
1 
 

Four priority areas to advance invasion science in the face of rapid 1 

environmental change 2 

 3 

Anthony Ricciardi1, Josephine C. Iacarella2, David C. Aldridge3,4, Tim M. Blackburn5,6, James T. 4 

Carlton7, Jane A. Catford8, Jaimie T.A. Dick9, Philip E. Hulme10, Jonathan M. Jeschke11,12,13, 5 

Andrew M. Liebhold14,15, Julie L. Lockwood16, Hugh J. MacIsaac17, Laura A. Meyerson18, Petr 6 

Pyšek19,20, David M. Richardson21, Gregory M. Ruiz22, Daniel Simberloff23, Montserrat Vilà24, 7 

David A. Wardle25. 8 

 9 

1Redpath Museum, McGill University, Montreal, Quebec, H3A 0C4, Canada 10 

2Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Road, Sidney, British 11 

Columbia, V8L 4B2, Canada 12 

3Cambridge University, Department of Zoology, Pembroke Street, Cambridge, CB2 3QZ, UK 13 

4BioRISC, St. Catharine’s College, Cambridge CB2 1RL, UK 14 

5Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and 15 

Environment, University College London, Gower Street, London, WC1E 6BT, UK  16 

6Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK  17 

7Maritime Studies Program, Williams College-Mystic Seaport, 75 Greenmanville, Mystic, CT 06355, 18 

USA 19 

8Department of Geography, King’s College London, 30 Aldwych, London, WC2B 4BG, UK 20 

9Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Chlorine 21 

Gardens, Belfast, BT9 5DL, UK 22 

10Bio-Protection Research Centre, Lincoln University, PO Box 85840, Lincoln 7647, Canterbury, New 23 

Zealand 24 

11Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, 25 

Germany 26 

12Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany 27 

13Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, 14195 Berlin, 28 

Germany 29 

14US Forest Service Northern Research Station, 180 Canfield St., Morgantown, WV, USA 30 



2 
 

15Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Praha 6 - Suchdol, 31 

CZ 165 21, Czech Republic 32 

16 Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, 33 

New Brunswick, NJ 08901, USA 34 

17Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, 35 

Canada 36 

18Natural Resources Science, University of Rhode Island, 9 East Alumni Avenue, Woodward Hall 133, 37 

Kingston, RI 02881, USA 38 

19Institute of Botany, Czech Academy of Sciences, CZ-252 43, Průhonice, Czech Republic  39 

20Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-12844 Prague 2, Czech 40 

Republic 41 

21Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 42 

7602, South Africa 43 

22Smithsonian Environmental Research Center, Edgewater, MD 21037, USA 44 

23University of Tennessee, Department of Ecology and Evolutionary Biology, Knoxville, TN 37996, USA 45 

24Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio 26, Isla de la Cartuja, 41092 46 

Sevilla, Spain 47 

25Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 48 

 49 

 50 

Corresponding author: Anthony Ricciardi (email: tony.ricciardi@mcgill.ca / Tel: 514-398-51 

4089) 52 

 53 

Word count:  27,683 54 

  55 

mailto:tony.ricciardi@mcgill.ca


3 
 

Abstract 56 

Unprecedented rates of introduction and spread of non-native species pose burgeoning 57 

challenges to biodiversity, natural resource management, regional economies, and human health. 58 

Current biosecurity efforts are failing to keep pace with globalization, revealing critical gaps in 59 

our understanding and response to invasions. Here, we identify four priority areas to advance 60 

invasion science in the face of rapid global environmental change. First, invasion science should 61 

strive to develop a more comprehensive framework for predicting how the behavior, abundance, 62 

and interspecific interactions of non-native species vary in relation to conditions in receiving 63 

environments and how these factors govern the ecological impacts of invasion. A second priority 64 

is to understand the potential synergistic effects of multiple co-occurring stressors – particularly 65 

involving climate change – on the establishment and impact of non-native species. Climate 66 

adaptation and mitigation strategies will need to consider the possible consequences of 67 

promoting non-native species, and appropriate management responses to non-native species will 68 

need to be developed. The third priority is to address the taxonomic impediment. The ability to 69 

detect and evaluate invasion risks is compromised by a growing deficit in taxonomic expertise, 70 

which cannot be adequately compensated by new molecular technologies alone. Management of 71 

biosecurity risks will become increasingly challenging unless academia, industry, and 72 

governments train and employ new personnel in taxonomy and systematics. Fourth, we 73 

recommend that internationally cooperative biosecurity strategies consider the bridgehead effects 74 

of global dispersal networks, in which organisms tend to invade new regions from locations 75 

where they have already established. Cooperation among countries to eradicate or control species 76 

established in bridgehead regions should yield greater benefit than independent attempts by 77 

individual countries to exclude these species from arriving and establishing. 78 
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Introduction 83 

Invasion science – the systematic investigation of the causes and consequences of 84 

biological invasions – is a rapidly evolving interdisciplinary field. Its explosive growth over the 85 

past few decades mirrors societal concern over the upsurge in the global rate of invasions 86 

(Seebens et al. 2017; Pyšek et al. 2020; Seebens et al. 2020) and reflects the fundamental and 87 

applied importance of understanding how species spread into new regions, why some ecosystems 88 

are more vulnerable to invasions, and what factors govern the impacts of non-native species. To 89 

date, research addressing these issues has yielded valuable insights into the forces that structure 90 

ecological communities, the relationship between diversity and stability, mechanisms of 91 

adaptation and rapid evolution, causes of extinction and biotic homogenization, and the 92 

connectedness between socioeconomic and ecological systems, among other phenomena 93 

(Lockwood et al. 2013; Hui and Richardson 2019). More remains to be done to sharpen and 94 

integrate these insights into predictive frameworks. In addition, pressure is increasing for 95 

invasion science to adapt to emerging issues such as rapid advances in biotechnology, 96 

accelerating global change, expanding transportation networks, abrupt landscape 97 

transformations, and infectious disease emergence (Ricciardi et al. 2017; Nuñez et al. 2020). 98 

Invasion science is a relatively young discipline (Ricciardi and MacIsaac 2008) that has 99 

embraced diverse domains in ecology and cognate fields (e.g., population biology, biogeography, 100 

evolutionary biology, paleoecology, physiology) and has formed linkages with disciplines related 101 
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to biosecurity – such as epidemiology, risk analysis, resource economics, and vector science 102 

(Vaz et al. 2017). This multidisciplinary expansion reflects the increasing complexity of 103 

biological invasions and their impacts (Richardson 2011; Pyšek et al. 2020). 104 

Here, we consider how invasion science should adapt to the Anthropocene – an era of 105 

burgeoning human influence, novel stressors, and rapid environmental change (Steffen et al. 106 

2015; Waters et al. 2016). We are an international team of ecologists, with diverse and extensive 107 

experience in biological invasions in many parts of the world. Our team gathered in September 108 

2018 to consider emerging scientific, technological, and sociological issues which, if addressed, 109 

should ensure that invasion science can more successfully contend with rapid global change. 110 

Through consensus (see Supplemental Material), we arrived at four overarching issues, relevant 111 

to a broad range of taxa, environments, and geographic regions, and which encompass some of 112 

the most important challenges facing our field today (Figure 1). 113 

 114 

1. Predicting ecological impacts of invasions under rapid environmental change 115 

1.1. The need for greater predictive power: Major advances and ongoing challenges 116 

1.1.1. Environmental context-dependency of impacts 117 

While invasion science has made substantial progress in understanding how non-native 118 

species arrive in new locations and establish self-sustaining populations (Catford et al. 2009; 119 

Jeschke and Heger 2018), it has been less successful in forecasting when and where such species 120 

will substantially affect their recipient environments (Ricciardi et al. 2013; Simberloff et al. 121 

2013; Kumschick et al. 2015). Non-native species can affect ecological, economic, cultural, and 122 

human health in diverse ways (Jeschke et al. 2014; Shackleton et al. 2018), but in this section we 123 

focus on ecological impacts. Here, ‘impact’ is defined broadly as a measurable change to the 124 
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environment attributable directly or indirectly to the presence of a non-native species (Ricciardi 125 

et al. 2013), and includes their effects on individual performance, population size and 126 

composition of ecological communities of native species, which in some cases may be 127 

irreversible (IUCN 2020). 128 

Impact prediction is a long-standing, complex challenge. While rates of non-native 129 

species introductions are increasing across regions (Seebens et al. 2017, 2020), impacts have 130 

been recorded for only a small fraction of these species and the sites they invade (Ruiz et al. 131 

1999; Ricciardi and Kipp 2008; Vilà et al. 2011; Hulme et al. 2013; Simberloff et al. 2013; 132 

Evans et al. 2018b). It is generally assumed that most invasions have negligible environmental 133 

consequences (Williamson and Fitter 1996), whereas a small proportion has significant and 134 

sometimes enormous effects – an inverse magnitude-frequency distribution similar to that 135 

associated with natural disasters (Ricciardi et al. 2011). However, uncertainty exists concerning 136 

which cases truly reflect an absence of impact rather than a lack of study (Latombe et al. 2019). 137 

Even well-known impacts exhibit substantial variation over time and space; invaders may remain 138 

innocuous for years or even decades prior to becoming disruptive when, for example, 139 

environmental change triggers a new impact (Crooks 2005; Coutts et al. 2018). The impacts of 140 

any given invader can vary greatly among ecosystems (Strayer 2020) and across environmental 141 

gradients within ecosystems (Kestrup and Ricciardi 2009; Stritar et al. 2010; Hulme et al. 2013; 142 

Sapsford et al. 2020). Context-dependencies of invasion – that is, interactions among propagule 143 

pressure, the traits of the invader, the composition of the recipient community, and the 144 

physicochemical environment – have hardly been addressed by any formal body of theory, but 145 

some overarching frameworks are now being explored (e.g., Cronin et al. 2015; Iacarella et al. 146 

2015a; Dickey et al. 2020; Sapsford et al. 2020). 147 
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Coupled with the challenge of context-dependency is the sheer complexity of 148 

mechanisms by which non-native species can interact with their environment (Ricciardi et al. 149 

2013; Kumschick et al. 2015). Synergistic interactions, nonlinearities, time lags, threshold 150 

effects, regime shifts, and indirect effects of non-native species are difficult to predict (Ricciardi 151 

et al. 2013; Essl et al. 2015b; Kumschick et al. 2015; Aagaard and Lockwood 2016; Hui and 152 

Richardson 2017; Strayer et al. 2017). Consequently, accurate risk assessment tools for sound 153 

management decisions are still lacking.  154 

 155 

1.1.2. Temporal variation and time lags of impacts 156 

Factors affecting temporal variation in impact remain a major research gap, in large part 157 

because of the vast majority of impact studies are conducted over very short time scales (Strayer 158 

et al. 2006; Stricker et al. 2015). Time-since-invasion has been found to be an important correlate 159 

of the ecological impacts of non-native species (Iacarella et al. 2015b; Evans et al. 2018a; 160 

Zavorka et al. 2018), but time lags between establishment and peak impact have thus far evaded 161 

prediction and are increasingly recognized as hindering risk assessment (e.g., Coutts et al. 2018). 162 

Predictions of spatiotemporal variation in impact direction and magnitude could be improved 163 

through experimental and theoretical investigations of the relationship between an invader’s per-164 

capita effect and its abundance (Yokomizo et al. 2009; Cronin et al. 2015; Sofaer et al. 2018; 165 

