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Abstract

Counts of independent photo events from camera traps are commonly used to make inference 

about species occupancy, the density of unmarked populations, and the relative abundance of 

species across time and space. These applications rest on the untested assumption that data 

collected from individual cameras are representative of the landscape location in which they are 

placed, and that nearby cameras would record similar data when any additional micro-site 

differences are accounted for. We established a high-density camera trapping grid (100 x 100 m; 

27 cameras) in Virginia, USA to explicitly test these assumptions, investigating variation in 

capture rates and detection probabilities for a range of terrestrial mammals during 4, 2-month 

seasonal surveys. Despite controlling for numerous habitat and placement factors, we 

documented, across all 5 focal species, large ranges and coefficients of variation in both capture 

rate and detection probabilities which were similar to those seen across 2 sets of independent 

forest sampling sites from a larger, more typical camera trap sampling design. We also 

documented a lack of spatial autocorrelation in capture rate at any distance. Measured local 

covariates relevant to the camera viewshed (stem density, camera height, log presence, effective 

detection distance (EDD), total dbh of oak trees) rarely explained any significant portion of 

observed variation in capture rates or detection probabilities across the grid. The influence of 

EDD, measured here for the first time for individual camera stations, was inconsistently 

important and varied in direction of effect depending on species and season. Our study indicates 

single camera stations may fail to sample animal presence and frequency of use in a robust and 

repeatable way, primarily resulting from the influence of both idiosyncrasies in animal 

movement and measured and unknown micro-site characteristics. We recommend spatial 
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replication within sites (e.g. small-scale shifting of cameras or use of multiple stations) should be 

considered to minimize impacts of relevant microsite characteristics, some of which may be 

difficult to identify.

Keywords

camera trap; capture rate; detection; detection bias; detection probability; imperfect detection; 

mammal survey; occupancy; relative abundance index; sampling bias; trail camera; Virginia 

USA. 
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Introduction

Since the mid-1990s, camera traps have been employed in an increasingly broad range of 

ecological studies, addressing questions related to activity patterns, habitat use, and species 

distribution, with a particular focus on community richness and composition, density, and 

relative abundance (reviews in O'Connell et al. 2011, Burton et al. 2015). Traditional surveys of 

terrestrial mammal richness or abundance have relied on designs in which individual transects 

covered relatively large areas, thereby sampling existing habitat variation at multiple scales (e.g. 

track counts, scat surveys, distance sampling with sign or observations). While camera traps 

provide a range of advantages over these traditional methods for sampling select wildlife 

(Silveira et al. 2003, Tobler et al. 2008), the total area sampled by cameras is notably small, and 

the information collected therefore has a high potential to be strongly influenced by a range of 

micro-site characteristics (review in Hofmeester et al. 2019). Questions remain about exactly 

what area is sampled by a camera trap in a continuous landscape, and how inference should best 

be made from information collected at a camera site, to the broader landscape (Efford and 

Dawson 2012, Burton et al. 2015, Neilson et al. 2018). 

Camera traps are commonly employed to identify ecological and anthropogenic factors 

influencing the landscape distribution of species (e.g. Kays et al. 2011, Schuette et al. 2013), 

(Nagy-Reis et al. 2016, Morin et al. 2018). Given that raw presence/absence information from 

cameras fails to account for likely spatial and temporal variation in species detection, occupancy 

models, which utilize repeat site visits estimate detection rates explicitly (MacKenzie et al. 

2002), are increasingly used to document habitat use patterns and distribution in camera-based 

studies (Burton et al. 2015). When applying this framework with camera traps, one must make 
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two potentially problematic assumptions. First, as in all occupancy frameworks, we assume that 

detection probability (p) of our sampling device is either constant, or all sources of heterogeneity 

in p are controlled or explicitly modelled (MacKenzie et al. 2017). For camera traps, an 

increasingly large list of local site factors have been shown to influence p, many of which 

impact: 1) the ability to predict or funnel animal movement to the camera (e.g. placement on/off 

trails: Cusack et al. 2015, Kolowski and Forrester 2017 and roads: Sollmann et al. 2013, Mann et 

al. 2015; presence of logs: Kolowski and Forrester 2017); 2) the ability to physically detect or 

see the focal species (e.g. vegetation density: Hofmeester et al. 2017, Kolowski and Forrester 

2017, camera detection distance: Hofmeester et al. 2017); or 3) the general favorability of the 

local site for the species of interest (e.g. local resource availability: Brassine and Parker 2015, 

presence of bait/lure: Satterfield et al. 2017, Suarez-Tangil and Rodriguez 2017). Although 

efforts have been made to summarize current knowledge about the factors influencing detection 

probability of a species (Hofmeester et al. 2019), the ever growing list of potentially important 

factors should raise doubts as to our ability to identify and measure all the key factors in any 

given scenario. 

Second, camera-based occupancy surveys assume that information collected at the camera 

location can be associated with broader landscape characteristics. Ecological and anthropogenic 

variables associated with the camera location, as well as its position in the larger landscape, are 

used to investigate patterns of site occupancy or use by the focal species (MacKenzie et al. 

2017). To maintain independence of site-level information, and often to correlate occupancy with 

abundance, it has been suggested that the spacing between cameras be based on the size of an 

animal’s home range (e.g. O'Connell and Bailey 2011). While this may be an unnecessary 
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restriction (MacKenzie et al. 2017) camera-based occupancy sampling designs have tended to 

adopt this approach, resulting in single cameras being separated by significant distances (0.1 to 

5.0 km in Burton et al. 2015). However, little research has been conducted to assess the extent to 

which data collected at a single point is a consistent and repeatable measure of species 

occupancy or use at the landscape scale. Those few studies that have compared the effect of 

sampling single sites with variable numbers of camera stations have found that use of single 

stations can severely limit detection probability for some species (Stokeld et al. 2016, O'Connor 

et al. 2017, Evans et al. 2019, Wong et al. 2019) and introduces bias in identification of key 

ecological factors influencing occupancy (Pease et al. 2016). 

Direct information about animal abundance is also critical to wildlife managers and ecologists, 

and while statistically robust methods are well developed for estimating density of species that 

can be individually recognized on camera traps (Royle et al. 2015, Borchers and Fewster 2016, 

Royle et al. 2018), fewer tested options are available for the vast majority of species which do 

not have distinct individual markings (yet see Rowcliffe et al. 2008, Dénes et al. 2015, Moeller et 

al. 2018). For species without unique markings there is great interest in using photo capture rate 

as an index of relative abundance. While robust use of photo rate as an abundance index assumes 

that photo rate varies consistently and linearly with actual animal abundance (Pollock et al. 

2002), those few studies that have investigated this critical assumption have come to varied 

conclusions (Rovero and Marshall 2009, Sollmann et al. 2013, Parsons et al. 2017, Palmer et al. 

2018). Where the index fails, the confounding of abundance and detection is a critical challenge, 

and robust use of photo rate must necessarily address temporal and spatial variation in detection. 

A range of models developed to estimate actual abundance from photo count data (e.g. random 
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encounter model: Rowcliffe et al. 2008, spatial count model: Chandler and Royle 2013, distance 

sampling model: Howe et al. 2017) are also subject to the same potential confounding effects of 

factors influencing detection rates, independent of abundance. And while each model has 

approaches to model variation in detection, a lack of complete knowledge of the factors 

influencing detection could result in biased estimates.

Our goal was to assess the extent to which capture rate and detection probability data collected at 

a single camera station are representative of the broader habitat and landscape in which it is 

placed for a suite of species common to hardwood forests of the northeastern United States. To 

do so we established a high-density grid of camera traps in homogenous forested habitat, closely 

controlling camera setup and placement (camera type, height, orientation). Our study investigates 

the critical, yet often unstated, assumption that photo capture is a reliable indicator of presence 

and use by a species for a given “site”, and therefore capture rates and detection probability 

should be similar (with necessary allowance for reasonable sampling variation) across multiple 

cameras at a single site. We therefore assessed variation in capture rate and detection probability 

at the scale of our grid, which was small enough to be considered a single sampling site (or 

smaller) for most camera-trap study designs, and compare it to values documented across a much 

larger surrounding region using a more traditional sampling approach. In addition, we assume 

there is strong spatial autocorrelation between closely placed cameras within a site and any 

variation in photo rates should be explainable by measurable local-site characteristics. The study 

duration allowed us to investigate whether spatial patterns in detection probability and 

capture/photo rate, and the covariates influencing them, vary across seasons. Our unique design 

allowed us to ask novel questions about how camera traps sample habitat and species, and what 
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potential biases may exist when employing this relatively new technology as a wildlife sampling 

device. 

