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In one variant or another, the question, “can a machine think,” has occupied the 

attention of philosophers and others for centuries, stimulated from time-to-time by the 

emergence of ingenious mechanisms which suggested at least the possibility of an 

affirmative answer. 

 

Machines Which (Who?) Play Chess 

 

Such a mechanism caught the public’s attention 1809.  The Emperor Napoleon I, 

a chess player certainly of prominence and reportedly of ability, lost a chess game in 15 

moves to a seeming thinking machine; a clockwork automaton known as “the Turk.”  

Reports of the time say that Napoleon “angrily stalked from the room.”  The Turk, named 

for one of its component parts, a mannequin dressed in elegant Turkish attire, was built 

for the Empress Maria Theresa in 1769 by the Baron von Kempelen, a Hungarian 

engineer.  The machine consisted of the mannequin, whose mechanical arm moved the 

chess pieces, and a cabinet at which the mannequin sat.  Inside the cabinet was a shining, 

brass clockwork mechanism.  This mechanism was supposed to be responsible for 

deciding the automaton’s moves and for positioning the mannequin’s arm.  The cabinet 

was opened for inspection before each game to convince the audience that the mechanism 

was all that it contained. 

 

The Turk did not win every game but it won enough to establish a reputation as a 

player of rank.  Its success gave rise to much speculation about how a cabinet full of 

gears could successfully compete with well-known human chess masters.  How could this 

clockwork mechanism think?  In fact, it couldn’t.  The Turk was a magician’s illusion; 

the cabinet cleverly designed to conceal a human chess player. 

 

Now, fast-forward some 188 years to 11 May 1997.  Another prominent chess 

player, grandmaster and world champion Gary Kasparov has lost the sixth game and the 

match to a machine; but this automaton was no illusion.  A creation of silicon and 

software (not brass gears), special purpose computer hardware, and clever instructions 

encoding the insights of skilled players, IBM’s Deep Blue was the first machine to defeat 

a world champion.  Within the limits imposed by the game, this machine seemed to think.  

Observers commented on its style of play almost as if they regarded it as human. 

 

For many people, the outcome of this chess match between human and machine 

signaled the beginning of a major change in the way we view ourselves and our place in 

the universe.  Chess has long been regarded as the most cerebral of games.  The ability to 

play chess well has always been considered a hallmark of human logic and reasoning.  
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Now we have a machine that solves a problem that we have always solved with human 

intelligence.  Suddenly, there appears to be a whole range of activities which had been 

the sole province of humans that is now open to computers.  If a computer can unseat the 

world’s best chess player, some wondered “How long will it be before I lose my seat 

down at the office?” 

 

So Deep Blue plays a mean game of chess.  What else can it do?  Essentially 

nothing; but there are a very large number (tens of thousands?) of less well-known 

computer programs from the field of artificial intelligence (AI) with performance equally 

impressive in their areas as Deep Blue’s.  Each of these, like Deep Blue, captures in some 

limited way elements of intelligent behavior.  There are programs that:  play Chess, 

Backgammon, Go, and Bridge; solve word problems; detect credit card fraud; design jet 

engines and computer systems; pick stocks; troubleshoot machinery; find information on 

the World Wide Web; target advertising; screen loan applicants; monitor compliance of 

Bosnian combatants with arms restrictions; predict chemical reactions; make medical 

diagnoses; reduce emissions from an electric generating plant; daily schedule 100s of 

telephone repair personnel; screen pap smears; simulate production from an oil reservoir; 

conduct logistics planning for Operation Desert storm; control a process to make soup; 

detect violations of The Nuclear Test Ban Treaty; read handwriting; write poems; 

compose music; help explore Mars; paint a picture; prove mathematical theorems; and , 

in 1995, drove a car autonomously from Washington, D.C. to San Diego, California. 

 

It would appear that some of those “seats down at the office” are indeed now 

occupied by computers.  Yet somehow, none of these AI applications, impressive and 

useful as they are, would be called “intelligent’ in the general, human sense.  They do 

beautifully in their niches, but our common sense concept of intelligence requires 

something more. 

 

How Do We Know If We Have It? 

 

 But how do we measure intelligence?  This is a remarkably difficult issue.  

Common sense notions of intelligence are based on observations of behavior with the 

belief that the more complex the behavior, in some sense, the more intelligent the animal.  

