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Summary

Tropical forests vary widely in biomass carbon (C) stocks and fluxes even after controlling for

forest age. A mechanistic understanding of this variation is critical to accurately predicting

responses to global change. We review empirical studies of spatial variation in tropical forest

biomass, productivity and woody residence time, focusing on mature forests. Woody

productivity and biomass decrease from wet to dry forests and with elevation. Within lowland

forests, productivity and biomass increase with temperature in wet forests, but decrease with

temperature where water becomes limiting. Woody productivity increases with soil fertility,

whereas residence timedecreases, andbiomass responses are variable, consistentwith anoverall

unimodal relationship. Areas with higher disturbance rates and intensities have lower woody

residence time and biomass. These environmental gradients all involve both direct effects of

changing environments on forest C fluxes and shifts in functional composition – including

changing abundances of lianas – that substantially mitigate or exacerbate direct effects.

Biogeographic realms differ significantly and importantly in productivity and biomass, even after

controlling for climate and biogeochemistry, further demonstrating the importance of plant

species composition. Capturing these patterns in global vegetation models requires better

mechanistic representation of water and nutrient limitation, plant compositional shifts and tree

mortality.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Foundation

New Phytologist (2020) 1
www.newphytologist.com

Review

https://orcid.org/0000-0002-3526-9021
https://orcid.org/0000-0002-3526-9021
https://orcid.org/0000-0002-3464-1151
https://orcid.org/0000-0002-3464-1151
https://orcid.org/0000-0002-8918-9721
https://orcid.org/0000-0002-8918-9721
https://orcid.org/0000-0003-4205-8596
https://orcid.org/0000-0003-4205-8596
https://orcid.org/0000-0001-8461-9713
https://orcid.org/0000-0001-8461-9713
https://orcid.org/0000-0002-9429-2600
https://orcid.org/0000-0002-9429-2600
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.17084&domain=pdf&date_stamp=2020-12-19


II. Introduction

Extant tropical forests vary widely in biomass density and thus
carbon (C) stocks, even when controlling for forest age (Becknell
et al., 2012; Lewis et al., 2013; Poorter et al., 2016; Alvarez-Davila
et al., 2017; Sullivan et al., 2020).Much of this biomass variation is
associated with climate and biogeochemistry, which influence
woody productivity, residence time and biomass both directly and
indirectly, via shifts in plant functional composition.However, our
understanding of these patterns and their underlying mechanisms
remains incomplete (Fig. 1). A mechanistic understanding of
current variation in tropical forest C stocks and fluxes with climate,
soils and other factors is a critical precursor to accurately predicting
forest responses to anthropogenic change.

Uncertainty about how tropical forest C pools will respond to
global change is one of the largest sources of uncertainty in projecting
future global C budgets and climate (Cavaleri et al., 2015). Tropical
forests currently account for two-thirds of terrestrial biomass C
stocks (Pan et al., 2013) and nearly a third of global soil C to 3 m
depth (Jobb�agy & Jackson, 2000). Increasing temperatures, chang-
ing precipitation patterns and disturbance regimes, increasing
atmospheric carbon dioxide and increasing nutrient deposition have
the potential to greatly alter tropical forest C stocks and fluxes, and
thus the global C budget (Lewis et al., 2009; Wright, 2010).
However, the combined impacts of these global change drivers on
tropical forests remain unclear, with contrasting effects expected
under different mechanisms and hypotheses, and mixed evidence to

date of overall patterns (Lewis et al., 2009; Wright, 2010). This
uncertainty is reflected in highly divergent predictions for tropical
forest responses in different earth system models (Cavaleri et al.,
2015; Koven et al., 2015; Rowland et al., 2015).

Fundamentally, variation inmature forest aboveground biomass
(AGB) arises from variation in aboveground woody productivity
(AWP) and/or abovegroundwoody residence time (AWRT). AWP
depends on NPP (net primary productivity) and allocation to
wood, and ultimately on GPP (gross primary productivity) and C-
use efficiency (Malhi, 2012) (Fig. 1). In recent decades, as interest
in forest C budgets has increased, many studies have investigated
patterns andmechanisms of spatial variation in tropical forest AWP
and AGB with abiotic and biotic factors (e.g. Levine et al., 2016;
Malhi et al., 2017; Taylor et al., 2017; Moore et al., 2018; Sullivan
et al., 2020) (methods summarized in Box 1). This research builds
naturally on an older literature on forest structure and composition
(e.g. Richards, 1952; Gentry, 1988). Some consistent large-scale
patterns have become clear, such as increasing dry season length
(and decreasing precipitation) being associated with lower AWP
and AGB (Becknell et al., 2012; Poorter et al., 2017; Taylor et al.,
2017). However, other patterns are inconsistent among studies,
such as AGB increasing with soil fertility in some studies (Slik et al.,
2013; Lloyd et al., 2015) and decreasing in others (Lewis et al.,
2013; Schietti et al., 2016).

Mechanisms and patterns involving changes in tree mortality or
shifts in plant functional composition remain poorly understood,
whereas those involving changes in productivity of a given plant
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Fig. 1 Climate, geomorphology, biogeographic realm and plant functional composition interact to influence tropical forest aboveground woody productivity
(AWP, units ofmass area�1 time�1), abovegroundwoody residence time (AWRT, time) and thus abovegroundwoody biomass density (AGB,mass area�1) via
multiple pathways. Here blue boxes represent fluxes (mass area�1 time�1), blue arrows represent the factors by which the one quantity is multiplied to obtain
another (e.g. NPP =GPP9CUE), and purple arrows represent causal influences. Note that GPP (gross primary productivity) is the sum of NPP (net primary
productivity) and autotrophic respiration; NPP is the sum of abovegroundNPP (ANPP) and belowgroundNPP (root production); and ANPP is the sum of AWP
and canopy productivity (leaves, fruits, finewoody branches, all measured as litterfall). Box 1 gives basic information onmeasurementmethods for AGB, AWP
and AWRT; Supporting Information Notes S1 provides additional details on these and related variables.
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functional type along environmental gradients are relatively well-
understood. Variation in tree mortality and thus AWRT is a key
driver of spatial variation in AGB within the tropics (Johnson et al.,
2016), yet our understanding of tropical tree mortality remains
extremely limited (McDowell et al., 2018). Variation in plant
functional composition also plays a critical role in explaining large-
scale variation in AWP, AWRT and AGB. Different environments
select for different plant functional composition, which in turn
influences stand-level AWP, AWRT and AGB in ways that may
enhance or counter direct effects of environmental drivers (Fyllas
et al., 2009; Fyllas et al., 2017; Turner et al., 2018). For example, the
abundance of lianas (woody climbing plants) varies strongly with
environmental conditions (DeWalt et al., 2015) and lianas negatively
affect tree growth and survival and thus AWP, AWRT and AGB
(Ingwell et al., 2010; Duran&Gianoli, 2013; van der Heijden et al.,
2015; Lai et al., 2017), with differential effects across tree species
(Muller-Landau&Visser, 2019). Indeed, experimental liana removal
increased AWP by 65% and AGB accumulation by 75% in a
secondary moist tropical forest (van der Heijden et al., 2015).

