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Abstract: Investigation of an extract from the marine cyanobacterium Lyngbya semiplena, 

collected in Tumon Bay, Guam, led to the identification of three new cyclodepsipeptides, 

lyngbyastatins 810 (13). The structures of 13 were determined by NMR, MS, ESIMS 

fragmentation and chemical degradation. Compounds 13 are closely related to 

lyngbyastatins 47. Like the latter compounds, we found 13 to inhibit porcine pancreatic 

elastase, with IC50 values of 123 nM, 210 nM and 120 nM, respectively. 
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1. Introduction 

 

Marine cyanobacteria have yielded many novel and bioactive secondary metabolites [1], including 

many cytotoxins [2–4]. Our efforts have been focused on discovering novel cyanobacterial metabolites 

with cytotoxic and other activities. Indeed, we have recently identified several cyanobacterial 

compounds that are potent protease inhibitors, such as grassystatins AC that selectively inhibit 

cathepsin E [5] and lyngbyastatins 47 [6,7] (see Figure 1) which inhibit porcine pancreatic elastase. 

The latter group are part of a class prolifically produced by marine and aquatic cyanobacteria [8–10], 
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containing 3-amino-6-hydroxy-2-piperidone (Ahp) as part of a six-unit cyclic core with a pendant side 

chain. These generally inhibit certain serine proteases, due to extensive complementarity to the 

enzymes’ active sites. Additionally, the cyclic core is very rigid, due to hydrogen bonds from the Ahp 

unit to the opposite Val, making hydrolysis of the inhibitor difficult for the protease enzymes [11–13]. 

Elastase is particularly susceptible to the lyngbyastatin series of this inhibitor prototype, which contain 

2-amino-2-butenoic acid (Abu) adjacent to the Ahp unit [6,7,14]. In humans, neutrophil elastase is 

known to contribute to immunogenic tissue damage in diseases such as cystic fibrosis and asthma [15]. 

We now report three new members of this class, lyngbyastatins 810 (13, see Figure 1), which are 

close relatives of lyngbyastatins 47.  

Figure 1. Structures of lyngbyastatins 4–7 and compounds 13. 

 
 

2. Results and Discussion 

 

A sample of Lyngbya semiplena was collected in Tumon Bay, Guam. Samples were freeze-dried 

and stored frozen for ~8 years before extraction with EtOAc–MeOH (1:1). The resulting non-polar 

extract was partitioned between hexanes and MeOH–H2O (80:20). The MeOH–H2O fraction was 

further partitioned between n-BuOH and H2O. The n-BuOH fraction was subjected to silica and 

reversed-phase chromatography and finally HPLC to furnish 1 (1.8 mg), 2 (1.1 mg) and 3 (~100 g). 
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HRESI/APCIMS and NMR data for 1 suggested a molecular formula of C47H64N8O12  

(m/z 955.4524 for [M + Na]+, and 915.4599 for [M + H – H2O]+). The 1H-NMR spectrum suggested 

that 1 was a depsipeptide, with several exchangeable amide proton signals (~H 68) and -protons 

(~H 45.5). The most downfield -proton also had a corresponding downfield 13C shift  

(H/C 5.53/71.4), as shown in the edited HSQC spectrum (see Table 1), indicating a methine adjacent 

to an ester linkage. In addition, one N-methyl was present (H 2.74). A methyl singlet at H 1.82 

suggested the presence of an acetyl group, and there was a downfield singlet (H 9.38) characteristic of 

a phenolic OH in DMSO. The 1H-NMR spectrum of 1 was strikingly similar to the spectra of 

lyngbyastatins 47 [6,7], and indeed examination of the COSY, edited HSQC, HMBC, ROESY and 

TOCSY spectra of 1 revealed the same units present in the cyclic core as some other members of the 

series: Thr, Val, N-Me-Tyr, Phe, Ahp and Abu. Like previously described lyngbyastatins, there was a 

general paucity of HMBC signals within the cyclic core, but examination of ROESY correlations made 

it apparent that 1 had the same cyclic core as lyngbyastatins 47. Unlike the latter, 1 contains only 

hydrophobic residues in the pendant side chain, with Val replacing Htyr and an acetyl group replacing 

Gas/Ga/GasNa (Table 1 and Table S1, Supporting Information). 

