Amoebophrya ceratii (Koeppen) Cachon is an obligate parasite of dinoflagellates and may represent a species complex. However, little is known about the biology and host range of different strains of Amoebophrya Cachon. Here, we determined parasite generation time and dinospore infectivity, survival, and ability to infect nonprimary hosts for strains of Amoebophrya from Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup, Gymnodinium in striatum (Freudenthal et Lee) Coats comb. nov., and Karlodinium micrum (Leadbeater et Dodge) J. Larsen. Akashiwo sanguinea was readily infected, with parasite prevalence reaching 100% in dinospore:host inoculations above a 10:1 ratio. Parasitism also approached 100% in G. in striatum, but only when inoculations exceeded a 40:1 ratio. Karlodinium micrum appeared partially resistant to infection, as parasite prevalence saturated at 92%. Parasite generation time differed markedly among Amoebophrya strains. Survival and infectivity of dinospores decreased over time, with strains from G. in striatum and A. sanguinea unable to initiate infections after 2 and 5 days, respectively. By contrast, dinospores from Amoebophrya parasitizing K. micrum remained infective for up to 11 days. Akashiwo sanguinea and G. in striatum were not infected when exposed to dinospores from nonprimary Amoebophrya strains. Karlodinium micrum, however, was attacked by dinospores of Amoebophrya from the other two host species, but infections failed to reach maturity. Observed differences in host–parasite biology support the hypothesis that Amoebophrya ceratii represents a complex of host-specific species. Results also suggest that Amoebophrya strains have evolved somewhat divergent survival strategies that may encompass sexual/ heterotrophic dinoflagellate blooms in several marine systems (Cachon 1964, Taylor 1968, Nishitani and Chew 1984, Coats et al. 1996). Outbreaks of these parasites have been linked to declines of dinoflagellate blooms in marine environments, parasitic dinoflagellates of the genus Amoebophrya Cachon and the perkinsozoa Parvilucifera infectans Norën et Moestrup infect numerous taxa of photosynthetic and heterotrophic dinoflagellates, including several toxic species (Coats 1999, Norën et al. 1999). Dinoflagellates serve as hosts for a variety of intracellular symbionts, including viruses, bacteria, fungi, and protists (Elbrächter and Schnepf 1998, Norën et al. 1999, Tarutani et al. 2001). Bacteria that inhabit the cytoplasm and/or nucleus of dinoflagellates are generally believed to have a commensal or mutualistic relationship with their host (Silva and Franca 1985, Doucette et al. 1998); however, Kirchner et al. (1999) recently linked bacterial infections with decreased growth of Noctiluca scintillans (Macartney) Kofoid and Swezy, suggesting that some bacteria–dinoflagellate associations may be parasitic. Most other intracellular symbionts of dinoflagellates are clearly parasitic and have marked effects on host survival and reproduction (Elbrächter and Schnepf 1998). Parasite-induced mortality and associated decreases in reproduction can have strong influences on dinoflagellate population dynamics. For example, fungal parasites cause major losses of cysts and vegetative cells of the freshwater dinoflagellate Ceratium hirundinella (O. F. Müller) and thereby contribute to short-term and the long-term reductions in host density (Canter and Heaney 1984, Sommer et al. 1984, Heaney et al. 1988). In marine environments, parasitic dinoflagellates of the genus Amoebophrya Cachon and the perkinsozoa Parvilucifera infectans Norën et Moestrup infect numerous taxa of photosynthetic and heterotrophic dinoflagellates, including several toxic species (Coats 1999, Norën et al. 1999). Dinoflagellates serve as hosts for a variety of intracellular symbionts, including viruses, bacteria, fungi, and protists (Elbrächter and Schnepf 1998, Norën et al. 1999, Tarutani et al. 2001). Bacteria that inhabit the cytoplasm and/or nucleus of dinoflagellates are generally believed to have a commensal or mutualistic relationship with their host (Silva and Franca 1985, Doucette et al. 1998); however, Kirchner et al. (1999) recently linked bacterial infections with decreased growth of Noctiluca scintillans (Macartney) Kofoid and Swezy, suggesting that some bacteria–dinoflagellate associations may be parasitic. Most other intracellular symbionts of dinoflagellates are clearly parasitic and have marked effects on host survival and reproduction (Elbrächter and Schnepf 1998). Parasite-induced mortality and associated decreases in reproduction can have strong influences on dinoflagellate population dynamics. For example, fungal parasites cause major losses of cysts and vegetative cells of the freshwater dinoflagellate Ceratium hirundinella (O. F. Müller) and thereby contribute to short-term and the long-term reductions in host density (Canter and Heaney 1984, Sommer et al. 1984, Heaney et al. 1988). In marine environments, parasitic dinoflagellates of the genus Amoebophrya Cachon and the perkinsozoa Parvilucifera infectans Norën et Moestrup infect numerous taxa of photosynthetic and heterotrophic dinoflagellates, including several toxic species (Coats 1999, Norën et al. 1999). Outbreaks of these parasites have been linked to declines of dinoflagellate blooms in several marine systems (Cachon 1964, Taylor 1968, Nishitani and Chew 1984, Coats et al. 1996). Dinoflagellates serve as hosts for a variety of intracellular symbionts, including viruses, bacteria, fungi, and protists (Elbrächter and Schnepf 1998, Norën et al. 1999, Tarutani et al. 2001). Bacteria that inhabit the cytoplasm and/or nucleus of dinoflagellates are generally believed to have a commensal or mutualistic relationship with their host (Silva and Franca 1985, Doucette et al. 1998); however, Kirchner et al. (1999) recently linked bacterial infections with decreased growth of Noctiluca scintillans (Macartney) Kofoid and Swezy, suggesting that some bacteria–dinoflagellate associations may be parasitic. Most other intracellular symbionts of dinoflagellates are clearly parasitic and have marked effects on host survival and reproduction (Elbrächter and Schnepf 1998). Parasite-induced mortality and associated decreases in reproduction can have strong influences on dinoflagellate population dynamics. For example, fungal parasites cause major losses of cysts and vegetative cells of the freshwater dinoflagellate Ceratium hirundinella (O. F. Müller) and thereby contribute to short-term and the long-term reductions in host density (Canter and Heaney 1984, Sommer et al. 1984, Heaney et al. 1988). In marine environments, parasitic dinoflagellates of the genus Amoebophrya Cachon and the perkinsozoa Parvilucifera infectans Norën et Moestrup infect numerous taxa of photosynthetic and heterotrophic dinoflagellates, including several toxic species (Coats 1999, Norën et al. 1999). Outbreaks of these parasites have been linked to declines of dinoflagellate blooms in several marine systems (Cachon 1964, Taylor 1968, Nishitani and Chew 1984, Coats et al. 1996).
bophrya} from different host species (Gunderson et al. 2000). Thus, the possibility of using parasites to control harmful algal blooms is now receiving renewed attention (Anderson 1997, Norén et al. 1999, Erard-Le Denn et al. 2000).