Bradley et al. 2019; Strayer 2020). We must also consider the influence of spatial scale on per 166 

capita effects or impacts measured in small plots and mesocosms; attempts to extrapolate these 167 

effects up to landscape scales relevant to management (e.g., by calculating the product of the per 168 

capita effect, local abundance, and range size of an invader) might not adequately capture 169 

changes to biodiversity, biotic interactions, and ecosystem function, and thus might 170 
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underestimate some large-scale consequences of invasion (Hawkins et al. 2015; Bernard-Verdier 171 

and Hulme 2019; but see Dick et al. 2017b). Greater effort is required to test factors that mediate 172 

indirect and multi-scale effects, particularly where an invader’s impact is transmitted across a 173 

suite of interacting species (Feit et al. 2018).   174 

Conservation interventions and ecosystem management must contend with significant 175 

time lags between the onset of the environmental stressors and the expression of invader impacts, 176 

and forecasting such phenomena is plagued by context dependencies and non-linearities (Essl et 177 

al. 2015b, c; Coutts et al. 2018). An understudied issue is how to recognize and manage the 178 

interactive and cumulative effects of time lags in ecological responses to invasion. Delayed 179 

biodiversity responses (e.g., dominance shifts, species turnover, metapopulation dynamics, 180 

extinction debt) to anthropogenic stressors such as invasion can lead to abrupt shifts in 181 

ecosystem functioning (Essl et al. 2015b) and underestimation of rates of contemporary 182 

biodiversity change (Essl et al. 2015c). Given the management implications of this phenomenon, 183 

ecological responses to compounded and cumulative stressors are becoming an increasing focus 184 

of theory, experiments, and time series analyses (Foster et al. 2016; Candolin et al. 2018; 185 

Kleinman et al. 2019; Shinoda and Akasaka 2020). 186 

 187 

1.1.3. Impacts on ecosystem processes  188 

Demand is growing for reliable assessments and predictions of the ecosystem-level 189 

impacts of non-native species, especially those impacts that affect the provision of ecosystem 190 

services in rapidly changing environments (Vilà and Hulme 2017). This need reflects the larger 191 

challenge of understanding how ecosystem function is altered by the combined effects of species 192 

gains (invasion, range expansion) and losses (extinction, range contraction), which are 193 
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simultaneously consequences and drivers of global change. With few exceptions (e.g., Mascaro 194 

et al. 2012; Kuebbing et al. 2015), work on how these two forces affect ecosystem functioning 195 

has developed largely in isolation (Wardle et al. 2011). Owing to this disconnect, ecologists are 196 

unable to predict over the coming decades the net ecosystem consequence of these two opposing 197 

forces – specifically, whether or not species that are gained at local scales through invasion will 198 

affect ecosystem process rates in a comparable way to those native species that are lost. 199 

Moreover, despite the many ecosystem impacts revealed thus far (Ehrenfeld 2010; Vilà et al. 200 

2011; Simberloff et al. 2013), few types of ecosystems and invaders have been studied relative to 201 

those that exist (Crystal-Ornelas and Lockwood 2020). It is likely that an enormous number of 202 

non-native species have affected individual performance, population sizes, and community 203 

structure, though direct and indirect effects on native species (e.g. via competition, herbivory, 204 

predation, hybridization, and as diseases or their vectors), or by changing the physical, chemical 205 

or structural characteristics of the environment (Blackburn et al. 2014; IUCN 2020), in ways that 206 

have not been documented (Carlton 2009; Simberloff 2011). Ecosystem-level impacts must 207 

remain a major focus, with researchers taking advantage of available technological tools (e.g., 208 

Asner et al. 2008). Further, research on how biodiversity loss affects ecosystem functioning must 209 

be evaluated alongside effects of non-native species additions, to better understand how human-210 

driven species change will affect ecosystem processes across scales. For example, given that 211 

community composition can influence biosphere-atmosphere exchange of greenhouse gases 212 

(Metcalfe et al. 2011), how non-native species influence processes that underpin this exchange 213 

relative to native species extirpations can have significant, currently unrecognized consequences 214 

for climate change. 215 

 216 
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1.2. New and future challenges  217 

1.2.1. Impacts of interventions for restoring ecosystem function 218 

Co-occurring environmental stressors are increasing pressures to use non-native species 219 

for restoring ecosystem functions eroded by native species loss (Mascaro et al. 2012; Castro-220 

Díez et al. 2019).  The notion of restoring ecosystems that have lost important species by 221 

substituting non-native species to perform key functions traces back at least to the 1980s 222 

(Atkinson 1988) and has seen growing interest in recent years (Seddon et al. 2014a; Galetti et al. 223 

2017; Pires 2017). Of particular interest are proposals and ongoing projects to establish species 224 

to replace seed dispersers of plant species that have lost their ancestral native mutualisms 225 

(Seddon et al. 2014a; Galetti et al. 2017), and large herbivores and carnivores to fulfill lost 226 

trophic linkages (Svenning et al. 2016). These efforts are often listed under the rubric of 227 

rewilding (Lorimer et al. 2015; Svenning et al. 2016). Calls for active rewilding to restore 228 

ecological processes (Perino et al. 2019) have primarily focused on the reintroduction of native 229 

species, but some practitioners have advocated a ‘flexible’ approach to restoration that entails 230 

using non-native species (Ewel and Putz 2004; but see Sotka and Byers 2019) as well as the 231 

reintroduction of species into parts of their native range from which they have been absent for 232 

various lengths of time.  233 

As with translocation to accommodate climate change (see section 2.2.3), proposals for 234 

translocations to restore ecosystem functions (e.g., IUCN 2013; Aslan et al. 2014) have been the 235 

subject of substantial discussion of potential risks and benefits (Nogués-Bravo et al. 2016; 236 

Rubenstein and Rubenstein 2016; Fernández et al. 2017; Pettorelli et al. 2018; Perino et al. 237 

2019). Lunt et al. (2013) have compared possible risks and benefits of translocations to restore 238 

ecosystem functions and translocations to address climate change, pointing to the possibility of 239 
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addressing both goals simultaneously. To employ proposed decision tools and adhere to the 240 

International Union for Conservation of Nature (IUCN) guidelines, both advocates and critics 241 

increasingly agree that progress is required on more accurate risk assessments and on 242 

characterization, categorization, and quantification of the environmental impacts of 243 

translocations (Jeschke et al. 2014), as has occurred with the EICAT framework (Blackburn et al. 244 

2014; Hawkins et al. 2015; Evans et al. 2016), which has been adopted as an IUCN standard 245 

(IUCN 2020), and similarly for socioeconomic impacts, as has begun under the SEICAT 246 

framework (Bacher et al. 2018).  247 

Conversely, other efforts to conserve native species or restore ecosystems involve non-248 

native species eradication. Such interventions should be preceeded by a predictive risk 249 

assessment of the indirect effects of invader removal (Bergstrom et al. 2009; Caut et al. 2009; 250 

Ruscoe et al. 2011; Lindenmayer et al. 2017) and the legacy effects of invasion (Corbin and 251 

D’Antonio 2012; Grove et al. 2015; Reynolds et al. 2017; Pickett et al. 2019). Eradication has 252 

had demonstrable benefits to biodiversity (Baider and Florens 2011; Monks et al. 2014; Jones et 253 

al. 2016), but targeting the removal of a single invasive species within an ecosystem that 254 

contains several non-native species can be counterproductive. A predictive framework must 255 

consider the topology of species interactions, both trophic and non-trophic, to determine when 256 

single-species management may lead to unintended consequences (Glen et al. 2013; Ballari et al. 257 

2016; Hui and Richardson 2019). 258 

 259 

1.2.2. Burgeoning novel organisms 260 

Escalating risks are associated with the intentional and unintentional release of novel 261 

organisms (those with no analogue in the natural environment) through biotechnological 262 
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advances that create transgenic or genetically engineered organisms. For example, some 263 

proposals for rewilding entail de-extinction – i.e., creation of various sorts of proxies of extinct 264 

species for release to the wild. Versions of de-extinction are expected to become increasingly 265 

feasible (Stokstad 2015; Shapiro 2017). The process involves either backbreeding (Stokstad 266 

2015) or the reconstruction of the genome of an extinct species from recovered strands of DNA, 267 

which can then be used either to modify or to replace the genome of a suitable living relative or 268 

to genetically engineer embryos that can be implanted in a compatible host. Some 269 

conservationists will advocate for such proxy species to be reintroduced to a suitable former 270 

geographic environment (Seddon et al. 2014b), and perceived ecosystem management benefits 271 

may arise from doing so (Church 2013). Environmental differences between contemporary and 272 

historic habitats (Peers et al. 2016) might encourage further genetic manipulation to create better 273 

adapted species. Depending on the length of time the proxy species has been extinct and the 274 

method used to produce the proxy, introducing such entities to the wild is tantamount to 275 

introducing a non-native species (IUCN 2013; IUCN/SSC 2016; Genovesi and Simberloff 2020), 276 

an action that in the absence of predictive knowledge increases the likelihood of unintended 277 

ecological consequences.  278 

Advances in biotechnology will also facilitate the creation of self-replicating synthetic 279 

cells designed for novel tasks such as contaminant remediation, carbon sequestration, and the 280 

production of biofuels (Menetrez 2012; Azad et al. 2014; Singh et al. 2016; Dvorak et al. 2017). 281 

As synthetic and transgenic organisms will contain combinations of ecological traits that are 282 

unlikely to be encountered naturally, recipient communities will be evolutionarily naïve to these 283 

organisms and could be predisposed to being altered by them (Saul and Jeschke 2015). Such 284 

impacts could be subtle but far-reaching, as has been demonstrated for macroscopic transgenic 285 
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species (Post and Parry 2011; Vacher et al. 2011; Oke et al. 2013). Among the larger risks is the 286 

capacity for such organisms to evolve in the wild and to exchange genes with other organisms 287 

(Dana et al. 2012).  Given the exponential growth of molecular technology, the rate of 288 

development of such organisms could outpace progress in developing effective risk assessments 289 

of their ecological effects. This issue emphasizes a need for greater integration of evolutionary 290 

and microbial biology into invasion science, and for developing impact theory and risk 291 

assessment methods that explicitly consider evolutionary change in both the invader and 292 

interacting species.  293 

 294 

1.3. The way forward: a theoretical framework and tools for impact management 295 

1.3.1. Developing and expanding a theoretical framework of impact  296 

To meet societal demands, invasion science must continue to build a body of theory for 297 

understanding and predicting impacts from the level of populations to ecosystems (Ricciardi et 298 

al. 2013; Blackburn et al. 2014; Bacher et al. 2018). Progress toward this goal requires that 299 

hypotheses explicitly integrate abiotic and biotic context-dependencies, including biotic and 300 

abiotic drivers of spatiotemporal variation in impact. This integration parallels and perhaps can 301 

be informed by studies of how species loss affects ecosystem functioning in different 302 

environmental contexts (Ratcliffe et al. 2017; Baert et al. 2018; Kardol et al. 2018). One example 303 

of an integrative hypothesis is Environmental Matching (Ricciardi et al. 2013), which posits that 304 

the per capita effects of an invader vary along environmental gradients such that they are 305 

maximal where abiotic conditions more closely match the physiological optimum of the invader 306 

(Kestrup and Ricciardi 2009; Iacarella et al. 2015a; Iacarella and Ricciardi 2015). 307 
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A second example that integrates context-dependence is the Ecological (or Functional) 308 

Distinctiveness Hypothesis (Diamond and Case 1986; Vitousek 1990; Ricciardi and Atkinson 309 

2004), which predicts that impact is most severe in communities missing species functionally 310 

similar to the invader. This hypothesis is derived from two observed patterns with strong 311 

empirical support. One such pattern is that a community’s lack of eco-evolutionary experience, 312 

or ecological naïveté, determines its vulnerability to non-native consumers, parasites, pathogens, 313 

and competitors (Sih et al. 2010; Saul and Jeschke 2015; Davis et al. 2019; Nunes et al. 2019; 314 

Anton et al. 2020). The second empirically supported pattern is that the largest community-level 315 

and ecosystem-level impacts are generated by invaders that use key resources differently or more 316 

efficiently than natives do and that can alter disturbance regimes, habitat structure, or food web 317 

configurations (Vitousek 1990; Funk and Vitousek 2007; Morrison and Hay 2011). Given that 318 

more closely related species tend to be ecologically similar (Burns and Strauss 2011), it follows 319 

that phylogenetic distance, or simple taxonomic relatedness, is a proxy for functional 320 

distinctiveness. Thus, an allied hypothesis predicts that invaders representing novel taxa, once 321 

established in the community, are more likely to affect native populations negatively than 322 

invaders that are taxonomically similar to natives in the recipient community (Ricciardi and 323 