Earth system models (ESMs) are key tools for predicting the
future of the globalC cycle under global change, and for attributing

temporal variation to different factors (Heavens et al., 2013). These
models are mechanistic, and attempt to capture hypothesized
critical processes as gleaned from empirical studies (Heinze et al.,
2019). However, the most recent set of publicly released models
completely fail to reproduce spatial variation in AGB, AWP and
AWRT in old-growth tropical forests (Fig. 2). This demonstrates
that the models fail to adequately represent the mechanisms or
capture the patterns of spatial variation in tropical forests today,
and highlights the need for a more mechanistic understanding of
these patterns.

Here we review empirical studies documenting how different
environmental factors relate to tropical forest productivity,
residence time, biomass, their proxies and related variables. We
first briefly describe the types of studies included, and their
strengths and weaknesses. We then review empirical findings on
tropical forest variation with climatic water availability (precipi-
tation regimes), elevation and temperature, soil fertility, distur-
bance and biogeographic realm, and discuss hypothesized
mechanisms underlying observed relationships. We discuss critical
knowledge gaps and uncertainties in mechanistic understanding
and in datasets, and key directions for future research.

III. Methods

We searched the literature for studies of among-site variation in our
focal variables in mature, unlogged tropical forests, or in secondary
forests when controlling for stand age, that included eight or more
sites. We specifically searched for studies of variation in above-
ground biomass, woody productivity and woody residence time
(AGB, AWP and AWRT) (Box 1), tree mortality rates and tree
turnover rates with respect to elevation, temperature, climatic
measures of water availability (e.g. precipitation, dry season length,
climatic water deficit) and/or soil fertility (e.g. soil phosphorus (P),
cation exchange capacity, base cations). We also opportunistically
tabulated studies reporting results for canopy height, basal area
(BA) and basal area productivity (BAP), which serve as proxies for
AGB and AWP (Box 1), as well as for the related productivity
variables of annual net primary productivity (ANPP), Litterfall
NPP and gross primary productivity (GPP) (Fig. 1).Where a study
included multiple analyses using different measures of the
environmental factor of interest (e.g. precipitation and dry season
length), we report the result for the independent variable showing a
stronger relationship. Where both multivariate and bivariate
analyses were reported, we report the multivariate analyses.
Additional details on the literature search methods are given in
Supporting InformationNotes S1, the geographical distribution of
data is shown in Figs S1 and S9, and the resulting database is
available at Dataset S1. In the remainder of this section, we discuss
the main sources of error in our focal variables.

Most currently available information on our focal variables are
based on tree plot census data. Because of high local spatial
variability in the number and sizes of large trees, these plot-based
estimates exhibit considerable sampling error, even for plots of
1 ha, and this error increases at smaller plot sizes (Muller-Landau
et al., 2014). We thus highlight studies based on plots with a
median size of 1 ha or larger (124 of 201 results reviewed). Plot-

Box 1 Estimating aboveground biomass, woody productivity and
residence time.

Aboveground biomass (AGB, mass area�1), our central measure of
biomassC stocks, is estimatedabovegroundwoodybiomassper area,
typically of trees above some threshold diameter, omitting smaller
trees and lianas (woody vines). Individual tree AGB is estimated from
tree census data with allometric equations and summed to obtain
plot-level totals. AGB also is estimated from lidar and radar
measurements of canopy structure using phenomenological rela-
tionships with plot-based AGB estimates. Tree basal area (BA, basal
areaof trunkspergroundarea) andmeancanopyheight aregenerally
well-correlated with AGB across sites, and thus are reasonably good
proxies for evaluating among-site variation.

Aboveground woody productivity (AWP, mass area�1 time�1), our
central measure of productivity, is typically estimated from repeat
tree censuses as the sumof the growth in estimated AGB of surviving
trees plus the AGB of recruits (trees newly above the size threshold),
per area per time. Such calculations ignore branch production that
merely compensates for branchfall (see Section II, Methods). Like
AGB,AWP is basedonallometric equationsandgenerallyomits lianas
and smaller trees. Parallel calculationsofbasal areaproductivity (BAP)
are good proxies for among-site variation in AWP.

Aboveground woody residence time (AWRT, time) is the average
timeC remains in abovegroundwoodybiomass before it becomes dead
wood. AWRT is determined by themortality rates of woody plants and
branches,with large treemortality ratesdisproportionately important. In
mature forests, AWRT is most often estimated as the quotient of
biomass and productivity (AWRT =AGB/AWP), because productivity
fluxes are more constant in time than mortality fluxes and assumed
equal over the long term. When AWP calculations ignore branchfall,
AWRTmisses it aswell. AWRT is inversely related to treemortality rates
and tree turnover rates across sites.
See Section II (Methods) and Supporting Information Notes S1 for
details.
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based data also may have systematic errors, reflecting nonrandom
plot placed. Some studies explicitly choose plot locations to avoid
canopy gaps or areas of recent natural disturbance (e.g. Kitayama&
Aiba, 2002; Baez et al., 2015), and plot locations tend to be biased
towards taller forests even when methods do not explicitly state
such criteria (Sheil, 1996;Marvin et al., 2014). Plots also tend to be
located in more accessible areas, which have a stronger signature of
past human land use (McMichael, CNH et al., 2017) and current
human impacts (McMichael, CH et al., 2017).

Estimation of AGB and AWP depend on biomass allometry
equations (Box 1), which are a major source of error. These
equations estimate individual tree aboveground woody biomass
from measured tree diameter, and sometimes also tree height and/
or wood density (e.g. Chave et al., 2005; Chave et al., 2014). The
key issue for analyses of among-site variation is that studies typically
apply the same equation(s) across many sites. However, biomass

allometries differ systematically among sites (e.g. Chave et al.,
2014), reflecting differences in height allometries (Feldpausch
et al., 2012) and crown form (Ploton et al., 2016), and potentially
also rates of heartrot (Heineman et al., 2015) and crown breakage
(Arellano et al., 2019). Such differences are only partially captured
with generalized allometric equations which at best incorporate
local height measurements and associated differences in diameter-
height allometries, continuous terms for climate variation and/or
different equations for different regions or forest types (Chave et al.,
2005, 2014).