Species of Amoebophrya that infect dinoflagellates have a relatively simple life cycle, consisting of an infective dispersal stage, the dinospore, an intracellular growth stage, the trophont, and an extracellular reproductive stage, the vermiform (Cachon 1964, Cachon and Cachon 1987). Dinospores are small (8–10 μm long) biflagellate cells that attach to the surface of host organisms, penetrate through the host pellicle, and develop into trophonts either in the cytoplasm or in the nucleus of the host, depending on the species of dinoflagellate being infected (Cachon 1964, Park et al. 2002). The trophont stage grows inside the host for 2–3 days (20–23°C; Coats and Bockstahler 1994, Yih and Coats 2000), during which time it undergoes nuclear and flagellar replication to produce a large multinucleate and multiflagellate cell known to as a “beehive.” At maturity, the beehive morpomorphoses into a vermiform that ruptures through the host cell membrane. Vermiforms persist for only a short time (~20 min at 23°C), with completion of cytokinesis giving rise to hundreds to thousands of new dinospores (Coats and Bockstahler 1994). Survival time of dinospores outside the host is unknown; however, grazing by ciliates may influence their ability to transmit infections to new host cells (Maranda 2001, Johansson and Coats, unpublished data).

Here we compare aspects of host–parasite biology for strains of Amoebophrya isolated from bloom-forming dinoflagellates of Chesapeake Bay. The host–parasite systems we examined were Amoebophrya sp. ex A. sanguinea, Amoebophrya sp. ex Gymnodinium instriatum (Freudenthal et Lee) Coats comb. nov. (formerly Gydininium instriatum Freudenthal et Lee), and Amoebophrya sp. ex Karlodinium micrum (Leadbeater and Dodge) J. Larsen (formerly Gydinimum galatheanum [Braarud] Taylor). Our goal was to better define the biological diversity of Amoebophrya strains that infect different dinoflagellate species. For each host–parasite system, we examined the influence of inoculum size (i.e., dinospore:host ratio) on parasite prevalence, determined duration of the infection cycle, estimated total parasite generation time, and assessed survival and infectivity of dinospores with age. We also evaluated the influence of inoculum size on parasite development and assessed the ability of each parasite strain to infect the other host species.