The most complex human behavior is the use of language.  Animals communicate, and 

studies of animal intelligence with data on such animals as:  mantis shrimp, lobsters, 

horseshoe crabs, octopi, and sea anemones (as well as the more traditional studies of rats, 

mice, birds and of course, primates) show that they also exhibit other complex behavior.  

This research illustrates that whatever intelligence is, it exists to some degree across a 

wide range of organisms.  But there is a qualitative difference between the ability of 

humans and that of animals to communicate.  A clear and major difference exists; 

animals do not possess anything remotely like human language skills.  The test for 

intelligence devised in 1950 by the British mathematician Alan M. Turing focuses on 

behavior which requires language skills. 

 

 The essence of the Turing test is a conversation, via a teletype, on any topic 

whatsoever, between a person, a computer, and a judge (a human).  The judge’s goal is to 
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decide which of the respondents is human.  If a computer, said Turing, could answer so 

as to convince the judge that it is a person (not a computer) then for all practical purposes 

the computer could be said to “think.”  More recently, the test is thought of as perhaps 

using speech instead of a teletype, and perhaps including some requirements for image 

understanding.  No AI program has come close to passing the Turing test. 

 

 The philosopher John Searle of the University of California, Berkeley, has raised 

one of the most interesting and contentious philosophical arguments against the 

“sufficiency” of the Turing test and indeed against artificial intelligence.  Searle asks us 

to imagine that he sits in a room with a slot in the door through which come slips of paper 

with questions written in Chinese characters.  Searle does not understand Chinese but he 

has in the room with him a code book of instructions in English, which tell him how to 

develop answers.  He follows the instructions, prepares the answer in Chinese, and 

pushes it through the slot.  The answer makes sense to the Chinese speakers outside.  

Now to his outside observer, the “room” appears to understand Chinese.  Searle, 

however, was just following formal rules and was completely ignorant of the meaning of 

either the questions or the answers.  He concludes, since he knows he does not 

understand Chinese, that mere symbol manipulation, although producing the appearance 

of intelligence to the outside observer, cannot produce understanding or awareness in the 

mechanism doing the manipulation, in this instance Searle himself.  What Searle is 

saying is that if he does not understand Chinese solely on the basis of running a computer 

program for understanding Chinese (the instructions in the code book), then neither does 

any digital computer.  Digital computers says Searle “merely manipulate formal symbols 

according to rules in the program.”  He continues:  “What goes for Chinese goes for other 

forms of cognition as well.  Just manipulating the symbols is not by itself enough to 

guarantee consciousness, cognition, perception, understanding, thinking, and so forth.” 

 

 Searle also links intelligence and consciousness, suggesting that conscious 

intentionality is the essence of intelligent behavior.  Marvin Minsky of MIT, one of the 

founders of AI, believes that consciousness, specifically emotion, is critical for setting 

and changing goals; clearly an important part of intelligent behavior.  Others have no 

difficulty in separating intelligence from consciousness.  One author says “it’s a lot easier 

to imagine the possibility of an intelligent computer than it is to imagine the possibility of 

a conscious computer or a computer with a free will.” 

 

Why Do We Believe We Can Construct A “Thinking Machine?” – What A Computer Can 

And Cannot Do 

 

 We now know that we can make computers excel on limited problems such as 

recognizing speech (if it is grammatical and carefully pronounced), scheduling a factory, 

recognizing a particular object in a scene, designing a jet engine, or even performing a 

complex medical diagnosis.  But we are very far from creating a computer which can 

pass an unrestricted Turing Test.  As one writer put it, “computers have mastered 

intellectual tasks, such as chess and integral calculus, but they have yet to attain the skills 

of a lobster in dealing with the real world.”  Given the gap between these niche 

capabilities and the requirements of the unrestricted Turing Test, why do we think 
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computers may have the “right stuff?”  The reasons are among some of the most 

significant philosophical concepts of the late 20
th

 century. 

