More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama

Greg P. A. Lamarre1,2,7,†, Nicholas A. Pardikes1,3,†, Simon Segar4, Charles N. Hackforth5, Michel Laguerre6, Benoit Vincent6, Yackesari Lopez7, Filonila Perez7, Ricardo Bobadilla7, José Alejandro Ramírez Silva7 and Yves Basset1,2,7,8

1Department of Ecology, Institute of Entomology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
2Faculty of Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
3Department of Life and Earth Sciences, Perimeter College, Georgia State University, Atlanta, USA
4Department of Geography, University College London, Gower Street, London WC1E 6BT, UK
5Muséum National d’Histoire Naturelle, Département Systématique et Évolution, Entomologie, 57 rue Cuvier, Paris, France
6Muséum National d’Histoire Naturelle, Département Systématique et Évolution, Entomologie, 57 rue Cuvier, Paris, France
7ForestGEO, Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panamá City, Republic of Panamá
8Maestria de Entomología, Universidad de Panamá, Apartado 3366, Panamá 4, Panamá

GPAL, 0000-0002-7645-985X; NAP, 0000-0002-9175-4494; SS, 0000-0001-6621-9409; BV, 0000-0002-2515-2284; YB, 0000-0002-1942-5717

Understanding the causes and consequences of insect declines has become an important goal in ecology, particularly in the tropics, where most terrestrial diversity exists. Over the past 12 years, the ForestGEO Arthropod Initiative has systematically monitored multiple insect groups on Barro Colorado Island (BCI), Panama, providing baseline data for assessing long-term population trends. Here, we estimate the rates of change in abundance among 96 tiger moth species on BCI. Population trends of most species were stable (n = 20) or increasing (n = 62), with few (n = 14) declining species. Our analysis of morphological and climatic sensitivity traits associated with population trends shows that species-specific responses to climate were most strongly linked with trends. Specifically, tiger moth species that are more abundant in warmer and wetter years are more likely to show population increases. Our study contrasts with recent findings indicating insect decline in tropical and temperate regions. These results highlight the significant role of biotic responses to climate in determining long-term population trends and suggest that future climate changes are likely to impact tropical insect communities.

1. Introduction

Ongoing declines in insect biodiversity threaten to destabilize ecosystems worldwide [1]. Climate change and other threats affect insect population dynamics in temperate regions [2,3], but similar data are lacking in the species-rich tropics [4]. Tropical insects may be impacted by global mean temperatures and extreme climatic events. For example, many insect species shift their geographic range poleward or to higher elevations in response to increased mean temperatures [5–7]. Temperature changes may affect insect activity, development, phenology...
and survival directly or indirectly through host phenological shifts or effects of temperature on plant chemistry [8]. Many tropical insects are extreme resource or microhabitat specialists and may be more susceptible to such changes [9,10]. Poikilothermal organisms cannot regulate their body temperature, and temperatures that exceed their thermal safety margin may thus result in significant fitness declines [11–14]. However, insect functional traits may be associated with potential declines in tropical communities, but the extent is unclear.

Tiger moths include contrasting tribes with high morphological and ecological variation [15]. They comprise generalists and specialist consumers, including the only known lineages capable of sequestrating secondary compounds from lichens, used to defend against predators and pathogens [16]. Arctiinae exhibit a wide range of wing colouration, lightness and size [17].

Such high inter-species variation may lead to divergent responses to climate change and help predict insect population dynamics in the face of climate change [18–20]. Here, we examine population trends among 96 tiger moth species over the past 12 years in Panama and test for their association with morphological and climatic sensitivity (e.g. sensitivity to mean monthly precipitation) traits and phylogenetic relatedness. Due to dispersal limitations, we predict that smaller wingspan moths may be more sensitive to climate changes [7]. However, larger species may be more prone to thermal exhaustion due to higher energy requirements [21,22]. We also predict that species with darker colouration may not favour increased solar radiation, particularly during the prolonged dry season [23,24]. Resource specialists such as lichen feeders are suspected to be particularly impacted by recent climate anomalies even if little data exist on lichen feeders in tropical regions. We predict that the effects of climatic sensitivity traits on temporal trends may depend on morphology.

2. Material and methods

(a) Study site and climate data

We performed this study on Barro Colorado Island (BCI) in Panama (9.15° N, 79.85° W; approximately 140 m elevation), a tropical lowland rainforest. The island is mainly preserved and covered by lowland tropical forests with few anthropogenic disturbances. BCI receives an average of 2662 mm rainfall per year and an annual average daily maximum and minimum air temperatures of 31°C and 23.6°C, respectively (see [25]).