Methods

Study area

We conducted our study on the grounds of the Smithsonian Conservation Biology Institute 

(SCBI) in Front Royal, Virginia (38.89476, -78.14630). Sixty-six percent of the 1,295-ha 

property is forested and is contiguous with the nearly 81,000 ha forest of Shenandoah National 

Park. Forests on the property are varying ages of mixed deciduous forest, with canopies 

dominated by tulip poplar (Liriodendron tulipifera), ash (Fraxinus spp.) and a suite of oak 

(Quercus spp.) and hickory (Carya spp.) species. Although the SCBI property is fenced, the 

perimeter fences are permeable to all local wildlife species. The climate is classified as humid 

subtropical, with hot humid summers and mild cool winters. Snowfall is irregular but common 

from January through March. 

All data collection occurred within a 1-ha section of a larger long-term forest monitoring plot 

within the ForestGEO network (Bourg et al. 2013, Anderson-Teixeira et al. 2015). Within these 

monitoring plots, all stems greater than 1 cm diameter at breast height (dbh) are identified to 

species, tagged, mapped and measured every 5 years. Within our 1 ha focal area, and a 50 m 

buffer surrounding it, the majority of the more than 3000 woody stems were hickory, tulip 

poplar, blackgum (Nyssa sylvatica), ironwood (Carpinus caroliniana), and oak. Our focal site 
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was roughly bordered on one side by a small, infrequently used gravel road (the broader site is 

not open to the public), and ranged in elevation from 258-350 m. 

Camera grid

We established a dense camera array across this 1 ha area of mature secondary forest, selecting a 

site with relatively easy access, minimal slope and consistent vegetative structure. The 

understory was largely open, with high visibility and little dense vegetation. Starting with a 

random location, we mounted 27 trail cameras at 20 m intervals in offset rows. If there was no 

tree within 2 m of a placement point, we mounted the camera on a metal post. All cameras faced 

north and instructions to field staff were to place cameras at knee height, though actual height 

was varied to account for slope. We set four thin bamboo garden stakes at 2.5, 5, 7.5, and 10 m 

from the front of the camera to estimate each distance from the camera of detection events 

(Hofmeester et al. 2017).

We used two Reconyx (Holmern, Wisconsin) camera models, the PC800 HyperFire and the 

PM75 RapidFire. Both models used Lo-glow, high-output, “semi-covert” infrared night vision, 

had a 1/10 second trigger speed, and were set to take 5 “rapid-fire” photographs when activated 

with no quiet period between triggers. We checked the grid every two weeks to replace batteries, 

reposition cameras if necessary, and replace memory cards nearing capacity. We maintained the 

grid through four 2-month seasonal deployments: June-July 2017 (summer), October-November 

2017 (fall), January-February 2018 (winter), and April-May (spring) 2018.
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To compare variation in sampling metrics obtained in our high-resolution grid to variation seen 

across all study sites in a typical camera trapping study, we took advantage of a previous study 

conducted in the same area, but spread across a 500 x 500 m resolution sampling grid and 

covering the full 1300 ha SCBI property (Kolowski and Forrester 2017). As with our small-scale 

sampling grid, all these sites were restricted to occur in forest, yet they varied in a range of 

landscape habitat variables (e.g. forest type and age, slope and elevation, distance to edge) and 

were sampled with two different camera brands. These sites were sampled between June and 

early December (classified in this study as summer and fall) in 2013 and 2014 and were run for 

an average of 25 camera-nights. We focus here on two sets of camera samples of 30 (A) and 24 

(B) stations that were randomly placed near grid centers to avoid any bias from trails or other 

features (see Kolowski and Forrester 2017) for more details on field deployments and data 

processing).    

Data processing and summary

Photos from camera deployments were uploaded to the eMammal (www.emammal.si.edu) 

camera trap management system. Photo sequences were assigned to species by field staff 

uploading the photos and identifications were then confirmed by experienced staff. Sequence 

information was then downloaded for analysis, and independent sequences for a given species 

and camera station were classified as those separated by at least 10 minutes from the previous 

photo.

We summarized overall presence of each species at the level of the camera and grid for each 

season and calculated the proportion of the grid’s 27 cameras recording each species within a 
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season. We calculated capture rate at the camera and grid level for each species within and 

across seasons as: (number of sequences/camera nights) * 100.  We calculated summary statistics 

as well as coefficient of variation (standard deviation/mean) for capture rate for each species and 

season across the grid. Most analyses focus on the most commonly photographed species to 

ensure adequate data were available to describe patterns in detection. Because our two diurnal 

squirrel species, fox squirrel (Sciurus niger) and gray squirrel (Sciurus carolinensis), are 

challenging to distinguish in black-and-white nocturnal photos, we typically report results for 

squirrels both by species, as well as combined with unknown squirrel detections in a third “all 

squirrels” category.

Small-scale spatial auto-correlation in capture

Most camera-based studies look to ensure that their sampling sites do not display un-modelled 

spatial correlation in collected data (i.e. the sites offer independent observations), an assumption 

of most statistical models used with camera data (e.g. occupancy modeling, MacKenzie et al. 

2017). In our scenario with small distances separating cameras, we hypothesized that capture 

rates should be highly correlated, and that this correlation should increase as inter-camera 

distance decreases. Spatial autocorrelation of capture rates at the level of the entire grid (across 

all distance combinations) was estimated using Moran’s I. To investigate the level of spatial 

correlation in capture rates at the range of available inter-camera distances, we present 

correlation values across the range of available distances and examine these patterns visually 

with correlograms for each species/season combination. 
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Local site covariates

To examine the possible sources of small-scale variation in capture rate and detection probability 

within seasons across the grid we attempted to record all locally variable factors that might 

influence detection rates. A recent review (Hofmeester et al. 2019) summarized the array of 

factors (independent of abundance) shown or likely to influence camera detection rates. In our 

controlled scenario we measured the few potential factors that remained. These included: camera 

height, vegetation density, landscape features channeling animal movement (e.g. trails, logs), and 

detection area of the camera (Hofmeester et al. 2019). We hypothesized that, although habitat 

across the grid was fairly homogeneous, minor variation in the density of stems in the viewshed 

of each camera could influence capture rate and detection. We used the total count of stems 

within a conical sector loosely representing the viewshed of each camera, and defined by a 40-

degree viewing angle extending to 20 m. Here we did not attempt to define the exact viewshed of 

each camera, but rather to describe the vegetation structure in each camera’s broad field of view. 

We also added a parameter to represent the relative potential quantity of acorns available in each 

camera’s field of view as the sum of the dbh of all oak species in the camera viewshed.

Although our protocol dictated cameras be set at knee height, variation in camera height resulted 

from a need to adjust for tree shape and angle as well as minor variation in slope. Both large 

(Meek et al. 2016) and small (Apps and McNutt 2018) changes in camera height have been 

found to influence detection rates. We therefore measured exact height of each camera as the 

distance (cm) from the ground to the middle of the camera lens. Recent research has also shown 

that specific habitat features like logs and trails can have significant impacts on capture rates 

with camera traps (Kolowski and Forrester 2017), so we also recorded whether each camera 
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station had a log feature in clear view of the camera. Likely due to the open understory and low 

slope at our site, there were no obvious game trails in our grid. 

