# TWO NEW SPECIES OF SEA BASSES OF THE GENUS DIPLECTRUM, WITH A KEY TO THE PACIFIC SPECIES' 

RICHARD H. ROSEBBLATT<br>and<br>G. DAVID JOHNSON

Scripps Institution of Oceanography
University of Califomia, San Diego,
Lo Jolla, Califomia 92037


#### Abstract

There are eight known species of the serranid genus Diplectrum in the eastern Pacific: D. conceptione, D. euryplectrum, D. macropoma, D. maximum, D. pacificum, D. sciurus, and D. eumelum n. sp. and D. labarum n. sp. The species may be distinguished on the basis of numbers of fin rays, scales and gill-rakers, body shapes, length of fin spines, and shape of spine cluster. A key is given, and meristic data are presented. The range of $D$. maximum is extended north from Peru to Baja California, and the distinctively colored juveniles are described for the first time.


## INTRODUCTION

The serranid genus Diplectrum consists of 11 known species. All are rather small for sea basses ( $25-30 \mathrm{~cm}$ ) and live on the continental shelf on sand or mud bottoms. They are commonly taken along with shrimp, and are abundant in their habitat. Although they are not now much utilized commercially, they do represent a potential resource. Also, they are collectively the most abundant, and probably the nlost important, serranid predator in their habitat.

Although seven eastern Pacific species have been described, the genus has never been reviewed. Walford (1937) gave a key which distinguished the four species which occurred north of the equator. Hildebrand (1946) presented a key which distinguished the four Peruvian and Panamanian species, including the southern $D$. conceptione, and described a new form, $D$. maximum. Subsequently Hildebrand (1948) described another new species, $D$. mexicanum, from the Gulf of California.

Our data indicate that there are eight species of Diplectrum in the eastern Pacific, and that two of these are undescribed. D. mexicanum Hildebrand 1948 is identical to D. nzacroponza Gunther 1864. It is our purpose to describe the new forms, and present sufficient data on the others that they may readily be identified. Meristic and morphometric data for all species but $D$. conceptionc are given in Tables I-III. We have examined no material of D. conceptione.

## MATERIALS AND METHODS

Specimens utilized for this study are housed at the Scripps Institution of Oceanography (SIO) and the Fish Collection, Department of Zoology, University of California, Los Angeles (UCLA). Counts and measurements were made according to the methods of Hubbs and Lagler (1958). Row: of scales on the opercle have often been used as a taxonomic discriminator in Diplectrum. Although we made these counts, we experienced difficulty in obtaining consistent, repeatable data.

[^0]

FIGURE 1. Three species of Diplectrum; A, holotype of D. laborum (right side, reversed), $B$, holotype of $D$. eumelum, $C, D$. mocropomo, a 137 mm individual from the Gulf of Californio (SIO60-95).

## DIPLECTRUM HOLBROOK

The following combination of characters distinguishes Diplectrum from other Pacific serranid genera :
D.X, 12 ; A.III, 7 or 8 (occasionally 6 or 9 ); body elongate, moderately compressed; top of head naked from occiput forward; caudal lunate to slightly forked; scales moderately large, $50-80$ rows above lateral line; preopercle produced into bony flap and armed with 1 or 2 clusters of strong, divergent spines.

## KEY TO THE PACIFIC SPECIES OF DIPLECTRUM

1a. Second, 3rd, and 4th (occasionally 5th) dorsal spines with black, filamentous estension; the 3 rd spine longest, often reaching to base of 9 th spine when depressed; 2nd spine at least twice as long as 1 st (See species account for specimens $<\mathrm{BO} \mathrm{mm}$ ) -----
labarun
1b. Dorsal spines without black filamentous extensions; the 3rd spine not the longest; 2nd spine less than twice as long as 1 st
2a. 22 or more gill-rakers on lower limb of first gill arch; no large black area on inner membrane of opercle $\qquad$ sciurus

2b. 17 or fewer pill-rakers on lower limb of first gill arch; a large black area on inner membrane of opercle, visible externally as a dark spot above spinous projection of preopercle

3a. 3rd anal spine scarcely if any longer than 2 nd ; lower jaw projecting strongly, its tip entering the dorsal outline of head
maximum
3b. 3rd anal spine notably longer than 2 nd ; lower jaw not projecting sufficiently to enter dorsal outline of head
4n. 3-4 much enlarged spines at angle of preopercle _conceptione
4b. At least 6 spines at angle of preopercle, radiating from a single, broad center 5