Atkinson 2004; Strauss et al. 2006; Davis et al. 2019). Despite longstanding recognition of eco-324 

evolutionary experience as a driver of impact, most risk assessments do not consider 325 

evolutionary context. The consequences of the contemporary evolution of non-native species 326 

(e.g., Bertelsmeier and Keller 2018), and the effects of invaders on the evolution of native 327 

species, are underexploited but promising areas of research (Saul and Jeschke 2015; van Kleunen 328 

et al. 2018) that point to the importance of integrating evolutionary biology in ways that enhance 329 

the predictive power of invasion science. 330 
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Several distinct, and over a dozen overlapping, hypotheses explain invader impact 331 

(Ricciardi et al. 2013), and additional hypotheses addressing invasion establishment success 332 

could potentially be extended to understanding impact (Catford et al. 2009; Jeschke and Heger 333 

2018). These hypotheses could be organized into a coherent body of impact theory by 334 

eliminating redundancies and identifying commonalities (e.g., through consensus mapping of 335 

hypothesis networks; Enders et al. 2020). We can envision a general predictive framework built 336 

upon multiple axes that consider, among other things, 1) abiotic and biotic environmental 337 

context; 2) functional distinctiveness between native and non-native species; and 3) time-since-338 

invasion (Figure 2). The generality of hypotheses needs to be tested within various ecological 339 

and evolutionary contexts using, for example, spatially distributed experiments such as those 340 

employed to examine plant responses to nutrient enrichment and exclosure of mammalian 341 

herbivores (Borer et al. 2014). Experimental and survey designs that incorporate eco-342 

evolutionary context have rarely been applied to the study of non-native species (but see Wardle 343 

et al. 2001; Colautti et al. 2014; Grimm et al. 2020). To address this gap, we advocate 344 

comparisons of conspecific populations across invaded and native ranges, recognizing that 345 

invasions and impact outcomes are population-level phenomena. Such experiments could be 346 

coordinated by collaborative global networks (Packer et al. 2017), which are a potentially 347 

powerful approach to understand the factors that govern large-scale variation in invader impact 348 

across climatic gradients, disturbance gradients, biogeographic realms, and boundaries of 349 

evolutionary significance. 350 

Moreover, scientists would profit by looking to other areas of ecology and evolution, 351 

disease biology, and the social sciences, for theory that could potentially explain many 352 

components of impact and seeking to integrate these approaches into invasion science. Several 353 
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classical ecological hypotheses, metrics, and concepts that have been tested in various contexts 354 

relevant to invasions (e.g., theories addressing biological control, island biogeography, metabolic 355 

scaling, resource utilization, competition) have arguably been underexploited by invasion 356 

scientists. Experimental approaches that have sought to incorporate principles of trophic ecology 357 

have revealed important patterns (Dick et al. 2017a, b; Cuthbert et al. 2018, 2020). For example, 358 

prey switching (frequency-dependent predation) is a classical concept that has until recently been 359 

virtually ignored by invasion science (Cuthbert et al. 2018, 2019). In recent years, the classical 360 

functional response – the relationship between per capita consumption and resource density 361 

(Solomon 1949; Holling 1959) – has been adapted and applied to forecasting and explaining 362 

non-native species impacts through multispecies comparisons (Dick et al. 2017a, b; Dickey et al. 363 

2018; Faria et al. 2019). The rationale for exploring these experimental approaches is that 364 

invasion success and impact are often mediated by resource acquisition, a concept at the 365 

foundation of many hypotheses in invasion science (Catford et al. 2009; Ricciardi et al. 2013; 366 

Jeschke and Heger 2018) and that is relevant for both animals and plants (Rossiter-Racher et al. 367 

2009; Ehrenfeld 2010). Indeed, several high-impact invaders have been found to be more 368 

efficient at using limiting resources than their native and non-invasive counterparts (Rehage et al. 369 

2005; Funk and Vitousek 2007; Morrison and Hay 2011; Dick et al. 2017a; DeRoy et al. 2020). 370 

Broadening analyses to a more comprehensive community context could also help predict 371 

impacts in different environmental contexts (Smith-Ramesh 2017). An underexploited approach 372 

is to treat invaded communities as complex adaptive networks (Lurgi et al. 2014; Valdovinos et 373 

al. 2018; Hui and Richardson 2019). Predictive information could potentially be gained from 374 

modeling the dynamic responses of an ecological network, after developing appropriate metrics 375 
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of interaction strength, and thus identify resident species that are either facilitated or suppressed 376 

by the invasion (Hui and Richardson 2019). 377 

 378 

1.3.2. Toward more comprehensive quantifications of invader impact 379 

There is growing interest in quantifying impacts beyond traditional ecological and 380 

economic measures by using an ecosystem services framework that can capture information on 381 

provisioning (e.g., food, timber, fuel), regulating (e.g., climate, floods, nutrient cycling) and 382 

cultural services (Perrings 2010; Simberloff et al. 2013). For example, in highly-degraded 383 

ecosystems some established non-native species may offer beneficial services to some 384 

stakeholders (McLaughlan and Aldridge 2013), although any benefits of local cultivation of such 385 

species must be weighed carefully against risks of further spread. Such accounting would also 386 

need to consider negative impacts, which are diverse and substantive, on ecosystem services 387 

(e.g., Walsh et al. 2016; Vilà and Hulme 2017; Milanović et al. 2020). However, at present we 388 

know remarkably little about how even the most high-profile non-native species affect ecosystem 389 

services (Vilà et al. 2010; McLaughlan et al. 2014), a problem related to the challenges of 390 

evaluating ecosystem-level impacts (Simberloff 2011; Ricciardi et al. 2013). More reliable 391 

quantification of potential ecosystem services of invasive species, coupled with a deeper 392 

understanding of context-dependencies, would allow a more informed and comprehensive 393 

impact assessment. To this end, the Millennium Ecosystem Assessment and, more recently, the 394 

Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), which have 395 

examined how humans have altered ecosystems and these alterations have affected ecosystem 396 

services and human well-being (Millennium Ecosystem Assessment 2005; Díaz et al. 2019), 397 

could provide a suitable framework for developing protocols for risk assessment, perhaps 398 
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informed by the EICAT and SEICAT classification schemes (Hawkins et al. 2015; Bacher et al. 399 

2018). 400 

Comprehensive impact quantification is challenged by knowledge gaps that may render 401 

risk assessments incomplete or misleading (Kumschick et al. 2015). One major gap is predictive 402 

knowledge of the role of species traits, combinations of traits, and trait-environment interactions 403 

in impacts, particularly at the ecosystem level. It is not clear under what situations the same 404 

species traits that confer an ecosystem service can also damage an existing ecosystem service 405 

(Vilà and Hulme 2017) or contribute to an ‘ecosystem disservice’ – properties or functions that 406 

are disadvantageous to humans (Milanović et al. 2020). Another major context-dependency that 407 

could distort risk assessment of a given invader is the presence of other invaders. Predictions, as 408 

well as post-hoc assessments, are potentially hampered by synergistic or antagonistic interactions 409 

between invaders, including those that can contribute to invasional meltdown – in which one 410 

invader facilitates another, leading to compounded impacts and potentially self-reinforcing 411 

effects (Simberloff and Von Holle 1999; Ricciardi 2001; Green et al. 2011). Disentangling the 412 

influence of various species involved in meltdowns requires detailed experimental planning (e.g., 413 

Braga et al. 2020), whereas invader interactions in multiple invaded ecosystems are generally 414 

poorly studied (Kuebbing et al. 2013). It therefore seems likely that most synergistic effects go 415 

unrecognized. Even where interactive effects do not occur, the cumulative effects of burgeoning 416 

numbers of low-impact invaders on ecosystems have been virtually ignored. Approaches toward 417 

quantifying and assessing the effects of multiple environmental stressors (Boyd et al. 2018; 418 

Hodgson and Halpern 2018; Hodgson et al. 2019) could potentially be adapted for multiple 419 

invading species and, furthermore, might be enhanced by efforts to collate experimentally-420 

validated invader interactions within global databases. 421 



19 
 

 422 

2. Addressing the challenge of global environmental change in invasion science 423 

The second overarching issue is how invasion science can adapt to the onslaught of 424 

global environmental changes presently altering the rates, dynamics, and impacts of invasions 425 

through myriad drivers including climate change, overharvesting, extinction, pollution, 426 

landscape transformation, and shifting trade patterns. Ecosystems are likely to become more 427 

susceptible to invasions as these drivers degrade and modify food webs. For some native species, 428 

global changes create physiologically intolerable or suboptimal conditions that lower relative 429 

fitness (Catford et al. 2020) or provoke range shifts, further altering community composition and 430 

susceptibility to invader impacts (Gallardo and Aldridge 2013; Wallingford et al. 2020). 431 

Environmental change often affects native and non-native species differentially, modifying their 432 

interactions and selection pressures through shifting abiotic and biotic ecosystem conditions 433 

(Xiao et al. 2016; Meyerson et al. 2020; Stern and Lee 2020). This issue is well recognized and 434 

has been widely investigated for several years, yet the need for research and management 435 

solutions through the lens of invasion science is ongoing and increasing. Invasion science must 436 

continue to develop an understanding of key issues regarding global environmental change 437 

including interactions between invasions and other environmental stressors, climate adaptation 438 

and mitigation strategies, and evaluating and managing species range shifts and translocations. In 439 

this section, we primarily focus on climate change (Figure 3) but note that many other forms of 440 

human-induced environmental change facilitate invasions and the relative dominance of non-441 

native species (Catford et al. 2014; Seabloom et al. 2015; Liu et al. 2017; Essl et al. 2019).   442 

 443 

2.1. Ecological synergies between invasions and climate change 444 
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2.1.1. Non-native species performance 445 

Species distributions worldwide are mostly determined by climate, tectonic movements, 446 

and orographic barriers (Ficetola et al. 2017). Climate change will therefore have a major impact 447 

on species range and distributions irrespective of whether species are native or non-native to a 448 

particular region. However, differences in the magnitude of potential range shifts predicted for 449 

non-native and native species will be determined by differences in their biology, such as 450 

physiological tolerances and dispersal potential (Essl et al. 2019). The last decade has 451 

accordingly seen major efforts to investigate the role of climate change in the introduction, 452 

establishment, spread, and impact of non-native species (Hulme 2017).  453 

Various meta-analyses have shown that non-native species often outperform and adjust 454 

better than native species to a rapidly changing climate (Sorte et al. 2013; Oduor et al. 2016; Liu 455 

et al. 2017). For example, hotter, drier environmental conditions enable non-native Asian tiger 456 

mosquitoes to outcompete native tree-hole mosquitoes in the United States (Smith et al. 2015), 457 

Eastern mosquitofish (Gambusia holbrooki) persist more successfully than native fish species in 458 

France (Cucherousset et al. 2007), and non-native Monterey pine (Pinus radiata) to grow faster 459 

than native conifers in Spain (Godoy et al. 2011). Warmer temperatures in freshwater 460 

ecosystems will favor non-native species as these frequently have a greater heat tolerance than 461 

related native species (Bates et al. 2013); similarly, in the Mediterranean Sea, increases in 462 

temperature have facilitated the establishment of non-native tropical species (Raitsos et al. 2010). 463 

A key element of climate change is an increase in the frequency and magnitude of 464 

extreme climatic events, which can have greater effects on invasion than changes in average 465 

conditions (Sheppard et al. 2012). Strong winds, floods, large waves, and storm surges can 466 

transport organisms into new regions (Diez et al. 2012), as discussed below. Critically, extreme 467 
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climatic events like heat waves, fires, severe storms, droughts, and floods act as major 468 

disturbances and will invariably destroy and damage resident native biota, reducing the uptake of 469 

resources, and can also increase resource supply (Catford and Jones 2019). Such disturbances are 470 

known to facilitate invasion (Davis et al. 2000), because many invasive species can take 471 

advantage of fluctuations in resource availability caused by disturbances (Catford et al. 2012; 472 