 

Table 1. NMR Spectral Data for Lyngbyastatin 810 (13) in DMSO-d6 at 600 MHz (1H). 

 Lyngbyastatin 8 (1) Lyngbyastatin 9 (2) Lyngbyastatin 10 (3) 

C/H No. H, mult. (J in Hz) C, mult.a H, mult. (J in Hz) C, mult.a H, mult. (J in Hz) C, mult.a 

1  c  c  c 

2 4.64, br 55.9, d 4.62, m 55.9, d 4.60, m 56.2, d 

3 2.05, m 30.4, d 2.05, m 30.3, d 2.03, m 30.4, d 

4 0.86, d (6.6) 19.0, q 0.85d 18.9, q 0.86, d (7.0) 19.0, q 

5 0.74, d (6.6) 17.2, q 0.74, d (6.6) 17.1, q 0.74, d (7.0) 17.2, q 

NH 7.50, br d (6.3)  7.52, br d (6.8)  7.52, br d (7.3)  

6  c  c  c 

7 4.87, dd (11.8, 1.9) 60.6, d 4.87, dd (12.0, 0) 60.5, d 4.86, dd (12.0, 2.4) 60.6, d 

8a 3.08, dd (13.4, 1.9) 32.5, t 3.08, dd (13.0, 0) 32.4, t 3.08, dd (13.6, 2.4) 32.2, t 

8b 2.69, dd (13.4, 11.8)  2.69, dd (13.0, 12.2)  2.72, dd (13.6, 12..0)  

9  127.3, s  127.2, s  c 

10 6.97, d (8.0) 130.3, d 6.97, d (7.6) 130.2, d 7.25, s 133.4, d 

11 6.76, d (8.0) 115.2, d 6.76, d (7.6) 115.1, d  c 

12  156.2, s  156.0, s  c 

13 6.76, d (8.0) 115.2, d 6.76, d (7.6) 115.1, d 6.93, d (8.2) 116.5, d 

14 6.97, d (8.0) 130.3, d 6.97, d (7.6) 130.2, d 6.97, d (8.2) 130.0, d 

15 2.74, s 30.2, q 2.74, s 30.1, q 2.75, s 30.3, q 

OH 9.38, s  9.41, s  8.48, s  

16  170.6, s  170.3, s  c 

17 4.71, dd (12.1, 3.1) 50.0, d 4.71, dd (12.1, 3.0) 49.9, d 4.70, dd (11.7, 3.2) 50.2, d 

18a 2.86, dd (12.8, 12.1) 35.0, t 2.85, dd (12.8, 12.1) 35.0, t 2.88, dd (13.7, 11.7) 35.2, t 

18b 1.80, dd (12.8, 3.1)  1.80, dd (12.8, 3.0)  1.87, dd (13.7, 3.2)  

19  136.8, s  136.5, s  c 

20/24 6.82, d (7.2) 129.3, d 6.82, d (7.3) 129.2, d 6.78, d (7.4) 129.5, d 

21/23 7.18, m 127.7, d 7.18, m 127.6, d 7.16, dd (7.4, 7.3) 128.0, d 
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Table 1. Cont. 

22 7.14, m 126.1, d 7.14, m 126.0, d 7.13, t (7.3) 126.4, d 

25  c  168.5, s  c 

26 3.77, ddd (12.4, 9.2, 2.4) 47.9, d 3.77, ddd (14.1, 10.6, 2.3) 47.9, d 3.78, ddd (11.6, 8.8, 2.2) 48.2, d 

27a 2.40, dddd (12.4, 12.4, 11.7, 2.7) 21.7, t 2.40, dddd (14.1, 12.4, 11.3, 4.4) 21.6, t 2.40, m 21.8, t 

27b 1.56, m  1.56, m  1.56, m  

28a 1.70, br d (11.7) 29.1, t 1.71, br d (11.3) 29.0, t 1.71, br d (12.4) 29.2, t 