Numerous studies have documented the influence of the size of the camera’s detection zone on 

photo capture rate (Rowcliffe et al. 2011, Hofmeester et al. 2017). When estimated, for example 

to inform density estimation of unmarked species using the Random Encounter Model 

(Rowcliffe et al. 2008), the detection zone has previously been assumed to be consistent across 

all camera stations. While variation in local camera setup and surrounding vegetation and 

structure make this assumption problematic, camera detection distance has never been robustly 

estimated for individual camera stations. We therefore used a distance sampling (Buckland 2001) 

approach to estimate effective detection distance (EDD) at each station for as many different 

species groups as possible. This approach has been used previously to estimate EDD across a 

camera grid (Hofmeester et al. 2017), but not for individual camera stations. While feasible, it 

requires that researchers estimate the distance from the camera to each observation, but also that 

adequate sample sizes can be recorded at each camera to adequately estimate a detection 

function. In our case, we recorded the distance bin in which the animal was first observed, based 

on described bamboo markers. 

We considered a minimum of 30 observations necessary to adequately describe the detection 

process at each camera station. We pooled observations at various levels to achieve sufficient 

sample sizes, first across similar seasons with respect to vegetation (i.e. summer with fall, and 

winter with spring), then across all 4 seasons when necessary. In some cases pooling was still 

necessary across groups of similar-sized species to achieve the threshold sample.
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Distance sampling analysis was carried out as for point transects with radial distances (Buckland 

2001).We used the half-normal key function with potential cosine adjustments to give adequate 

flexibility in describing the detection functions at each camera. Cut points for analysis bins were 

listed as 0, 2.5, 5.0, 7.5, 10, and 12.5 m. We ultimately truncated all observations past the 

furthest marker (10 m). Despite our surveying less than a full circle for each point, no 

adjustments were made to the size of the area sampled, since density was not being estimated. 

Generalized linear modeling of sequence counts

Prior to any modeling, we assessed collinearity among our set of 5 potential predictor variables, 

considering pairs of covariates with |r| > 0.7 highly correlated. In these cases, we kept the 

covariate of most interest from a research perspective. We next investigated the distributions of 

our explanatory covariates to check for skew or otherwise problematic patterns and employed 

any necessary transformations. 

Given that our response variable here was the count of independent sequences at each station, we 

first investigated the potential to model this response in a generalized linear model framework 

(GLM) with a Poisson error distribution and the associated log link function. Because of the 

potential for extra-Poisson variation (overdispersion), we estimated overdispersion by running a 

fully general model (including all non-correlated predictor variables) for each species and season 

and estimated the overdispersion factor as model deviance divided by the residual degrees of 

freedom. If overdispersion was detected (overdispersion factor > 1.0), we proceeded with our 

modeling using a negative binomial distribution to explicitly account for overdispersion (Ver 

Hoef and Boveng 2007, Zuur 2009). To account for variation in duration of each camera 
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deployment (e.g. due to occasional malfunction) we ran all models with an offset term (log 

(deployment duration)). 

We then proceeded with a model comparison investigation for each species and season, 

comparing models based on small sample size corrected AIC values (AICc) and related metrics. 

Because our sample size was limited by our number of camera stations (n = 27), we limited 

models (with the exception of initial tests for overdispersion) to a maximum of three covariates. 

We tested all possible model combinations with this maximum level of complexity (n = 26, 

including intercept only model). For some species, we modified the set of potential predictor 

variables to account for specific hypotheses about the observation process. First, we reasoned 

that for squirrels, which have been shown to be more detectable with logs present in the camera 

field of view (Kolowski and Forrester 2017), the influence of camera EDD could be altered by 

the presence of a log, which could be the focal point of detections for these species. Therefore, 

for each squirrel species (and “all squirrels” group), we first tested a two-variable (log presence 

and EDD) model with and without an interaction term. If the interaction model was favored 

based on AICc, all models with both EDD and log presence were run with an interaction term. 

Finally, we hypothesized that squirrels may be at their most detectable at intermediate camera 

heights, with cameras too low sacrificing detection distance, and those too high missing nearby 

individuals altogether. We therefore considered models with a quadratic term on the camera 

height covariate. If a single covariate model with the quadratic term was favored over the simpler 

model based on AICc, camera height was thereafter consistently modeled as a quadratic term for 

that species. Given this, some squirrel models could include up to five parameters (adding either 

a quadratic term, interaction term, or both). 
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To assess the amount of variation in capture rates explained by our covariates, we present the 

explained deviance (model deviance/null model deviance) of the best model (lowest AICc) for 

each species and season. We also present summed AICc weights across all models including a 

given covariate (Giam and Olden 2016) to allow an assessment of relative importance of that 

covariate. For final selected models we conducted standard diagnostic tests including plotting of 

residuals against predicted values and explanatory variables and investigating points with high 

leverage using Cook’s distance. We discuss any patterns or data points of concern. 

To investigate whether season had a significant impact on capture rates, we employed the same 

modeling approach as above with the same focal species, here comparing a model using season 

to predict the number of recorded sequences to an intercept-only model using AICc values. In 

this case each camera could appear in the dataset 4 times for a total potential sample size of 108, 

and camera was used as a random effect (intercept) to account for the repeated sampling. Season 

was considered to have an important impact on capture rates if the season model was favored 

over the intercept only (null) model. 

Occupancy modeling to investigate variation in detection probability

In the framework of occupancy modeling, nuisance variation in detection probability (the 

probability of detecting the species of interest, at an occupied site, on a given sampling occasion) 

across sites is explicitly estimated and used to reduce bias in estimated site occupancy 

probabilities (MacKenzie et al. 2017). Model comparison approaches allow identification of the 

influence of covariates on detection probability. Here detection data are represented in binary 
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fashion (1 vs. 0) for each sampling occasion, which for camera trap research may range from 1 to 

multiple days depending on the species and question of interest. Because this simplification of 

photo sequence data (from total counts to a yes/no per occasion) may reduce the variability 

among cameras, we first assessed total variation in detection within the grid using summary 

statistics, as above for capture rate. In this case we calculated raw detection probability for each 

camera and season as the proportion of occasions (here set to each day) with detections. We then 

conducted single-species, single-season occupancy models, asking which of our set of covariates 

influenced detection probability. In this analysis the occupancy parameter was held constant, and 

we investigated and compared all the same model combinations described above. In this 

framework each camera station is treated as a site (n = 27). 

Effective detection distances for individual cameras were calculated in the program Distance 6.2 

(Thomas et al. 2010). All other analyses were conducted in the R computing environment (R 

Core Team 2019). Correlograms were generated using the package ncf (Bjornstad 2019) and 

Moran’s I with package ape (Paradis and Schliep 2018). Negative binomial GLM models were 

run with the package MASS (Venables and Ripley 2002) and summarized using the package 

AICcmodavg (Mazerolle 2019). Occupancy models were run in the package RPresence 

(MacKenzie and Hines 2018).

Results

We photographed 15 mammal species within the grid during the full 4-season sampling period 

across a total of 5569 camera-nights (Figure 1). Two cameras failed entirely in both the fall and 

winter seasons, resulting in a sample of 25 camera stations for those seasons. The most 
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commonly photographed species, and those which serve as our focal species for most analyses, 

were: white-tailed deer (Odocoileus virginianus, hereafter “deer”), American black bear (Ursus 

americanus, hereafter, “bear”), eastern gray squirrel (Sciurus carolinensis), eastern fox squirrel 

(Sciurus niger) and the northern raccoon (Procyon lotor, hereafter “raccoon”) as well as 

unknown small rodents, most of which were likely white-footed mice (Peromyscus leucopus). 

The least captured species across the study were gray fox (Urocyon cinereoargenteus), long-

tailed weasel (Mustela frenata) and southern flying squirrel (Glaucomys volans), each of which 

were captured in only one photo sequence. Total species counts for each season were: 11 in 

summer, 12 in fall, 13 in winter, and 12 in spring.

Although each of our five focal species were known to occupy our study site throughout the 

year, only deer were captured at every camera station in every 2-month sampling season (Table 

1). Excluding winter and spring for bear, when this species could have been either in torpor or 

emerging from this state, there were seasons in which multiple cameras failed to register a photo 

of these common species. This was the case for as many as three cameras for fox squirrel in 

summer, six for gray squirrel in fall, seven for raccoon in summer, and seven for bear in fall. 