Singh et al. 2018). For example, European Bromus grasses that are highly invasive in North 473 

America can exploit available soil moisture more efficiently and thus recover more rapidly than 474 

native vegetation after drought (Harris 1967), enabling them to invade areas formerly dominated 475 

by native woody species (Kane et al. 2011). Similarly, a non-native freshwater phytoplankton 476 

species was able to invade and establish in a reservoir following the combined disturbance events 477 

of macrophyte removal and extreme drought (Crossetti et al. 2019).  478 

 479 

2.1.2. Non-native species range shifts 480 

Shifts in temperature and rainfall patterns attributed to climate change can increase the 481 

probability of establishment of non-native species, which were previously constrained by climate 482 

(Walther et al. 2009; Hulme 2017) or climate-mediated interactions with native biota (Catford et 483 

al. 2020). Increasing evidence indicates that non-native species tend to respond faster than native 484 

species to climate change, with spread rates an order of magnitude higher than the velocity of 485 

climate change (Hulme 2012). For example, non-native plants have expanded upwards in the 486 

European Alps twice as fast as native species in response to warming (Dainese et al. 2017). 487 

Nevertheless, climate change can lead to both increases (Kriticos et al. 2003; Barbet-Massin et 488 

al. 2013; Gilioli et al. 2014) and declines (Bradley et al. 2009; Bellard et al. 2013; Xu et al. 2014) 489 

in the geographical range of non-native species. A general finding is that, as a result of climate 490 



22 
 

change, the distribution range of non-native invertebrates and pathogens will expand, but range 491 

contractions are mostly expected for non-native plants and vertebrates (Bellard et al. 2018). For 492 

example, by the end of this century the suitable area worldwide for the red imported fire ant 493 

(Solenopsis invicta) is predicted to be 21% greater (Morrison et al. 2014), whereas for the velvet 494 

tree (Miconia calvescens) it is predicted that suitable habitat will be reduced in both its native 495 

and introduced ranges (González-Muñoz et al. 2015). However, trends may differ between 496 

terrestrial and aquatic environments. For instance, the warming of North American lakes is likely 497 

to increase thermal suitability for southern species of fishes that could expand their distribution 498 

poleward into non-native regions, potentially as far as the Arctic (Sharma et al. 2007; Della 499 

Venezia et al. 2018).  500 

Besides overall change in temperature and precipitation, extreme climatic events can also 501 

help spread non-native species by overcoming dispersal barriers (Diez et al. 2012). For instance, 502 

hurricanes promoted dispersal of non-native cactus moth (Cactoblastis cactorum) across the 503 

Caribbean and into Mexico where it threatens native Opuntia species (Andraca-Gómez et al. 504 

2015). Hurricane frequency was also positively correlated with the expansion of the non-native 505 

grass Phragmites australis across wetlands along the Gulf Coasts of the USA (Bhattarai and 506 

Cronin 2014). Likewise, flood events can increase pool connectivity and provide non-native 507 

freshwater species access to newly inundated areas (Vilizzi et al. 2014). For example, floods 508 

enabled the escape of cultured black carp (Mylopharyngodon piceus) in the Missouri River, US 509 

(Nico et al. 2005), and tilapia cichlids in southeast Asia (Canonico et al. 2005) and have 510 

facilitated the spread of zebra mussels (Dreissena polymorpha) in the Mississippi River 511 

catchment (Tucker 1996). Nevertheless, the natural variability of climate makes it difficult to 512 
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attach high levels of confidence to some of the predicted changes, particularly those associated 513 

with extreme weather events (Bellard et al. 2013).    514 

 515 

2.1.3. Novel interactions and per capita impacts 516 

Climate change will, in many cases, increase the introduction rate, establishment 517 

probability, and spread rate of non-native species (Bellard et al. 2013), while simultaneously 518 

facilitating extensive range shifts of native species (Inderjit et al. 2017; Pecl et al. 2017; Essl et 519 

al. 2019), leading to novel ecological interactions and increased impacts. Range shifts are 520 

expected to contribute to widespread biotic homogenization (where more species are shared 521 

among communities) in some regions and the formation of novel communities in others (García-522 

Molinos et al. 2015). Diverse novel biotic interactions and assemblages will arise from divergent 523 

responses of species and populations to climate change (Blois et al. 2013; Pecl et al. 2017). As 524 

discussed previously, new biotic interactions often result in high impacts when resident species 525 

have not co-evolved with newly arrived species (Ricciardi and Atkinson 2004; Cox and Lima 526 

2006; Saul and Jeschke 2015). In some cases, range shifts of native species can cause impacts 527 

similar to those involving non-native species (Sorte et al. 2013; Inderjit et al. 2017), although 528 

impacts will be tempered by the eco-evolutionary experience of the resident species (sensu Saul 529 

and Jeschke 2015). Few studies have addressed range shifts of native and non-native species as a 530 

joint issue (Gallardo and Aldridge 2013; Sorte et al. 2013; Dainese et al. 2017; Inderjit et al. 531 

2017; Singh et al. 2018). 532 

While many studies have linked climate change to the spread of invasive species 533 

(detailed above), the role of environmental factors in determining ecological impacts is 534 

understudied (Dickey et al. 2020). Climatic conditions that shift towards the physiological 535 
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optimum of a non-native species could promote increased feeding rates, growth, or reproduction 536 

that amplifies its competitive or predatory effects (Hellmann et al. 2008; Iacarella et al. 2015a). 537 

For example, an invasive bryozoan is expected to have enhanced growth rates at warmer 538 

temperatures in the Northwest Atlantic, with greater modeled impacts on kelp beds under future 539 

climate conditions (Denley et al. 2019). Similarly, higher growth rates enable an invasive plant 540 

to outcompete a native plant in China along higher latitudes in the field and at warmer 541 

experimental temperatures (Wu et al. 2017). Predation rates of non-native species may also 542 

increase when warming temperatures are within the physiological optima of the invader 543 

(Iacarella et al. 2015a). For instance, the predatory response of an invasive freshwater amphipod 544 

increases when exposed to elevated temperatures and infected by a common parasite (Laverty et 545 

al. 2017). Given that non-native species are expected often to outperform native species in 546 

response to environmental change, as discussed above, their competitive and predatory impacts 547 

will likely also increase under these circumstances. A method has recently been developed that 548 

incorporates the per capita and abundance effects of non-native species under altered variables 549 

such as temperature, oxygen, salinity, and indeed any other variable in isolation or combination 550 

(Dickey et al. 2020). This predictive method crucially also factors in the climate response of the 551 

affected species (e.g., native prey), such that overall impact is holistically predictable. This 552 

method is in its infancy and ground-truthing is now limited only by data (Dickey et al. 2020). 553 

 554 

2.1.4. Changes to ecosystem services and human well-being 555 

Research on the interaction between invasions and global environmental change is 556 

essential to identify effects on ecosystem services and human well-being (Dukes and Mooney 557 

1999; Walther et al. 2009; Pecl et al. 2017; Vilà and Hulme 2017). Although tools such as 558 
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SEICAT (Bacher et al. 2018) and INSEAT (‘INvasive Species Effects Assessment Tool’; 559 

Martinez‐Cillero et al. 2019) have been developed to classify non-native species within a 560 

framework of ecosystem services and human well-being, these tools rely on expert elicitation as 561 

there are still surprisingly few quantitative data on the ecosystem services effects of even the 562 

most prolific invasive species. This is, in part, owing to the context-dependent impacts of 563 

invaders (see section 1) and because environmental change can alter the balance of positive and 564 

negative effects (McLaughlan et al. 2014). For instance, disturbed river banks and roadsides in 565 

Africa favor proliferation of the invasive tree, Prosopis juliflora (Shiferaw et al. 2019), which 566 

increases local income from wood sales but reduces habitat suitable for livestock and results in 567 

lower income from cattle sales (Linders et al. 2020). The predicted future effect of interactions 568 

among climate, socioeconomic factors, and invasions on plant biodiversity hotspots constitutes 569 

the greatest threat in emerging economies located in megadiverse regions of the Southern 570 

Hemisphere (Seebens et al. 2015). Invasions and climate change also pose a combined threat to 571 

native species in protected areas and thus seriously compromise conservation of biodiversity and 572 

ecosystem services (Gallardo et al. 2017; Iacarella et al. 2020). Interactions between invasions 573 

and climate change will also affect human health; for instance, climate change models predict an 574 

increase in the life-cycle completion rate and extended periods suitable for development of the 575 

invasive mosquito Aedes aegypti, a vector of arboviruses including dengue, zika, and yellow 576 

fever, resulting in accelerated invasion in North America and China (Iwamura et al. 2020).  577 

To investigate the effects of invasions on ecosystem services and human well-being, 578 

models should integrate interactions among several components of global change, not only 579 

climate change (Walther et al. 2009). Furthermore, studies should also explore these interactions 580 

in productive systems such as managed forests, agriculture, and aquaculture (Thomson et al. 581 
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2010; Ziska and Dukes 2014; Liebhold et al. 2017). A major concern for these resource sectors is 582 

that drought, warming, and elevated CO2 will affect the performance of non-native species (i.e., 583 

pests, pathogens, and weeds) in complex and currently unpredictable ways. Research on their 584 

impacts requires, for example, quantifying not only how altered environmental conditions 585 

change weed and crop performance in isolation, but the magnitude of weed-crop competition on 586 

crop damage (Ramesh et al. 2017).  587 

 588 

2.2. Human responses to climate change that favor non-native species 589 

2.2.1. Changes to invasion pathways 590 

Global change is also altering invasion risk by promoting new commercial trading routes 591 

and corridors. Shifting global economic forces (e.g., tariffs, manufacturing trends, recession, 592 

regional conflicts, climatic disasters) determine trade volume and thus the frequency with which 593 

aircraft or oceanic vessels travel between airports or seaports (Seebens et al. 2015). Such shifts 594 

drive temporal rates of species introduction and the range of taxa that invade (Levine and 595 

D’Antonio 2003; Hulme 2015; Bertelsmeier et al. 2018). For example, commercial shipping at 596 

polar latitudes of North America and Eurasia is either planned or already occurring, providing 597 

novel opportunities for introducing non-native species to Arctic waters (Miller and Ruiz 2014; 598 

Chan et al. 2019). The Southern Ocean is likewise becoming increasingly vulnerable to species 599 

introductions owing to increased propagule pressure from vessel traffic and reduced physical and 600 

physiological barriers (Aronson et al. 2015; Hughes and Ashton 2017; Smith et al. 2017; 601 

McCarthy et al. 2019; Cárdenas et al. 2020). Such human responses to climate change (Figure 3) 602 

are altering the origins, taxonomic identity, and rate of introduction of non-native species in 603 
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terrestrial, freshwater, and marine habitats worldwide (Seebens et al. 2015; Early et al. 2016; 604 

Della Venezia et al. 2018). 605 

 606 

2.2.2. Climate adaptation: planting non-native species and adding infrastructure 607 

As governments increasingly develop adaptive strategies to address climate change, 608 

many of these strategies are likely to entail using non-native species. Proposed interventions 609 

include initiatives to develop agricultural or aquacultural enterprises to deliver carbon-neutral 610 

energy sources (e.g., macroalgae and plants for biofuels) using known invasive non-native 611 

species (Barney and DiTomaso 2008). Pressure is also increasing to develop new varieties of 612 

pasture species that can better cope with changing climates, such as drought-tolerant and disease-613 

resistant species, many of which are non-native in the countries in which they are sold and 614 

planted (Driscoll et al. 2014). Increased development of green roofs, vertical gardens, and water-615 

saving horticulture to mitigate effects of climate change (Perini and Rosasco 2016) carry the risk 616 

of introducing non-native species by promoting drought-tolerant plants or breeding drought-617 

resistant varieties, cultivars, or hybrids. Similarly, many large-scale tree-planting programs have 618 

not led to the replenishment of degraded forests with native tree species, but rather to 619 

afforestation of non-forest land, including biodiverse grsslands, with monocultures of non-native 620 

trees. Such efforts include massive tree-planting campaigns using non-native trees with the aim 621 

of mitigating the impacts of climate change and for other poverty alleviation (Brundu et al. 622 