ob 6 oblique scale rows on cheek 7
Ga. Head large (2.2-2.5 in std. length) ; caudal peduncle rery shallow (3.8-4.6 in head); spinous projection of preopercle always deeper than length of eye (in specimens as small as 60 mm mny he jnst equal) ; dark bar at base of soft dorsal; ventral fins dusky; anal soft rnys usually 8
curyplectrum
6b. Head Smaller (2.7-2.9 in std. length) ; caudal peduncle deeper (2.7-3.0 in head) ; spinous projection of preopercle usually not as deep as length of eye; no dark bar at base of soft dorsal; ventral fins colorless; anal soft rays usually 7
-pacificum
$\mathbf{7 a}$. Body deep (2.8-3.4 in std. length) ; caudal peduncle quite deep ( 2.8 or less in head); snout straight and somewhat pointed; 19-27 pseudobranch filaments; 9th dorsal spine notably shorter than 10 th; dorsal and anal soft rays decreasing in length posteriorly; in isopropanol no pale spots on preorbital or pale stripe on cheek; soft dorsal not spotted, but top half with a dnsky bar
7b. Body moderately deep (3.0-4.2 in std. length) ; caudal peduncle shallow (3.0-3.2 in head) ; snout blunt, curving convexly at tip; 27-37 pseudobranch filaments; 9 th and 10 th dorsal spines subequal; posterior soft dorsal and anal rays as long as or longer than anterior rays; orange stripe passing from preopercle anteriorly across cheek, breaking up into 3 distinct spots on preorbital (pigmented areas definitely pale in isopropanol); soft dorsal spotted
-eumelum

## DIPLECTRUM LABARUM N. SP.

## Description

D.X, 11-13 (12.0) ; A.III, 6-8 (7.1) ; pectoral 15-18 (16.6) ; gillrakers $6-9+13-15(8.1+14.0)$; pseudobranch filaments 23-36 (28.9) lateral line scales 47-49 (47.8) ; scale rows above lateral line 52-61 (56.7) ; oblique scale rows on cheek 7-8 (7.3). Measurements of body parts are given in Table III. Meristic data are in Tables I and II.

Body moderately deep, caudal peduncle rather shallow; anterior dorsal profile gently convex, a slight depression just back of occiput; snout well rounded; mouth oblique; maxillary extending to a point just behind rear margin of pupil in large specimens, somewhat anterior to this in small specimens. Teeth in the jaws in villiform bands, some of the outer ones in the upper jaw enlarged, both outer and inner teeth in the lower jaw enlarged anteriorly, with a single enlarged row posteriorly; palatine teeth in narrow villiform bands; vomerine teeth in a triangular patch, villiform with a few enlarged at the two posterior apices. Gill-rakers at angle of first arch approximately $\frac{1}{2}$ length of eye; longest filament about $\frac{2}{3}$ length of eye. Spinous projection of preopercle deep and square; posterior margin straight, inclined slightly backward (almost vertical in smaller specimens) ; lower margin inclined slightly upward and approximately twice as long as upper margin which is inclined slightly downward; a single cluster of large, closely spaced diverging spines, uniformly decreasing in strength away from center, longest at apex of lower angle (Figure 1).

Spinous dorsal configuration unique; 2nd, 3rd, and 4th spines modified distally into slender, black. filamentous extensions; membrane between 2 nd and 3 rd spines deeply notched; 2 nd spine usually at least twice as long as lst (juveniles may often be identified by this character before filamentous nature of spines is evident) ; 3rd spine the longest, often reaching to base of 9th spine and beyond when depressed; 9th and 20 th spines subequal, about $\frac{2}{3}$ as long as 1 st dorsal soft ray. Soft dorsal outline varies with size; in smaller specimens, rays decreasing in length posteriorly, in larger specimens posterior rays (except for 12th) equal to or longer than anterior rays. Anal with 3 small graduated spines, the 2 nd the strongest; soft margin somewhat rounded anteriorly, then with a posterior slant with an acute posterior angle, longest ray usually 2 nd or 3 rd in smaller specimens, 6 th in larger specimens, middle rays the longest, reaching beyond tip of ventral, but falling well short of anal origin; caudal nearly truncate, with upper rays a little longer than the lower. Distal margin of pectoral fin inclined obliquely backward from third to tenth ray then with an anterior slant.

Color in isopropanol grayish-brown above, pale yellowish to silvery below; sides with 5 or 6 dark squarish blotches above, these often continuous with the same number of arcuate blotches below (these markings more or less evident in juveniles in conjunction with 2 dark longitudinal lines). Black spot on base of caudal rays very prominent, encompassing over half the caudal depth at this point; caudal rays tipped with black, the middle ones most heavily; inner membrane of opercle with a large black area, visible externally as a dark spot above spinous projection of preopercle. A dark band present just below the eye, broadening posteriorly on the cheek.

FIGURE 2. Variation in number of anal soft rays in Diplectrum labarum. Roman numerals indicate the areas compared (Area III extends south to Panama). The numerals in
parentheses are the means for each area, the table gives the frequency distribution, and the dots indicate areas from which samples were utilized.