Capture rates

Within seasons, we documented high variability in capture rates for all five focal species across 

the camera grid (Figure 2, Table 1). The highest variability within a season, as represented by the 

coefficient of variation for capture rate, was for bear in winter, when only two stations detected 

the species. The next highest variability was for bear in fall (CV = 1.64) where capture rates 

ranged from 0.00 to 34.99 across the grid. Coefficients of variation were high for all species in 
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all seasons with a minimum value of 0.45 for deer in spring (Figure 2, Table 1). Variation within 

our grid across the 4 seasons was broadly similar to that documented across 30 and 24 

independent sampling grids on the same property both in terms of the range of values recorded, 

and the coefficients of variation for most species (Table 1). Few clear patterns emerged in these 

qualitative comparisons; the variation observed was either higher, lower, or similar in our small 

sampling grid, depending on the season, species and grid (A vs. B) being compared.  

The large range in capture rates for each species within seasons is clear in visual representations 

of this metric across the grid (Figure 2), with huge differences sometimes evident between 

neighboring cameras. There was no evidence of global spatial autocorrelation based on Moran’s 

I values (minimum inter-camera distance: 15.8 m; maximum: 114.7 m) for any species in any 

season except for gray squirrels in summer (Table 2). There was also no evidence of scale-

dependent covariance. That is, correlograms indicated consistent values across distance 

categories from 20m to 80m (e.g. deer, Figure 3), indicating that already at a 20 m separation, 

capture rate values for these five common species demonstrated independence.

To achieve threshold sample sizes for estimation of EDD, we pooled all squirrel observations 

and combined data from winter and spring for those seasons (range: 2.2 – 5.2 m), but used 

pooled 4-season data to estimate EDD for squirrels in summer and fall (range: 2.1 – 5.3 m). For 

deer, we pooled summer and fall data to estimate values for those seasons (range: 3.0 – 9.0 m). 

When pooling winter and spring data for deer there remained 5 cameras with less than 30 

observations (min 18), but we proceeded with this sample, preferring to maintain seasonal 

variation in EDD despite the few cameras with low samples (range: 2.9 – 9.4 m). For raccoon, 

even when pooling across all 4 seasons, 13 cameras failed to meet the 30-observation threshold. 
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For those cameras with adequate observations we calculated EDD (range: 2.5 – 7.9). For the 

remaining, we used the EDDs from deer. For all bear analyses we used EDD values for deer. 

We considered the number of detections inadequate for regression analysis for bear in winter and 

spring, and for raccoon in summer. All other species and season combinations were investigated 

for a total of 21 model-based investigations (including “all squirrels”). Because a single camera 

site had a particularly high value for stem density, we used a log10 transform for this covariate to 

improve its distribution for modeling. No other transformations were necessary, and none of the 

5 predictor covariates were highly correlated. All fully general models with a Poisson error 

distribution indicated overdispersion, so we employed a negative binomial error distribution 

throughout.

The explained deviance (ED) values for the favored models across all species and seasons were 

generally low (range: 0.0 - 0.50; median = 0.23), with the null (intercept only) model being 

favored in five of the 21 scenarios, three of which were deer models (Table 3). Models with the 

highest predictive abilities included that for squirrels in the fall season (ED = 0.50), and fox 

squirrels in summer (ED = 0.49; Table 3). 

Across species, vegetation-based factors featured least frequently in optimal models. The highest 

summed model weight (SW) for the number of stems in the camera viewshed was 0.61 (scale 

from 0 to 1) and this was selected in only a single favored model, where increasing stem count 

reduced the capture rate of fox squirrels in fall. Similarly, the maximum SW for the total dbh of 

oak trees in the camera viewshed was 0.68, and this parameter was selected in only two best 

models (reducing raccoon detection in spring and increasing bear detections in fall). 
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EDD was not an important predictor of capture rate variation in any season for deer or raccoon. 

Although identified as an important predictor for eight of twelve squirrel scenarios, it was found 

to reduce detection rates in half of these cases. In the other four, it showed an interaction with log 

presence where EDD increased capture rate in the absence of logs, but reduced capture rate in 

the presence of logs (Figure 4).

Camera height, which varied from 33 to 68 cm (median = 53 cm) across the 27 cameras, was not 

important in predicting capture rates for any of the large-bodied focal species (Table 3). 

However, increasing camera height did reduce capture rates for all squirrels and fox squirrels in 

summer (Table 3). This pattern was also detected for raccoons in winter. Only for gray squirrels 

in winter did we identify a quadratic relationship for camera height (Table 3), where capture 

rates were highest at an intermediate height of about 53 cm (Appendix S1: Figure S1). 

The most consistently important local covariate identified across species models was log 

presence, which was in 13 of 21 optimal models. For small species (squirrels and raccoon) it had 

a consistently positive effect on capture rates and figured in the best models for raccoon, gray 

squirrel and fox squirrel in at least 2 of the 4 seasons (Table 3). Log presence either had no 

effect, or a negative effect on capture rates for deer and bear. 

Capture rates varied to a large degree across the 4 seasons for all our focal species (Table 1, 

Figure 2) and the season demonstrating the highest mean capture rates was not consistent across 

species (Table 1). In addition, optimal models explaining capture rate variation were not 

consistent across seasons for any species (Table 3). For example, whereas EDD, camera height 

and log presence influenced capture rates for fox squirrels in summer, no covariates explained 

capture rate variation for this species in winter or spring. There was strong statistical support for 

Page 21 of 50 Ecosphere



22

the influence of season on overall capture rates for all species, where models with a season effect 

were always favored over a null model (Appendix S1: Table S1).

Detection probability/occupancy 

Within seasons, as with capture rates, we documented high variability in detection probabilities 

for all five focal species across the camera grid (Figure 5, Table 4). The highest variability within 

a season, as represented by the coefficient of variation for capture rate, was for bear in Fall (CV 

= 1.6), followed by raccoon in summer and gray squirrel in fall. Coefficients of variation were 

high for all species in all seasons, but lowest values were demonstrated for white-tailed deer in 

all seasons (range: 0.24-0.37: Figure 5, Table 4). The large range and spatial variation in 

detection probabilities for each species within seasons is evident across the grid (Figure 5), with 

huge differences sometimes found between neighboring cameras. When compared to values 

documented across the larger independent grid sites, as with capture rates, variation was either 

smaller or larger in our small sampling grid, depending on the season, species and comparison 

grid (A vs. B) with no strong patterns emerging.

To investigate the influence of local covariates on detection probability (p) we largely replicated 

the above investigation in an occupancy modeling framework, using single-season, single-

species occupancy models. Two changes were made however for the occupancy modeling 

approach. First, to improve model convergence, we scaled all continuous covariates by 

subtracting the mean and dividing by the standard deviation. Second, we included the summer 

season model for raccoons, reasoning there was adequate data available when using the binary 

detection/non-detection format. Results here were generally consistent with those found for 
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capture rates with a few notable differences. First, EDD was identified as an important covariate 

in many more model scenarios (16 of 22), yet it was still inconsistent in its effect (Table 5). For 

our largest species (deer and bear) the effect, when identified, was often positive (three of four 

cases). However, as with capture rates, numerous models for squirrels indicated a negative effect 

of increasing EDD on p, and the influence of EDD often depended on whether logs were present 

(Table 5, Appendix S1: Figure S2). 

Whereas vegetation thickness had little influence on overall capture rates, it played a stronger 

role in determining p across a range of species. Notably, increasing vegetation thickness 

negatively influenced deer detection, where this pattern was not detected for capture rates. 

Whereas vegetation thickness had no influence on capture rates of raccoon, it had a strong 

positive influence on p for this species all seasons except spring, and this influence was also 

detected in winter for fox squirrels and all squirrels (Table 5).

Camera height, as for capture rates, had a negative effect on p for smaller-sized species in a few 

model scenarios (Table 5), in some cases with a quadratic relationship (Appendix S1: Figure S1). 

The important influence of the presence of logs on capture rates was mirrored here for p, with a 

negative influence on larger species and a strong positive influence for smaller species (Table 5).