 

 The philosophy which dominated thinking about the mind for almost three 

centuries is called Cartesian dualism; the position first set forth by the French 

mathematician and philosopher Rene Descartes in the early 1600s, that there are two 

kinds of substances in the world: mental and physical or immaterial “mind stuff” apart 

from material substance.  If we held this belief today, there would be little reason to 

suppose we could make much progress creating intelligence using a computer.  Today, 

most philosophers instead argue that the mind (and intelligence) is an emergent property 

of material processes at the micro-level.  This suggests that if we simulate the brain at the 

right level of detail, mind and intelligence may also emerge from the simulation.  The 

open issue is how far down in the structure do we have to go?  Can we get, by simulating 

brain processes, at the higher “psychological” level or do we require lower-level neuro-

physiological detail? 

 

 What we know of the brain suggests it is almost unimaginably complex.  It 

contains approximately 100 billion neurons, of different types, densely interconnected 

with each neuron linked to 10s of thousands of others.  By contrast, a snail has about 

1,000,000 neurons, a bee about 600,000 and a laboratory rat about 65 million.  But a 

brain is much more than neurons.  The neurons, and other types of cells, are immersed in 

a complicated chemistry which they influence and which affects them.  The correct way 

to think of the brain is as a complex, dynamic, non-linear chemical system, not just as a 

network of neurons.  Why do we think, even in principle, without for the moment 

considering the formidable practical issues, that we can simulate this?  The answer 

requires examining the theoretical limits of computation; limits on what a computer can 

do. 

 

 The concept of computation was first formalized by Alan Turing in 1935, well 

before there were electronic computers.  Turing’s goal was to formalize some intuitive 

concepts of methods for mathematical reasoning.  To do this, he employed a mechanical 

metaphor which is called the Turing machine.  It consists of an infinite tape, a sensing 

head for reading and writing symbols on the tape, and a control box with a finite number 

of internal states.  In the control box is a table (the software program) which the machine 

uses to determine what action to take.  For each possible state of the control box, and for 

each possible symbol being read by the sensing head, the table has an entry which tells 

the machine what symbol to print on the tape, in which direction to move the sensing 

head along the tape; and which state to enter next.  So imagine the head scooting back 

and forth along the tape reading and writing symbols.  Thought of this way, the Turing 

machine is simply a device for transforming one string of symbols into another string 

according to a predetermined set of rules; the table in the control box.  The advantage of 

the Turing Machine is not as an actual device to do computation but to clarify operations 

masked in real computers.  However, your personal computer (as well as the largest 

supercomputer) are Turing Machines at their core.  The simplicity of the Turing Machine 

helps people establish theoretical limits on the ultimate problem-solving capabilities of 

real computers.  One such result, called the Church-Turing thesis, is that if anything can 
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be computed at all, it can be computed by a Turing Machine.  No physical process is 

known to exist that can be used to build a device computationally more powerful than a 

Turing Machine.  The Church-Turing Thesis is called a thesis, not a theorem, because it 

is not amenable to proof.  Nevertheless, it is believed by most mathematicians; no 

evidence to the contrary has turned up. 

 

 There are things which a Turing machine cannot do.  There are numbers which 

are uncomputable, numbers which a Turing machine cannot generate even by executing 

an infinite number of steps.  Most people believe that uncomputability is not important in 

real-world processes.  Thus, if we describe real-world processes (like the functioning of a 

neuron in a brain) by the appropriate equations, those equations can be solved/computed, 

by a Turing machine given sufficient time.  So if you accept that the brain is a physical 

process, that there is no mysterious “mind stuff,” then in principle it can be simulated by 

a Turing machine.  To restate the Church-Turing Thesis:  the brain is a physical process, 

physical processes are computable, all computable processes can be computed by a 

Turing Machine (or any digital computer). 

 

 If you wish to simulate such features of intelligence/consciousness as playing 

chess or doing symbolic integration, then a relatively coarse level of simulation, a 

psychological-level, will likely suffice.  If you wish to have creativity, emotional 

responses, an aesthetic sense, or even self-awareness, then a very fine-grained, 

neurophysiological-level simulation will likely be required, and the end may only be 

realized when we have totally duplicated a living brain; either as a simulation or in some, 

perhaps organic, type of “hardware.” 

 

 Not everyone agrees that simulation is the answer.  John Searle argues that a 

simulation of a process is not that process.  A simulation of an airplane does not fly; a 

simulation of the digestive process does not digest.  Searle believes that consciousness 

emerges as a result of natural processes, but that simulation and computation cannot 

themselves create consciousness. 

 

 AI is based on faith that there are significant features of intelligence which can 

“be floated on top of entirely different sorts of substrates than those of organic brains.”  

