQ284804 DQ284842 
11 Castanhal Veado, Brazil (Rio Trombetas) 01°18'S, 56°30'W 919 DQ284805 DQ284843 
11 Castanhal Veado, Brazil (Rio Trombetas) 01°18'S, 56°30'W 1092 DQ284806 DQ284844 
11 Castanhal Veado, Brazil (Rio Trombetas) 01°18'S, 56°30'W 1093 DQ284807 DQ284845 
8 Remanso, Brazil (Rio Madeira) 05°06'S, 59°27'W 912 DQ284808 n/a 
8 Remanso, Brazil (Rio Madeira) 05°06'S, 59°27W 1091 DQ284809 DQ284846 
8 Remanso, Brazil (Rio Madeira) 05°06'S, 59°27W 913 AY642679 DQ284847 
12 Kourou, French Guiana 05°09'N, 52°39'W 468 DQ284810 DQ284848 
12 Kourou, French Guiana 05°09'N, 52°39'W 469 DQ284811 AY635496 
13 Korup Park, Cameroon 05°04'N, 08°51'E 61 AY642673 AY635502 
13 Korup Park, Cameroon 05°04'N, 08°51'E 62 AY642674 AY635503 
14 Bimbia, Cameroon 03°06'N, 09°16'E 1101 DQ284812 DQ284849 
15 Gabon (OH 91) 02°34'S, 10°44'E 1118 DQ284813 DQ284850 
15 Gabon (OH 92) 01°20'S, 13°07'E 1119 DQ284814 DQ284851 
15 Gabon (OH 93) 00°99'S, 12°44'E 1120 DQ284815 DQ284852 
15 Gabon (OH 94) 00°32'N, 11°27'E 1121 DQ284816 DQ284853 
15 Gabon (OH 95) 00°50'N, 12°80'E 1122 DQ284817 DQ284854 
15 Gabon (OH 97) 00°11'S, 11°59'E 1124 n/a DQ284855 
16 Elmina, Ghana 06°02'N,01°04'W 1199 n/a EF432375 
17 Oussouye, Senegal 12-26'N, 16°45'W 1200 EF432373 EF432374 
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2.48 x 10-9 subs/site/year (Baum et al. 1998) is close the 
mean rate of 2.86 x lf>9 subs/site/year estimated by Kay 
et al. (2006). We compared the observed levels of divergence 
in disjunct C. pentandra with the Adansonia rate (2.48 x 10~9 

subs/site/year) and the slowest published ITS rate 
(0.38 x 10-9 subs/site/year) in the Kay et al. (2006) survey, 
which is derived from a fossil-calibrated study of 
Hamamelis (Wen et al. 1999). By using the slowest published 
rate, our analysis is likely to overestimate divergence times, 
thereby favouring acceptance of vicariance hypotheses. 
The per-site substitution rates in Hamamelis and Adansonia 
correspond to 0.076 and 0.572% divergence/Ma, respectively. 
Expected levels of nucleotide divergence are derived from 
the relationship K = RTII, where K is the nucleotide 
divergence between two sequences, R is the rate of 
nucleotide substitution and T is the divergence time. 

There are no similar reviews for substitution rates in 
the psbB-psbF cpDNA spacer. Therefore, we considered a 
broad range of synonymous substitution rates (Rg) published 
for angiosperm cpDNA: Wolfe etal. (1987) estimated a 
range of 1.0-3.0 x 10-9 substitutions per silent site per year 
(subs/ silent-site /year) based on a comparison of eight 
chloroplast genes from monocots and dicots (divergence 
time T = 140 Ma) and from wheat and maize (T = 20-40 Ma). 
Zurawski & Clegg (1987) calculated an Rs of 1.3x10-9 
subs/silent-site/year based on cpDNA divergence between 
spinach and tobacco. Xiang et al. (2000) estimated Rs of 1.02 
to 1.42 x 10-9 subs / silent-site /year for the rbcL gene, based 
on fossil calibration of the Cornus phylogeny, and obtained 
similar estimates of Rs from 10 sister taxa (from 10 families) 
that display the same Asia/North America disjunction. 
We applied the slowest rates of synonymous substitution 
(1.0 x 10-9 subs/silent-site/year) to psbB-psbV as a con- 

servative test of the vicariance hypotheses. This corresponds 
to a divergence rate of 0.2%/Ma. 

For the Hamamelis- and Adansonia-derived ITS rates, 
expected percentage of nucleotide divergence between 
disjunct ITS haplotypes are > 7.30 and > 54.91 under 
Gondwana vicariance, > 2.66 and > 20.02 under the 
Boreotropical model, and > 0.23 and > 1.72 for Andean 
vicariance. The expectations for psbB-psbF are > 19.2 under 
the Gondwana model, > 7.0 under the Boreotropical model, 
and > 0.6 for Andean vicariance (Table 2). 