To compare p across seasons for each focal species, we estimated values using the top model in 

each species:season scenario and mean values for any included covariates, assuming a camera 

placement without a log in view. As with capture rates, p showed significant seasonal variation 

(Appendix S1: Figure S3) in terms of overall level, as well relative ranking of seasons across 

species.
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Discussion

Ours is the first study to investigate variation in commonly recorded animal sampling metrics 

with camera traps at a fine spatial resolution, and our design allowed us to ask novel questions 

about the ability of individual camera traps to sample animal presence and local abundance in a 

repeatable fashion. We documented large amounts of fine-scale variation in capture rates and 

detection probabilities for species spanning a large range of trophic levels and body sizes. This 

variation was demonstrated by high coefficients of variation and large value extremes across our 

small sampling grid, where in most seasons at least some cameras failed to record a single 

capture of a common species, whereas nearby cameras displayed frequent captures. Although 

ostensibly sampling the same habitat with the same devices, we found a near total absence of 

spatial autocorrelation in capture rates at any distance, for any species in any season, indicating 

not only was there extreme levels of variation, but that cameras closer together were no more 

similar than those on opposite ends of the grid.  

Some sampling variation is expected with any sampling method, and one would not expect 

values to be constant. In addition, each individual animal has its own movement patterns, 

movement rates and habits, and each camera exists at different distances from each animal’s 

center of activity. Indeed, we suspect many of these factors are the underlying cause of some 

portion of the variation we observed. Yet it is worth noting that the values recorded here for each 

camera are already the result of averaging 60 separate days of sampling, yet large variation 

remains. This variation, all documented at a scale most would consider smaller than a single 

typical sampling site, existed despite strict controls on design not typically implemented in 

camera sampling designs. Perhaps most surprising was that the level of variation we documented 
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was comparable to that seen across fully independent forest sampling sites scattered across a 

1300 ha study area. These two sets of sites (A and B) used for comparison, while not separated 

by more common distances of 1-2 km, existed at unique forest locations that varied in a  suite of 

habitat and landscape descriptors. These sites were sampled by two different brands of cameras 

and were not setup with the strict protocols implemented in our study (height, orientation, etc.). 

We predicted a much higher variation in sampling metrics to have been displayed in the large-

scale sampling design, but no clear pattern in capture rates or detection was observed.

Explaining variation in capture rates and detection probability with covariates

Although the level of variation in capture rates and detection histories we documented was far 

higher than expected, we anticipated that a significant amount of this variation could be 

explained by micro-site characteristics measured at each camera station. Although we controlled 

many factors that may otherwise vary across camera stations in a typical camera-based design 

(e.g. camera type, camera placement decisions, orientation, and ground cover), and our cameras 

were all placed in the same habitat type with no more than 115 m separating any two cameras, 

variation in micro-site vegetation characteristics, camera height, and detection distance still 

remained. However, these site characteristics generally failed to account for a large percentage of 

variation in capture rates, as evidenced by low explained deviance of predictive models. In 

predicting both capture rates and detection probabilities, few factors were identified to be 

important in predictive models, and even fewer were consistently identified across seasons or 

species.

The presence of a log feature in the camera view was the most consistently important factor in 

predicting local variation in capture rate and detection probability with log presence consistently 

Page 25 of 50 Ecosphere



26

increasing both metrics for squirrels and raccoons, and in some cases decreasing these metrics 

for our large species (bears and deer). This pattern has been shown previously in this same 

habitat and region (Kolowski and Forrester 2017), but we are aware of no other studies that have 

investigated the importance of logs or other structural features on detection metrics. The 

importance of this feature was more consistent in summer and fall, the seasons when vegetation 

cover is highest. This may indicate that smaller species utilize these features to facilitate 

movement, as appeared to be the case in previous work (Kolowski and Forrester 2017), yet 

understory vegetation was generally sparse in our study grid. It is therefore more likely that these 

features facilitate detection by the cameras by bringing smaller species like squirrels into clearer 

view and improving identification by those reviewing photos. Regardless, any studies 

interpreting capture rate or detection probability data should note the presence of structural 

features in the camera view, as they can strongly influence photo sequence counts, particularly 

for smaller species.

We anticipated that camera effective detection distance (EDD) would play an important role in 

explaining small-scale variation in capture rates and detection probability. Logically, cameras 

with a larger EDD, resulting from minor variation in slope, camera angle and habitat structure, 

should capture more animal events and at least on a landscape scale, cameras with more 

obstructed viewsheds have been found to capture fewer detections of nearly all our focal species 

(Moll et al. 2020). Ours is the first study to our knowledge to successfully measure EDD of 

individual camera stations, and this provided a unique opportunity to assess its influence, in a 

controlled scenario. To our surprise EDD failed to explain any significant variation in capture 

rate for either deer or raccoon, and although identified to influence deer detection probabilities, 

its effect was reversed between summer and winter. EDD did influence squirrel capture rates and 

Page 26 of 50Ecosphere



27

detection probabilities, yet its influence here was more complicated, varying by season and with 

log presence. It is likely that when logs are present the log and foreground become a focal point 

for detections. In the absence of log features, cameras that can see farther capture more events. 

Only for bears was the influence of EDD consistently positive for both capture rates and 

detection probabilities. 

The importance of EDD across a range of species (despite its varied direction of effect), and the 

range of values we recorded despite the controlled design, implies that this variable should be 

estimated for studies investigating patterns in captures rates or attempting to account for 

variation in detection probability (i.e. occupancy models). At least one project has recorded 

maximum detection distance at each camera station, walking themselves at decreasing distances 

from the camera (Kays et al. 2016). While simpler to record, it is unclear how well this metric 

corresponds to actual EDD, and it fails to account for interspecific variation in detection 

distance. We found that cameras with high EDD for deer were not necessarily those with high 

EDD for squirrel species (winter/spring Pearson r = 0.21). While methods are well described to 

measure the full detection zone of camera traps (Rowcliffe et al. 2008, Rowcliffe et al. 2011, 

Caravaggi et al. 2016) these require measurements additional to those collected here, and the 

method by Hofmeester et al. (2017) utilized here has been shown to correlate well with these 

more rigorous measures. Unfortunately, estimation for each camera requires substantial captures 

of each species at each camera station, and we were forced here in some cases to pool 

observations across different seasons which may themselves influence EDD. In working toward 

a practical and validated metric of EDD, research should attempt to confirm whether a human-

based maximum detection distance method, or those that estimate obstruction of the camera 

viewshed (e.g. Moll et al. 2020) would correlate well with more rigorous distance-sampling data 
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as analyzed here. Given the recent development of distance sampling approaches to estimated 

density of unmarked animals (Howe et al. 2017), there may be additional justification to set 

distance marking poles at camera stations, depending on research objectives. 

It seems reasonable to assume that as vegetation density increases, detections would decrease. 

Although few studies have incorporated this parameter into modeling of capture rates or 

detection probabilities, perhaps due to the additional time necessary to record it, there is evidence 

that increasing either the understory vegetation density (Kolowski and Forrester 2017) or 

obstruction of the camera viewshed (Moll et al. 2020) reduces detections for a range of mammal 

species in eastern North America. In addition, Hofmeester et al. (2017) found that EDD declined 

for numerous species in dense compared to open understory in forests of the Netherlands. Yet in 

our study overall, the role of vegetation density was equivocal, with negligible impact on capture 

rates, and variable impact on detection probabilities, in some cases strongly improving detection 

and in other cases strongly reducing it. It is notable that vegetation density does have the ability 

to influence not only the detection abilities of the camera, but also the local site favorability for 

use by different species, making it particularly challenging to categorize its broad effects on 

animal capture. This factor may prove more important where trails are used for camera 

placement as trail use may correlate with vegetation thickness (Kolowski and Forrester 2017). In 

addition, understory in our study grid was sparse overall and this may have broadly limited the 

impact of vegetation density. 

Spatial autocorrelation

Any research project using cameras to sample animal populations and basing inference on 

sequence counts or occasion-based detection probabilities should aim to have each site exist as 
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an independent sampling unit. That is, the data collected at one site should not be influenced by 

or related to that collected at any other site, with the most concern coming from cameras near 

each other. Our results indicate that cameras would have to be extremely close to violate 

assumptions of independence for capture rates. Although few studies have investigated spatial 

autocorrelation at small scales, those that have were similarly unable to document spatial 

autocorrelation in capture rates down to distances of 200m (Blake and Loiselle 2018), and as low 

as 25m (Kays et al. 2011). For the vast majority of the 20 study sites surveyed by Parsons et al. 