Estimates of AWP suffer from additional sources of error. They
depend on diameter growth measurements, and thus are highly
sensitive to diameter measurement errors and to data quality
assurance quality control procedures, including procedures for
estimating diameter change in buttressed trees (Sheil, 1995;
Cushman et al., 2014; Muller-Landau et al., 2014). AWP is
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Fig. 2 Earth SystemModel (ESM) predictions
of aboveground woody biomass (AGB, top
row), aboveground woody productivity
(AWP, middle row) and aboveground woody
residence time (AWRT, bottom row) show
little relation with observational data
(Galbraith et al., 2013) for 177 old-growth
tropical forests. Both observed and modeled
residence times are calculated as AGB/AWP
(Box1). ESMs simulate vegetationdynamics in
tropical forests around the globe as part of
their simulation of the entire earth system,
including the atmosphere, ocean and land
surface, and their interactions. Spatial
variation in predicted climates in these models
translates to spatial variation in predicted
vegetation because of modeled effects of
climateonphotosynthesis and respiration, and
thus on woody productivity and potentially
the dominant plant functional type, with
effects that vary depending on the details of
model structure and parameterization. Model
predictions are from the most recent set of
publicly released ESMmodels and simulation
results, from the Coupled Model
IntercomparisonProject5 (Tayloret al., 2012).
Further details are given in Supporting
Information Notes S1.
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temporally variable (e.g. Rutishauser et al., 2020), and thus
sampling errors for short census intervals are high.At the same time,
typical calculations underestimate AWP in longer census intervals
because they increasingly miss AWP of trees that die between
censuses (Kohyama et al., 2019). Finally, standard methods for
estimating AWP entirely fail to capture wood production to
compensate for branchfall, estimated at 15–45% of total AWP
(Malhi et al., 2014;Marvin&Asner, 2016;Gora et al., 2019). That
is, as trees grow, they do not simply accrue biomass, they also shed
old branches as they produce new ones.

Residence time variables have particularly high sampling errors,
which may in part explain the dearth of published analyses. Because
tree mortality is a binomial process and mortality rates are low,
sampling errors inmortality rates are large, especially in small plots and
shorter census intervals. Strong temporal variation in mortality – for
example resulting from droughts (Bennett et al., 2015) –makes it yet
more difficult to capture long-term mean mortality rates. Tree
turnover rates, calculated as the average of mortality and recruitment
rates, suffer these same problems. Syntheses of among-site patterns in
mortality and turnover are further hindered by variability in methods
for calculating mortality rates, inadequate reporting of calculation
methods, and systematic biases in many estimators (Kohyama et al.,
2018) (seeNotes S1). Calculating AWRT as the quotient AGB/AWP
(Box 1) only partially avoids this issue, as AWP estimates also depend
onmortality (because trees that die do not contribute to AWP). Such
estimates ofAWRTalsomaybebiasedby the equilibriumassumption
that underlies them (see Notes S1).

Finally, most estimates of AGB, AWP and AWRT omit smaller
trees, lianas, epiphytes, herbaceous plants and nonwoody tissues,
and (by definition) belowground biomass; these are generally
assumed to be relatively small and/or to vary proportionately.
These assumptions, and other aspects of measurement methods
and associated errors are discussed in more detail in Notes S1.

IV. Climatic water availability

Precipitation patterns vary among tropical forests from those that
receive abundant precipitation year-round (wet tropical forests) to
those that experience limitations in water availability during one or
two dry seasons (moist and dry tropical forests), variation we
encompass under the term climatic water availability. This
variability is evident in the large range ofmean annual precipitation
among tropical forests (Fig. S2). In general, the length and intensity
of dry seasons aremore important than total annual precipitation in
determining forest C stocks and fluxes. Further, water limitation
depends not only on precipitation, but also on potential evapo-
transpiration (itself dependent on temperature, solar radiation), as
well as soil depth, soil water-holding capacity and topographic
position. Many analyses thus evaluate relationships with more
integrativemeasures of climatic water availability such as dry season
length or maximum climatological water deficit, which are
generally better predictors of forest structure and dynamics (e.g.
Alvarez-Davila et al., 2017). Here, we discuss how our focal
variables vary with climatic water availability, and evaluate patterns
in relation to the range of annual precipitation and temperature
within studies (Figs 3, S3).

1. Productivity

Productivity variables are positively associated with climatic water
availability across lowland tropical forests over the range from dry to
wet forests. Across lowland sites, AWP, litterfall and ANPP are
positively related to climatic water availability in most studies
(Fig. 3a), with an initial fast increase slowing to a plateau or even a
mild decrease for precipitation above c. 3000mm yr�1 (Poorter
et al., 2017; Taylor et al., 2017). The positive effects of precipitation
weaken and reverse in montane tropical forests (e.g. lowland
Hofhansl15b vs montane Hofhansl15c in Fig. 3a; Hofhansl et al.,
2015). Ameta-analysis of 145 tropical forests found that an increase
in mean annual precipitation (MAP) from 1000 to 3000mm was
associated with a 2.3-fold increase in ANPP at 28°C, a 1.5-fold
increase at 24°C, no change at 20°C and a decrease in ANPP at
temperatures below 20°C (Taylor et al., 2017).

Lower forest productivity at lower precipitation reflects limita-
tion by water availability and/or drought stress when potential
evapotranspiration exceeds precipitation, combined with alloca-
tional changes and compositional shifts towards drought-tolerant
species (Flack-Prain et al., 2019). Limited water availability
translates into reduced GPP through both reduced leaf area
maintained (including drought deciduous leaf phenology) and
reduced photosynthesis per available leaf area as plants close their
stomata and/or invest in more drought-tolerant organs with lower
light-use efficiency (LUE) (Tan et al., 2013; Guan et al., 2015;Wu
et al., 2016; Pfeifer et al., 2018). Higher precipitation also is
associated with higher allocation of aboveground NPP to AWP
(Hofhansl et al., 2015) and taller trees for a given diameter (Banin
et al., 2012), further contributing to higher AWP. Compositional
shifts also contribute: species found in drier forests have lower
growth rates than those restricted to wetter forests (Baltzer &
Davies, 2012; Brenes-Arguedas et al., 2013; Kupers et al., 2019),
because drought-tolerance traits, such as narrower xylemvessels, are
costly (Gorel et al., 2019), whereas the ‘drought-avoiding’
deciduous strategy involves foregoing photosynthesis in part of
the year (Brenes-Arguedas et al., 2013).