(b) Arctiinae data and functional traits

Since March 2009, the ForestGEO Arthropod Initiative has monitored several insect groups, including Arctiinae, using a standardized approach. The protocol consists of automatic black-light traps installed in the forest understory at 10 sites [26]. The traps operate for two non-consecutive nights at each site. After estimating population trends using Bayesian linear models, we examined associations between species traits (see [27]) and population trends using generalized least-squared (GLS) and phylogenetic generalized least-squared (PGLS) analyses using the nls package in R [31]. We predicted population trends (extracted means of the posterior distributions as the estimates of change through time) as a function of a set of functional response traits, sensitivity to climate variables, or a combination of both using a GLS, with a Gaussian error distribution. All continuous predictors were mean-centred to improve interpretation and model performance. We also used a PGLS model with Brownian motion correlation among species to account for any phylogenetic signal in population trends. We tested for phylogenetic signal in the residuals of the GLS model using the R package picante [32]. All models included total abundance or the proportion of sample periods observed to account for differences in commonness and density among species. We checked and met model assumptions (normality of residuals, heteroscedasticity and autocorrelation) using simulated residuals from the DHARMa package [30]. We compared and evaluated GLS and PGLS model performances using AICc, root mean squared error (RMSE) and variance explained (R²). We acknowledge the switch from Bayesian to frequentists paradigms; we use trends estimated with a reasonable degree of certainty and consider PGLS the most appropriate approach here.
3. Results

(a) Population trends in Neotropical Arctiinae
Estimates of population trends in abundance over the past 12 years at BCI revealed that the entire tiger moth community had increased by 6% (95% CI: 1.01,1.11) per year (electronic supplementary material, figure S5). The probability that tiger moth abundance increased by at least 1% per year is 98%. Estimates of species-specific responses among tiger moth species revealed that most species (82 out of 96) were either stable or increased in abundance (figure 1). Sixty-two of the 96 species showed a strong degree of belief (greater than 66.7%) that their population trend was increasing (i.e. greater than one). Only 14 species showed strong evidence of declines (less than 33.3%) and the remaining 20 species did not have strong evidence of increased or decreased trends, suggesting stable dynamics. Removing 2009 or both 2009 and 2010 did not significantly alter the number of species present in each category mentioned above of population trends (electronic supplementary material, figures S6 and S7; table S1). Of the 20 species whose trends were stable, the mean probability that their trend lies within ±1% per year was 10% (electronic supplementary material, figure S8). The high degree of uncertainty in these 20 ‘stable’ species may be due to their low abundances across sample periods. They were commonly observed in our traps but were generally not abundant when sampled. For 16/20 species, the average number of individuals collected in each sample period (n = 48) was less than one. This suggests that their estimates of population trends are uncertain, and more data may be necessary to predict their trends more accurately.

(b) Association between species-specific traits and trends
Models that accounted for correlations in population trends among species (PGLS) generally explained more variance but showed consistently higher AICc values. There was no
Table 1. Results from the top GLS model (e.g. climate sensitivity) after AICc model selection. We indicate significant associations (p < 0.05) in italics. We modelled 93 species since three did not have genetic information and were not included in the PGLS. Standardized estimates and 95% confidence intervals are presented. CV abundance represents the coefficient of variation in abundance.

<table>
<thead>
<tr>
<th>predictors</th>
<th>estimates</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>1.06</td>
<td>1.04–1.08</td>
<td><0.001</td>
</tr>
<tr>
<td>log(total abundance)</td>
<td>0.01</td>
<td>−0.02–0.04</td>
<td>0.635</td>
</tr>
<tr>
<td>CV abundance</td>
<td>−0.01</td>
<td>−0.04–0.02</td>
<td>0.513</td>
</tr>
<tr>
<td>maximum temperature</td>
<td>0.04</td>
<td>0.02–0.07</td>
<td>0.002</td>
</tr>
<tr>
<td>minimum temperature</td>
<td>−0.03</td>
<td>−0.05–0.00</td>
<td>0.019</td>
</tr>
<tr>
<td>average precipitation</td>
<td>0.03</td>
<td>0.00–0.05</td>
<td>0.023</td>
</tr>
<tr>
<td>geographic range</td>
<td>−0.02</td>
<td>−0.04–0.01</td>
<td>0.153</td>
</tr>
<tr>
<td>observations</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R² Nagelkerke</td>
<td>0.359</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

Our results highlight the vital role of specific differences in climate sensitivity in explaining variation in population trends in this tropical moth community. We indicate that most species have either increased or remained temporally stable over the past 12 years but are likely to be further influenced by future climate changes in Panama. The increasing and stable population dynamics contrast with observed sharp declines in caterpillar density in Costa Rica [33,34]. Climate change may have been a driving force in the decrease observed in the Costa Rican studies, but other factors, such as land-use changes and agricultural practices, likely induced decline. Our survey on BCI, an isolated protected forest island, indicates that common tiger moths showed widespread increases and temporal population stability.