(2017), male white-tailed deer capture rates were estimated to be independent at distances well 

below their minimum camera spacing of 50m. Even at 20m, we were unable to detect similarities 

in capture rate for any of our focal species in any season with only one exception (gray squirrel 

in fall). While this is encouraging from the standpoint of meeting basic assumptions of most 

statistical analyses, it should also be a significant concern that even cameras very close to each 

other are not displaying similar sampling metrics. 

Seasonal variation

Mean capture rates and detection probabilities varied widely across seasons for all 5 focal 

species. This was expected for black bear, who seasonally enter a state of severely reduced 

activity (torpor) in winter, but not necessarily for the other focal species. Overall this topic has 

received relatively little attention in the literature. Kays et al. (2020) found capture rates to vary 

as much as 4-5 times for seasonally sensitive species in temperate climates, and this effect was 

evident at a global scale as well, with 37-50% of species demonstrating significant variation in 

occupancy or detection rates across seasons. Cusack et al. (2015) also found capture rates for 

individual species to vary between wet and dry seasons. Given that patterns of detection were 

largely inconsistent across seasons, care should be taken in pooling data across seasons and 
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studies planning to compare detection metrics across areas or times should make all attempts to 

control for season variation. Unfortunately, the impact of season on species capture rates may not 

be consistent, even within the same broad ecosystems. Whereas no seasonal differences in 

capture rates were detected in North Carolina for deer, squirrel or raccoon (Kays et al. 2020), we 

found significant seasonal differences for all three species, though the differing scales of the two 

studies may be relevant. 

Design Recommendations

Particularly in the context of occupancy investigations, the definition of a site is a key decision 

for study design. Given that camera traps are typically used to survey continuous habitat, the 

definition of a site can be challenging (Efford and Dawson 2012) and two approaches are 

available: the sampling site can be defined strictly as the area within the detection zone of the 

camera (i.e. a point sample), or as some larger plot (e.g. defined by a regular grid) in which 

single or multiple cameras are placed (Efford and Dawson 2012, Wearn and Glover-Kapfer 

2017). Whereas plot/grid-based designs allow additional flexibility in camera placement and 

could include multiple cameras or sampling methods, a point-based definition is often favored 

for camera studies due to the lack of reliance on potentially arbitrary plot sizes, which influence 

occupancy estimates and limit comparison across studies (Wearn and Glover-Kapfer 2017). The 

point-based design also allows appropriate interpretation of occupancy as proportion of area 

occupied by the species, which is problematic with a grid/plot-based design (Efford and Dawson 

2012). 

While a site definition based on the camera’s detection zone has various advantages, our study 

shows that the data collected may not be a representative or repeatable survey of species 
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presence or local use of the location in which this point sits. Point-based designs may benefit 

from a recently described approach using the time-lapse setting available on most camera traps 

as a novel way to minimize bias associated with interspecies or inter-site detection probability 

variation (Moeller et al. 2018). This approach should severely limit the influence of species 

characteristics (e.g. size, movement speed), detection distance, and potentially camera height on 

detection probabilities. Importantly though, this approach will not reduce the role of micro-site 

parameters that influence the likelihood that a species will use the area in the viewshed of the 

camera, and we show here that potentially unknown parameters in this category may be causing 

large site to site variation in capture rates across very small distances. 

Our data suggest that any grid/plot-based projects should consider a multi-camera approach 

within each grid cell or sampling site to minimize the influence of unmeasured, or unknown 

micro-site factors. It is assumed that observations obtained from a surveyed area, in this case the 

detection zone of a camera, are representative of the sampled site (MacKenzie et al. 2017), and 

our data indicate information from a single camera is unlikely to meet this assumption when a 

site is defined as an area larger than the camera’s field of view. In addition, a multi-camera 

approach has been shown, particularly for elusive species, to be a cost-efficient approach 

(Galvez et al 2016), and to result in significant improvements in detection probability (Stokeld et 

al. 2016, O'Connor et al. 2017, Evans et al. 2019, Wong et al. 2019), which should reduce bias in 

occupancy estimates (MacKenzie and Royle 2005, Bailey et al. 2007, Guillera-Arroita et al. 

2010, Neilson et al. 2018) and potentially offset any reductions in total number of sites samples 

(MacKenzie et al. 2017). Recent work with multi-camera sampling supports this, where 

conclusions about occupancy with single cameras were different from those based on the full 

multi-camera design (Pease et al. 2016) and multi-camera sampling increases precision of 
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occupancy estimates (Wong et al. 2019). An attractive yet underutilized analytical approach for 

handling presence/absence data collected using multiple cameras at each sample site is the multi-

method/multi-scale occupancy model (Nichols et al. 2008), which is parameterized to account 

for the lack of independence in data from multiple sampling methods at sites. Separate cameras 

within sites could be set randomly, or could target distinct micro-habitats (e.g. dense vs. open 

understory) or placement approaches (e.g. log, trail, random) and estimation of unique detection 

probabilities for these placements would be possible (Nichols et al. 2008). 

With respect to interpretation of sequence counts/capture rates, either among species or between 

study areas, our data adds to the concerns already existing in the literature (e.g. Jennelle et al. 

2002, Sollmann et al. 2013, Anile and Devillard 2016) about the extent to which these values 

should be used for inference about relative abundance. It seems clear from our results that any 

interpretation or modeling of sequence counts or capture rates must include covariates 

representing the local site conditions, including structural complexity in the camera view and at 

least some index for detection distance. As above, the addition of multiple cameras to represent 

an average capture rate or sequence count for each sampling site may be helpful to minimize bias 

associated with individual locations. This approach should also be considered for more recent 

methods looking to estimate abundance for unmarked animals based on count data from cameras 

(e.g. N-mixture models: Royle 2004, spatial count model: Chandler and Royle 2013).

Conclusions

A robust sampling approach for animal site occurrence or relative abundance should be 

repeatable and consistent, in that data collected using the same methodology, in nearby locations, 

and/or very similar habitat should yield similar results. This assumption is rarely questioned for 

camera trap studies. Our study indicates single camera stations may fail to sample animal 
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presence and frequency of use in a robust and repeatable way, primarily resulting from the 

influence of micro-site characteristics and the movements patterns of individual animals. 

Researchers employing camera traps, particularly when interpretation of capture rate or detection 

probability is critical to proper inference, must recognize the extent to which collected data may 

be influenced by local characteristics and animal idiosyncrasies, and should employ multiple 

cameras at a sample site, more comprehensive sets of model covariates, or other strategic design 

and modeling approaches. 
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Tables

Table 1. Mean, standard deviation (SD), minimum and maximum capture rates (# of photo 
sequences/# days of deployment *100), coefficient of variation (CV = SD/mean) in capture rate, 
and proportion of cameras with detections, recorded for five focal species for each of four 
seasons in a high-density camera grid with 27 camera stations. A “total” category shows data 
when seasons are pooled, with each camera described by an overall capture rate. For comparison, 
values obtained from a previous study (SCBI Forest Grid), based on 30 (A) and 24 (B) camera 
stations at 500m grid separation are also shown.