A color transparency of a 138 mm specimen from the Gulf of California shows the following markings: a dull orange line running longitudinally along the membrane of the spinous dorsal, slightly above its base; on the soft dorsal 5 dull orange diagonal bars (sloping backwards), and a very narrow line of brighter orange running just at the tips of the rays; 2 yellow stripes on the soft anal joining between the 2 nd and 3 rd rays; $\mathbf{3}$ dark orange vertical wavy lines on the caudal fin; the upper and lower caudal margin tipped posteriorly with reddish orange; pectorals transparent; ventrals pale to dusky. The soft dorsal and caudal markings are more or less evident in preserved specimens, but the spinous dorsal and anal markings are not.

## Identification

D. labarum may be readily distinguished from its congeners on the basis of the unique spinous dorsal configuration. In the other species, the 2 nd and 3 rd dorsal spines are much shorter and stronger, without the black filamentous extensions. In specimens smaller than 100 mm , the black, filamentous nature of the dorsal spines is often not yet apparent; however, these individuals may still be identified by the fact that the 2 nd spine is more than twice as long as the 1 st . Specimens less than 60 mm in length may even be lacking this character in which case they are most easily confused with D. pacificum, as the color pattern is similar, and the preopercle is not yet developed to the point of distinction. Cheek scale count is probably the best character to use at this stage (D. labarum, 7-8; D. pacificum, 9-10) keeping in mind that there may be some overlap.

## Derivation of Name

From the Latin labarum, the Roman imperial standard, in allusion to the elongated dorsal spines.

## Range

Outer coast of Baja California as far north as Bahia Asunción; Gulf of California as far north as Bahia de los Ãngeles and Punta Tepoca, extending southward along the Mexican coast to the Gulf of Panama (Fig. 3).

## Variation

It was apparent from an inspection of the data that individuals with 8 anal rays occurred more frequently in samples taken between Almejas and Asuncion bays, Baja California. For purposes of analysis the range of D. labarzem was divided into three areas; (I) outer coast of Baja California north of Almejas Bay, (II) outer coast south of Almejas Bay, and (III) Gulf of California to Panama (Fig. 2).

Although the means for the areas do not differ greatly, the differences between Areas I and II and I and III are significant at the $\mathrm{p} \leqq .05$ level when tested by the Student's t-test. The means for Areas II and III could not be separated. In order to avoid'certain assumptions required by the Student's t-test, the median test, a nonparametric procedure (Tate and Clelland 1957), was applied, and the results were the same. The data for Area II are given separately, since the relatively small sample size does not allow us to preclude the possibility of intermediacy. However, lumping Area II with either Areas I or III does
not affect the results of the analysis. This does not indicate that the Area II population is intermediate, only that the available samples arc small in relation to the samples for Areas I and III.

Since this variation is characterized by northern populations having a higher frequency of individuals with 8 anal rays (rather than 7 ), one might initially attempt to explain it as a phenotypic effect of water temperature. However, temperature data. (Griffiths 1968) indicate surface temperatures in Area II actually differ more from those in III than from those in I. If anal ray counts were being signifiantly affected by water temperatures, one might then expect to find a north-south cline of this character in Area III. This is not the case. It might further bc expected that other counts would be higher in Area I. This is, however, not true for dorsal and pectoral rays, for which a large number of specimens was examined.

Although the hypothesis of environmentally induced variation cannot be discarded, it does not seem consistent with the data at hand. Whether the differences are genetic or not, it is clear that there must be restricted mixing of individuals between Areas I and II in order for this variation to exist. Such restriction is somewhat surprising in a supposedly vagile species such as this which produces large numbers of eggs and pelagic larvae. Our current understanding of the hydrography of the outer Baja coast provides no explanation for any sort of pelagic barrier between Almejas Bay and the Marquis Point vicinity, and as me know very little about the ecology and behavior of D. labarum, we must defer further speculation as to the cause of this phenomenon to future studies of this species or other fauna of the area. At present, sufficient specimens to allow similar analysis of other species of Diplectrum occurring here are not available.

## DISCUSSION

D. labarum is the most common Diplectrum in SIO trawl collections from the outer coast of Baja California and the Gulf of California, and appears to be fairly common throughout its range. It occurs most frequently in the Gulf with $D$. sciurus in depths of $36-72 \mathrm{~m}$, but has been taken with all the Pacific species except D. maximum and D. conceptione. Its complete absence from the literature is difficult to explain, particularly in light of its unique appearance and the fact that it occurs as far south as Panama where lack of sampling and descriptive effort has certainly not been a problem. Whether this absence results from a failure of recognition or a real lack of material could only be determined by an extensive examination of earlier collections.

## MATGRAL EXAMNED

Holotype-SIO65-160, a 176 mm SL individual from Bahia de Banderas, Jalisco, Mexico, taken on 2 June 1965 by otter trawl on a muddy sand bottom at $31-35 \mathrm{~m}$ by T. Matsui and C. W. Jerde.