Although the direct effects of water availability on productivity
are positive, higher rainfall also is associated with increased
cloudiness and decreased soil fertility, both of which depress
productivity, and may explain declining productivity at very high
rainfall and lower temperatures (Taylor et al., 2017). Wetter sites
on average have higher cloudiness and thus reduced light
availability (Wagner et al., 2016). High precipitation also is
associated with soil-mediated reductions in productivity as a
consequence of leaching of nutrients and reduced soil redox
potential; these influences are relatively more important at cooler
temperatures. Decreases in productivity with precipitation at the
very highest levels of precipitation, especially in cooler sites (Taylor
et al., 2017) likely reflect these correlated increases in limitation by
light and nutrients.

2. Residence time

Few studies have evaluated how among-site variation in AWRT,
mortality or turnover relate to climatic water availability, and those
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Fig. 3 Literature results on spatial variation in productivity (a), residence time (b) and aboveground biomass (c) with precipitation, dry season length and other
measuresof climaticwateravailability,graphed in relation to the rangeofprecipitation in thestudysites (ona log-scale).Blue indicates thatproductivity, residence time
or biomass tend to be higher in wetter sites; orange indicates that they tend to be higher in drier sites; dashed blue and orange variable pattern that depends on the
range of the independent variable or on temperature; and black indicates no relationship. Asterisks indicate statistically significant effects. Bold highlights studies in
whichmedian plot area is ≥ 1 ha,whereas results for studieswith smaller plot sizes are shown in italics. Note that the patterns always are reported here in terms of the
responseofproductivity, residence timeorbiomass, even if the responsemetric is inversely related to these (e.g. ablue turnover result indicates that inwetter sites tree
turnover is lower implying residence time is higher). These results are graphed in relation to temperature range in Supporting Information Fig. S3. AGB, aboveground
biomass; ANPP, aboveground net primary productivity; AWP, abovegroundwoody productivity; AWRT, abovegroundwoody residence; BA, basal area; BAP, basal
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Box1,Fig. 1andNotesS1fordefinitions,measurementmethodsand inter-relationshipsof these responsevariables.Literature resultsarecodedbythefirsteight letters
of the first author’s name, the last twodigits of the year, a letter indicatingwhich set of siteswithin the publication (if there ismore thanone set of sites for the study in
the database), and the number of sites included within parentheses (Dataset S1).
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that do have found at best weak relationships (e.g. Quesada et al.,
2012; Vilanova et al., 2018). More studies have found trends for
AWRT to be higher (and turnover lower) in wetter sites than the
opposite, but overall patterns are inconsistent (Fig. 3b). This may
reflect contrasting trends in different mortality threats with
precipitation regimes. Drier sites are more likely to experience fire
(Cochrane, 2011) and drought stress elevates mortality through
hydraulic damage (Choat et al., 2018), whereas higher rainfall is
associated with greater risks of mortality from treefalls, lightning
and landslides (Espirito-Santo et al., 2010; Yanoviak et al., 2020).

By contrast with the paucity of studies of spatial variation, there
have been multiple studies of temporal variation. Many studies have
documented elevated mortality in drought years (reviewed in Phillips
et al., 2010; Bennett et al., 2015), whereas a few have found higher
mortality in wetter years (Aubry-Kientz et al., 2015) or wetter seasons
(Brokaw, 1982; Fontes et al., 2018). Patterns of temporal variation in
mortality with water availability do not necessarily predict among-site
variation because compositional shifts at least partially compensate for
shifts in mortality threats. For example, tree species common in drier
sites have higher survival under drought than those common in wetter
sites (Engelbrecht et al., 2007; Baltzer & Davies, 2012; Brenes-
Arguedas et al., 2013; Esquivel-Muelbert et al., 2017).

3. AGB

Aboveground biomass is positively related to climatic water
availability in tropical forests in 16 of 16 studies finding a statistically
significant relationship (Fig. 3c). The relationship of AGB with
precipitation exhibits an initially steep increase below2000mmyr�1

gradually saturating at higher precipitation (Becknell et al., 2012;
Poorter et al., 2016; Alvarez-Davila et al., 2017). Increases are
roughly parallel in old-growth and secondary forests: over 1000–
3000mm MAP, AGB increases two-fold in 20-yr-old secondary
forests (Poorter et al., 2016) and c. 2.3-fold in mature forests
(Alvarez-Davila et al., 2017). Qualitatively the same patterns are
found for tree basal area and canopy height, for both plot-based and
remote sensing studies, and inbothold-growth and secondary forests
of a given age (Fig. 3c).Measures of drought stress such as dry season
length or dry season water deficit are generally better predictors of
AGB than precipitation alone, and exhibit more linear relationships
with AGB (Poorter et al., 2016; Alvarez-Davila et al., 2017). At
extremely high precipitation levels above c. 4000mm yr�1, AGB
maydecreasewith further increases inprecipitation, but there are few
data for such sites, and spatial variation in precipitation may be
confounded with solar radiation, soil fertility and other factors
(Alvarez-Davila et al., 2017). Overall the patterns in AGB parallel
those in AWP, consistent with what would be expected given little
variation in AWRT with precipitation (Fig. 4a).

4. Synthesis

Overall, patterns of variation in tropical forest productivity and
biomass with climatic water availability are relatively well-docu-
mented and well-understood, and the underlying mechanisms are
increasingly well-represented in forest and vegetation models
(Christoffersen et al., 2016; Levine et al., 2016; Xu et al., 2016).

Additional data and analyses are needed to establish whether/how
mortality rates vary spatially with climatic water availability, and to
investigate the role of compositional shifts in contributing to
variation in C fluxes and stocks. The role of lianas deserves more
attention, as lianas are more abundant in drier sites (DeWalt et al.,
2010), and could contribute to their lower tree productivity and
possibly lower residence time.

V. Temperature and elevation

Most temperature variation across tropical forests is explained by
elevation (Pearson r =�0.96 across 14,643 1-km pixels; Fig. 5a),
and thus our understanding of temperature influences is based
largely on elevational variation. However, it is important to keep in
mind that elevational temperature variation is confounded with
other factors. Atmospheric pressure decreases systematically with
elevation, which affects photosynthesis both directly and indirectly
by altering selection on photosynthetic traits (Wang et al., 2017).
Cloud cover (and thus solar radiation) and precipitation also
change with elevation (Fig. 5b,c), as do other climate variables and
geomorphology (Porder et al., 2007). Indeed, across tropical forests
globally,mean cloud cover increases from57%at 29°C to c. 89%at
8°C (Fig. S4). Here we synthesize results for the many observa-
tional studies of variation with elevation and the few with
temperature, and graph results in relation to the ranges of
temperature, elevation and precipitation represented in each study
(Figs 6, S5).