MATERIALS AND METHODS

Laboratory cultures. Chesapeake Bay isolates of A. sanguinea, G. instriatum, and K. micrum were maintained as stock cultures in 1/2:Si medium (Guillard and Ryther 1962). The medium was formulated using 15 ppt Chesapeake Bay water supplemented with 5% (v/v) GR+ soilwater (Starr and Zeikus 1993).

Three strains of parasitic dinoflagellates belonging to the genus Amoebophrya, one each in the host species A. sanguinea, G. instriatum, and K. micrum, were established in culture by transferring infected dinoflagellates from Chesapeake Bay plankton to cultures of the complementary host species. Parasites were propagated by sequentially transferring aliquots of infected host culture into uninfected host stock at roughly 2-day intervals for A. sanguinea and G. instriatum and twice weekly for K. micrum. Stock cultures were maintained at 20°C under a 14:10 light:dark cycle of cool-white fluorescent light at 175 μmol photons m⁻² s⁻¹ for A. sanguinea and 95 μmol photons m⁻² s⁻¹ for G. instriatum and K. micrum. All experiments were conducted using host cultures in exponential growth and recently formed (≤6 h) dinospores of Amoebophrya spp. To obtain recently formed dinospores, stock parasite cultures were gravity filtered through Nucleopore filters (12-μm pore size for A. sanguinea, 8 μm for G. instriatum, 5 μm for K. micrum) (Costar-Nucleopore, Cambridge, MA, USA) to yield filtrates containing dinospores of unknown age. Although dinospores of our three Amoebophrya strains were of similar size, host size differed greatly across species. Thus, filters of different pore sizes were used in harvesting dinospores to ensure efficient removal of remaining host cells. Dinospores were inoculated into uninfected host culture in sufficient quantities (dinospore:host ratio of 20:1 to 30:1) to produce infection levels ≥80%. Dinospores produced from the subsequent parasite generation were harvested within 6 h (= recently formed dinospores) using filtration procedures described above.

Parasite prevalence versus inoculum size. parasite prevalence was determined as a function of inoculum size in four separate experiments, one for A. sanguinea, one for G. instriatum, and two for K. micrum. For each experiment, sets of triplicate scintillation vials containing 10 or 20 mL of host cells at 1 × 10⁸ mL⁻¹ were inoculated with dinospores and incubated for 24–40 h under growth conditions described above. Incubation time differed for the three host species (36, 40, and 35 or 36 h for A. sanguinea, G. instriatum, and K. micrum, respectively) but was always shorter than the time needed for the parasite to reach maturity. Inoculum size for each set of triplicate vials was adjusted to give dinospore:host ratios of 1:2, 1:1, 5:1, 10:1, 20:1, and 40:1 for A. sanguinea, G. instriatum, and K. micrum, respectively) but was always shorter than the time needed for the parasite to reach maturity. After incubation, samples were preserved with CaCO₃ buffered formaldehyde (2% final concentration) and examined by inverted epifluorescence microscopy (Leitz Diative, 450- to 490-nm excitation, 520 nm barrier filter, ×100) to visualize the distinctive green autofluorescence of the parasite (Coats and Bockstahler 1994). Parasite prevalence (= percent cells infected) was determined by scoring at least 100 hosts cells per sample as infected or uninfected.

Data for each host species were fitted to a single two-parameter exponential survival model. The equation for the survival model was y = a(1 – e⁻ᵇ•s), where a is the maximum infection level (Iₘₐₓ) and b is a/ln(Iₘₐₓ). Alpha (α) represents the slope of the initial linear portion of the fitted curve and reflects the potential of dinospores to infect host cells. Estimates for a were derived as Iₘₐₓ•b, with SE for a determined by propagation of error terms.*