2020). Such plantings might not help offset greenhouse gas emissions as much as expected, 623 

owing to unforeseen fluxes and complex system dynamics (Covey et al. 2012; Luyssaert et al. 624 

2018; Popkin 2019). Indeed, inappropriate afforestation, especially in naturally treeless areas, 625 

can have serious consequences for sustainable development, biodiversity conservation, and 626 
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ecosystem functioning (reviewed in Brundu et al. 2020). Furthermore, many species used in such 627 

programs are highly invasive, which means that their impacts extend beyond areas identified for 628 

afforestation (Brundu and Richardson 2016; Brundu et al. 2020). 629 

Besides directly introducing species to sustain economic activities or to mitigate 630 

emissions, governments at all levels are responding to environmental change by developing new 631 

infrastructure. Strategies to combat sea-level rise have largely been addressed through 632 

engineered solutions (armoring, raising road-beds, flood control structures). Each of these 633 

adaptation strategies presents an opportunity for existing non-native species to expand their 634 

range or impact and can create new suitable habitat for non-native species that arrive via ballast, 635 

hull-fouling, or the marine aquarium trade (Bulleri and Chapman 2010). Offshore wind farms 636 

also provide novel fouling habitats and ‘stepping stones’ for invasions (Adams et al. 2014; De 637 

Mesel et al. 2015). Similarly, frequent droughts lead to efforts to provide secure water sources to 638 

urban populations, including construction of dams, canals, and other water-diverting mechanisms 639 

that can spread non-native species (Strayer 2010; Zhan et al. 2015; Gallardo and Aldridge 2018). 640 

However, infrastructure developments can be designed to reduce their suitability as novel 641 

habitats or invasion routes for invasions by non-native species, by minimizing environmental 642 

disturbances or emulating natural habitats (Dafforn et al. 2015). 643 

 644 

2.2.3. Species translocations for conservation 645 

Conservation scientists have introduced species to locations outside their native range for 646 

three main reasons: (1) to avoid extinction caused by an introduced species, often an introduced 647 

predator; (2) to restore an ecological function (as detailed in section 1.2.1); or (3) to allow 648 

species' ranges to keep up with climate change (Corlett 2016). Introductions to accommodate 649 
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global climate change have increasingly attracted attention. As early as 1985, conservationists 650 

recognized that the climate of current species ranges will change so that locations with climate 651 

similar to that of today may be distant or separated by inhospitable habitat; they proposed several 652 

measures including direct human assistance in the form of translocation to suitable habitat 653 

unoccupied by the species of interest when adequate autonomous movement seemed unlikely 654 

(Peters and Darling 1985; Peters 1988; Davis 1989; Peters 1992). This proposal received little 655 

interest for the next decade; a review of possible management responses to climate change listed 656 

only 13 mentions of translocations (Heller and Zavaleta 2009). None of these acknowledged 657 

possible negative effects of translocation. However, translocations had long been conducted in 658 

the name of conservation, notably of species threatened by introduced predators (Seddon et al. 659 

2012, 2014a). For instance, endemic New Zealand birds threatened by non-native rats and 660 

mustelids had been translocated to predator-free islands since 1894, with many well-publicized 661 

projects (Clout and Craig 1995; Seddon et al. 2012); occasional concern about such efforts had 662 

been expressed on the grounds of potential unanticipated ecological impacts (e.g., IUCN 1987; 663 

Conant 1988; Atkinson 1990; Craig and Veitch 1990; Towns et al. 1990).  664 

Translocation as a management response to climate change began to gain substantial 665 

attention with papers by McLachlan et al. (2007) and Hunter (2007), both raising the issue that 666 

this constitutes introducing a non-native species, which in turn might lead to a damaging 667 

invasion. Hoegh-Guldberg et al. (2008) produced the first decision tree for application of 668 

potential translocations in response to climate change, but they, and Hunter (2007), suggested 669 

that intercontinental introductions have proven far more likely to be damaging, whereas 670 

proposed translocations for climate change would be more restricted. A broader and more 671 

detailed criticism of climate change-motivated translocation (Ricciardi and Simberloff 2009a), 672 
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based on the possibility of non-target impacts, elicited an exchange with several respondents 673 

(Ricciardi and Simberloff 2009b) and signaled a shift in the dialogue, with much more attention 674 

paid to the possibility of unintended consequences by virtue of introducing new species. As such, 675 

Richardson et al. (2009) expanded the decision-tree approach into a heuristic decision tool with 676 

detailed considerations of both ecological and socioeconomic consequences of translocation or 677 

failure to translocate; the difficulty lies in estimating the probability of various potential 678 

outcomes (e.g., decline or loss of ecological functions in the recipient region) and quantifying 679 

other risks, both ecological and socioeconomic, to inform comparisons and decisions. In the last 680 

decade, translocation has received increasingly nuanced consideration of the relative risks and 681 

virtues owing to the rapidly growing understanding of the enormous conservation challenge 682 

posed by the scope and imminence of climate change and its likely effect on species ranges 683 

(Hewitt et al. 2011; Thomas 2011; Schwartz and Martin 2013; Williams and Dumroese 2013; 684 

Ricciardi and Simberloff 2014; Maier and Simberloff 2016; Simler et al. 2018).  685 

The lines between translocation and biological invasion are becoming increasingly 686 

blurred. Both events involve species expanding beyond their historical biogeographic ranges, 687 

leading some authors to suggest that they differ only in public perception and value (Hoffmann 688 

and Courchamp 2016; but see Ricciardi 2007; Wilson et al. 2016). In addition, views on how to 689 

deal with the spectrum from ‘desirable’ self-migrating species, to translocations undertaken for 690 

conservation (desirable to some, undesirable to others), to generally ‘undesirable’ biological 691 

invasions, are yet to be reconciled. Further, determination of ‘non-native’, as defined by lack of 692 

co-evolution with the invaded community (Ricciardi 2012), and ‘desirable’ or ‘undesirable’, as 693 

defined by valuations of impact (Jeschke et al. 2014), will become increasingly challenging as 694 

we seek to determine what to protect or manage in a shifting mosaic of species assemblages 695 
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(Gilroy et al. 2017; Hill and Hadly 2018). The current framework for managing non-native 696 

species could yield protection of conservation-based translocated species despite potentially high 697 

impacts, compared to management and mitigation of high-impact species that spread via self-698 

directed or direct, but accidental movement. Robust protocols for considering the entire range of 699 

possible impacts of facilitated range shifts, as well as those of self-migrating species, must be 700 

developed and integrated into policies and legislation with the engagement of stakeholders. 701 

 702 

2.3. Government responses and global efforts 703 

The global nature of biological invasions and their interactions with environmental 704 

change can strain the capabilities of governments to anticipate and respond to invasions now and 705 

into the future. As discussed in detail above, the ecology of invasions under climate change is 706 

complicated. The directed asymmetrical movement of certain species poleward (Winter et al. 707 

2014), and to higher elevations (Pyšek et al. 2011; Dainese et al. 2017), can point to systems 708 

requiring early-detection monitoring or intervention. On the other hand, the effects of climate 709 

change could play out neatly along latitudinal or altitudinal gradients (Hanberry and Hansen 710 

2015). A key unknown is the relative importance of introduction enhancement (e.g., colonization 711 

pressure, propagule pressure) from changing trade patterns versus the influence of climate 712 

change factors in facilitating species’ range changes. Policies that address invasions could also 713 

be complicated by seemingly competing interests, including those associated with the economy 714 

and trade versus biodiversity and human health. Despite devastating new species invasions and 715 

pleas for a comprehensive approach to biosecurity, some countries, such as the United States, 716 

have even recently reduced coordinated federal leadership and investments to address invasions  717 

(Meyerson et al. 2019; Simberloff et al. 2020). Current coordinated global efforts to document 718 
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invasions and impacts include the Global Register of Introduced and Invasive Species (GRIIS) 719 

and an invasive species assessment by the IPBES. These substantial undertakings will 720 

undoubtedly deepen our understanding of invasion trends, impacts, and management, but neither 721 

will result in policies to prevent species introductions that participating nations are obliged to 722 

adopt. Rather, it remains the role of national and local governments to identify, fund, implement, 723 

and enforce policies to manage invasions under changing conditions and, where possible, to 724 

coordinate with other nations. 725 

 726 

3. Resolving the Taxonomic Impediment 727 

3.1. The enduring problem of taxonomic identification 728 

The third overarching issue is our capacity to distinguish non-native from native species 729 

accurately. Scientific understanding of the processes that control the diversity, abundance, 730 

distribution, and impacts of non-native species ultimately depends on the quality of taxonomic 731 

data. The steady global erosion in training and expertise in systematics means that invasion 732 

science often lacks the taxonomic support to accurately identify many taxonomic groups in 733 

terrestrial, freshwater, and marine habitats (Godfray 2002; and below). While this phenomenon 734 

exists across biomes and taxa, the largest gaps in taxonomic knowledge are associated with some 735 

of the most abundant species, including microorganisms and microfauna. Arguments (such as 736 

those of Costello et al. 2013) that the field of taxonomy is robust appear to be based on, among 737 

other fallacies, a misinterpretation that authorship inflation on taxonomic papers equates to an 738 

increasing number of taxonomists (Bebber et al. 2013; Daglio and Dawson 2019). 739 

Molecular tools have made remarkable progress and offer great promise for illuminating 740 

the overlooked scale of biodiversity in all habitats (Hebert et al. 2003; Dinca et al. 2011). The 741 
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application of modern sequencing techniques often reveals a vast array of unknown and often 742 

cryptic species. Srivathsan et al. (2019) report that of 7,059 specimens of flies (Diptera, family 743 

Phoridae) collected in a single Malaise trap in Uganda over an eight-week period, MinION 744 

sequencing revealed more than 650 largely or entirely undescribed species, exceeding the total 745 

number of phorid taxa described for the entire Afrotropical region. Only one of these 650 746 

species, however, has to date been formally described, based on morphological characters,  as a 747 

new species. Molecular techniques combined with advanced culturing methods have revealed an 748 

enormous diversity of microbial taxa. Metagenomic sequencing of samples from only 68 ocean 749 

locations revealed over 35,000 microbial ‘species’ (Sunagawa et al. 2015). Locey and Lennon 750 

(2016) predict that the Earth may support as many as a staggering 1 trillion (1012) microbial 751 

species. 752 

Nevertheless, the use of molecular technologies to identify taxa to the species level by 753 

genetic fingerprinting or ‘barcoding’ has often proven to be an insufficient and unreliable 754 

response to the taxonomic impediment. The panacea that simply sequencing specimens and 755 

trusting that matching those sequences to databases will produce a reliable identification has 756 

proven not to compensate for the growing gap in taxonomic expertise. Two principal problems 757 

hinder molecular identifications: (1) accurate and complete barcoding of taxa across the 758 

taxonomic spectrum, and (2) accurate and complete reference databases against which taxonomic 759 

assignments are made (Harris 2003).  760 

These problems are hindering the compilation of inventories of non-native taxa, even in 761 

conspicuous and well-studied groups such as Australian Acacia species (Magona et al. 2018). 762 

Taxonomic biases may result from the markers used (Clarke et al. 2014), while many species for 763 

which sequences are obtained have no authenticated database reference (Briski et al. 2016). 764 
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Further, all new sequence entries should (but do not) require that the sequenced taxon has been 765 

identified by a taxonomic expert based upon morphological evidence. Thus, a substantial fraction 766 

of the species in these databases can be misidentified, at times egregiously so, potentially 767 

producing erroneous matches that cannot be detected by non-specialists (Figure 4). For example, 768 

DNA barcoding sequence information is missing from either the Barcode of Life Database, 769 

GenBank, or both, for 60% of the 88 insect species listed in the Global Invasive Species 770 