28b 1.56, m  1.55, m  1.57, m  

29 5.06, s 73.5, d 5.06, s 73.4, s 5.07, s 73.7, d 

NH 7.21, d (9.2)  7.21, br  7.21, br  

OH 6.10, s  6.11, br  3.15, se  

30  c  162.7, s  c 

31  130.1, s  129.7, s  c 

32 6.49, q (6.8) 131.6, d 6.49, q (6.8) 131.5, d 6.50, q 132.1, d 

33 1.47, d (6.8) 12.9, q 1.47, d (6.8) 12.8, q 1.47, d 12.9, q 

NH 6.56, s  6.58, s    

34  c  c  c 

35 4.62, m 55.1, d 4.63, m 55.0, d 4.61, m 55.7, d 

36 5.53, br 71.4, d 5.53, br 71.4, d 5.50, br c 

37 1.21, d (6.2) 17.6, q 1.21, d (6.2) 17.6, q 1.21, d (6.7) 17.8, q 

NH 7.91, br  7.92, br  7.92, br  

38  c  171.7, s  c 

39 4.36, m 57.0, d 4.37, m 56.8, d 4.36, dd (8.8, 6.1) 57.1, d 

40 2.05, m 30.4, d 2.05, m 30.3, d 2.03, m 30.4, d 

41 0.85, d (6.2) 19.0, q 0.84d 13.3, q 0.85, d (6.1) 19.0, q 

42 0.80, d (6.4) 17.5, q 0.80, d (6.5) 17.4, q 0.80, d (6.6) 17.5, q 

NH 7.77, br  7.69, br  7.68, br  

43  172.5, s  172.3, s  c 

44 4.33, dq (7.4, 6.7) 47.8, d 4.34, dq (7.2, 6.8) 47.7, d 4.32, dq (7.6, 7.0) 47.9, d 

45 1.17, d (6.7) 17.8, q 1.18, d (6.8) 17.6, q 1.18, d (7.0) 17.8, q 

NH 8.08, d (7.4)  8.04, d (7.2)  8.01, d (7.6)  

46  169.0, s  171.8, s  c 

47 1.82, s 22.2, q 2.07, m (2H) 36.7, t 2.07, m (2H) 36.8, t 

48   1.48, m (2H) 18.3, t 1.48, m (2H) 18.5, t 

49   0.83d 13.3, q 0.83, t (7.3) 13.4, q 

a Deduced from edited HSQC. b Protons showing HMBC correlations to the indicated carbon. c Could not be detected due 

to lack of HMBC correlation. d The multiplicity of these signals could not be deduced due to signal overlap. e Assigned by 

default as no COSY correlations were observed. Chemical shift is different to 1 and 2 probably because of different 

sample concentrations (data for 1 and 2 were acquired with a 1-mm probe and therefore they were much more 

concentrated). 

 

NMR data for 2 suggested a close analog of 1. HRESI/APCIMS data suggested a molecular formula 

of C49H68N8O12 (m/z 983.4823 for [M + Na]+, and 943.4898 for [M + H  H2O]+), a difference of C2H4 

from 1. The acetyl methyl singlet (H 1.82) observed in 1 is absent in 2, suggesting that this unit is 

extended in the latter. Examination of the 1H-NMR, COSY, edited HSQC, HMBC, ROESY and 
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TOCSY of 2 in DMSO-d6 (see Table 1 and Table S2, Supporting Information) revealed the presence of 

the same units as for 1. However, in place of acetyl, a butanoic acid unit (Ba) was deduced. The 

HMBC and ROESY correlations were very similar to those observed for 1. Along with the close 

similarity in chemical shifts, NMR data allowed the assembly of the structure shown (Figure 1). 

Compound 3 was obtained in much lower yield (~100 g). The HRESI/APCIMS spectrum 

contained ion clusters characteristic of species containing one bromine atom, with two major peaks 2 

amu apart in a ratio close to 1:1, and the molecular formula was calculated to be C49H67N8O12Br  

(m/z 1061.3951 and 1063.3944 for [M + Na]+, 1021.4028 and 1023.4033 for [M + H  H2O]+). This is 

the same molecular formula as 2, except one Br atom was present in place of a hydrogen atom. 