Dinospore survival and infectivity. Replicate 300- to 400-mL volumes of recently formed dinospores harvested as above from each host species were held under standard growth conditions (20°C with a 14:10 light:dark cycle of cool-white fluorescent light at 100–200 μmol photons m⁻² s⁻¹) and subsampled over time to estimate dinospore survival and infectivity. Persistence of green autofluorescence was taken as an indication of dinospore survival and was used to track cell abundance over time. Samples were preserved with formalin and examined for dinospore abundance using a hemocytometer and a Zeiss Axio- scope (×200) (Zeiss, Jena, Germany) equipped for epifluorescence microscopy (Filter Cube 09, 450- to 490-nm excitation, 510-nm beam splitter, 520-nm barrier filter). Counts were made in duplicate, with each based on examination of 10 hemocytometer grids equivalent to 1 mm³ of sample. Data for each parasite strain were fitted to a single two-parameter exponential decay curve. For our purposes, this model corresponds to the exponential growth function N₀ = N₀e⁻ᵇ, where N₀ is the dinospore density at time 0.
spore abundance (cells·mL⁻¹) at the beginning of the experiment (T₀). N₄ is the dinospore abundance at subsequent times, t is the time in days, and k is the the negative growth constant (i.e. mortality rate).

To assess the ability of dinosporas of different ages to infect naive host cells, subsamples from each of the replicate 300- to 400-mL volumes of recently formed dinosporas were added to triplicate scintillation vials at each sampling period and mixed with equivalent volumes of the corresponding host culture to produce 10- or 20-mL volumes of host cells at 1 × 10⁵ mL⁻¹.

This approach generated a dinospore:host ratio of 5:1 for A. sanguinea, 15:1 for K. micrum, and 22:1 for G. instriatum for the initial (T₀) sampling period. Ratios for subsequent sampling periods varied with survival of dinosporas. Scintillation vials were incubated for 36 h as above, fixed using concentrated Bouin’s fluid (Coats and Heinbokel 1982), and stained for determination of parasite prevalence and parasite load (i.e. number of parasites inside each infected host). Preserved samples for A. sanguinea and G. instriatum were processed using quantitative protargol staining (Montagnes and Lynn 1993), whereas those for K. micrum were stained with alun hematoxylin (Galigher and Kozloff 1971). Stained samples were examined using Zeiss optics (1000–1250×), with parasite prevalence and parasite load determined following procedures of Coats et al. (1996). Dinospore success (i.e. the percent of dinosporas that invaded host cells) at each sampling period was expressed relative to dinospore abundance at T₀ and at the time samples were taken.

Parasite prevalence versus inoculum size. For each host species, replicate 200- or 300-mL cultures at initial densities of approximately 1 × 10⁹ mL⁻¹ were inoculated with recently formed dinosporas, incubated under growth conditions described above, and sampled over time to determine host abundance, parasite prevalence, stage of infection, and dinospore abundance. To examine possible effects of inoculum size on parasite generation time, treatments for each host species included inoculations at low (approximately 1:1) and high dinospore:host ratios (20:1, 40:1, and 115:1 for A. sanguinea, K. micrum, and G. instriatum, respectively).

Estimates for host abundance were obtained from Bouin-fixed samples by enumerating cells present in microscope transects (×100) of triplicate Sedgwick-Rafter chambers. For each chamber, successive transects were examined until 100 cells had been counted or five transects (= half the chamber area) had been scanned. Parasite prevalence was determined from protargol-stained samples as described previously, with parasitized host cells partitioned by stage of infection using criteria patterned after those of Coats and Bockstahler (1994). For this analysis, early infections were classified as host cells containing parasites that had a single nucleus or multiple nuclei that were arranged in an irregular pattern. Late infections were host cells that contained parasites having multiple nuclei arranged in a circular or spiraled fashion. Dinospore abundance was obtained from formalin-fixed samples as above.

Temporal differences in the occurrence of early and late stage infecions were used to estimate parasite intracellular development time. The areas defined by plots for abundance of early and late stage infections versus time were determined by integration, with the midpoint of each stage derived as half of the integrated area for the corresponding plot. The time interval between mid-points for early and late stage infections was multiplied by two to estimate the duration of the parasite’s intracellular phase. Estimates for total generation times (i.e. time required for infection of host cells, intracellular development, vermiform emergence, and extracellular maturation) were derived from the temporal occurrence of new dinosporas after infection of host cells. Plot areas from the appearance of new dinosporas to peak concentrations were calculated by integration, with elapsed time corresponding to half of the integrated area taken as total generation time.

Cross infection. Six flasks containing 100 mL of culture at 1 × 10⁵ cells·mL⁻¹ were established for each host species. Two flasks per host species were inoculated with dinosporas from infected A. sanguinea, two with dinosporas from G. instriatum, and two with dinosporas from K. micrum to give dinospore:host ratios of 10:1, 50:1, and 50:1, respectively. Flasks were incubated as above, except that light was supplied at 80 μmol photons·m⁻²·s⁻¹. After inoculation, 2-mL subsamples were taken from each flask at 12-h intervals over 4 days and fixed with CaCO₃ buffered formaldehyde (2% final concentration) for epifluorescence determination of parasite prevalence as above.