1. Productivity

All productivity variables decline with elevation (Fig. 6a), suggest-
ing a positive effect of temperature, but analyses with temperature
find both positive and negative effects (Fig. 6a,d). Overall patterns
seem consistent with a positive effect of temperature inwet sites and
a negative effect in dry sites. This is particularly apparent in studies
that evaluate interactions of climatic water availability and
temperature (Taylor et al., 2017; Sullivan et al., 2020). A meta-
analysis found that ANPP (litterfall) decreased with temperature
for precipitation below c. 1400 mm yr�1 (1600 mm yr�1), and
increased with temperature for precipitation above that level, with
ever-faster increases for higher precipitation (Taylor et al., 2017).
At 2500 mm MAP, ANPP doubles between 10 and 22°C and
triples by 28°C (Taylor et al., 2017).

Spatial variation in AWP with temperature can be explained in
large part by the temperature responses of plant metabolic rates –
photosynthesis and respiration. Across sites, the optimum temper-
ature for photosynthesis is strongly positively correlated with mean
growing season temperature (Tan et al., 2017), and the photosyn-
thetic rate at the temperature optimum increases with temperature,
meaning warmer sites are expected to have higher photosynthetic
rates, if water is not limiting (Farquhar et al., 1980). Maintenance
respiration rates also increase with temperature within sites – but
acclimation means that respiration rates at growth temperatures
increase very little or not at all (Atkin et al., 2015; Malhi et al.,
2017). Biomass accumulation rates increase with temperature in
well-watered conditions (Cheesman & Winter, 2013), likely
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reflecting an increase in biosynthesis rates. By contrast, where water
is limiting, photosynthesis decreases with temperature as a result of
increased stomatal closure and higher respiratory costs (Schippers
et al., 2015). Overall, for any given plant and site, net photosyn-
thesis is expected to be a unimodal function of temperature,
reflecting biochemically determined unimodal responses of max-
imum photosynthetic rates in combination with stomatal conduc-
tance and respiration (Slot & Winter, 2017).

Allocational and compositional shifts also contribute to spatial
variation in AWPwith temperature. Cooler sites tend to have plant
species with higher nutrient use efficiencies, longer-lived leaves,
higher LMA (Asner & Martin, 2016) and other slow life-history
traits (Dalling et al., 2016; Bahar et al., 2017). These traits increase
competitiveness in lower resource environments, while reducing

LUE and, thus, stand-level productivity (Reich, 2014). Cooler,
higher elevation sites also tend to have higher allocation below-
ground, a pattern consistent with increased nutrient limitation
(Hofhansl et al., 2015). This allocational shift could reconcile
stronger elevational decreases in ANPP with weaker patterns in
total NPP. Among water-limited sites, increasing temperature
increases drought stress, potentially leading to the same types of
allocational and compositional shifts expected under reduced
climatic water availability.

Finally, correlated variation in other environmental factors also
influences patterns with temperature among tropical sites. Cooler
tropical forests are found overwhelmingly at higher elevations,
where cloud cover is higher and fog is more frequent, thereby
decreasing solar radiation and increasing light limitation

FertileInfertile

AWP AWRT AGB=× AWP AGB=×

AWP AWRT=× AWP AGB=×AGB

AWP AWRTAGB=×

AWP AWRT =× AGB

AWPAWRT =×
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AWP

AWRT
AGB=×

AWRT

AGB

AWRT

(a) Climatic water availability

(b) Elevation

(c) Soil fertility

(d) Disturbance
Fig. 4 Schematic of patterns of variation in
tropical forest aboveground woody
productivity (AWP), residence time (AWRT)
and biomass (AGB) with climatic water
availability (a), elevation in moist or wet sites
(b), soil fertility (c) and disturbance (d). Text
size reflects variation in a given variable along
the environmental gradient (e.g. AWP and
AGB increase with climatic water availability)
(watercolors by K. T. Anderson-Teixeira).
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(Bruijnzeel et al., 2011). Cooler temperatures also slow decompo-
sition (Taylor et al., 2017) and reduce biological nitrogen (N)
fixation (Houlton et al., 2008), which tends to reduce nutrient
availability, especially N availability (Wilcke et al., 2008; Notting-
ham et al., 2015).However, higher elevation and thus cooler forests
tend to be found on geochemically young substrates with eroding
slopes, which are associated with relatively higher availability of
rock-derived nutrients (Porder et al., 2007). Thus, for any given
area, elevational variation in cloud cover, rainfall and soils can
magnify or counter the patterns expected based on temperature
alone, and interact with compositional shifts (Peng et al., 2020).

2. Residence time

Few studies have evaluated howAWRT,mortality or turnover rates
vary with temperature or elevation, and relationships were not
statistically significant in most studies (Fig. 6b,e). Of the four
studies finding significant relationships with elevation, three show
higher AWRT (lower turnover) at higher elevation (Fig. 6b). This

is consistent with the global pattern of a positive correlation
between tree productivity andmortality (Stephenson&Mantgem,
2005), given that higher elevations tend to be associated with lower
productivity and slower life histories (e.g. lower LMA; Asner &
Martin, 2016).

3. AGB

Aboveground biomass decreases with elevation inmost studies, and
canopy height decreases with elevation in almost all studies, but
patterns of basal area variation are decidedly mixed, as are patterns
of AGBwith temperature (Fig. 6c,f). It is notable that some studies
find very high or even the highest AGB at intermediate or high-
elevation sites (e.g. Girardin et al., 2010); the mechanisms
underlying these exceptions are an important area for future
research. In terms of the quantitative strength of these effects,
regressions of AGB on elevation in Bolivia, Peru and Ecuador
found that AGB decreases 32, 34 and 50Mgha�1 per 1000 m
elevation, respectively (Girardin et al., 2014). Overall, the patterns
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in AGB with elevation and temperature largely mirror those in
AWP.

4. Synthesis

The biochemical and physiological mechanisms by which temper-
ature interacts with water availability to affect plant productivity are
relatively well understood. These are central to responses to short-
term temporal variation in temperature within sites, which is
reasonably well captured in mechanistic models (Schippers et al.,
2015). By contrast, responses to spatial variation in temperature
regimes depend in large part on acclimation, allocational shifts and
compositional variation, and remain poorly understood. Composi-
tional patterns, such as the decline in lianas and palms with elevation
(e.g. Lieberman et al., 1996), are likely to be major contributors to
among-site variation in tropical forest C cycling with elevation and
temperature; they deserve more attention. Finally, among-site
patterns may vary not only with mean temperatures, but also with
extremes (e.g. relationships with maximum temperature were more
often negative than those with mean temperature) (Dataset S1).