Database; 41% of the 88 species could be misidentified as another species, owing to 771 

discrepancies between sequences and species identity (Boykin et al. 2012). 772 

 773 

3.2. Taxonomic impediments lead to under-estimations of invasion  774 

Without changes to ensure the development of broad taxonomic expertise, invasion 775 

science will continue to underestimate, often substantially, the number (and also, therefore, the 776 

impacts) of non-native species across all habitats, regardless of the surveillance and detection 777 

program (e.g., De Barro et al. 2011). For example, Carlton and Fowler (2018) recently estimated 778 

that non-native species are under-reported globally for the majority of marine taxonomic groups, 779 

owing to a lack of widely available taxonomic expertise. Conversely, what has been initially 780 

viewed as an invasion by one widespread species is sometimes later discovered to be a group of 781 

similar species, some or all of which are restricted to their native ranges (Darling and Carlton 782 

2018). More broadly, the inability to detect what could be the most common new invasions (by 783 

species and genotypes) across terrestrial, freshwater, and marine habitats undermines ecosystem 784 

management and biodiversity assessment, and our capacity to detect changes in ecosystem 785 

structure and function. 786 
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The deficit of taxonomic expertise associated with microorganisms is especially 787 

worrying. In general, species richness and density of organisms are inversely related to size. Not 788 

only do small-bodied creatures dominate the world, but the magnitude of non-native species 789 

transfers is often greatest for small organisms, many of which have life histories that facilitate 790 

colonization (e.g., asexual reproduction; resting stages) (Ruiz et al. 2000). While invasions of 791 

microorganisms are increasingly recorded (Seebens et al. 2017), the extent of these invasions, 792 

and their impacts, remain poorly described outside of forestry, agriculture, and aquaculture 793 

(Desprez-Loustau et al. 2007; Lohan et al. 2020).  794 

Several marine disease outbreaks (such as those in oysters, sea urchins, and fishes) have 795 

been attributed to non-native pathogens. For example, MSX is an oyster disease caused by a 796 

protozoan (Haplosporidium nelsoni) that is native to Asia but was detected on the Atlantic coast 797 

of North America in 1957. The native eastern oyster (Crassostrea virginica) proved highly 798 

susceptible to MSX, leaving local populations substantially depleted from Chesapeake Bay to 799 

Nova Scotia (Bushek and Ford 2016). The same is true for terrestrial and freshwater habitats 800 

where non-native pathogens cause diseases such as ash dieback, crayfish plague, 801 

chytridiomycosis, and sudden oak death (Skerratt et al. 2007; Grunwald et al. 2012; Roy et al. 802 

2017). Many of these non-native pathogens spill-over, colonizing native host species in the 803 

invaded range, whereas non-native hosts may harbor native parasites that then spill-back to 804 

native hosts (Roy and Handley 2012; Blackburn and Ewen 2017). Both effects complicate 805 

parasite identification (Morand 2017). Given recent work on the role of microbial communities 806 

in ecosystem processes (Worden et al. 2015) and their importance in microbiomes, host-parasite 807 

interactions (Egan and Gardiner 2016), and plant mutualisms (Traveset and Richardson 2014), 808 

the potential importance of microorganism invasions is enormous. Thus, evaluation of 809 
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microorganism biogeography is a high priority if we are to understand the full scope and impact 810 

of invasions in all ecosystems. 811 

 812 

3.3. Lack of taxonomic expertise limits our ability to test and develop invasion theory 813 

The taxonomic impediment also impairs our ability to evaluate and understand the 814 

spatiotemporal dynamics of invasions and their impacts. Much of the theory and current 815 

knowledge of invasion science has arisen from syntheses and analyses of secondary data drawn 816 

from regional checklists and distribution atlases of floras and faunas (van Kleunen et al. 2015, 817 

2019; Dyer et al. 2017; Pyšek et al. 2017). However, such checklists and databases can be 818 

seriously compromised by the quality of species identifications (McGeoch et al. 2012). 819 

Identifying plant hybrids, in particular, requires professional taxonomic expertise and is crucial 820 

for management, given that hybridization often facilitates establishment (Yamaguchi et al. 2019) 821 

and stimulates invasiveness, where the new taxon is more vigorous than either parent (Ellstrand 822 

and Schierenbeck 2000; Vilà et al. 2000). An example is provided by Fallopia taxa (knotweeds) 823 

in the Czech Republic, for which redetermination of plants in the field revealed 824 

misidentifications for up to 16% of the records reported in the literature or deposited in herbaria 825 

for Fallopia japonica and F. sachalinensis, and 20% of records of the hybrid F. × bohemica, 826 

(Pyšek et al. 2001). Only after the complicated patterns of increased ploidy variation and rapid 827 

post-invasion evolution in the invaded range of Europe were disentangled was it possible to 828 

conduct ecological studies that revealed the elevated invasiveness of the hybrid compared to that 829 

of the parents (Pyšek et al. 2003).  830 

Other taxonomic challenges in plant invasion research include apomictic groups, 831 

karyologically variable complexes, genera with specific reproduction systems, or those for which 832 
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horticulturalists have bred many cultivars and varieties (e.g., Centaurea, Cotoneaster, 833 

Heracleum, Lupinus, Myriophyllum, Phragmites, Rhododendron, Rubus, Spartina, and Tamarix). 834 

Some of those taxa are among the most widespread plant invaders, and ecological studies aimed 835 

at understanding their invasion have profited substantially from detailed taxonomic knowledge 836 

(Pyšek et al. 2013). 837 

 838 

3.4. Lack of taxonomic expertise limits our ability to manage invasions 839 

Taxonomic expertise is fundamental to management and policy efforts, from border 840 

control to early detection (and both encouraging and justifying rapid response based on expert 841 

identification) to post-invasion management. In several cases, misidentifications and failures to 842 

recognize cryptic species complexes have delayed the discovery and introduction of suitable 843 

biological control agents (Anderson and Wagner 2016). This is illustrated by biological control 844 

of Cactaceae in South Africa that was delayed because the wrong species of herbivorous insect 845 

was collected. After taxonomic problems were resolved and the appropriate insect was released, 846 

the population of the non-native cactus declined (Paterson et al. 2011). Similarly, a carnivorous 847 

beetle, Laricobius naganoensis, was inadvertently imported to eastern North America with a 848 

closely-related species, L. osakensis, introduced from Japan to control an invasive insect – the 849 

hemlock woolly adelgid. The U.S. Department of Agriculture subsequently permitted further 850 

introduction of L. naganoensis, requiring no risk assessment or monitoring, simply because it 851 

was too difficult to distinguish it readily from its congener (Leppanen et al. 2019). 852 

Food security is also compromised by taxonomic problems. Inability to determine species 853 

identity in imported live seafood can result in widespread substitution by cheaper species in 854 

many countries, some of which include invasive non-native species. For example, in South 855 
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Africa several species of Clarias catfish are native to the continent and are used in aquaculture as 856 

a local food source. However, the walking catfish (C. batrachus) – a southeastern Asian species 857 

known to cause detrimental impacts where it has established – is prohibited for aquaculture. The 858 

walking catfish is difficult to distinguish from its African congeners based on morphology alone, 859 

making it an easy species to label inappropriately, import, grow, and sell (Grobler et al. 2015).  860 

Equally worrisome is that, with the rapidity with which vectors and pathways are 861 

changing in today’s globalized economy, we may be unaware of – and unprepared for – many 862 

future invasions. The widening gap between our desire to assess changing biodiversity and our 863 

ability to identify species implicates all taxa in all habitats and thus compromises our evaluation 864 

of the consequences of invasion. The need to narrow this gap through enhanced taxonomic 865 

expertise is crucial if we are to keep pace with the constantly expanding numbers of non-native 866 

animals and plants being introduced across the planet (Seebens et al. 2018, 2020). 867 

 868 

3.5. The way forward: Training the next generations of researchers to identify species 869 

The way forward requires a new international emphasis on the value of taxonomy. The 870 

foundations of the scientific community’s ability to recognize biodiversity, including the 871 

presence and impacts of non-native species, have been crumbling for decades. Rebuilding these 872 

foundations requires consensus that we need to do so, accompanied by agreement of the scale of 873 

restoration required, a plan to undertake renovation, and the commitment and capital to see it 874 

through. Each of these stages, except for commitment and capital, has been discussed 875 

exhaustively to little avail. The challenge of old and oft-repeated clarion calls is that they fall on 876 

deaf ears, or worse. And yet without this commitment, the global number of scientists who are 877 

trained in the basics of taxonomy (including expert field identification) and possess skills in 878 
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measuring biodiversity will continue to diminish (Lücking 2020). Failures to identify organisms 879 

correctly will lead to spurious conclusions in ecological studies and ultimately to inappropriate 880 

and ineffective legislation, management, and policy (Pyšek et al. 2013). We note that recent 881 

championing of taxonomic sufficiency or the Higher Taxon Approach, which is designed to 882 

circumvent either the absence of, or the need for engaging, expert resources (de Oliveira et al. 883 

2020; Gerwing et al. 2020), is inapplicable to invasion science – which requires the highest 884 

quality and accuracy of species-level identification. 885 

Thousands of protist, animal, and plant phylogenies produced every year contain 886 

innumerable clades deprived of binomial nomenclature (Darling and Carlton 2018). Students 887 

engaged in such work should be trained, supported, and encouraged to provide taxonomic 888 

descriptions of clades as new species. The great satisfaction and pride of describing and 889 

publishing new species, including the honor of choosing a name, could inspire a measurable 890 

fraction of future generations of biologists and ecologists to become recognized taxonomic 891 

experts while at the same time remaining experts in other specialties. A key advance will be the 892 

dissolution of the enduring myth that simultaneously being an expert taxonomist and an expert 893 

ecologist (or neurobiologist or molecular biologist) is impossible. Building pride in contributing 894 

to global biodiversity knowledge is a critical step in addressing the taxonomic impediment in the 895 

21st century. While we champion the rapidly growing concept of integrative taxonomy (Daglio 896 

and Dawson 2019; Zhang 2020) – what Boxshall (2020) describes as the “reciprocal illumination 897 

of morphological systematics and molecular sequence-based systematics” – we emphasize that 898 

no integration is possible if only one partner is on the stage. The central role of taxonomists in 899 

resource management, biodiversity conservation, and biosecurity must be affirmed (Hutchings 900 

2020). The decline in funding and the startling erosion of taxonomic positions in museums and 901 
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other institutions must be addressed through novel collaborations, underscoring societal 902 

significance. 903 

 904 

4. Enhancing international biosecurity and multi-stakeholder cooperation  905 

4.1. Shifting international trade and travel patterns mediate invasions 906 

A final overarching issue is the need for invasion science to provide better guidance for 907 

biosecurity programs, at both national and international levels. The suite of species transferred 908 

between regions varies as global trade patterns wax and wane (Dyer et al. 2017; Seebens et al. 909 

2018). An emerging example is the vast Chinese ‘Belt and Road’ initiative, which can potentially 910 

elevate invasion risks greatly among the more than 120 countries through the development of a 911 

series of land-based economic corridors between core cities and key ports (Liu et al. 2019). 912 

Historically, changes to biosecurity policies that focus on specific pathways have been motivated 913 

by the impacts of species arriving via those pathways, but the effectiveness of such reactive 914 

approaches to policy development is hampered by long lags between the establishment of 915 

pathways and the onset of invasion. Novel, forward-looking approaches to pathway risk analysis 916 

are needed. For example, internet commerce of plants and animals is an expanding global 917 

pathway that can radically transform the composition and introduction routes of species in trade 918 

(Humair et al. 2015). Structural changes to the horticultural industry, such as the shift to off-919 

shore production, have major implications for plant health and trajectories of biological 920 

invasions (Dehnen-Schmutz et al. 2010). Another emerging pathway is ecotourism; well-921 

meaning nature enthusiasts unwittingly introduce non-native species even to remote regions 922 

(e.g., Nash 2009). Research is needed to develop educational and social engineering tools that 923 

can be used to alter tourist behavior to reduce risks of future invasions. 924 
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Contemporary problems with non-native species reflect economic, societal, and trade 925 

drivers and patterns that prevailed over the past few centuries (Essl et al. 2015a; Hulme 2015; 926 