Additionally, proton and carbon chemical shifts were very similar to 2. Examination of the 1H-NMR, 

COSY, edited HSQC and ROESY spectra of 3 in DMSO-d6 (see Table 1 and Table S3, Supporting 

Information) suggested the presence of the same units as in 2, except that there were only signals for 

three aromatic protons attributable to the N-Me-Tyr unit, including a singlet (H 7.25), indicating that 

either N-methylated 2’- or 3’-Br-Tyr was present. Chemical shift data and ROESY correlations 

between the Br-Tyr singlet to both -methylene protons (see Table 1 and Table S3, Supporting 

Information), supported the proposal that the bromine atom is present at the 3’ position. This is 

consistent with previously reported compounds in this series such as kempopeptin B [14] and 

cyanopeptolin 954 [16], which possess bromine and chlorine at the 3’-position of Tyr, respectively.  

Further evidence for the assigned 2D structures of 13 was obtained by ESIMS fragmentation 

(Figure 2). Notably, this data unambiguously placed the Br atom in 3 with the N-Me-Tyr unit. 

Fragmentation data for a related series of cyclic peptides, the aeruginopeptins, has been reported [17]. 

We found a similar fragmentation pattern using an authentic sample of lyngbyastatin 7 [7], plus 

another series that was consistent with loss of the pendant side chain followed by ring cleavage 

between Ahp and Abu (Figure S1, Supporting Information).  

The configuration of the Abu unit was established for 1 by a ROESY correlation between H3-33 and 

the Abu NH (see Table S1, Supporting Information), indicating Z configuration. In 2, this correlation 

was not observed. However, an unusual 4-bond HMBC correlation was seen between C-30 and H3-33 

(see Table S2, Supporting Information). Such 4-bond correlations are typically observed in 

substructures where the bonds between the H and C atoms can form a “w” configuration [18–20]. This 

correlation therefore supports Z configuration for Abu in 2. Configuration of Abu in 3 could not be 

determined by ROESY, but it is presumed to be Z on the basis of proton chemical shifts in this unit, 

which are very close to those in 1 and 2, and on biogenetic grounds. If the configuration were E, it is 

likely that these shifts would be different due to the anisotropic influence of the nearby carbonyl group 

(C-30). The absolute configurations of other units in 13 were determined by FDLA-based Marfey’s 

analysis [21], using both UV and MS detection, to all be the L-form. The configuration of C-3 of the 

Ahp unit was determined by CrO3 oxidation followed by hydrolysis to liberate L-Glu, as described 

previously [6,7]. The configuration of C-6 of Ahp was determined by examination of ROESY 

correlations within the unit and by considering coupling constants, such that (3S,6R) configuration was 

assigned for this unit. CrO3 oxidation was not carried out for 3 due to lack of material, but the Ahp unit 

is most likely the same configuration as in 2 and 3, based on overall similarity of NMR data and the 

fact that the result of Marfey’s analysis was the same for other units.  
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Figure 2. ESIMS fragmentation pattern for lyngbyastatins 810 (13). Two series of b 

ions were observed. In one (top), ring opening at the ester bond occurred, followed by 

sequential loss of units. In the other (bottom), the side chain was lost, before ring opening 

at the amide bond between Ahp and Abu. For comparison, see ESIMS fragmentation 

pattern of lyngbyastatin 7, Figure S1. Note: All ions retained Na+. 