Paratypes-Mexico, Baja California Sur-Bahia Asunción, SIO64892, 1 (123) ; Bahia Ballenas, SI064-270, 28 (48-73) ; SI064-820, 7 (50-75) ; SI064-889, 145 (19-133); Punta Pequeña, SI064-886, 16 (112-164); SI064-887, 18 (35-123); SI064-888, 193 (39-146); Punta San Juanico, SI069-235, 21 (57-151); Boca Ánimas, SI069-234, 5 (68-128) ; SI064-883, 28 (119-177); SI064-884, 42 (35-135); Cabo San Lazaro, SIO64-880, 5 (38-137); Isla Magdalena, SIO64-881, 47
(33-176) ; SI064-882, 18 (114-176); Bahia Magdalena, SIO62-112, 2 (44-60); SI064-20, 3 (95-151); Isla Margarita, SIO64-877, 48 (48138) ; SI064-879, 2 (124-128) ; Bahia Almejas, SIO64-876, 44 (24-67); Punta del Marquis, SIO62-701, 5 (152-172); SI062-702, 11 (60-66): SIO62-708, 7 (18-48) ; SIO62-709, 36 (59-192); SIO62-867, 1 (59); SIO64-871, 1 (178); Vicinity Todos Santos, SIO64-866, 6 (54-63); SIO64-868, 1 (162); Mexico, Gulf of California-Punta Tepoca, SIO 60-120, 6 (106-124); Bahia Los Angeles, SIO62-236, 106 (65-185); SI061-282, 3 (93-212); Cerro Colorado, SI070-70, 7 (73-108); Bahia Santa Inéz, SI065-304, 63 (72-174); SI065-305, 2 (100-190); SIO6871, 57 (50-156); SIO68-72, 21 (58-161); SIO68-73, 18 (68-126); SIO 68-74, 14 (46-158) ; SIO68-75, 21 (57-159); Punta San Telmo, SIO65285, 31 (14-88) ; Topolobampo, UCLA56-118, 1 (63); Isla Espiritu Santo, SIO68-66, 7 (62-75); SI068-67, 18 (59-110); SI070-62, 1 (52); Bahia La Paz, SI065-257, 133 (75-150); SI065-350, 2 (98-103); Punta Gorda, SI065-250, 1 (139); Mexico, Sinaloa-Tres Islas, SI066-520, 1 (54) ; E1 Dorado, SI059-262, 1 (133); Boca Tecapbn, SI060-90, 10 (72-122); SI062-75, 70 (43-74); Mexico, Nayarit-off Laguna de Agua Brava, SIO62-76, 20 (63-139) ; Islas Las Tres Marias, SIO60-89, 4 (91-135) ; San Blas, SI059-270, 4 (96-123); Mexico, Jalisco-Bahia Banderas, SIO62-51, 2 (89-117); SIO65-160 taken with the holotype, 9 (88-178) ; Mexico Oaxaca-Golfo de Tehuantepec, SI063-503, 23 (40118) ; SIO63-504, 17 (29-110); SIO63-514, 2 (69-132); SIO63-518, 1 (40) ; SIO63-524, 10 (34-76) ; SIO63-526, 10 (38-58); SI065-164, 124 (38-77); Panama, SIO70-218, 1 (65); SI071-249, 4 (104-130); SIO 71-57, 34 (72-162).

## DIPLECTRUM EUMELUM N. SP.

Diplectrum nacropoma (not of Gunther), Jordan and Eigenmann, Bull. U.S. Fish Comm., VIII, 1888 (1890), 397; Jordan and Evermann, Bull. U.S. Nat. Mus., LXVII, 1896, 1205; Meek and Hildebrand, Field Mus. Nat. Hist., Publ. 226, zool. ser., XV, pt. 2, 1925, 475. Orces, G. Ciencia y Naturaleza, 2 (2), 1959, 81.

## Description

D.X, 12; A.III, 7; pectoral 16-17 (17.0) ; gill-rakers $7-8+12-13$ $(7.3+12.7)$; pseudobranch filaments 27-37 (32.1) ; lateral line scales 47-50 (48.5); scale rows above lateral line 51-60 (56.1) ; oblique scale rows on cheek 6-7 (6.0). Measurements of body parts are given in Table III. Meristic data are in Tables I and II.

Body moderately deep, back slightly elevated, caudal peduncle fairly shallow; anterior dorsal profile straight or slightly concave from base of spinous dorsal to interorbital, gently convex from this point to tip of snout which is broad and blunt; mouth quite oblique; maxillary extending well beyond pupil to rear margin of orbit in some specimens. Teeth in the jaws in villiform bands, some of the outer ones enlarged in the upper jaw, both inner and outer teeth enlarged in the lower jaw anteriorly, with a single row of enlarged teeth posteriorly. Palatine teeth in narrow villiform bands. Vomerine teeth in a triangular patch, villiform with a few enlarged at the two posterior apices. Gill-rakers at angle of first arch less than $\frac{1}{2}$ length of eye; longest filaments about ${ }_{3}^{2}$ length of eye. Spinous projection of preopercle deep; posterior mar-
gin straight, inclined backward forming an obtuse angle with the lower margin, resulting in a notably produced lower angle; lower limb of preopercle smooth, continuous in profile with lower shelf of spinous projection; upper limb of preopercle finely serrate forming a broad concavity where it joins upper margin; a single cluster of large diverging spines uniformly decreasing in strength away from center, longest at the apex of lower angle. Spinous dorsal outline fairly even with no greatly elongated spines or pronounced notch; 2nd spine less than $1 \frac{1}{2}$ times as long as 1 st; 4th and 5 th spines longest, subequal; 9 th and 10th spines subequal, about $\frac{2}{3}$ as long as 1 st dorsal soft ray. Posterior dorsal soft-rays (except for 12 th) equal to or longer than anterior rays. Anal with 3 small graduated spines, the 2 nd only slightly if any stronger than the 3 rd ; soft margin rounded anteriorly, then with a posterior slant to an acutely pointed tip; 6th ray the longest. Pectoral softly pointed, with oblique upper and lower posterior margins, middle rays the longest, reaching well beyond tip of ventral, often to a point above anal origin. Caudal barely lunate with the upper rays notably produced.