Dyer et al. 2017; Zieritz et al. 2017). This means that interventions to regulate pathways and 927 

their effects on invasions are out of sync and that time horizons of decades must be considered in 928 

strategic planning. The time lags inherent in many biological invasions imply that many 929 

additional non-native species are destined to become established and cause problems in the 930 

coming decades, even if biosecurity measures are radically improved (Essl et al. 2011). The 931 

dimensions and implications of this invasion debt are yet to be clearly incorporated into strategic 932 

biosecurity planning anywhere in the world (Rouget et al. 2016). To this end, Wilson et al. 933 

(2018) included indicators pertaining to four components of invasion debt (introduction debt; 934 

establishment debt; spread debt; and impact debt) among 20 indicators for reporting on 935 

biological invasions at the national level. These indicators form the basis for regular reporting on 936 

the status of biological invasions developed for South Africa – the first country to have instituted 937 

such a comprehensive reporting protocol (van Wilgen et al. 2020). Uptake of such measures for 938 

all countries is a priority. 939 

Trends observed in past invasions, most of which have played out over the last five 940 

decades, provide imperfect insights for planning of biosecurity interventions, since many aspects 941 

of future invasions (e.g., taxa involved, pathways, drivers of progression along the introduction-942 

establishment-spread continuum, interactions between drivers) will differ from those of previous 943 

invasions. Invasion science must develop more detailed understanding of how international trade 944 

and travel are altered by national and international socioeconomic changes, and how these 945 

changes in turn influence invasion trends (Hulme 2015). Such insights can greatly enhance the 946 

development of scenarios and allow for improved risk categorization. A major priority for 947 
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invasion science is thus to advance beyond pattern recognition to embrace mechanistic socio-948 

ecological models; for example, the Global Trade Analysis Project model was used to assess the 949 

economic and trade impacts of required phytosanitary treatments of wood packaging (Strutt et al. 950 

2013), and it was later applied to estimate the ultimate economic benefits of this policy (Leung et 951 

al. 2014). An improved understanding of the links between global socio-economic trends and 952 

invasions will ensure more effective targeting of national and international biosecurity efforts. 953 

Such knowledge is also needed to inform the development of incentives and educational tools to 954 

alter the behavior of importers, travelers, and others whose activities pose significant invasion 955 

risks (Colton and Alpert 1998; Perry and Farmer 2011; Springborn et al. 2016). 956 

 957 

4.2. Global cooperation among national biosecurity programs 958 

Most countries operate biosecurity programs that are designed to prevent the arrival, 959 

establishment, and spread of non-native species inside their national borders (Meyerson and 960 

Reaser 2002; Hulme 2011). In some cases, unexpected prioritization of biosecurity measures can 961 

result from independent policy actions. For example, the EU Regulation (1143/2014) on non-962 

native species has resulted in stakeholders focusing on biosecurity programs that limit the export 963 

of live animals and plants but which neglects new introductions. Moreover, contemporary 964 

national biosecurity programs are generally designed to protect the interests of individual 965 

countries (Black and Bartlett 2020), with relatively little consideration given to the ‘greater 966 

good’ – i.e., protecting all nations from invasions. The mission of most national plant protection 967 

organizations, for example, includes regulating imports that pose high risks of harmful 968 

introductions, while simultaneously promoting exports from their own countries; scant attention 969 

is given to minimizing risks associated with such exports (MacLeod et al. 2010). Cooperation is 970 
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urgently needed among countries to craft biosecurity programs that are more cost-effective than 971 

those where countries act largely in isolation (Latombe et al. 2017). Despite long-standing calls 972 

for a binding internationally convention on invasive alien species (Perrings et al. 2010; Stoett 973 

2010), there has been no progress towards this goal in over a decade. Within individual 974 

countries, there are often political and economic obstacles to adopting truly cooperative 975 

biosecurity. Thus, rather than a top-down multilateral approach to regulation, it is likely that 976 

closer integration of national biosecurity strategies will occur through a coalition of the willing. 977 

A fine example is the Consultative Group on Biosecurity Cooperation established by Australian 978 

and New Zealand ministers in 1999 under the terms of the Australia –New Zealand Closer 979 

Economic Relations Trade Agreement. This group has led efforts to harmonize animal and plant 980 

health measures affecting trade between the two countries as well as coordinating biosecurity 981 

responses. The Plant Health Quadrilaterals is a strategic coalition composed of the national plant 982 

protection organizations of Australia, Canada, New Zealand, and the United States that enables 983 

the respective plant health and biosecurity officials to address plant health and biosecurity issues, 984 

particularly as they affect international trade of plants, plant products, and other regulated 985 

articles. In 2016, a similar quadrilateral group involving the same four nations was established to 986 

coordinate efforts to address marine biosecurity. These coalitions do not have any regulatory 987 

power, but through dialogue and cooperation they can address emerging issues in biosecurity in 988 

an open and collaborative manner. For multilateral initiatives, a useful model for research on 989 

cooperative biosecurity would be studies on cooperation between different countries to optimize 990 

harvest from shared fisheries (Bailey et al. 2010). These studies apply game theory, which could 991 

also be applied to biological invasions to explore how cooperative biosecurity might yield higher 992 

benefits to all countries by collectively reducing the flow of species globally, rather than just 993 
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preventing invasions at the national level. Lampert (2020) applied a dynamic game-theoretic 994 

model to identify a Nash equilibrium corresponding to optimal contributions that various 995 

countries or other entities could adopt for managing invading species with shared adverse 996 

impacts. This approach could be expanded to explore cooperation by countries to fund various 997 

pre- and post-border biosecurity activities. 998 

  999 

4.3. The role of the bridgehead effect in managing invasions 1000 

A key consideration driving the need for internationally cooperative biosecurity strategies 1001 

is the tendency of organisms to invade new regions from locations where they have already 1002 

established, a phenomenon referred to as the bridgehead effect (Lombaert et al. 2010; 1003 

Bertelsmeier and Keller 2018) or ‘hub-and-spoke’ invasion topology (Carlton 1996). This 1004 

phenomenon has been documented in historical global patterns of invasions for several plant and 1005 

animal species (e.g., Bertelsmeier et al. 2018; Correa et al. 2019; Javal et al. 2019). The term was 1006 

first coined by Lombaert et al. (2010), who used molecular analyses of the global spread of the 1007 

harlequin beetle Harmonia axyridis and found that even though the species is native to east Asia, 1008 

its invasions of Europe, Africa, South America and western North America all originated from 1009 

eastern North America (Figure 5). Evidence exists that invasions from bridgehead regions may 1010 

be promoted by genetic changes, demographics, or simply by the topologies of trade networks 1011 

(Bertelsmeier and Keller 2018). More work is needed on the drivers of bridgehead dynamics to 1012 

determine whether management-relevant generalizations exist. 1013 

From the perspective of designing biosecurity programs, an important implication of such 1014 

bridgehead dynamics is that benefits will accrue from preventing a species from establishing 1015 

within a hub or bridgehead region – that is, an invaded location from which spread to other 1016 
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regions is more easily facilitated. Furthermore, cooperation among countries to eradicate or 1017 

control species established in bridgehead regions could yield greater benefit than attempts by 1018 

individual countries to exclude these species from arriving and establishing.  1019 

The current unilateral approach that dominates national biosecurity has roots in the close 1020 

relationship between trade and import quarantines; quarantine is an effective and important tool 1021 

for excluding arrivals of new species, but there is a history of quarantine being abused to justify 1022 

protectionist trade policies (Castonguay 2010). For example, the World Trade Organization 1023 

(WTO) recognizes the International Plant Protection Convention (IPPC) as the authority for 1024 

setting standards for plant quarantine, and the WTO uses its Appellate Body for settling 1025 

quarantine-related trade disputes. However, while the IPPC identifies quarantine practices and 1026 

harmonized standards that individual countries should follow, it generally does not implement 1027 

actions to minimize the movement of species worldwide; however, the IPPC has developed a 1028 

National Phytosanitary Capacity Development Strategy that facilitates investment by member 1029 

countries in the development of biosecurity capacities in economically under-developed 1030 

countries. Interdisciplinary research between invasion scientists and international trade 1031 

economists is required to develop frameworks and justifications for globally collaborative 1032 

biosecurity efforts (Horan and Lupi 2005). Among the topics this research could address is how 1033 

countries with varying economic resources can share resources for preventing the global 1034 

movement of non-native species (Early et al. 2016).  1035 

This research could also focus on developing strategies to identify bridgehead regions 1036 

and initiate cooperative biosecurity negotiations with governments responsible for such regions. 1037 

Border inspection data provide information on the identity of the geographical sources of species 1038 

arriving at ports and are thus valuable resources for identifying bridgehead regions (Bertelsmeier 1039 
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et al. 2018). Biosecurity agencies often consider inspection data as confidential (because of their 1040 

possible significance in trade dispute litigation). Given the potential value of such data for 1041 

identifying and delimiting bridgehead regions and global invasion risk (Turner et al. 2020), a 1042 

challenge for invasion science is to ensure that such data are made more widely available and in 1043 

a timely way to prevent regions that have received an invasive species from serving as sources 1044 

for new invasions even before the bridgehead population has been discovered. Ultimately, such 1045 

data sharing could help inform biosecurity practices in individual countries, thereby reducing 1046 

risks of future invasions. The world has recently witnessed an unprecedented case of 1047 

international sharing of spatiotemporal spread data for SARS-CoV-2 from its earliest stages, 1048 

which should serve as an example for tracking other invasive organisms (Bertelsmeier and Ollier 1049 

2020). 1050 

 1051 

4.4. Managing conflicting interests in biosecurity 1052 

A related problem is that of cooperative approaches to transboundary biosecurity. The 1053 

establishment of non-native populations can span regions managed for varying purposes, often 1054 

with conflicting priorities (Epanchin-Niell et al. 2010). Conflicts of interest frequently bedevil 1055 

attempts to manage non-native species, especially when the focal species is simultaneously 1056 

perceived as both beneficial and harmful by different sectors of society or in different areas of 1057 

the landscape (e.g., van Wilgen and Richardson 2014). For example, the ornamental horticulture 1058 

industry benefits from importing and propagating non-native plant species while its actions 1059 

conflict with other societal segments (e.g., ranchers, farmers, conservation managers) who suffer 1060 

from the impacts of plant invasions (Niemiera and Von Holle 2009). Invasion scientists must 1061 

collaborate with economists and other researchers to devise approaches to engender cooperation 1062 
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among stakeholders who are differentially impacted by the same non-native species and to 1063 

explore how to optimize diverse management interests. In responding to changing perceptions of 1064 

non-native species, their impacts, and their value to society, invasion science is facing challenges 1065 

similar to those confronting other disciplines including the medical profession with regard to 1066 

how best to communicate information about risk (Alaszewski and Horlick-Jones 2003). Social 1067 

science research must also develop effective strategies or models for systematic engagement of 1068 

stakeholders seeking sustainable solutions to invasions (Shackleton et al. 2019). 1069 

Conflicting interests among stakeholders that affect management of invasions sometimes 1070 

manifest as ‘wicked problems’. These are characterized by diverse, opposing perspectives, 1071 

objectives, and management goals that make them almost impossible to characterize or frame, let 1072 

alone resolve, to the satisfaction of all stakeholders (Woodford et al. 2016). Woodford et al. 1073 

(2016) suggest that systematic framing of ‘wickedness’ by mediators can lead to negotiated 1074 

solutions – either by reaching agreement on the dimensions and implications of unavoidable 1075 

conflicts, or by circumventing the conflict by seeking alternative management perspectives. To 1076 

this end, Novoa et al. (2018) developed a 12-step process designed to place stakeholders at the 1077 

center of the development and implementation of decisions relating to conflicts of interest in 1078 

invasive species management. Fundamental requirements for achieving such aims are to 1) 1079 

ensure that decisions and management actions are co-designed, co-produced, and co-1080 

implemented to promote social learning and provide feedback to stakeholders, and 2) increase 1081 

levels of collaboration and partnerships beyond the natural sciences and academia (Shackleton et 1082 

al. 2019). Further work is clearly needed to achieve integration of broad stakeholder engagement 1083 

and co-operation in invasion research and management. Opportunities abound to apply existing 1084 
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economic theory on governing common-pool goods (Ostrom 2010) to solve problems related to 1085 

the increasingly complex conflicts between stakeholders relating to invasive non-native species. 1086 