Data analysis. Data are reported in the text as mean ± SE. Statistical analyses and curve fits were performed using Jandel Scientific Software (SigmaPlot 6.0 and SigmaStat 2.0) (SPSS Science, Chicago, IL, USA).

RESULTS

Nomenclature. Specimens from our cultures of G. instriatum were morphologically indistinguishable from Gymnodinium instriatum Freudenthal et Lee, except that close examination revealed the presence of a horsehoe-shaped apical groove running in an anticlockwise direction. Because an apical groove of this configuration is characteristic of the genus Gymnodinium Kofoid et Swezy emend. G. Hansen et Moestrup (Daugbjerg et al., 2000), we refer to this host species as Gymnodinium instriatum (Freudenthal et Lee) Coats comb. nov.; basionym: Gymnodinium instriatum Freudenthal et Lee (Freudenthal and Lee 1963).

Parasite prevalence versus inoculum size. Parasite prevalence showed an exponential increase to a maximum relative to inoculum size in all three host species (Fig. 1). Estimates for maximum infection levels (Iₘₐₓ) and initial slope of the fitted curves (α) were Iₘₐₓ = 98.2 ± 0.82; α = 66.0 ± 2.68 (r² = 0.9921; P < 0.0001) for A. sanguinea, Iₘₐₓ = 97.9 ± 1.03; α = 9.3 ± 0.36 (r² = 0.9928; P < 0.0001) for G. instriatum, and Iₘₐₓ = 91.8 ± 2.37; α = 19.6 ± 1.91 (r² = 0.9042; P < 0.0001) for K. micrum (experiments 1 and 2 combined).

Dinosporas of Amoebophrya sp. from A. sanguinea were most aggressive of the three parasite strains, with parasite prevalence rising sharply to near maximum levels by a dinospore:host ratio of 10:1. Inoculations above a 10:1 ratio typically showed 100% infection of
host cells. Dinospores from *G. instriatum* were least aggressive, with parasite prevalence showing a more gradual increase to saturation; however, 100% infection levels were detected at a dinospore:host ratio of 120:1. Parasitism in *K. micrum* saturated at an inoculum size intermediate to that of *A. sanguinea* and *G. instriatum* (dinospore: host ratio of 20:1) but failed to reach 100% infection levels, even at a dinospore:host ratio of 100:1. Parasite prevalence in *K. micrum* only averaged 91.3 ± 1.37% (n = 12) at dinospore:host ratios ≥20:1.

Dinospore survival and infectivity. Size fractionation of infected host cultures provided stocks of recently formed dinospores (≤6 h old) with initial densities of 9.5 ± 2.0 × 10³ mL⁻¹ from *A. sanguinea*, 30 ± 3.5 × 10³ mL⁻¹ from *K. micrum*, and 43 ± 5.3 × 10³ mL⁻¹ from *G. instriatum*. From the onset of the experiment, dinospore abundance for *Amoebophrya* strains from *G. instriatum* and *K. micrum* exhibited an exponential decay, falling below detection levels (∼250 cells·mL⁻¹) by days 3 and 13, respectively (Fig. 2). By contrast, dinospores harvested from *A. sanguinea* increased in number by ∼25% during the first 16 h, suggesting some cell division following size fractionation of the original culture. After 16 h, dinospores from *A. sanguinea* declined exponentially, falling below detection levels by day 5. Exponential curves fitted to data for dinospore abundance gave growth constants (k) of −1.020 ± 0.149 (r² = 0.9567; P = 0.0001), −0.476 ± 0.070 (r² = 0.9442; P < 0.0001), and −0.257 ± 0.0240 (r² = 0.9572; P < 0.0001) for *Amoebophrya* strains infecting *G. instriatum*, *A. sanguinea*, and *K. micrum*, respectively.