Color in isopropanol light brown above with numerous vague traces of dark cross bars, pale yellow below. Black spot on base of caudal rays large; inner membrane of opercle with a large black area, visible externally as a dark spot above spinous projection of preopercle. Membrane behind each dorsal spine tipped with a black speck; soft dorsal dusky. mottled with pale spots; middle rays of caudal tipped with black. Three pale spots on preorbital, a pale stripe extending from below eye across cheek and onto spinous projection of preopercle.

A color transparency of a specimen from Costa Rica shows the following: preorbital spots and cheek stripe bright orange; soft dorsal dull orange with colorless spots; dark area on opercle metallic blue; caudal with vertical wavy lines or orange spots; lower side with 4 or 5 faint orange longitudinal lines about 1 scale row apart.

## Identification

Due to the similarity in general body shape, preopercular configuration, and cheek scale rows, D. cumolune is quite easily confused with D. macropoma, and this confusion has been widespread in the literature. D. eumelum has a larger head and much shallower caudal peduncle and may be most easily distinguished with any or all of the following characters: preorbital spots and cheek stripe; 9 th and 10th dorsal spines subequal ; profile of snout convex, not straight; posterior soft dorsal and anal rays equal to or longer than anterior ones; soft dorsal spotted.

## Derivation of Name

From the Greek $c u$, beautiful and mclon, cheek.

## Range

From Topolobampo, Sinaloa, Mexico to Panama (Fig. 3).

## Discussion

In 1948, Hildebrand described a new species, D. nexicanum based on a 125 mm specimen taken in the Gulf of California in 1889. A close examination of this description and the accompanying illustration shows this specimen to be specifically identical with Centropristis macropoma

Gunther 1864. A study of the intervening literature and specimens of $D$. nzacropoma and $D$. cumolum indicates the source of the confusion. D. macropoma and D. cumolum are very similar in appearance, but as noted above there arc several characters which readily distinguish them. In 1888, Jordan and Eigenmann apparently mistook specimens of cumelum for macroponza and listed as key characters for macropoma, 3 characters (pale spots on snout, pale stripe on cheek, and spotted soft dorsal) which are in fact diagnostic for cumelum. This concept of the species was maintained by Jordan and Evermann (1886), and in 1925, Meek and Hildebrand described as macropoma what again must have been specimens of cumelum, adding another cumelum character (the posterior rays of soft dorsal the longest). This, then explains how Hildebrand, upon discovering a specimen of macroponza, of Günther, welieved it to be a new species and described it as mexicanum.

## Material Examined

Holotype-SIO65-160, a 129 mm SL individual from Bahía de Banderas, Jalisco, Mexico, taken on 2 June 1965 by otter trawl on a muddy sand bottom at $31-35 \mathrm{~m}$ by T. Matsui and C. W. Jerde.

Paratypes - Mexico, Sinaloa, Gulf of California - Topolobampo, UCLA 56-118, 1 (172) ; Mexico, Jalisco-Bahía Banderas, SI062-51, 7 (109-202) ; SI065-160 taken with the holotype, 8 (113-132); Costa Rica, UCLA63-142, 12 (97-110); UCLA63-148, 54 (71-232) ; Panama, SIO70-141, 2 (86-105); SIO70-218, 24 (98-145); SIO71-57, 8 (82229) ; SI071-249, 2 (140-149).

## DPLECTRUM MAXIMUM HILDEBRAND

Diplectrum conceptiono Evermann and Radcliffe (in part, not of Cuvier and Valenciennes), Bull. U.S. Nat. Mus., 95, 1917, p. 75, pl. 7, fig. 2.

Diplectrum maximum Hildebrand, Bull. U.S. Nat. Mus., 189, 1946, p. 185, fig. 42.
D.X, 12; $\Lambda . I I I, 7$; pectoral 17; gill-rakers 6-7 + 13-14 (6.8-13.5) ; pseudobranch filaments 25-33 (29); lateral line scales 48-49 (48.5); scale rows above lateral line $60-70$ (64.5) ; oblique scale rows on cheek 9. Measurements of body parts are given in Table III. Meristic data are in Tables I and II.