This is a consequence of the Church-Turing thesis.  The computing hardware doesn’t 

matter; silicon, Tinkertoys (MIT students built a Tic-Tac-Toe playing computer out of 

Tinkertoys), or living neurons are all computationally equivalent.  But Searle claims the 

“hardware” does make a difference, and to achieve intelligence or consciousness we will 

have to replicate some of the organic processes themselves.  Some counter by saying that 

a simulation of information processing is information processing.  A simulation of two 

plus two still comes out four.  Intelligence comes about through information processing, 

the argument goes, so a simulation of information processing can yield intelligence.  That 

is, the simulation captures causality.  It is difficult to confirm or refute Searle’s position 

on philosophical grounds.  Ultimately, it and other positions will be decided empirically. 

 

 Another class of objections is raised by the British mathematician and physicist 

Roger Penrose.  He bases this on his conviction that mathematicians can solve problems, 
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which by a theorem proven by the mathematician Kurt Gödel, can have no guaranteed 

algorithmic solution.  He therefore concludes that humans use non-algorithmic or 

uncomputable processes to solve these problems.  Penrose argues at length and 

persuasively, but the argument may be flawed.  Deep Blue is an algorithm which, 

although it does not guarantee a solution to the chess problem (a sin), still wins an 

impressive number of games.  Humans often seem to use heuristics, rules-of-thumb, to 

attempt solutions.  Like the algorithm underlying Deep Blue, these don’t guarantee a 

solution, but nevertheless often produce one.  The Gödel theorem speaks of algorithms 

which always guarantee a solution.  The answer may be that humans succeed on these 

Gödel problems not through the use of incomputable (non-Turing) processes but through 

the use of heuristics.  This doesn’t rule out the possibility that humans may also use 

incomputable processes, but it seems to make it less likely.  On the other hand, Penrose 

may be correct; in which case intelligence through computation will be unachievable. 

 

Means to an End 

 

Approaches to try to realize the potential in the Church-Turing Thesis fall into 

three categories:  Symbolic (“Model the Mind”), Connectionist or Artificial Neural 

Systems (“Model the Brain”), and a relatively new body of practice grouped under the 

heading of Artificial Life (“Model Evolution”). 

 

Symbolic AI systems are designed and programmed “Top Down,” rather than 

trained or evolved.  They tend to be propositional using a list of rules and facts to 

simulate a general psychological theory of some aspect of intelligence, or to simulate the 

application of knowledge in some specific area of expertise; there are systems that 

simulate “reasoning,” systems that simulate “knowing,” and systems which do both.  A 

common approach used in symbolic AI is the production system.  It generally has three 

parts:  a list of rules of the form IF-THEN, called production rules or productions; a 

control mechanism used to decide when and how to apply a given rule; and a working 

memory, a ‘blackboard’ where the results of rule activations or “firings” are posted.  An 

IF-THEN rule representing facts might look like the following:  If an animal has pointed 

teeth and if an animal has claws and if an animal has forward eyes, then the animal is 

likely a carnivore.  A rule is “fired” when the IF-clauses are satisfied, and the results of 

the firing, the “THENs,” are posted on the “blackboard.”  These results may be taken up 

by the IF-clauses of other rules causing them to fire in-turn.  A typical production system 

will have thousands of rules.  Many of the niche application examples cited earlier are 

based on production systems.  Deep Blue incorporates production rules to evaluate the 

strategic worth of chess positions. 

 

Production systems and other methods used in symbolic AI have been much less 

successful in more general problem solving; among the reasons is a lack of commonsense 

knowledge which, for example, would lead a system doing medical diagnoses to 

prescribe smallpox treatment for a car with rust spots.  The number of “facts” which 

make up the body of commonsense knowledge is immense; probably millions of rules to 

represent enough knowledge so that new concepts could be “explained’ in terms of 

previous rules and so that the system could “bootstrap” itself.  A system exhibiting 
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intelligence would also likely require additional millions of rules, describing reasoning 

processes.  Aside from the fact that we don’t understand these processes, the effort 

required to write such a program and to get it to work reliably poses a practical problem 

we don’t know how to solve.  A possible way around this problem is to create systems 

which can learn.  While symbolic systems which learn can be constructed, they tend not 

to scale well; the more rules they learn, the slower they run.  It is tempting to believe that 

the doubling of computational power every 18 months will solve this problem, but 

experience to date suggests that is unlikely.  Symbolic approaches may also have a 

fundamental flaw; critics argue that rules and other symbolic means are only rough 

approximations of sub-symbolic processes underlying intelligence, and that to obtain 

intelligence these processes must be included. 