VI. Soil fertility

Tropical forests exhibit great heterogeneity in their biogeochem-
istry, reflecting wide variation in soil age, chemistry, and suscep-
tibility to erosion or uplift, as well as high plant diversity; diversity
matters because plants can affect soil properties under their crowns
(Townsend et al., 2008; Waring et al., 2015). Soil fertility is
multidimensional, involvingmany different nutrients important in
different ways (Kaspari & Powers, 2016), and available in different
concentrations and forms at different soil depths, that covary across
sites (e.g.Quesada et al., 2010).Many studies thus evaluate patterns
with respect to principal components axes or soil classes that reflect
covariation in multiple nutrients (‘Multi’ in Fig. 7). In cases where
individual studies investigated relationships with multiple soil
fertility variables, we report results relative to the variable showing
the strongest relationship with the dependent variable.

1. Productivity

Values for AWP, BAP, ANPP and litterfall are positively related to
soil fertility in tropical forests. Of 22 analyses of among-site
variation, 21 showed a positive trend and 16 were significantly
positive (Fig. 7a). Fertilization experiments further demonstrate
that tropical forest productivity is limited by P and by N, and
suggest that potassium (K) and calcium (Ca) alsomight be limiting
– only one tropical forest fertilization experimentmanipulatedKor
Ca (Wright, 2019). However, the range of AWP variation
explained by fertility seems to be relatively smaller than that
explained by climate; for example, AWP on high-P soils averages
c. 20% higher than AWP on low-P soils in the Amazon and Sierra
Leone (Quesada et al., 2012; Jucker et al., 2016). This may in part
reflect shifts in allocation with fertility, with increased allocation to
reproduction in more fertile sites (Wright et al., 2011).

The increase in woody productivity with soil fertility is
consistent with our mechanistic understanding of the role of

nutrients in plant function. Higher soil nutrients enable higher
plant nutrient content (Fyllas et al., 2009; Cleveland et al., 2011;
Asner & Martin, 2016), which in turn enables greater plant LUE
(Elser et al., 2010). Higher soil nutrient availability also means that
plants need to spend fewer resources on nutrient acquisition,
whether in constructing roots or supporting microbial symbionts,
which enables higher fertility forests to turn a higher proportion of
their GPP into AGB production (Vicca et al., 2012;Doughty et al.,
2018). However compositional shifts partly compensate, as low-
fertility sites have species with better nutrient acquisition abilities
and higher nutrient-use efficiencies, reducing productivity differ-
ences with soil fertility (Gleason et al., 2009; Dalling et al., 2016;
Turner et al., 2018). In addition, herbivory and liana abundance
increase with soil fertility; it may be that these consumers and
structural parasites capture a disproportionate share of the benefits
of elevated nutrient availability (Schnitzer & Bongers, 2002;
Campo & Dirzo, 2003). The consequence of these compositional
shifts and biotic interactions is that the increase in stand-level AWP
with fertility is lower than would be expected based on single-
species responses in isolation, and may even be absent (e.g. Turner
et al., 2018).

2. Residence time

Soil fertility is positively associated with tree mortality rates and
thus negatively associated with AWRT across tropical forests
(Fig. 7b). This pattern has been found at local (de Toledo et al.,
2011; Sawada et al., 2015), regional (Quesada et al., 2012) and
global (Galbraith et al., 2013) scales. The variation is substan-
tial, eclipsing both variation in productivity with soil fertility
and variation in AWRT with climate. For example, across 59
sites in the Amazon, turnover increased three-fold from low to
high soil P (Quesada et al., 2012). Pantropical analyses also
found strong relationships, with median AWRT increasing
c. 50% from young to old soils in Neotropical forests, and from
intermediate to old soils in Paleotropical forests (Galbraith
et al., 2013).

Three classes of mechanisms likely contribute to higher
mortality at higher soil fertility. First, higher growth at higher soil
fertility speeds the rate of self-thinning, thereby increasing
associated mortality rates (Stephenson & Mantgem, 2005).
Second, more productive environments select for tree species with
‘fast’ life-history strategies such as lowwood density (Quesada et al.,
2012), and given underlying tradeoffs, these species also have
higher mortality rates (Stephenson&Mantgem, 2005; Kraft et al.,
2010;Wright et al., 2010; Reich, 2014). Third, higher soil fertility
is associated with higher liana abundance (Putz & Chai, 1987;
Laurance et al., 2001; Schnitzer & Bongers, 2002; DeWalt et al.,
2006), and higher liana abundance is associated with higher tree
mortality in observational and experimental studies (Ingwell et al.,
2010; van der Heijden et al., 2015; Wright et al., 2015).

3. AGB

The combination of increasing AWP and decreasing AWRT with
fertility would lead to the expectation of a unimodal relationship of
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AGBwith fertility,withAWP limiting at the low end andAWRTat
the high end (Fig. 4c). Empirical studies have variously found
positive, negative and no relationships of tropical forest AGB to soil
fertility (Fig. 7c). For example, AGB decreased 1.4-fold from low
to high soil P across 59 plots in the Amazon (Quesada et al., 2012),
and decreased c. two-fold from the lowest to highest total base
cations across 260 plots in Africa (Lewis et al., 2013), whereas it
increased 1.4-fold with soil nitrogen across 63 plots in the central
Amazon (Laurance et al., 1999). These different patterns are
consistent with what we might expect if studies span different parts
of an overall unimodal relationship. Because the decrease inAWRT
is greater than the increase in AWPwith fertility, we expect the peak
to be located closer to the lower fertility end of the gradient. The
location of the peak in AGB with respect to soil fertility is likely to
vary across regions, reflecting compositional differences among
regions and strong interspecific variation in mortality rates and
responses to soil fertility (Condit et al., 2006, 2013).

4. Synthesis

It has long been clear that soil fertility plays a critical role in tropical
forest structure and function (Vitousek & Sanford, 1986), and the
broad outlines of its importance are evident in studies to date
(Fig. 7). A central challenge is that tropical tree species display a
wide diversity of strategies for nutrient acquisition and use,
strategies that are critical to compositional shifts and stand-level
responses to soil fertility, and their regional variation (Laliberte
et al., 2017). Yet our understanding of these strategies – which
include not only root morphology and foraging behavior, but also
chemical root exudates and interactions with microbial symbionts
– remains very limited, reflecting the general paucity of data on
roots and belowground interactions.