 1087 

Conclusions 1088 

Invasion science is an increasingly interdisciplinary field that addresses questions and 1089 

hypotheses of fundamental and applied importance to ecology, conservation biology, ecosystem 1090 

management and restoration, and biosecurity (Ricciardi et al. 2017; Pyšek et al. 2020). We have 1091 

identified four overarching issues that are critically important for the field to further adapt to 1092 

societal demands in the face of rapid global change. Reflected in these issues are burgeoning 1093 

challenges posed by new sources and pathways (e.g. evolving trade routes and transportation 1094 

systems) of invaders. Understanding and predicting invasions and their consequences are 1095 

scientific endeavors, whereas managing them successfully largely rests with society; the former 1096 

informs the latter, and both tasks are complicated by context-dependencies that are becoming 1097 

increasingly significant as rapid environmental change ensues.  1098 

Solutions to these challenges require innovations in theory and methods that potentially 1099 

could be found through linkages with other disciplines. For example, factors promoting the 1100 

emergence and spread of novel infectious disease could be better understood and managed 1101 

through collaborative research involving medical science and invasion science, to the benefit of 1102 

both fields (Nuñez et al. 2020). In addition, within the broad discipline of ecology there are 1103 

disparate concepts and methods that have not yet been well integrated into invasion science (e.g. 1104 

species interaction networks; Hui and Richardson 2019), or that are only now becoming broadly 1105 

applied (e.g. the use of functional response metrics in risk assessment; Dick et al. 2017a, b; 1106 

Dickey et al. 2020). 1107 
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New approaches are needed to forecast candidate invaders, probable invasion success, 1108 

and consequent invader impacts under future terrestrial, freshwater, and marine conditions that 1109 

have little or no analogue reference point in the past. A key growth point for the field would be 1110 

to develop a better understanding of temporal invasion dynamics, including invasion debt and 1111 

time lags. The concept of invasion debt (Essl et al. 2011; Rouget et al. 2016), in which invasions 1112 

are the end result of processes currently at play (e.g., increasing propagule transport and 1113 

introduction in the face of reduced environmental resistance) is analogous to the emergence of 1114 

disease symptoms following viral or bacterial exposure resulting from lapses in hygienic 1115 

measures or failed social behaviors. A more predictive understanding of invader impact could be 1116 

advanced, in part, through research on interacting and cumulative time lags in biodiversity and 1117 

ecosystem responses to invasions (Essl et al. 2015b, c).  1118 

Fundamental taxonomic skills are essential for biosecurity and a deeper understanding of 1119 

biogeography and evolutionary history – the foundations of invasion science. The application of 1120 

invasion science to early detection is compromised without expertise suitable to identify non-1121 

native species rapidly. Misidentifications have and will lead to spurious conclusions in 1122 

ecological studies and, ultimately, to inappropriate and ineffective management and policy, when 1123 

such are called for. The necessary expertise could be cultivated through application and 1124 

enhancement of infrastructure support (e.g. cyber-tools, specimen collections linked with 1125 

permanent custodial care), and re-establishment of training of both classic and advanced 1126 

taxonomic skills in biology programs. 1127 

Finally, invasion science must address transcultural sociopolitical challenges including 1128 

how best to communicate information and uncertainty about risk, how to engage diverse 1129 

stakeholders who are differentially impacted by the same non-native species, and how to inform 1130 
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transboundary biosecurity policies. There is still much work required to harmonize the definition 1131 

and application of biosecurity policies across different multilateral organisations such as the 1132 

Convention on Biological Diversity, the International Plant Protection Convention and the World 1133 

Organisation for Animal Health. Invasion science must continue to inform the rapidly evolving 1134 

landscape of international biosecurity agreements designed to control pathways that create 1135 

bridgehead populations, which can drive widespread invasions. International data-sharing will be 1136 

needed to reduce invasion risk at regional and global scales. The remarkable example of the 1137 

rapid cooperative sharing by most countries of spatiotemporal spread data for SARS-CoV-2 from 1138 

its earliest stages should inspire global efforts to track other invasive organisms. 1139 
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Figure 1. Four priority issues (center column) that must be addressed by invasion science to 

meet burgeoning challenges in an era of rapid environmental change. Through multiple 

connections, each issue is implicated in one or more stages of the invasion process (left column), 

as well as in the impact of the invader (which can occur at any stage from introduction to 

establishment to spread) and in the detection, risk assessment, and management response of 

invasion threats. For example, scientific understanding of the processes that control the diversity, 

abundance, distribution, and impacts of non-native species ultimately depends on the quality of 

taxonomic data; therefore, resolving the Taxonomic Impediment (the erosion of our capacity to 

recognize biodiversity and distinguish non-native from native species accurately) would enhance 

our ability to detect non-native species, assess their impacts, and respond to new invasion threats. 
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Figure 2. An example of integration of impact hypotheses.  The 3-dimensional plot represents 

the predicted variation in an invader’s ecological impact in relation to three factors, shown as 

axes: 1) the functional (or phylogenetic) distinctiveness of the invader among resident species; 2) 

the degree of environmental match – i.e., the inverse of the distance between mean abiotic 

conditions in the invaded environment and the invader’s physiological optimum; and 3) time 

since invasion. Functionally novel invaders, especially those that exploit key resources, are 
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predicted to have greater impacts on the invaded ecosystem (Functional Distinctiveness 

Hypothesis).  Invaders that are more physiologically matched to abiotic conditions in the invaded 

environment should have greater per capita effects (Environmental Matching Hypothesis). 

Further, in this example, impact is hypothesized to attenuate over time, based largely on the 

premise that given suitable time resident species (predators, prey, parasites, competitors) will 

adapt to the invader and dampen its influence.  These factors are shown here to be mutually 

independent, but interactions are possible (e.g. physiological match may interact with time since 

invasion, owing to local adaptation or directional shifts in abiotic conditions).  
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Figure 3. Global environmental change (in particular, climate change) directly and indirectly 

elicits ecological and human responses that promote invasions. Environmental change can trigger 

shifts in the distributions and abundances of native and non-native species, leading to novel 

biotic interactions and altered ecosystem functions and services, which can themselves prompt 

further ecological responses. Human responses include climate change adaptation and mitigation, 

as well as species conservation; many of the current human responses will likely facilitate 

invasions. These ecological and human responses also affect each other, compounding the direct 

impacts of environmental change. 
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Figure 4. Examples of invasive insect species for which a discrepancy exists between the 

number of sequences available in GenBank v3.0 when using the two primary search query tools 

they provide: a taxonomy-based search of GenBank records (green) and a broader search using 

sequences or taxonomy of other publicly available data sources linked to GenBank (orange). 

Such discrepancies in search results across databases increase the risk that these species will be 

incorrectly classed as ‘unidentified’ when metabarcoding approaches are used to identify non-

native insects. Data from Boykin et al. (2012).  
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Figure 5. The Bridgehead Effect illustrated by the global spread of the Harlequin ladybird 

beetle Harmonia axyridis, based on genetic analyses by Lombaert et al. (2010). Intentional 

biocontrol introductions are shown in green, whereas accidental invasions are shown in red. In 

this example, most of the global spread of this species has originated from non-native 

populations established in Eastern North America, which has functioned as a bridgehead region 

(adapted from Lombaert et al. 2010). 
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Supplementary Material 

Methods: Identification and ranking of issues 

Issues were identified and evaluated using a modified iterative Delphi technique with methods of 

expert consultation including voting and anonymity, similar to procedures used in a previous 

horizon scan (Ricciardi et al. 2017). Each team member submitted descriptions of at least two 

topics deemed to be essential for improving the predictive power or value of the field to society. 

Short synopses of 41 submitted topics (Table S1) were circulated to all members, each of whom 

independently ranked each topic by considering: 1) Scope – the relevance of the theme to a broad 

range of taxa or systems, or its broad appeal to scientists and managers; 2) Scientific interest – 

the scholarly value of the theme to the field; 3) Societal relevance/impact; and 4) 

Immediacy/urgency – some issues are more urgent than others, and some may be expected to 

grow rapidly in importance. The median scores of these ranks were calculated to guide 

subsequent discussion (Figure S1). Scoring summaries identified an inflection in rankings 

between the first 14 topics and the remainder. These topics were discussed in random order at a 

workshop convened in Dublin, Ireland, in September 2018. Each of the remaining lower-scored 

topics was reviewed to determine if there were any highly variable scores in the independent 

ranking that deserved further consideration. Thus, a final additional topic was selected by 

consensus. The group agreed to integrate these top-ranked topics, and some borrowed material 

from lesser ranked topics, under four overarching issues that emerged from the discussion.  

 

  



Table S1. Topics submitted by workshop participants ordered by median rank from lowest 

(highest priority) to highest (lowest priority). 

 

Topic title (topic #) 

Median 

Rank 

Invasion science must develop a coherent theory of impact (#19) 7 

Context dependency of ecosystem impacts (#7) 10 

Need for more effective engagement with the social sciences (#30) 11 

Creating an international panel on biological invasions (#18) 12 

Acute taxonomic impairment to assessing present and future invasions (#1) 14 

Gene drives and gene-silencing (#10) 14 

Resolving the invasion paradox for small-bodied non-native species (#33) 14 

Climate-driven range shifts versus invasions (#6) 14 

Climate change mitigation and adaptation favoring invasive species (#5) 15 

Forecasting invasions in the wake of rapidly changing pathways (#11) 16 

Synergies between invasions and environmental change (#35 ) 16 

Understanding impacts of species gains and losses on ecosystem functioning (#40) 16 

How to deal with the invasion-translocation-migration spectrum (#13) 17 

Meaningful engagement with industry and economists (#26) 17 

Novel approaches to internationally cooperative biosecurity  (#17) 19 

How to deal with native/non-native hybrids (#12) 20 

Lack of taxonomic expertise to deal with increasing plant invasions (#21) 20 

Need for a global cost-benefit analysis of the use of non-native species (#28) 20 

Resolving actual versus potential impacts of invasions (#32) 20 



Managing invasions under climate change (#24) 22 

Managing non-native species in protected areas (#25) 22 

Temporal dynamics of invasions (#37) 22 

Branding invasion science for more effective public engagement (#4) 22 

Interactions between multiple stressors and time lags (#16) 23 

Managing invasions in urban ecosystems (#23) 23 

Need for approaches to assess cumulative impacts (#29) 24 

Sentinel sites to track status and trends of invasions (#34) 24 

Deriving benefits from non-native species (#2) 25 

Invasion science must increase its interdisciplinarity (#20) 25 

Better approaches for prioritizing management actions (#3) 25 

Will drought-proof horticulture lead to a flood of plant invasions? (#9) 27 

Managing effects of urbanization on marine invasion dynamics (#22) 28 

Design of national surveillance systems for managing terrestrial invasions (#27) 28 

Increased public participation through citizen science (#15) 29 

UNEP Tree campaign and risk of plant invasions (#41) 30 

Do we need an agenda to coordinate international research? (#8) 30 

Taking a deeper dive into public policy (#36) 31 

Developing unconventional and pragmatic solutions for conservation (#39) 31 

Improving tools to monitor plant invasions using satellite imagery (#14) 32 

Training invasion ecologists to communicate to the public (#38) 32 

Reclassifying non-native species by introduction era (#31) 38 

 

  



 

 

Figure S1. Box plot of topic rankings by workshop participants (see topic numbers in Table S1, 

for full titles). A low median ranking (thick horizontal line) indicates a high priority topic. Lower 

and upper box hinges correspond to 25th and 75th percentiles, respectively.  
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