 

Problems with scaling-up symbolic systems and concern about what they might 

have left out gave rise to the connectionist or artificial neural system approach, based on 

studies of the brain’s architecture.  The most salient characteristic of the brain is the 

dense interconnection among the neurons.  Perhaps, the “hardware” does matter to some 

degree, and if many simple processors representing neurons were densely interconnected, 

brain-like behavior might result without writing millions of lines of code.  Intelligence 

might spontaneously emerge from the interactions of many simple processors. 

 

To investigate the connectionist of artificial neural system hypothesis, 

mathematical models loosely approximating some of the features of animal nervous 

systems have been constructed; these are largely limited from a few hundred to a few 

thousand “neurons” which are interconnected by links with variable weights or strengths.  

The neurons are generally modeled as a simple thresholding function.  If the weighted 

sum of inputs to a neuron exceeds some set threshold value, the neuron fires and outputs 

a signal which goes to all those neurons to which it is connected.  It is hard to see how 

such a simple process can give rise to complex behavior, but remarkable performances 

have been obtained; one neuron can’t do much but networks of neurons can do a lot. 

 

 The key point about artificial neural systems is that they are trained, not 

programmed; they learn.  Machines that learn are absolutely crucial to obtaining 

intelligent behavior.  It is impossible to program in everything a machine must know to 

pass the Turing test or do much else.  Deep Blue does not learn.  If the size of the chess 

board were changed, another row or column added, or if some of the chess places were 

given additional moves, Deep Blue would be lost but a human would learn to cope.  

Learning in a neural net takes place by changing the pattern of weights which determines 

its response.  Information is likewise stored in patterns of weights distributed across the 

net.  Artificial neural systems excel at pattern recognition whether the pattern is visual, or 

exists in more abstract data.  They do less well, thus far, in solving problems requiring 

explicit rational or logical thought where symbolic systems excel.  The remarkable thing 

about artificial neural systems is that so much performance has been obtained out of 

(relative to the brain) ridiculously simple systems.  

 

 Mathematicians describe complex systems as ones which are composed of very 

large numbers of interesting parts.  The brain certainly qualifies.  A characteristic of 
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complex systems is that they have emergent properties; properties which occur suddenly 

when a certain level of complexity is reached, and whose emergence could not have been 

predicted form knowledge of the parts and the interactions.  Simulating at most a few 

thousand very simple neurons is well below the level of complexity at which intelligence 

might kick in.  A single neuron doesn’t think and isn’t conscious, yet the brain does and 

is. 

 

 To explore the potential of artificial neural systems, and to see if intelligence will 

emerge at some level of complexity, will require the capability to simulate very large 

number of neurons and their interconnections.  But numbers alone are not sufficient; it is 

necessary to model the neuron itself in more detail.  To move beyond the simple 

caricature of thresholding and capture much more of the complexity inherent in the 

functioning of the biological neuron, and to acknowledge there are many different kinds 

of neurons. 

 

 Constructing a machine which might think using a connectionist approach now 

seems to be a hardware as well as a software problem; today’s computers can’t handle the 

required calculations in a reasonable time. 

 

 What is the size of the simulation problem?  The human brain has about one-

hundred billion neurons; by some reckoning it processes information at a rate of about a 

million-billion bits/sec (10
15

) to 10 billion-billion bits/sec (10
19

).  It is much slower than a 

computer at the “component” level, but more than compensates with massive parallelism.  

The best simulations run at about 10 to 100 billion (10
10

–10
11

) bits/sec.  The difference in 

performance is somewhere between a factor of 10,000 (10
4
), to one of 1,000 million 

(10
9
).  If computer performance continues to double every 18 months, this difference will 

be erased somewhere between the years 2020 and 2040 without making any far-fetched 

assumptions about technology.  That certainly will not automatically result in human 

intelligence, but it does suggest that if we understand enough about brain functioning, the 

computer capacity will exist in one form or another to exploit that understanding.  But 

what it is we don’t have is that level of understanding? 