New data, analyses and modeling are needed to advance our
understanding of soil fertility’s role in structuring variation in
tropical forests. More, better and more consistent data on tropical
soils are a critical component, especially in enabling better analyses
of large-scale patterns (Hengl et al., 2017). The ability to estimate
foliar nutrients from airborne hyperspectral imaging has enabled
large-scale data collection of these quantities and their relation to
soils (e.g. Chadwick & Asner, 2018); and satellite hyperspectral
missions promise further advances (Schimel et al., 2013). Earth
systemmodels are starting to incorporate nutrientsmechanistically,
and can provide useful tools to explore associated mechanisms and
link them to patterns at different levels (Medvigy et al., 2019;
Sulman et al., 2019).

VII. Disturbance

Tropical forests vary strongly in the frequency and intensity of
natural disturbances, with important consequences for forest
structure, dynamics and composition. Here, we focus specifically
on short-term natural disturbances such as storms, landslides and
wildfires, excluding disturbance by chronic stressors such as
drought (addressed under water availability above) and flooding
(addressed byDaskin et al., 2019). Variation in natural disturbance
rates across the tropics is substantial and systematic. The frequency

and intensity of large-scale tropical cyclones (known regionally as
hurricanes, typhoons or cyclones) is near zero in tropical forests
with latitudes < 10°, and varies strongly among other areas (Ibanez
et al., 2019). Convective thunderstorms and lightning occur across
the tropics, and both show strong geographical variation in
frequency (Pereira-Filho et al., 2015; Gora et al., 2020). Within
sites, storm impacts vary topographically, reflecting variation in
wind exposure (highest on ridges; Boose et al., 1994), soil saturation
(highest in floodplains and concave topographies; Margrove et al.,
2015), and landslide risk (highest on steep slopes; Larsen&Torres-
Sanchez, 1998). Wildfire risk increases with dry season length and
intensity, as well as with proximity to anthropogenic disturbance
(Cochrane, 2011).

Disturbance directly increases tree mortality and decreases
AWRT, thereby reducing AGB (Fig. 4d). Both large-scale
cyclones and local convective storms increase tree mortality
from treefalls (including landslides) (Larsen & Torres-Sanchez,
1998; Ostertag et al., 2005; Negr�on-Ju�arez et al., 2017; Hall
et al., 2020) and convective thunderstorms also kill trees via
lightning (Yanoviak et al., 2020). Across tropical forests, higher
lightning frequency is associated with higher biomass turnover
rates and lower old-growth forest biomass (Gora et al., 2020).
Higher tropical cyclone frequency is associated with lower
canopy height and higher stem density, reflecting an increasing
number of smaller stems (Ibanez et al., 2019). In humid tropical
forests, median canopy height was 1.3-fold higher where cyclone
frequency averaged less than one per century than where it
averaged greater than one per decade (Ibanez et al., 2019).
Topographic variation in storm impacts is evident in mortality
patterns; e.g. cyclone mortality rates are higher in areas with
greater wind exposure (Negron-Juarez et al., 2014). Fires kill
trees directly and also increase mortality rates in subsequent
years, especially in wetter forests (Barlow et al., 2003), and areas
that have experienced fires have lower biomass stocks than
unburned areas for decades afterwards (Gerwing, 2002; Sato
et al., 2016).

Disturbance also influences functional composition, as tropical
tree species differ strongly in how they are affected by disturbances
(Zimmerman et al., 1994; Curran et al., 2008; Slik et al., 2010b;
Paz et al., 2018; Staver et al., 2019). In general, species with ‘faster’
life histories are able to rebound more quickly following distur-
bances, and thus are more common in areas with recent
disturbances (Paz et al., 2018). Associated tradeoffs mean that
disturbances generally increase the relative abundance of tree
species with fast life histories, which tend to have low wood
densities and achieve low biomass (Carreno-Rocabado et al., 2012;
Paz et al., 2018). Lianas also proliferate after disturbances, and thus
high disturbance frequency increases liana abundance (Schnitzer&
Bongers, 2011). Different disturbances also can favor particular
traits; for example, species with higher wood density are less likely
to suffer stem breaks during a hurricane (Zimmerman et al., 1994).
Whereas shifts towards more disturbance-resistant species would
tend to mitigate the direct effects of disturbance on mortality and
biomass, increases in the abundance of lianas and of tree species
with fast life-history strategies would tend to further increase
mortality and reduce biomass. Thus, compositional responses to
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disturbances also need to be considered to determine the total
impacts of disturbance regimes on tropical forest structure and
dynamics.

VIII. Biogeographic realm

Tropical forests on different continents have significantly different
productivity, residence time and biomass. AWP is 25% higher in
Asian than in Latin American forests (Taylor et al., 2019). Mean
AWRT in old-growth tropical forests also is higher in Asia and
Africa than in Latin America, by 22% and 33%, respectively
(Galbraith et al., 2013). Consistent with higher AWP and AWRT,
AGB is higher in Paleotropical than in Neotropical forests, in both
plot-based and satellite-based datasets (Lewis et al., 2013; Slik et al.,
2013; Avitabile et al., 2016; Sullivan et al., 2017; Taylor et al.,
2019). For example, plot-based studies find thatmean AGB is 29%
higher in Asian than Latin American forests (Taylor et al., 2019),
and 26% higher in central Africa than in central Amazonia (Lewis
et al., 2013). The dearth of studies of African forests is particularly
concerning in light of these important biogeographical differences
(Figs S1, S9).

Tropical forests in different biogeographic regions differ signif-
icantly in plant allocation, tree allometry and forest structure.
African forests have a larger proportion of their biomass in the
largest trees than do Neotropical forests (Bastin et al., 2018).
Allocation of NPP to AWP is substantially higher in Asian than in
Neotropical forests (Paoli & Curran, 2007; Malhi et al., 2011;
Taylor et al., 2019), which could contribute to the differences in
AWP. Tropical trees in Asia are taller for the same diameter than
those in other tropical regions (Feldpausch et al., 2012), with Africa
intermediate and American trees shortest (Banin et al., 2012).
These differences in tree height persist even after controlling for
differences in climate and soils, and even when comparing related
taxa among regions; for example, Asian trees in the family Fabaceae
are taller than confamilials in Africa and the Americas (Banin et al.,
2012).