Results 

ITS sequences averaging 750 bp were obtained for 51 
individuals (Table 3). The ITS sequences were G-C biased 
(nucleotide frequencies: A = 0.17, C = 0.32, G = 0.33 and 
T = 0.18). Five polymorphic sites were found among all ITS 
sequences, including a single nucleotide indel (site 141, 
Fig. 3). Several individuals from the Amazon basin were 
heterozygous at two ITS nucleotide sites (a G/T polymorphism 
at site 224; and a T/C polymorphism at site 299) as 
indicated by dual chromatogram peaks on both forward 
and reverse strands. Two of the five ITS haplotypes 
(haplotypes 1 and 4 in Fig. 3) were represented by single 
individuals from Panama (GenBank DQ284825) and 
Cameroon (DQ284849). DNA sequences from the psbB- 
psbF spacer were obtained from 49 individuals (Table 3) 
and averaged 742 bp in length. The psbB-psbF sequences 
displayed a T-A bias in base composition (A = 0.30, C = 0.17, 
G = 0.19, T = 0.34). A single polymorphic site (T/A 
substitution at site 219) distinguished the western Ecuador 
cpDNA haplotype (N = 5) individuals from the widespread 
cpDNA haplotype (Fig. 2). 

Panama #20 

Senegal 

French Guiana 
Gabon 
Ghana 
Cameroon 

Costa Rica 
Panama 
Western Ecuador 
Western Amazon 

Fig. 3 Shallow phylogeographical struc- 
ture of Ceiba pentandra is indicated by the 
ITS haplotype network (see also Fig. 2). 
Hatch marks indicate nucleotide changes 
at numbered positions in the consensus 
sequence. Sites 299 and 224, represented by 
dashed lines, were heterozygous in some 
individuals in Manaus. The substitution at 
site 413 is homoplasic in haplotypes 1 and 
4 in this network. The squared haplotype 
is from the savanna form of C. pentandra. 
^represented by a single individual. 

Eastern Amazon 
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Three individuals were excluded from the analysis 
because of anomalous ITS and psbB-psbF sequences. 
Ecuador sample no. 66, collected from a juvenile tree, was 
divergent at both ITS (AY635501) and psbB-psbF (DQ284794) 
and was most likely collected from Ceiba saumauma, which 
has similar leaf morphology and is sympatric with Ceiba 
pentandra in lowland Ecuador. The ITS2 sequence of Puerto 
Rican sample no. 662 (AY635499) differed from the 
common haplotype by 14-bp differences, and it matched 
unpublished ITS sequence of Ceiba aesculus (K. Walsh, R. 
Oldham, and D. Baum, unpublished data). Gabon sample 
1122 was highly divergent at ITS (DQ284854; > 83-bp 
differences or ~13% nucleotide divergence), and its psbB- 
psbF sequence (DQ284817) differed from the widespread 
haplotype by three nucleotide changes. The Gabon ITS 
sequence matched the published ITS sequences of Bombax 
malabaricum (DQ826447 and AF460I92). 

The common psbB-psbV haplotype was widespread in 
Africa and the Neotropics, and was also present in the 
savanna tree. An ITS haplotype was shared between 
populations in French Guiana and West Africa (Ghana, 
Cameroon and Gabon). The other ITS haplotypes found in 
Africa and the Neo tropics differed by a maximum of four 
nucleotides (including one indel; K = 0.53%). The ITS 
haplotype from the savanna tree from Senegal (EF432374) 
showed 0.3-0.6% divergence from the rainforest haplotypes. 
For reference, in a limited sample of six Ceiba species the 
level of interspecific ITS divergence varied from 2.8 
(C. pentandra and C. crispifolia) to 6.0% (C. pentandra and 
C. aesculifolia) (K. Walsh, R. Oldham, and D. Baum, unpub- 
lished data), supporting the expected sister relationship 
between the rainforest and savannah forms of C. pentandra. 

Discussion 

Ceiba pentandra has the weakest phylogeographical structure 
yet reported for a widespread rainforest tree species. Apart 
from the cluster of sites in Western Ecuador having a 
variant psbB-psbF haplotype, there was no cpDNA variation 
across Mesoamerica, the Amazon basin, and West Africa. 
In fact, this study found less cpDNA variation across three 
continents than some rainforest tree species exhibit within 
putative breeding populations in French Guiana and Brazil 
(Hamilton 1999b; Dutech etal. 2000; Latouche-Halle etal. 
2003) or among sample sites at regional scales in French 
Guiana and across Mesoamerica (Caron et al. 2000; Cavers 
etal. 2003). Neotropical ITS haplotypes extended from 
Mexico into the Amazon basin, and the French Guiana ITS 
haplotype was encountered in multiple West African sites. 
The levels of divergence between distinct haplotypes 
across major range disjunctions fell below the vicariance 
expectations, even using the slowest published rates of 
cpDNA and ITS substitution (Table 2). These results falsify 
Gondwana vicariance, Boreotropical dispersal-vicariance, 

and Andean vicariance as applied to C. pentandra. Extreme 
long-distance dispersal, via wind or marine currents, 
appears to be the primary mode of geographical range 
expansion in C. pentandra. 