 
 

Compounds 13 were assessed for inhibition of porcine pancreatic elastase. Lyngbyastatin 7, tested 

concurrently, exhibited an IC50 of 47.3  7.6 nM in this assay. By comparison, 13 were all less potent, 

with IC50 values of 123  2 nM, 210  10 nM, and 120  16 nM, respectively. Compounds 13 possess 

the same depsipeptide core as lyngbyastatin 7. And therefore, differences in the side chain residue may 

play some part in their reduced potency. The presence of exclusively hydrophobic residues in the 

pendant chain may allow for fewer favorable electrostatic interactions and hydrogen bonding with the 

enzyme. Conversely, the presence of Br does not seem to have much of an influence of the potency of 

3 compared with 1 and 2. 
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3. Experimental Section 

 

3.1. General Experimental Procedures 

 

Optical rotation was measured on a Perkin-Elmer 341 polarimeter. UV spectra were obtained on a 

SpectraMax M5 (Molecular Devices) and IR data were obtained on a Bruker Vector 22 instrument.  
1H and 2D NMR spectra for 13 in DMSO-d6 were recorded on a Bruker 600 MHz Avance II 

Spectrometer, using a 1-mm triple-resonance high-temperature superconducting cryogenic probe [22] 

for 1 and 2, and a 5-mm cryogenic probe for indirect detection (Bruker CryoProbe TXI) for 3. Spectra 

were referenced to residual solvent signals [H/C 2.49/39.5]. HSQC experiments were optimized for 
1JCH = 145 Hz, and HMBC experiments were optimized for nJCH = 7 Hz. HRESI/APCIMS data were 

recorded on an Agilent LC-TOF mass spectrometer equipped with an APCI/ESI multimode ion source 

detector in positive ion mode. LC-MS data were obtained using an API 3200 triple quadrupole MS 

(Applied Biosystems) equipped with a Shimadzu LC system. ESIMS fragmentation data were obtained 

on an API 3200 by direct injection with a syringe driver. Enzymatic assays were read using a 

SpectraMax M5. The standard for N-Me-3’-Br-Tyr was prepared as previously described [23]. 

 

3.2. Extraction and Isolation 

 

A sample of Lyngbya semiplena was collected from Tumon Bay, Guam on December 17, 1998. The 

freeze-dried organism (dry weight 1.85 kg) was extracted with EtOAc–MeOH (1:1). The extract was 

concentrated to dryness and partitioned between hexanes and MeOH–H2O (80:20). After removal of 

the solvents, the latter fraction was further partitioned between n-BuOH and H2O. The n-BuOH 

soluble fraction was subjected to silica gel chromatography, using a gradient system of increasing  

i-PrOH in CH2Cl2. The fraction eluting with 50% i-PrOH was further purified by reversed-phase 

chromatography, using a gradient system of increasing MeOH in H2O. The fraction eluting with 80% 

MeOH was purified by reversed-phase HPLC (YMC-Pack ODS-AQ, 250  10 mm, 2.0 mL/min; UV 

detection at 220 and 254 nm) using a MeOH–H2O linear gradient (20100% over 60 min, then 100% 

MeOH for 10 min), to furnish compounds 1 (tR 42.8 min; 1.8 mg), 2 (tR 47.0 min; 1.1 mg) and impure 

3 (tR 49.7 min). Compound 3 was repurified using a different column (Phenomenex Synergi Hydro-

RP, 250  10 mm, 2.0 mL/min, PDA detection, 200800 nm), with the same linear gradient used 

before to yield pure 3 (tR 47.7 min; ~100 g).  

 

3.3. Lyngbyastatin 8 (1) 

 

Colorless amorphous solid; []20
D 4 (c 0.02, MeOH); UV (MeOH) max (log ) 217 (3.80), 274 

(3.12); IR (film) max 3570–3000 (br), 3050, 2924, 2124 (br), 1647, 1545, 1438, 1411, 1319, 1203, 

1139, 1019, 952 cm–1; 1H-NMR, edited HSQC, HMBC and ROESY, see Table 1 and Table S1, 

Supporting Information; HRESI/APCIMS m/z [M + Na]+ 955.4524 (calcd for C47H64N8O12Na, 

955.4541), [M + H – H2O] 915.4599 (calcd for C47H63N8O11, 915.4616). 
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3.4. Lyngbyastatin 9 (2) 

 

Colorless amorphous solid; []20
D 16 (c 0.02, MeOH); UV (MeOH) max (log ) 212 (3.80), 272 

(3.12); IR (film) max 3700–3000 (br), 2956, 2923, 2854, 2361, 1729, 1643, 1540, 1451, 1409, 1380, 

1257, 1205, 1073, 1025, 802, 752, 702 cm–1; 1H-NMR, edited HSQC, HMBC and ROESY, see Table 

1 and Table S2, Supporting Information; HRESI/APCIMS m/z [M + Na]+ 983.4823 (calcd for 

C49H68N8O12Na, 983.4854), [M + H – H2O] 943.4898 (calcd for C49H67N8O11, 943.4929). 