Body elongate, head small; caudal peduncle compressed and quite long; anterior dorsal profile slightly concave from base of spinous dorsal to interorbital, straight from this point to tip of snout which is narrow and somewhat pointed; mouth moderately oblique; lower jaw strongly projecting, its tip just entering dorsal outline of head; maxillary extending to a point directly below rear margin of pupil. Teeth as in other species. Gill-rakers at angle of first arch approximately $\frac{1}{2}$ length of eye; longest filaments less than $\frac{1}{2}$ length of eye. Spinous projection of preopercle shallow, well-rounded; no well defined upper and lower horizontal margins, the projection continuous (no sharp change in direction) with upper and lower limbs of preopercle; a single cluster of slightly diverging spines, decreasing in strength very little away from the center, longest at the center. Spinous dorsal outline moderate without a pronounced notch; the 4th spine the longest; 9th and 10th spines subequal about $\frac{9}{3}$ as long as 1 st dorsal soft ray. Soft dorsal

- outline with a distinct posterior slant, the anterior rays the longest. Anal with 3 spines, the 2 nd stronger than and equal to or longer than the 3 rd ; soft margin convexly rounded, the 2 nd ray the longest, posterior tip not acutely pointed. Pectoral obliquely rounded, the 4th through 7 th rays the longest, reaching beyond tip of ventral, but not to anal origin. Caudal nearly truncate, the upper rays slightly longer than the lower.

Color in isopropanot: lowermost sides and belly pale; back and upper sides dark brown with 3 pale horizontal stripes; one, from just back of occiput to just below middle of soft dorsal; a second, from just behind eye to upper part of caudal peduncle, ending in a paler blotch on base of caudal rays; a third, from just above pectoral base to lower part of caudal peduncle; the upper 2 lines continuous and slightly darker than the third which is broken, consisting of a series of $9-10$ very pale blotches interrupted by the darker background; a median pale line on the nape from occiput to base of spinous dorsal. Vague traces of small dark spots on snout and nape. Dark spot on base of caudal rays small (less than $\frac{1}{3}$ depth of caudal at this point) and only slightly if any darker than background color of sides; caudal dusky, the upper and lower rays darker toward their bases. Inner membrane of opercle with a large black area visible externally as a silver spot bordered posteriorly and above by black. A prominent jet black region extending across the membrane between the first four or five dorsal spines, narrowing posteriorly to a dusky stripe which continues the entire length of the dorsal fin. Pectoral and anal pale, translucent, ventral slightly dusky.

## Discussion

The above description ls based on 4 small specimens ( $67-92 \mathrm{~mm}$ ) collected in 1962 and 1964 on the outer coast of Baja California at Bahia Magdalena and Punta del Marquis in shallow water ( 14 fathoms). The presence of these small individuals here leads us to conclude that there exists a viable, reproducing population of D. maximum in this area, as the transport of larvae or juveniles from the only previously noted locality, northern Peru, over 2,000 miles to the south, is unlikely.

These individuals possess at least one very prominent character, the large, jet black region on the anterior portion of the spinous dorsal, which has not been previously described for maximum. This may be a juvenile character, and specimens as small as these have never been described in detail. However, it could represent a real genetic difference between the South American and Baja California populations. The true relationship of these populations cannot be established until a larger number of specimens representing $n$ wider size range from both areas becomes available.

## Range

Known only from Bahia Magdalena and Punta del Marquis, Baja California, and Paita and Lobos de Tiera, Peru (Fig. 3).

## Material Examined

Mexico, Baja California Sur - Bahia Magdalena, SI062-106, 1 (68); SIO62-726, 2 (44-50); SIO64-63, 1 (92); Punta del Marquis, SIO62706, 2 (74).

TABLE 1
Meristic Data for Seven Pacific Species of Diplectrum

|  | Dorsal Soft Rays |  |  | Anal Soft Rays |  |  |  | Lateral Line Scales |  |  |  |  | Pectoral Rays |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11 | 12 | 13 | 6 | 7 | 8 | 9 | 47 | 48 | 49 | 50 | 51 | 15 | 16 | 17 | 18 |
| D. labarum- | 5 | $263^{*}$ | 6 | ${ }^{6} \dagger$ | 1,153* | 96 118 | 3 | 11 | $36^{*}$ |  | $\square$ | - | 2 | 112 | 159** | ${ }_{3}$ |
| D. maximum- | - | 4 | -- | -- | 4 |  |  | -- | $\begin{array}{r}4 \\ 2 \\ \hline\end{array}$ | $\begin{array}{r}15 \\ 2 \\ \hline\end{array}$ |  |  | -- | -- | 19 |  |
| D. euryplectrum- | $\stackrel{1}{2}$ | ${ }_{72} 3$ | $\stackrel{7}{2}$ | -- | 75 | 34 <br> 1 | -- | -- | 15 | 5 16 16 | -- | - | -- | -- | 9 9 29 | $2 \overline{5}$ |
| D. macropoma- | 2 | 39 | -- | -- | 39 | -- | -- | $-7$ | 25 | ${ }^{16}$ | - | - | -- | 1 | ${ }_{36}^{22}$ | $\stackrel{\square}{2}$ |
| D. eumelum--- | -- | $39^{*}$ | -- |  | 39* | -- | -- | 6 | 11 | $20^{*}$ | 2 | .- | -. | 1 | $38^{*}$ | -- |