Oceanic dispersal 

Fossils and phylogeographical analysis of ITS in 
the amphi-Atlantic rainforest tree Symphonia globulifera 
(Clusiaceae) suggest that its populations invaded the 
Neotropics via oceanic dispersal at least once during the 
mid-Miocene, at which time Symphonia fossil pollen abruptly 
appears in Mesoamerica and South America. Despite a 
relatively slow estimated rate of nucleotide substitution in 
Symphonia ITS (0.70 x lO9 subs/site/year), there was > 4% 
nucleotide divergence between African and Neotropical 
populations (Dick et al. 2003). As with Symphonia, most 
transatlantic plant dispersal is thought to proceed from 
Africa to the Neotropics (Renner 2004), with possible 
exceptions found in the genera Andira (Pennington 2003), 
Drepanocarpus, Hernandia, Hymenaea, Sacoglottis and Thalia 
(Renner 2004). The Neotropical origin of C. pentandra is 
supported by the Neotropical distribution of all recognized 
Ceiba species. Furthermore, there is a much higher level of 
divergence among the Neotropical species (e.g. 6.0% 
between C. pentandra and C. aesculifolia) than expected if 
African C. pentandra were the progenitor of a Neotropical 
radiation. Under the latter scenario, there should be > 6% 
divergence between African and Neotropical C. pentandra. 
The occurrence of identical ITS haplotypes in French 
Guiana and West Africa suggests recent dispersal to Africa 
from northern South America. Alternatively, the French 
Guiana haplotype may represent secondary dispersal from 
Africa. 

Exceptionally strong winds between northeast Brazil 
and West Africa may have transported kapok-entangled 
seeds. Wind transport is a plausible explanation for the 
African range expansion of the Neotropical bromeliad 
Pitcairnia feliciana (Bromeliaceae), the herb Maschalocephalus 
dinklagei (Rapateaceae) (Givnish et al. 2004) and woody 
lineages of Melastomataceae (Renner & Meyer 2001). Ceiba 
pentandra fruits and/or seeds could have floated to Africa 
as effluent from large Neotropical rivers (Houle 1998) such 
as the Amazon or Orinoco. Ceiba pentandra must have 
dispersed or transported by people to Puerto Rico, since 
this is a volcanic island that has never been connected to 
mainland (Iturralde-Vinent & MacPhee 1999). 

Ceiba pentandra is typically found in low population 
densities, but large individuals can produce hundreds of 
thousands of seeds. Rapid growth, longevity, the mixed 
mating system, and extensive seed and pollen dispersal all 
favour rapid colonization. Once a founding population has 
been established, wind dispersal of seeds and bat pollination 
along rivers may rapidly increase the size of breeding 
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populations. In a microsatellite-based paternity analysis 
of C. pentandra along the Rio Negro in Brazil, Gribel and 
colleagues (referenced by Wilson et al. 1997) demonstrated 
bat-mediated pollen dispersal of nearly 20 km among 
spatially isolated trees. Assuming a Neotropical origin, the 
founding individuals in Africa could have lost recessive 
deleterious alkies through genetic drift. The genetic purge 
would result in less inbreeding depression and a lower rate 
of abortion of self-fertilized ovules (Hufford & Hamrick 
2003; Ward et al. 2005). In agreement with this model, Baker 
(1965) reported high levels of successful self-fertilization 
(up to 100%) in Africa compared to South American C. 
pentandra. 

Ecological divergence 

Our study includes one Senegalese representative of 
the savanna form of C. pentandra. The ITS sequence in 
this sample differs by two nucleotides (< 0.3%) from the 
most similar rainforest haplotype (Fig. 2), and it shares 
the psbB-psbF sequence found in African rainforest and 
most Neotropical samples. The savanna form probably 
derives from African populations of the rainforest form. 
It is possible, however, that the savanna form originated 
from Neotropical populations in a separate founder event. 
Testing for multiple founder events will require further 
geographical and genomic sampling. 