The ability of dinospores to initiate infections differed considerably among the three *Amoebophrya* strains and varied dramatically with dinospore age (Fig. 3). Only 4.7 ± 0.34% of recently formed dinospores from *G. instriatum* successfully invaded host cells, compared with 9.0 ± 0.81% and 18.0 ± 1.76% for dinospores from *K. micrum* and *A. sanguinea*, respectively. The percentage of harvested dinospores that successfully established infections (Fig. 3A) declined with dinospore age, more or less paralleling patterns in dinospore survival; however, the ability of surviving dinospores (i.e., those still detectable by epifluorescence microscopy) to infect host cells exhibited a markedly different pattern (Fig. 3B). Success of surviving dinospores declined rapidly with age for *Amoebophrya* strains infecting *G. instriatum* and *A. sanguinea*, with values dropping below detection levels (∼0.1%) by days 2 and 5, respectively. By contrast, the success of surviving dinospores from *K. micrum* increased by a factor of two during the first day, stabilized at ∼18% over the following 3 days, and then gradually declined with some infections still being established when dinospores were 11 days old.

Generation time. Inoculation of *A. sanguinea* and *G. instriatum* with dinospores at a 1:1 ratio produced increasing numbers of infected hosts over the first 20–24 h, with values stabilizing at 470 ± 9 cells·mL⁻¹ (n = 6; T₂⁰-T₄₄) and 100 ± 6 cells·mL⁻¹ (n = 7; T₂⁰-T₄₄), respectively, before death of host cells and formation of new dinospores (Fig. 4, A and C). Comparable inoculation of *K. micrum* resulted in a more gradual increase in parasitized hosts over 36 h, with subsequent values averaging 170 ± 7 cells·mL⁻¹ (T₃⁶-T₄₄; n = 3) before the appearance of new dinospores (Fig. 4E). By contrast, inoculation of cultures at high dinospore:host ratios resulted in maximum numbers of parasitized cells within 16 h for all three host species.
(Fig. 4, B, D, and F), with the abundance of infected hosts averaging 1120 ± 24 ($n = 8; T_{12-48}$), 700 ± 47 ($n = 9; T_{12-44}$), and 890 ± 27 ($n = 8; T_{10-44}$) cells·mL$^{-1}$ for *A. sanguinea* (20:1), *G. instriatum* (115:1), and *K. micrum* (40:1), respectively, until host densities began to decline.

Early and late stage infections showed discrete peaks during the first parasite generation in all treatments except for the 40:1 inoculation of *K. micrum* (Fig. 4, A–F). In that treatment, many parasites failed to complete the infection cycle before the end of the experiment, with high numbers of late stage infections (220 ± 12 cells·mL$^{-1}$) remaining in the final sample. Infections occurred in the nucleus of *A. sanguinea*, in the cytoplasm of *G. instriatum*, and in either the nucleus or cytoplasm of *K. micrum* (Fig. 5). Host cells exposed to high densities of dinospores (i.e. 20:1, 40:1, and 115:1 dinospore:host treatments) were infected by multiple dinospores. In those treatments, more than one late-stage parasite developed inside

Fig. 4. Time-course studies of *Amoebophrya* spp. infecting *Akashiwo sanguinea*, *Gymnodinium instriatum*, and *Karlodinium micrum* inoculated at high and low dinospore:host ratios. Bars show cumulative host abundance with white, gray, and black regions representing uninfected hosts, early infections, and late infections, respectively. Open circles are dinospore abundance. Errors bars indicate SE.
most cells of *G. instriatum* and *K. micrum*, but with very rare exception, only a single mature parasite was generated in *A. sanguinea*.

Parasite intracellular development time averaged 57 ± 3.3 h, 46 ± 1.1 h, and 34 ± 3.8 h, respectively, for *G. instriatum*, *A. sanguinea* and *K. micrum* cultures inoculated at a dinospore:host ratio of 1:1. One-way analysis of variance (ANOVA) revealed significant difference among means (*P* = 0.03), with pair-wise comparisons indicating longer development time for infections of *G. instriatum* relative to those of *K. micrum* (*P* < 0.05; Tukey test). Estimates of parasite development time for high dinospore inoculations of *A. sanguinea* (58 ± 0.4 h; 20:1 dinospore:host ratio) were consistently longer than for low inoculations, whereas those of *G. instriatum* (46 ± 0.01 h; 115 dinospore:host ratio) were consistently shorter than for corresponding low inoculations. Comparison of data using two-way ANOVA showed no significant difference for host species or inoculum level (low versus high dinospore:host ratio) but did show a significant interactive effect (*P* = 0.003), with pair-wise analysis indicating a significant increase in development time for high versus low inoculations of *A. sanguinea* (*P* = 0.004) and a significant decrease in development time for high versus low inoculations of *G. instriatum* (*P* = 0.004; Tukey test). High dinospore inoculations also appeared to increase the infection cycle of *Amoebophrya* sp. in *K. micrum* (cf. temporal patterns for late-stage infections; Fig. 4, E and F); however, the persistence of large numbers of infected cells in that treatment prevented accurate determination of parasite intracellular development time.