Species and Season Mean SD Min Max CV Prop. of cameras 
detecting species

White-tailed deer (total) 89.03 88.03 3.33 461.82 1.01 1.0 (104/104)
Summer 61.88 30.50 21.31 159.43 0.49 1.0 (27/27)
Fall 204.78 108.88 34.98 461.82 0.53 1.0 (25/25)
Winter 58.55 36.35 12.27 164.83 0.62 1.0 (25/25)
Spring 37.24 16.68 3.33 79.71 0.45 1.0 (27/27)

   SCBI Forest Grid A     53.51 53.66 4.17 216.67 1.00
   SCBI Forest Grid B     35.64 25.70 0.00 90.48 0.72
Fox squirrel (total) 31.65 28.77 0.00 135.20 1.10 0.95 (99/104)

Summer 10.52 11.11 0.00 37.70 1.06 0.88 (24/27)
Fall 20.06 17.62 0.00 81.61 0.88 0.92 (23/25)
Winter 41.59 29.46 5.26 112.10 0.71 1.0 (25/25)
Spring 54.29 29.11 12.13 135.20 0.54 1.0 (27/27)

   SCBI Forest Grid A   1.12 3.61 0.00 151.79 3.21
   SCBI Forest Grid B 0.36 1.77 0.00 8.70 4.90
Gray squirrel (total) 21.04 24.90 0.00 105.70 0.85 0.88 (91/104)

Summer 5.77 6.12 0.00 22.95 1.06 0.85 (23/27)
Fall 11.31 16.36 0.00 63.51 1.45 0.76 (19/25)
Winter 18.17 19.90 0.00 63.11 1.10 0.88 (22/25)
Spring 47.98 26.66 10.40 105.70 0.56 1.0 (27/27)

   SCBI Forest Grid A 14.00 25.50 0.00 86.05 1.82
   SCBI Forest Grid B 16.10 35.50 0.00 163.64 2.20
Northern raccoon (total) 16.29 20.87 0.00 138.55 0.78 0.91 (95/104)

Summer 3.45 4.5 0.00 19.67 1.31 0.74 (20/27)
Fall 16.23 13.23 0.00 46.80 0.81 0.92 (23/25)
Winter 34.82 32.25 3.51 138.55 0.93 1.0 (25/25)
Spring 12.04 7.97 3.47 29.46 0.66 1.0 (27/27)

  SCBI Forest Grid A 24.63 30.04 0.00 109.30 1.22
  SCBI Forest Grid B 22.28 23.22 0.00 100.00 1.04
Black bear (total) 3.40 5.10 0.00 34.99 0.67 0.60 (62/104)

Summer 6.76 4.39 0.00 16.39 0.65 0.96 (26/27)
Fall 4.61 7.53 0.00 34.99 1.64 0.72 (18/25)
Winter 0.19 0.69 0.00 3.03 3.60 0.08 (2/25)
Spring 1.91 2.41 0.00 10.79 1.26 0.59 (16/27)
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  SCBI Forest Grid A 6.95 9.89 0.00 42.86 1.42
  SCBI Forest Grid B 7.72 9.10 0.00 36.36 1.18

Page 40 of 50Ecosphere



41

Table 2. Observed Moran’s I values across the camera grid along with p values for each species 
in each season. Expected values are shown in column headings for each season and significant 
values are shown in bold.

Species Summer
(Exp = -0.0385)

Fall
(Exp = -0.0417)

Winter
(Exp = -0.0417)

Spring
(Exp = -0.0385)

Obs p Obs p Obs p Obs p
White-tailed deer -0.027 0.66 -0.018 0.41 -0.004 0.18 -0.006 0.24
Fox squirrel -0.062 0.38 -0.072 0.24 -0.018 0.41 -0.046 0.77
Gray squirrel 0.024 0.02 -0.053 0.67 -0.020 0.45 0.003 0.14
All squirrels -0.048 0.73 -0.070 0.31 -0.062 0.48 -0.062 0.39
Northern raccoon -0.032 0.79 -0.042 0.99 -0.047 0.84 -0.034 0.86
Black bear 0.014 0.38 -0.030 0.61 - - 0.002 0.09
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Table 3. Cumulative Model Weights for five covariates tested against number of camera 
sequences with offset of effort for 27 stations in each of four seasons for five focal species. 
Covariates include effective detection distance (EDD), camera height in cm (Height), dbh of oak 
trees in camera viewshed (Oak), total number of stems in camera viewshed (Stems) and the 
presence/absence of a log in the camera viewshed (Log). Also shown are explained deviances 
(ED) for both the favored model (lowest AICc) and the full model for comparison. Those 
covariates selected in the top model are shown in bold and the sign of the coefficient(s) in the top 
models are indicated after each summed model weight. When no covariates are in bold, the 
intercept only model was that with the lowest AICc value.

Species-Season ED_best ED_full EDD Height Oak Stems Log
Deer - Summer 0.38 0.45 0.23 0.18 0.19 0.35 0.97 (-)
Deer - Fall 0.00 0.12 0.19 0.38 0.24 0.21 0.27
Deer - Winter 0.00 0.10 0.19 0.20 0.21 0.44 0.22
Deer - Spring 0.00 0.13 0.19 0.22 0.40 0.25 0.30
All Squirrel - 
Summer 0.48 0.50 0.74 (-) 0.63 (-) 0.11 0.11 0.91 (+)

All Squirrel - Fall† 0.50 0.50 0.71 (x) 0.18 0.17 0.17 0.82 (+)
All Squirrel - Winter† 0.14 0.29 0.22 0.18 0.20 0.24 0.62 (+)
All Squirrel - Spring† 0.33 0.38 0.53 (x) 0.16 0.19 0.29 0.72 (+)
Fox Squirrel – 
Summer 0.49 0.54 0.88 (-) 0.40 (-) 0.10 0.20 0.87 (+)

Fox Squirrel – Fall 0.44 0.46 0.77 (-) 0.15 0.12 0.61 (-) 0.74 (+)
Fox Squirrel – Winter 0.00 0.06 0.19 0.19 0.10 0.20 0.27
Fox Squirrel - 
Spring# 0.00 0.26 0.24 0.39 0.29 0.18 0.22

Gray Squirrel – 
Summer 0.30 0.40 0.72 (-) 0.27 0.39 0.14 0.69 (+)

Gray Squirrel - Fall† 0.48 0.51 0.84 (x) 0.13 0.16 0.21 0.83 (+)
Gray Squirrel - 
Winter† ‡

0.23 0.47 0.24 0.64 (q) 0.17 0.20 0.23

Gray Squirrel - 
Spring†

0.38 0.42 0.70 (x) 0.15 0.15 0.20 0.87 (+)

Raccoon - Fall 0.14 0.33 0.45 0.16 0.48 0.35 0.50 (+)
Raccoon - Winter 0.28 0.36 0.18 0.80 (-) 0.18 0.47 0.43 (+)
Raccoon - Spring 0.10 0.19 0.26 0.27 0.50 (-) 0.22 0.19
Bear - Summer 0.17 0.25 0.47 0.19 0.20 0.20 0.70 (-)
Bear - Fall 0.22 0.25 0.45 (+) 0.22 0.68 (+) 0.23 0.17

† these models were run, where relevant, with an interaction effect between EDD and log. The 
sign of the coefficient is therefore not shown, but rather an ‘x’. See response curves in Figure 4 
for more detail.

‡ camera height in this model selection process was included as a quadratic effect, and so the 
sign is not indicated next to the cumulative weight value, but rather a ‘q’. See Appendix S1: 
Figure S1 for more detail.
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Table 4. Mean, standard deviation (SD), minimum and maximum raw detection probability 
(proportion of single-day occasions with a detection), and coefficient of variation (CV = 
SD/mean), recorded for five focal species for each of four seasons in a high-density camera grid 
with 27 camera stations. For comparison, values obtained from a previous study (SCBI Forest 
Grid), based on 29 (A) camera stations (1 station removed due to date/time recording errors) and 
24 (B) at 500m grid separation are also shown. Fox squirrel were not modelled in this previous 
study.