Ceiba pentandra exhibits considerable morphological and 
cytological variation (Table 1), despite relatively low levels 
of nucleotide divergence. Chromosome counts of Neotropical 
(2« = 88) and African rainforest trees (2w = 80, 88) are 
similar and may overlap. The African savanna form has a 
chromosome count of 2« = 72, however, and chromosome 
counts for cultivated Ceiba are variable (2w = 72, 74, 75, 76, 
80) (Baker 1965). Savanna and rainforest forms differ in 
morphology of their leaves, flowers, trunk, and canopy 
architecture. The flowering periods are not synchronous, 
and both African forms (savanna and rainforest) have lost 
sulphuric compounds used to attract Microchiropteran 
bats (Pettersson et al. 2004). While this level of variation 
seems unusual in light of its recent origin, it should be 
noted that many plant taxa have experienced recent and 
rapid adaptive radiations. The species-rich tree genus Inga, 
for example, is comprised of nearly 300 Neotropical rain- 
forest species that probably share a common ancestor less 
than 2 million years ago (Lavin 2006). Some closely related 
Inga species share identical ITS haplotypes (Richardson 
etal. 2001). 

Mountain crossings 

Although both many wind- and animal-dispersed rainforest 
tree species exhibit strong genetic differentiation around 
the Central American cordilleras (Cavers et al. 2003; Dick 

et al. 2003; Novick et al 2003; Cavers et al. 2005) no such 
pattern was detected in C. pentandra. In South America, the 
C. pentandra population in coastal Ecuador contained a 
variant psbB-psfeF haplotype; but these same individuals 
shared widespread ITS haplotypes that provide evidence 
for dispersal over or around the northern Andes. In 
animals (Brower 1994; Zamudio & Greene 1997; Slade & 
Moritz 1998) and in the rainforest tree S. globulifera (Dick 
et al. 2003) levels of cross-Andean genetic divergence were 
consistent with Andean vicariance. However, some bats 
(Ditchfield 2000; Hoffmann & Baker 2003), and euglossine 
bees (Dick et al. 2004) show the dispersal pattern found in 
C. pentandra. Further studies of lowland tree populations 
sampled from either side of the Andes will determine the 
extent to which cross-Andean communities have been 
genetically isolated. The present study nevertheless provides 
one exception to Raven's (1999) Andean vicariance hypothesis. 

Some contemporary cross-Andean dispersal routes are 
possible. The Las Cruces mountain pass, for example, 
narrowly connects the Choco region with the lowland 
Colombian Amazon via the Magdalena valley. Las Cruces 
is approximately 20-km wide and 1874 m in elevation. 
While exceeding C. pentandra's altitudinal threshold for 
reproduction (< 1500 m), lowland tropical trees like C. 
pentandra may have reproduced and dispersed at higher 
altitudes during the mid-Holocene (6000 years before 
present), which was warmer (1-4 °C) and drier than present 
(Bush et al. 2004). A temperature increase of only 1 °C may 
increase the elevation of lowland rainforest species by 
more than 200 m (M. Bush, personal communication). 
Upwelling winds may also facilitate seed dispersal through 
mountain passes. Marine currents provide an alternative 
route; C. pentandra seeds could have reached the Caribbean 
coast of Mesoamerica via outflow of the Orinoco River, 
then dispersed over land through the Isthmus of Panama. 

Community assembly 

Long-distance dispersal has recently become an accepted 
biogeographical explanation for many amphi-Atlantic 
plant and animal disjunctions (de Queiroz 2004; Givnish & 
Renner 2004; Pennington & Dick 2004) and it may explain 
taxonomic similarities between rainforest tree communities. 
Pennington & Dick (2004) evaluated the role of long- 
distance dispersal in structuring the community composition 
of trees in a 25-ha forest inventory plot in Yasuni, Ecuador 
(Valencia et al. 2004). 'Immigrants' were defined as species 
belonging to lineages that originated outside of South 
America long after its separation from Africa. The 
immigrant group included the Leguminosae (Schrire et al. 
2004; Lavin et al. 2005), Annonaceae (Richardson et al. 
2004), some lineages of Lauraceae (Chanderbali et al. 2001) 
and Melastomataceae s. str. (Renner et al. 2001). Of the 1104 
tree species identified in the Yasuni forest, 232 (21%) 
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belonged to families and genera classified as immigrants. 

Some of the immigrant lineages may have arrived directly 

from Africa via marine dispersal, as in the case of 

S. globulifera, while others may have crossed the Panama 

land bridge. Summed over geological time, intercontinental 

migration and long-distance dispersal events contributed 

substantially to the taxonomic composition of a species-rich 

Amazon tree community. Thus, C. pentandra's dispersal 

and range expansion in Africa is a snapshot of a process 

that has created many other taxonomic similarities between 

rainforests throughout the world. 
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