 

3.5. Lyngbyastatin 10 (3) 

 

Colorless amorphous solid [24]; []20
D 36 (c 0.009, MeOH); UV (MeOH) max (log ) 204 (4.25), 

230(sh) (3.80), 280 (3.12); 1H-NMR, COSY, edited HSQC, and ROESY, see Table 1 and Table S3, 

Supporting Information; HRESI/APCIMS m/z [M + Na]+ 1061.3951, 1063.3944 (ratio 1:1.2, calcd for 

C49H67N8O12
79BrNa, 1061.3959; C49H67N8O12

81BrNa, 1063.3939), [M + H – H2O] 1021.4028, 

1023.4033 (ratio 1:1.2, calcd for C49H66N8O11
79Br, 1021.4034; C49H66N8O11

81Br, 1023.4014). 

 

3.6. ESIMS Fragmentation 

 

Solutions of compounds 13 were directly injected into the mass spectrometer by syringe driver. 

Spectra were collected in positive ion mode, using Enhanced Product Ion (EPI) scans. [M + Na]+ peaks 

were fragmented (m/z 955.2 for 1, 983.5 for 2 and 1061.6/1063.4 for 3), by ramping CE through the 

maximum possible range. Source parameters used were as follows: CUR 10, CAD High, IS 5500, 

TEM 0, GS1 10, GS2 10. Compound dependent parameters used for 1 were as follows: DP 321, EP 10, 

CEP 40; for 2: DP 119, EP 11, CEP 37; and for 3: DP 112, EP 10, CEP 40. For some of the lower 

molecular weight fragment ions, conventional MS2 scans were used to fragment the same peaks. 

Again, CE was ramped during the scans. Source parameters used were as follows: CUR 10, IS 5500, 

TEM 200, GS1 10, GS2 20. Compound dependent parameters used for 1 were as follows: DP 150,  

EP 4, CEP 40; for 2: DP 140, EP 12, CEP 40; and for 3: DP 150, EP 12, CEP 40. 

 

3.7. Marfey’s Analysis 

 

Samples (~100 g) of compounds 1 and 2 were treated with 6 N HCl at 110 C for 24 h. The 

hydrolysates were evaporated to dryness and dissolved in H2O (100 L). To this 1 M NaHCO3 (50 L) 

and a 1% w/v solution of 1-fluoro-2,4-dinitro-5-L-leucinamide (L-FDLA) in acetone was added, and the 

mixture was heated at 80 C for 3 min. The reaction mixture was then cooled, acidified with 2 N HCl 

(100 L), dried, and dissolved in H2O–MeCN (1:1). Aliquots were subjected to reversed-phase HPLC 

(Alltech Alltima HP C18 HL 5 m, 250  4.6 mm, 1.0 mL/min, PDA detection) using a linear gradient 

of MeCN in 0.1% v/v aqueous TFA (3070% MeCN over 50 min). The retention times (tR, min) of the 

derivatized amino acids in the corresponding hydrolysates of compounds 1 and 2 matched those of  

L-Thr (14.0), L-Ala (19.6), L-Val (23.9), L-Phe (28.8) and N-Me-L-Tyr (40.9). Retention times  

(tR, min) of authentic standards were as follows: L-Thr (14.0), D-Thr (19.3), L-allo-Thr (15.1), D-allo-
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Thr (17.0), L-Ala (19.6), D-Ala (24.0), L-Val (23.9), D-Val (32.7), L-Phe (28.8), D-Phe (35.6), N-Me-L-

Tyr (40.9), and N-Me-D-Tyr (42.3) [25]. 

CrO3 oxidations of 1 and 2 followed by acid hydrolysis were carried out as previously described [6]. 