Gill Rakers on Lower First Arch

|  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 23 | 24 | 25 | 26 | 27 | 28 | -- | -- | -- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D. Labarum | -- | -- | 10* | 29 | 10 | -- | -- | - | $\cdots$ | $\overline{8}$ | 7 |  |  |  | -- | -- |
| D. s. maximum | -- | - | 1 | 2 | -- | -- | -- |  |  | 8 | 7 | 1 | 1 | - | -- | -- |
| D. euryplectrum- | -- | -- |  | - | $\overline{3}$ | 14 | 3 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| D. pecififum-.... | -i | ${ }_{12}^{3}$ | $\stackrel{11}{25}$ | 9 | -- | -- | -- | -- | - | -- | - | - | -- | -- | -- | -- |
| D. eumelum.---- | -. | 13* | 26 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |

- Count of Holotype
$\dagger$ Geographically variable.see species account.

TABLE 3
Comparative Measurements of Seven Pacific Species of Diplectrum in Thousandths of Standard Length

|  | Diplectrum labarum |  |  |  | D. eumelum |  |  |  | D. macropoma |  |  | D), maximum |  |  | D. sciurus |  |  | D) pacifumm |  |  | D: euryplectrum |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IL | X | N | H | R | X | N | H | R | X | N | R | K | N | R | X | N | R | X | N | R | X | N |
| Head length | 361-424 | 387 | 16 | 404 | 373-409 | 388 | 29 | 388 | 354-387 | 370 | 25 | 350-364 | 357 | 4 | 334-385 | 352 | 15 | 346-375 | 361 | 15 | 404-455 | 438 | 10 |
| Eye length-- | 68-97 | 86 | 16 | 81 | 74-97 | 84 | 29 | 81 | 74-90 | 83 | 25 | 83-94 | 90 | 4 | 78-93 | 84 | 15 | 59-91 | 79 | 15 | 94-106 | 97 | 10 |
| Snout length. | 77-108 | 89 | 16 | 93 | $81-100$ | 89 | 29 | 91 | 75-94 | 84 | 25 | 73-79. | 77 | 4 | 75-82 | 78 | 15 | 74-95 | 84 | 15 | 77-107 | 94 | 10 |
| Suborbital width ---- | 3649 | 41 | 16 | 48 | 36-54 | 45 | 29 | 47 | 36-44 | 40 | 25 | 29-37 | 33 | 4 | 21-32 | 27 | 15 | 34-54 | 44 | 15 | 35-51 | 46 | 10 |
| Inte orbital width.-- | 70-81 | 76 | 16 | 73 | 64-80 | 11 | 29 | 76 | 59-73 | 64 | 25 | 69-75 | 71 | 4 | 70-86 | 77 | 15 | 59-76 | 67 | 15 | 78-92 | 85 | 10 |
| M ixillary length | 159-180 | 167 | 16 | 178 | 162-179 | 170 | 29 | 172 | 151-164 | 157 | 25 | 141-155 | 148 | 4 | 130-140 | 135 | 15 | 186-226 | 205 | 15 | 174-200 | 187 | 10 |
| Gr atest body drpth | 272-343 | 305 | 16 | 318 | 234-323 | 292 | 29 | 309 | 287-346 | 310 | 25 | 238-266 | 251 | 4 | 258-306 | 283 | 15 | 247-315 | 279 | 15 | 272-313 | 290 | 10 |
| Cajdal peduncle $\qquad$ <br> C udal peduncle | 113-128 | 117 | 16 | 119 | 115-133 | 125 | 29 | 130 | 131-146 | 138 | 25 | 113-122 | 118 | 4 | 94-115 | 104 | 15 | 116-135 | 126 | 15 | 95-107 | 102 | 10 |
| length.... | 194-238 | 222 | 16 | 220 | 203-244 | 220 | 29 | 220 | 202-243 | 224 | 25 | 242-276 | 253 |  | 201-245 | 219 | 15 | 225-269 | 245 | 15 | 189-216 | 205 | 10 |
| Pectoral length.- | 248-276 | 263 | 16 | 250 | 261-299 | 277 | 29 | 278 | 254-295 | 278 | 25 | 223-239 | 234 | 4 | 236-270 | 128 | 15 | 233-266 | 249 | 15 | 247-271 | 259 | 10 |
| Pelvic length.------ | 193-262 | 216 | 16 | 217 | 198-228 | 212 | 29 | 203 | 178-223 | 206 | 25 | 185-218 | 205 | 4 | 204-229 | 251 | 15 | 186-226 | 205 | 15 | 202-235 | 218 | 10 |
| Pelvic spine length .- | 102-148 | 122 | 16 | 113 | 87-143 | 126 | 28 | 117 | 111-140 | 126 | 25 | 110-117 | 112 | 4 | 102-129 | 117 | 15 | 76-117 | 103 | 15 | 88-130 | 103 | 10 |
| Longest dorsal spine. | 159-225 | 194 | 10 | 225 | 130-163 | 146 | 25 | 147 | 141-170 | 155 | 20 | 1.16-157 | 151 | 4 | 137-157 | 146 | 14 | 119-152 | 142 | 14 | 135-164 | 148 | 10 |
| Shortest dorsal spine | 78-107 | 95 | 16 | 91 | 99-121 | 108 | 28 | 100 | $80-101$ | 90 | ${ }_{2} 23$ | 96-106 | 101 | 4 | 95-112 | 104 | 15 | 88-106 | 96 | 15 | 98-121 | 108 | 10 |
| Second anal snine | 56-88 | 71 | 16 | 67 | 53-76 | 65 | 29 | 67 | 53-69 | 62 | 25 | 98-109 | 101 | $t$ | 53-63 | 57 | 15 | 49-76 | 62 | 15 | 53-82 | 66 | 10 |
| Third anal spine. - | 78-115 | 94 | 16 | 89 | 74-107 | 95 | 27 | 91 | 80-115 | 95 | 23 | 92-100 | 96 | 4 | 77-90 | 84 | 15 | 69-93 | 81 | 14 | 75-95 | 86 | 10 |
| First dorsal ray -- | 115-15i | 140 | 16 | 129 | 140-185 | 154 | 29 | 149 | 146-181 | 160 | 24 | 150-163 | 157 | 4 | 138-150 | 144 | 15 | 129-163 | 140 | 15 | 131-162 | 140 | 10 |
| Longest anal ray- | 129-156 | 141 | 16 | 136 | 137-163 | 150 | 29 | 150 | 134-181 | 153 | 25 | 144-165 | 153 | 4 | 122-136 | 128 | 15 | 120-154 | 137 | 15 | 129-149 | 138 | 10 |
| Standard lengths. | 82-211 |  | -- | 176 | 99-210 |  |  | 129 | 75-144 |  | -. | 68-92 |  |  | 96-134 |  |  | 77-226 | -. | -- | 83-137 |  | -- |