Species and Season Mean SD Min Max CV
White-tailed deer 

Summer 0.38 0.12 0.13 0.65 0.32
Fall 0.72 0.17 0.25 1.00 0.24
Winter 0.35 0.15 0.10 0.60 0.43
Spring 0.27 0.10 0.03 0.47 0.37

   SCBI Forest Grid A 0.32 0.23 0.04 0.83 0.71
   SCBI Forest Grid B 0.26 0.17 0.00 0.64 0.67
Fox squirrel (total)

Summer 0.08 0.07 0.00 0.24 0.88
Fall 0.17 0.13 0.00 0.53 0.76
Winter 0.30 0.18 0.05 0.62 0.60
Spring 0.36 0.14 0.09 0.70 0.39

   SCBI Forest Grid n/a n/a n/a n/a n/a
Gray squirrel (total)

Summer 0.05 0.05 0.00 0.16 1.00
Fall 0.09 0.12 0.00 0.38 1.33
Winter 0.12 0.12 0.00 0.42 1.00
Spring 0.32 0.13 0.10 0.59 0.41

   SCBI Forest Grid A 0.08 0.13 0.00 0.52 1.60
   SCBI Forest Grid B 0.11 0.20 0.00 0.83 1.79
Northern raccoon (total)

Summer 0.03 0.04 0.00 0.18 1.33
Fall 0.12 0.09 0.00 0.35 0.75
Winter 0.24 0.16 0.04 0.67 0.67
Spring 0.10 0.06 0.03 0.24 0.60

   SCBI Forest Grid A 0.17 0.16 0.00 0.53 0.93
   SCBI Forest Grid B 0.16 0.13 0.00 0.45 0.85
Black bear (total)

Summer 0.06 0.04 0.00 0.15 0.67
Fall 0.05 0.08 0.00 0.36 1.6

   SCBI Forest Grid A 0.06 0.09 0.00 0.40 1.40
   SCBI Forest Grid B 0.07 0.07 0.00 0.27 1.08
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Table 5. Cumulative Model Weights for five covariates tested as covariates against probability of 
detection in single-season occupancy models with probability of occupancy held constant in each 
of 4 seasons for five focal species. Covariates include effective detection distance (EDD), 
camera height in cm (Height), dbh of oak trees in camera viewshed (Oak), total number of stems 
in camera viewshed (Stems) and the presence/absence of a log in the camera viewshed (Log). 
Those covariates selected in the top model are shown in bold and the sign of the coefficient (s) in 
the top models are indicated after each summed model weight. When no covariates are in bold, 
the intercept only model was the model with the lowest AICc value.

Species-Season EDD Height Oak Stems Log
Deer – Summer 0.50 (+) 0.22 0.24 0.30 1.00 (-)
Deer – Fall 0.29 0.32 0.41 0.26 0.33
Deer – Winter 0.63 (-) 0.23 0.23 0.62 (-) 0.26
Deer – Spring 0.18 0.40 0.24 0.82 (-) 0.79 (+)
All Squirrel - Summer 1.00 (-) 0.99 (-) 0.00 0.00 1.00 (+)
All Squirrel - Fall† ‡ 1.00 (x) 0.11 0.28 0.17 1.00 (+)
All Squirrel - Winter† ‡ 1.00 (x) 0.00 0.01 0.97 (+) 1.00 (+)
All Squirrel - Spring† ‡ 0.98 (x) 0.29 0.20 0.16 1.00 (+)
Fox Squirrel – Summer 1.00 (-) 0.96 (-) 0.02 0.02 0.95 (+)
Fox Squirrel – Fall 1.00 (-) 0.00 0.00 1.00 (-) 1.00 (+)
Fox Squirrel - Winter† 1.00 (x) 0.12 0.17 0.40 (+) 1.00 (+)
Fox Squirrel - Spring† ‡ 0.75 (+) 1.00 (q) 0.25 0.18 0.25
Gray Squirrel – Summer 0.95 (-) 0.19 0.40 (+) 0.14 0.99 (+)
Gray Squirrel - Fall† 1.00 (x) 0.04 0.80 (-) 0.10 1.00 (+)
Gray Squirrel - Winter† ‡ 1.00 (x) 0.97 (q) 0.01 0.02 1.00 (+)
Gray Squirrel - Spring† ‡ 1.00 (x) 0.07 0.67 (+) 0.09 1.00 (+)
Raccoon – Summer 0.39 0.21 0.30 1.00 (+) 0.26
Raccoon – Fall 0.10 0.07 0.93 (+) 0.98 (+) 0.78 (+)
Raccoon – Winter 0.12 1.00 (-) 0.02 1.00 (+) 0.83 (+)
Raccoon – Spring 0.34 0.26 0.80 (-) 0.26 0.23
Bear – Summer 0.52 (+) 0.25 0.23 0.25 0.81 (-)
Bear – Fall 0.95 (+) 0.18 0.98 (+) 0.20 0.18

† these models were run, where relevant, with an interaction effect between EDD and log. The 
sign of the coefficient is therefore not shown, but rather an ‘x’. See Appendix S1: Figure S2 for 
more detail.

‡ camera height in this model selection process was included as a quadratic effect, and so the 
sign is not indicated next to the cumulative weight value, but rather a ‘q’. See Appendix S1: 
Figure S1 for more detail.
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Figure legends

Figure 1. Mean capture rates (# of photo sequences/# days of deployment *100) for all species 
captured within a high-resolution camera grid of 27 cameras for 4 seasons. Error bars represent 
95% confidence intervals. Inset figure displays magnified values for the 8 least commonly 
captured species.

Figure 2. Spatial patterns in capture rate variation across a 1-hectare sampling grid for 5 focal 
species in each of 4 sampling seasons, with point size reflecting capture rate (# of photo 
sequences/# days of deployment *100) values. Red asterisks indicate that the camera deployment 
failed entirely during that season. Values in the point size legends represent the median and first 
and third quartiles of capture rate for all cameras over all seasons. The point scale for the gray 
and fox squirrels are the same. Note that cameras were purposely offset from one row to the 
next.

Figure 3. Correlogram, truncated at 80m, for white-tailed deer capture rate values in summer (A), 
fall (B), winter (C), and spring (D) showing the relationship between inter-camera correlation 
value in capture rate, and inter-camera distance. A reference line at 20 m indicates the planned 
inter-camera distance and therefore a guide for the minimum inter-camera distance in the dataset 
on which to base inference.

Figure 4. Predicted count of sequences for combined squirrel species (fox, gray and unknown 
species) at different effective detection distances in Fall (A) and Spring (B) when a log was 
present (orange) or absent (blue) in the camera field of view. Predicted values are based on 
results of negative binomial generalized linear models, with an offset term for number of camera 
nights at each of 27 camera stations. In both cases the optimal model (shown here) included only 
log presence, effective detection distance, and their interaction. These same patterns were 
demonstrated (but not pictured) for gray squirrel models in Fall and Spring.

Figure 5. Spatial patterns in raw detection probability variation across a 1-hectare sampling grid 
for 5 focal species in each of 4 sampling seasons, with point size reflecting the proportion of 
single-day occasions resulting in a detection. Red asterisks indicate that the camera deployment 
failed entirely during that season.
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Figure 1. Mean capture rates (# of photo sequences/# days of deployment *100) for all species captured 
within a high-resolution camera grid of 27 cameras for 4 seasons. Error bars represent 95% confidence 

intervals. Inset figure displays magnified values for the 8 least commonly captured species. 
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Figure 2. Spatial patterns in capture rate variation across a 1-hectare sampling grid for 5 focal species in 
each of 4 sampling seasons, with point size reflecting capture rate (# of photo sequences/# days of 

deployment *100) values. Red asterisks indicate that the camera deployment failed entirely during that 
season. Values in the point size legends represent the median and first and third quartiles of capture rate for 
all cameras over all seasons. The point scale for the gray and fox squirrels are the same. Note that cameras 

were purposely offset from one row to the next. 
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Figure 3. Correlogram, truncated at 80m, for white-tailed deer capture rate values in summer (A), fall (B), 
winter (C), and spring (D) showing the relationship between inter-camera correlation value in capture rate, 

and inter-camera distance. A reference line at 20 m indicates the planned inter-camera distance and 
therefore a guide for the minimum inter-camera distance in the dataset on which to base inference. 
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Figure 4. Predicted count of sequences for combined squirrel species (fox, gray and unknown species) at 
different effective detection distances in Fall (A) and Spring (B) when a log was present (orange) or absent 
(blue) in the camera field of view. Predicted values are based on results of negative binomial generalized 

linear models, with an offset term for number of camera nights at each of 27 camera stations. In both cases 
the optimal model (shown here) included only log presence, effective detection distance, and their 

interaction. These same patterns were demonstrated (but not pictured) for gray squirrel models in Fall and 
Spring. 
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Figure 5. Spatial patterns in raw detection probability variation across a 1-hectare sampling grid for 5 focal 
species in each of 4 sampling seasons, with point size reflecting the proportion of single-day occasions 
resulting in a detection. Red asterisks indicate that the camera deployment failed entirely during that 

season. 
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