 

 How, if we don’t understand something can we replicate it?  The answer leads us 

to the third approach to AI, derived from the relatively new discipline of artificial life.  

Artificial life started with the mathematician John von Neumann’s work on self-

reproducing automata and focuses on the simulation of biological processes.  Two of 

these are key to creating an artificial nervous system:  directed evolution and self-

organization. 

 

 Directed evolution is a way to artificially speed up the process of evolution, and 

to direct the process toward an explicit goal; in this case, intelligence.  One way to use it 

is to evolve the software we need to simulate a nervous system.  We put code 

representing the functions of all the things we believe may be important to intelligence in 

a simulation.  We randomly create some variants of these, run the simulations, pick some 

winners, let them “breed” (i.e., exchange some code), create offspring, throw in some 

mutations, and repeat the process.  While this sounds simpler then it is, it captures the 
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essential ingredients of the process.  It has been used to create solutions to some very 

hard problems, but never on this scale.  On the surface, this is what mathematicians 

would call an intractable problem; you not only have to simulate a nervous system, you 

have to simulate a large family of candidate systems, and do it perhaps thousands of 

times.  We have now far outstripped the projected capabilities of computer technology.  

A possible solution may lie in using directed evolution on hardware and evolving a 

nervous system directly. 

 

 Imitating a nervous system in hardware is an enormous challenge.  It may be that 

silicon itself, the stuff of chips, is unsuitable and that proteins or some other bio-material 

might be preferable.  Two points seem clear:  first, whatever the material, the system is so 

complex, containing perhaps millions of neurons, that it will likely have to be constructed 

by harnessing the capacity of some materials or components to self-organize or self-

assemble into higher-order systems using instructions implicit in the components.  

Having to somehow otherwise connect up these neurons individually, as is done in 

semiconductor fabrication, seems impossible; particularly so when you realize that the 

architecture of the interconnections themselves is shaped by learning.  You can’t really 

specify all those connections in advance.  Second, the self-organization would be pushed 

in a particular direction favoring intelligence, using directed evolution. 

 

 Two brief examples to suggest possibilities:  first, a number of researchers have 

used self-organization to grow rat hippocampal neurons in patterns to form simple 

“circuits.”  Second, researchers at the University of Sussex have used directed evolution 

to evolve novel digital circuits.  This is done by taking advantage of a type of integrated 

circuit called a field-programmable gate array in which connections among components 

on the chip are under software control.  Very recently, other researchers, using the same 

technology, have started to evolve artificial neural systems in hardware. 

 

Can A Machine Think? 

 

 There are good reasons to believe a sufficiently complex machine could one day 

pass the unrestricted Turing test.  Whether or not that constitutes sufficient proof of 

intelligence or consciousness, will be the subject of continuing philosophical debate.  

Machines have been created (e.g., Deep Blue) which outperform humans in many niche 

areas.  Some make extensive use of the particular strengths of computers such as rapid 

search and large memory, while others try to simulate human problem-solving or some of 

the machinery of the brain.  Some of Deep Blue’s predecessors tried to reproduce the 

methods of human grandmasters, i.e., recognizing key configurations of pieces of the 

board.  Deep Blue relies more on massive and rapid searches of possible sequences of 

moves. 

 

 While it is not possible to predict which of the three major approaches to artificial 

intelligence might be the basis for an intelligent machine (perhaps all of them will be 

incorporated to some degree), it seems a safe bet that a major component will resemble 

the functioning of a human brain at the level of individual neurons.  If we can simulate 

the functioning of the brain at a deep level, the resulting network would literally be a 
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tabula rasa, a blank mind.  It would not show intelligence nor consciousness unless it 

was subjected to experiences similar to those of a human brain.  It must be able to 

investigate the environment around it, interact with that environment, and learn common 

sense and all the other things which contribute to intelligence, since you cannot directly 

program in intelligence.  In the nearer-term, the pursuit of machine intelligence will 

continue to yield large benefits; we will be able to talk to our computers to dictate E-mail 

or documents, to command intelligent software agents to find information for us, and 

generally interact naturally with a variety of increasingly more complicated devices using 

spoken language. 

 

 There is no way to predict the impact of machines learning true intelligence; the 

only way to find out is to try and construct them.  We may fail, but as we try we will 

learn much that is valuable about ourselves, and the brain that makes us human.
 