Dinospore densities exhibited distinct peaks or reached stationary levels by the end of the experiment in all low dinospore:host inoculations and in the high inoculum treatment for *G. instriatum*, thus permitting calculation of total parasite generation time (i.e. time required for infection of hosts, intracellular development, vermiform emergence, and extracellular maturation). The persistence of late stage infections and/or lack of a clear peak in dinospore density prevented accurate estimates of parasite generation time for high dinospore: host inoculations of *A. sanguinea* and *K. micrum*. Estimates for parasite generation time averaged 71 ± 0.6 h, 67 ± 0.7 h, and 59 ± 0.02 h in 1:1 treatments for *G. instriatum*, *A. sanguinea*, and *K. micrum*, respectively, with all means being significantly different (one-way ANOVA; Tukey test; *P* < 0.05).

Data for the 115:1 dinospore:host inoculation of *G. instriatum* indicated a significantly shorter parasite generation (55 ± 2.5 h; *P* = 0.025, *t* test) than that for the corresponding 1:1 treatment.

Cross infection. Dinospores of *Amoebophrya* sp. from *K. micrum* failed to infect *A. sanguinea* and *G. instriatum*, even though inoculum size (dinospore:host ratio of 50:1) was sufficient to produce high parasite prevalence (93.1 ± 1.22% from 12 h to 96 h after inoculation; *n* = 8) in the primary host species (Fig. 6A). Inoculation of *G. instriatum* with complementary dinospores (dinospore:host ratio of 50:1) generated infection levels of 83%–98% during the first parasite generation and 100% thereafter (Fig. 6B). The same inoculum produced no infections in *A. sanguinea* but did result in 26.5 ± 4.50% infection of *K. micrum* at *T*12. Interestingly, parasite prevalence in *K. micrum* declined to zero over the following 36 h, and there was no indication that a second generation of infections developed in subsequent samples. Similarly, inoculation of *A. sanguinea* with complementary dinospores...
those infections was not determined (Coats et al. 1996, Yih and Coats 2000). Multiple infection of *G. instriatum* and *K. micrum* in our high dinospore:host treatments resulted in the formation of more than one “beehive” stage, with parasites restricted to the cytoplasm of *G. instriatum* but occurring simultaneously in the cytoplasm and nucleus of *K. micrum*. Interestingly, infection of *A. sanguinea* by multiple dinospores produced a single mature parasite, suggesting either that one of the trophonts became dominant and prevented growth of the others or that several trophonts fused to form a syncytium before maturation of the parasite. Although sexuality has not been reported for *Amoebophrya* spp., development of a syncytium might provide a mechanism for genetic recombination via fusion of nuclei from different dinospores.

Infectivity and survival of dinospores exhibited distinct differences among our three strains of *Amoebophrya*. Recently formed dinospores from *A. sanguinea* were roughly twice as likely to infect host cells as were dinospores from *K. micrum* and four times more likely than dinospores from *G. instriatum*. Furthermore, dinospores from *G. instriatum* and *A. sanguinea* were short lived and unable to initiate infections after 2–5 days, respectively, whereas dinospores from *K. micrum* maintained high infectivity for 4–5 days, with some being able to parasitize hosts after 11 days. The prolonged survival of dinospores from *K. micrum* is surprising, given that *Amoebophrya* spp. are thought to be strictly parasitic. Our observations suggest that dinospores of *Amoebophrya* sp. from *K. micrum* may be able to use bacteria and/or dissolved organic substances as a source of nutrition or may be able to form resting stages that become active after a short period of dormancy.

Susceptibility of host cells to infection also differed among the three host–parasite systems. *Akashiwo sanguinea* and *G. instriatum* appeared completely susceptible to parasitism, as high dinospore:host treatments showed 100% infection levels. By contrast, approximately 10% of the *K. micrum* cells remained uninfected at intermediate to high dinospore:host treatments. Although we cannot rule out the possibility that higher inoculations would have produced 100% parasite prevalence, available data suggest that some specimens of *K. micrum* are resistant to infection. The source of this apparent resistance is unknown but may be related to cell cycle events that render *K. micrum* unattractive to dinospores or capable of fending off invading parasites.