Although several species show strong evidence of decline (figure 1), the overall temporal stability in arctine populations highlights that insect declines are not homogeneous. Since more than 60% of tiger moth species have strong evidence of increasing in abundance since 2009, our results also contrast with other studies [33–35]. We hypothesize that this pattern may have important implications locally, with cascading impacts driven by herbivory and predation at higher trophic levels. Although it is well-established that climate change affects species distributions and abundances of insect herbivores [33,34,36], the impacts of climate change on trophic interactions have been less studied [10]. Outbreak species may benefit from climate changes, as reported for two Panamanian species [5]. In a previous study on BCI, we observed that populations of some large Saturniidae species are increasing [28]. We also showed that recent climate anomalies occurring in the tropics, such as increasing average precipitation on BCI [25], have significant and positive effects on the abundance of tiger moths (figure 2a). A similar trend has been observed in the United Kingdom [37] but is also likely driven by differential responses to land-use change. We expected that morphological traits relating to climate, especially thermal tolerance, would predict temporal trends. Our results contradict this expectation, and while phylogenetic information does increase the proportion of variance explained, this comes at a high cost in terms of model parameters. Hence, it is unlikely that any of the morphological traits that we measured may be significant predictors of response to climate, although we cannot rule out that such traits exist. Few studies have found that functional traits predict population trends [22,35].

Species-specific climate sensitivity traits were the best predictors of temporal trends of tiger moths on BCI. Sensitivity to average precipitation showed a significant and positive relationship with population trends. Species that were more abundant in months with higher precipitation showed positive population trends (figure 2). Sensitivity to average maximum temperatures also predicted temporal trends, indicating that population abundances of species that were twice as abundant in months with a one-degree increase in temperature have increased by 5% each year. Increased temperatures facilitate more frequent, longer or more effective territorial and mate-locating behaviours [38]. Prolonged exposure at extreme temperatures can also influence the pace of insect life cycles, thus affecting developmental time and population growth rates [39,40]. The inclusion of thermal tolerance measurements is primordial to correctly interpret moth population dynamics patterns [11–14]. Our analysis provides evidence of a stable and increasing tropical moth community. Still, it highlights the potential future impact of climate change, as climatic sensitivity traits were the best predictors of population trends. Since 1981, BCI has experienced a 17.9% increase in mean annual precipitation [19], and we showed that moth populations that respond to increasing precipitation in Panama are also increasing.

With increasing air temperature also predicted for tropical regions by recent models [41,42], this species group may indeed be favoured by future environmental conditions. However, future phenotypic responses and upper levels of thermal tolerance are hard to predict. Should the rate of warming exceed physiological response capacities, we can expect sharp declines in population density for many tropical insect species.
Data accessibility. The dataset is publicly available on FigShare: https://smithsonian.figshare.com/articles/dataset/More_winners_than_losers_over_12_years_of_monitoring_tiger_moths_Erebidae_Arctiinae_on_Barro_Colorado_Island_Panama/16850218 [29].

Authors’ contributions. G.P.A.L.: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft and writing—review and editing; N.A.P.: conceptualization, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft and writing—review and editing; S.T.S.: conceptualization, formal analysis, investigation, methodology, resources, software, supervision, validation, visualization, writing—original draft and writing—review and editing; C.N.H.: conceptualization, data curation, investigation, methodology, validation, visualization, writing—original draft and writing—review and editing; B.V.: conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing—original draft and writing—review and editing; Y.L.: conceptualization, data curation, investigation, methodology, project administration, resources, software, supervision, validation, writing—original draft and writing—review and editing; F.P.: conceptualization, data curation, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft and writing—review and editing; R.B.: conceptualization, data curation, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft and writing—review and editing; J.A.R.S.: conceptualization, data curation, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft and writing—review and editing; Y.B.: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft and writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Competing interests. We declare we have no competing interests.

Funding. Grants of the Czech Science Foundation to G.P.A.L. (grant no. GAČR19-15645Y) and Y.B. (grant no. GAČR20-31295S).

Figure 2. Exponentiated rates of change in Arctiinae abundance regressed against the exponentiated coefficients of (a) sensitivity to average monthly precipitation and (b) sensitivity to average maximum monthly temperatures. The fitted line and 95% confidence intervals are from multiple linear regression, and the raw and standardized beta coefficients are shown within each figure. The dashed horizontal and vertical lines at 1 for each axis represent coefficient values when there is no multiplicative change in trend over the years (y-axis) or no multiplicative change in abundance in response to either average precipitation or maximum temperature. A value of two (x-axis) suggests that species are twice as abundant in months with a 1°C increase in average monthly maximum temperature or a 1 mm increase in average monthly precipitation.
References

41. IPCC. 2021 Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (eds V. Masson-Delmotte et al.). Cambridge, UK: Cambridge University Press. See https://www.ipcc.ch/report/ar6/wg1/

42. Stocker T et al. 2014 Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. See https://www.ipcc.ch/report/ar5/wg1/.