The resulting hydrolysates were derivatized with L-FDLA and aliquots subjected to reversed-phase 

HPLC as above. When compared to the above results, HPLC profiles for derivatives resulting from 

compounds 1 and 2 showed one new peak corresponding to L-Glu (tR 16.5 min), and the peak 

corresponding to L-Phe (tR 28.8 min) showed increased intensity. The retention times of authentic 

standards for L-Glu and D-Glu were 16.5 and 17.7 min, respectively. 

A sample (50 g) of 3 was hydrolyzed then derivatized with L-FDLA in the same manner as 1 and 

2. Aliquots were subjected to reversed-phase HPLC (Alltech Alltima HP C18 HL 5 m, 250  4.6 mm, 

0.5 mL/min, MS detection in negative ion mode) using a linear MeOH–H2O gradient (both containing 

0.1% HCOOH, 40–100% MeOH over 50 min). L-Thr, N-Me-3’-Br-L-Tyr, L-Ala, L-Val and L-Phe 

eluted at tR 33.7, 37.5, 38.5, 39.8, and 41.8 min, respectively. Using the same conditions, the presence 

of L-Thr, L-Ala, L-Val and L-Phe was confirmed in 1 and 2. The retention times (tR, min; Multiple 

Reaction Monitoring (MRM) ion pair, parentproduct) of authentic standards were as follows: L-Thr 

(33.7; 412306), L-allo-Thr (36.0; 412306), D-allo-Thr (37.9; 412306), D-Thr (40.0; 412306), 

N-Me-3’-Br-L-Tyr (37.5; 568475 and 566473), N-Me-3’-Br-D-Tyr (39.5; 568475 and 

566473) [26], L-Ala (38.5; 382320), D-Ala (43.8; 382320), L-Val (39.8; 410348), D-Val 

(47.9; 410348), L-Phe (41.8; 458396), and D-Phe (49.5; 458396). MS parameters used for 

detection of the majority of standards were as follows: DP –57, EP –8, CE –18, CXP –17, CUR 50, 

CAD High, IS –4500, TEM 750, GS1 40, GS2 50. For detection of N-Me-3’-Br-Tyr, MS parameters 

used were as follows: DP –90, EP –8, CE –40, CXP –21, CUR 50, CAD High, IS –4500, TEM 750, 

GS1 40, GS2 50. 

 

3.8. Elastase Assays 

 

A stock solution of porcine pancreatic elastase (Elastase-high purity; EPC, EC134) was prepared at 

a concentration of 75 g/mL in Tris-HCl (pH 8.0). Aliquots of test compounds (1 L, DMSO) were 

preincubated with 79 L Tris-HCl (pH 8.0) and 5 L elastase stock for 15 min at room temperature in 

a microtiter plate. After this time, 15 L substrate solution was added (2 mM N-succinyl-Ala-Ala-Ala-

p-nitroanilide in Tris-HCl, pH 8.0) to each well, and the reaction was followed by measuring the 

absorbance at 405 nm every 30 s. Enzyme activity was determined by calculating the initial slope of 

each progress curve, expressed as a percentage of the slope of the uninhibited reaction. Lyngbyastatin 

7 [7] was used as a positive control for inhibition, and the assay was carried out in triplicate.  
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Glossary of Terms 

 

Abu, 2-amino-2-butenoic acid; Ahp, 3-amino-6-hydroxy-2-piperidone; Amp, 3-amino-6-methoxy-

2-piperidone; Ba, butanoic acid; CAD, collisionally activated decomposition; CE, collision energy; 

CEP, collision cell entrance potential; CUR, curtain gas; DP, declustering potential; EP, entrance 

potential; EPI, enhanced product ion; FDLA, 1-fluoro-2,4-dinitro-5-leucinamide; Ga, glyceric acid; 

Gas, glyceric acid sulfate; GS1, gas 1; GS2, gas 2; Ha, hexanoic acid; HRESI/APCIMS, high 

resolution electrospray ionization/atmospheric pressure chemical ionization mass spectrometry (dual 

probe); Htyr, homotyrosine; IS, ionspray voltage; TEM, temperature. 
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