Observed differences in endurance and infectivity of dinospores among *Amoebophrya* strains, along with discrepancies in the susceptibility of host species to infection, suggest that the three host–parasite systems have evolved somewhat divergent survival strategies. Although *A. sanguinea* and *G. instriatum* appear wholly susceptible to infection, dinospores of their parasites are short lived and quickly loose the ability to infect host cells. Thus, these strains of *Amoebophrya* seem capable of rapidly exploiting dense host populations but less likely to maintain high infection levels under non-
bloom conditions, due to limited survival and time constraints in encountering host cells. By contrast, dinospores of *Amoebophrya* sp. from *K. micrum* are very long lived, providing increased opportunity to find hosts cells even when present at low densities. Nonetheless, persistence of *K. micrum* in the face of high parasite prevalence seems assured, as some host cells appear resistant to infection.

The life cycle of *Amoebophrya* sp. consists of an intracellular phase during which parasites grow to maturity inside host cells and an extracellular phase in which the mature parasite emerges from the host cell, divides to produce dinospores, and then infects new hosts. Earlier studies have estimated the duration of the intracellular phase of *Amoebophrya* sp. ex *A. sanguinea* and provided information on the timing of dinospore formation but have not determined the entire generation time of the parasite (Coats and Bockstahler 1994, Yih and Coats 2000). Data for our three host–parasite systems indicate that the intracellular phase only represents 60%–80% of total parasite generation time. In addition, the duration of the intracellular phase appeared to be influenced by parasite load. Inoculation of cultures at a 1:1 dinospore:host ratio typically generated one parasite per infected host cell, with intracellular development time averaging 34 ± 3.8 h, 46 ± 1.1 h, 57 ± 3.3 h in *K. micrum*, *A. sanguinea*, and *G. instriatum*, respectively. Inoculation of cultures at high dinospore:host ratios stimulated infection of host cells by several dinospores, with parasite generation time in *A. sanguinea* increasing by 12 h (to 58 ± 0.4 h) but that of *G. instriatum* decreasing by 11 h (to 46 ± 0.01 h). High dinospore inoculations also result in a significantly shorter total parasite generation time for *G. instriatum* infections relative to low dinospore: host treatments. That multiple infection by dinospores had opposite effects on intracellular development times of *A. sanguinea* and *G. instriatum* may be related to corresponding differences in parasite interaction. Competition between invading dinospores or fusion of trophonts into a syncytium may retard parasite maturation in *A. sanguinea*, whereas independent growth of multiple parasites in *G. instriatum* may result in more rapid utilization of host resources.

Amoebophrya strains from *A. sanguinea*, *G. instriatum*, and *K. micrum* either failed to establish infections or were unable to successfully complete their life cycle in the presence of nonprimary host species. Results are consistent with the parasites being host specific and also suggest that host specificity in *Amoebophrya* strains involves more than parasite recognition of host cells, as *Amoebophrya* spp. from *A. sanguinea* and *G. instriatum* were able to invade *K. micrum* but did not develop to maturity. *Karlodinium micrum* is considered to be a toxic dinoflagellate (Li et al. 2000) and thus may represent a very different environment for *Amoebophrya* spp. than the other two nontoxic host species. Dinospores of *Amoebophrya* strains from *A. sanguinea* and *G. instriatum* that did invade *K. micrum* may have succumbed to inappropriate growth conditions. Alternatively, *K. micrum* may be able to successfully mount a defense against dinospores from the other two host species. As mentioned above, some cells of *K. micrum* appear resistant to dinospores from their corresponding *Amoebophrya* sp. Perhaps all *K. micrum* have the ability to defend against invading parasites to some degree, with the response simply being more successful when mounted against dinospores from a “foreign” *Amoebophrya* sp.

Amoebophrya strains cultured in association with *A. sanguinea*, *G. instriatum*, and *K. micrum* exhibited marked differences in host–parasite biology. These differences along with results of our cross-infections experiments and reported genetic divergence among the parasite strains (Gunderson et al. 2000) support the contention that *Amoebophrya ceratii* is a species complex consisting of several host-specific taxa (Coats et al. 1996). Host specificity may make *Amoebophrya* spp. more attractive than nonspecific parasites like *Parvilucifera infectans* (Erard-Le Denn et al. 2000) in the biological control of bloom-forming dinoflagellate.

We thank Mr. Sean Cooney for technical assistance, Dr. Aishao Li for the original culture of *Karlodinium micrum*, Dr. Wonho Yih for critical comments, and Dr. Olyvind Moestrup for assistance in identification of host species and guidance in dinoflagellate nomenclature. Supported by NSF award OCE-9730695 to D. W. Coats.