CALIFORNIA FISII AND GAME

TABLE 2
Cheek Scale Counts for Seven Pacific Species of Diplectrunt


While this paper mas in press an additional species, Diplectrum rostrum (Bortone, Copeia 1974 (1): 61-65) was described from the eastern Pacific. D. rostrum may be distinguished from the species treiated by us by the following combination of characters: Gill rakers $22-25$, anal softrays usually 7 , two light bands across snout below eye, black mark on operculum present. In overall appearance, D. rostrum is most similar to D. pacificum.
L.Iterature Gited

Grifflths,R,C, 1988. Physlcal, chemical, ant Diologleal oceanography of the
entrance to the Gulf of Califormia, spring of 19e0. U. S. Fish and wildt.
Scrv. . Spec. Sct. Rept. Fishertes 573: 1-40.
Qunther. A.C.L. G 18s4. Report of a collection of flshes made by Messras.
Dew. Godman. and Salvin th Guaternata, Fore. Zool. Soc. Lond.
144-154.
Hlldebrand, S.F. 1946. A deseript lve catalog d the shore fisthes of Peru. Bull. U.5. Nat. Mus. . 189: 1-530.
$\qquad$ - 1948_ A new germs a d five new species of American
fishes. Smithsonlan Mise. Coll. 110 ( 3 ): 1-45
Hubbs, C. L and K. Lagler. 1959. Flshes of the Great Lakes region. Cranbrook Inst. Sci.. Bult. 26. $213 \rho$.

Jondan.D.S. and C. H. Efgenmarex. 1688 A review of the genera and spectes of Serranidae found in the waters o* Amerines wal Eurchpe. Bull. U. 5. Fish Comm. B(9): 329-44.
$\qquad$ and !3. W. Evermam. t0xto. The fishes of North and Middle America. Eull. U.S. Nat, Mis., 47: 1-240,

Neek, S. E. and S. F, Hildebrant. 1925. Tix marine fistws of Pamam, Part 111. Ficld mis. Nat. Hist. (Zool), 15: 33-707.

Tate, M. W. and R. C. Clelaud. 1957. Nomparametric ard shortcut statiantis In the social. butogical. and nuedical scierves. Interstate printers and Rublishers. Darville, itinois. 171 p,

Walford, L.A. 1937, Marlive garme fishes of the Paclfic const from Alasha Io the mpuator. Univ. C:alif. Press, iberkeley. 2030 .


[^0]:    ${ }^{1}$ Accepted for publication April 1974.