Differences in continental averages in part reflect differences in
the frequencies of different climate regimes (Parmentier et al.,
2007), but substantial differences remain even after controlling for
climate (Corlett & Primack, 2011). These can be explained by
differences in the composition of plant and animal communities
related to historical contingency and evolutionary legacy (Caven-
der-Bares et al., 2016). Taxonomic composition of tropical forests
varies strongly across biogeographic realms, which align to a large
degree with continents (Slik et al., 2018). Asian tropical forests are
dominated by trees in the Dipterocarpaceae, a family that is almost
absent in the Americas and Africa. Dipterocarp trees are distinctive
in their combination of ectomycorrhizal associations, tall archi-
tecture, seed dispersal by wind and mast fruiting (Ghazoul, 2016).
Essentially, Asian tropical forests have a plant functional type that is
substantially different from those in other tropical forests, and this
leads to differences in stand-level AWP and AGB (Cavender-Bares
et al., 2016), as well as selective pressures on co-occurring trees to be
tall also (Banin et al., 2012). Differences among biogeographic
regionsmay also in part reflect differences in the animal community
(Corlett & Primack, 2011). For example, African elephants reduce

the abundance of small stems and favor the growth of fewer larger
trees of higher wood density, resulting in elevated forest C stocks
(Berzaghi et al., 2019).

IX. Discussion

Our review of spatial variation in tropical forest C stocks and fluxes
documented considerable qualitative consistency across studies,
while also illuminating areas of divergent results and limited data.
AWP and other measures of productivity examined here decrease
strongly with seasonal water limitation and elevation, and increase
weakly with soil fertility. This is consistent with our understanding
of how water availability, temperature and nutrients affect
photosynthesis, allocation and functional composition. Favorable
conditions for photosynthesis (i.e. moist, warm and fertile) lead to
greater allocation to AWP as well as functional shifts towards
species with greater LUE, such that these indirect effects reinforce
the direct ones. This variation in AWP in turn contributes to AGB
variation with the same factors, but AGB patterns with climate are
much noisier than AWP patterns, and AGB variation with fertility
does not necessarily align with AWP (Fig. 4). This reflects the
importance of AWRT as a dominant driver of empirical variation
in AGB (Johnson et al., 2016), the limited variation in AWRT that
is explained by climate and the strong decrease in AWRT with soil
fertility. In general, our knowledge of AWRT drivers remains
limited, although we know disturbance decreases AWRT. Overall,
high tropical biodiversity challenges our ability to explain patterns
in tropical forest C stocks and fluxes, most obviously in the
substantial differences among biogeographic regions.

1. Residence time

Abovegroundwoody residence time is determined by treemortality
and branch turnover rates, both of which remain poorly under-
stood, especially in comparison with productivity. Failure to better
understand tree mortality is reflected in models that currently have
very limited and mostly phenomenological representations of tree
mortality, and thus completely fail to reproduce empirical variation
in mortality and AGB (Fig. 2) (Galbraith et al., 2013; Friend et al.,
2014; Koven et al., 2015). Our limited understanding of tropical
tree mortality ultimately reflects the dearth of high-quality data on
mortality patterns and mechanisms (McDowell et al., 2018). The
binomial nature of mortality, the low mortality rates in tropical
forests, and the relatively high temporal variation inmortalitymean
that sampling errors in mortality and woody residence time are
large, such that very large sample sizes (in area and time) are needed
to quantify geographical variation with useful precision
(McMahon et al., 2019). Calculation of woody residence time as
the quotient of AGB and AWP provides an alternative approach
that circumvents some of these problems, but is of course
dependent on high-quality estimates of AGB and AWP, and has
its own pitfalls (Ge et al., 2019). There is an urgent need for much
more data on tropical tree mortality and woody residence time.
Satellite-based methods have the potential to enable these to be
estimated over much larger areas at much finer temporal resolution
(Clark et al., 2004), but this potential has yet to be realized.
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Branch turnover rates also contribute to woody residence time
and are even less well understood than mortality. Branch turnover
encompasses both ‘planned’ branchfall as trees drop old branches
and build newones, and ‘unplanned’ branchfall (e.g. resulting from
damage when a neighboring tree falls). Relatively few studies have
measured branchfall rates directly (but see Palace et al., 2008;Malhi
et al., 2017; Moore et al., 2018), and spatiotemporal variability in
branchfall is so high that sampling errors in such data are invariably
large (Gora et al., 2019).Most AWP estimates from plot recensuses
include only net increases in standing woody biomass without
considering branch turnover, and thus are systematic underesti-
mates. Branchfall also is ignored by most AWRT calculations,
which are thus systematic overestimates. These AWP and AWRT
estimates are mutually consistent, but a poor basis for modeling,
because they underestimate the cost of tree growth. Incorporating
the cost of branch turnover to dynamic vegetation models reduces
tree biomass accumulation rates, improving estimates of forest size
structure (Mart�ınez Cano et al., 2020). More measurements of
branch turnover are needed to provide information on this critical
parameter, including its variation among tree species and with
environmental conditions.

2. Community ecology

In order to understand spatial variation in tropical forest C stocks
and fluxes it is critical to understand the drivers of variation in plant
functional composition– in the relative abundance of plants varying
in life-history strategy and functional traits. As detailed in this
review, every major environmental gradient in tropical forests is
characterized by shifts in tree functional composition that influence
patterns of productivity, mortality and biomass along these
gradients (e.g. Gleason et al., 2009; Dalling et al., 2016).
Understanding functional composition is a complex problem
involving historical biogeographical influences on species pools,
species sorting by environmental filters, competition among species
and phenotypic variation within species (McGill & Brown, 2007).
Empirical research provides considerable information on spatial
variation in tropical tree species and functional composition, how
species traits relate to performance under different environmental
conditions, and on associated tradeoffs (e.g. Poorter &
Markesteijn, 2008; Gleason et al., 2009; Brenes-Arguedas et al.,
2013; Asner & Martin, 2016; Staver et al., 2019). Better
representation of the diversity of tropical plant physiology and
life-history strategies in models is critical to capturing turnover in
functional composition and associated shifts in forest functioning
along environmental gradients (Levine et al., 2016) and among
floristic realms (Slik et al., 2018; Taylor et al., 2019), as well as the
diversity of locally coexisting functional types that determines
functioning and responses to temporal climatic variation (Verhei-
jen et al., 2015; Sakschewski et al., 2016; Powell et al., 2018).

Liana abundance varies greatly among tropical forests, and
strongly influences forest C stocks and fluxes. Liana abundance
increases with soil fertility and disturbance, and decreases with
rainfall and elevation (Schnitzer & Bongers, 2002); it also varies
greatly within individual tropical forest sites (e.g. Schnitzer et al.,
2012). Multiple hypotheses have been proposed to explain these

patterns, yet the mechanisms underlying variation in liana
abundance remain little understood (Schnitzer, 2018; Muller-
Landau & Pacala, 2020). Trees with heavy liana infestations had
approximately half the growth and twice the mortality rates of
liana-free trees in observational studies (Ingwell et al., 2010;Wright
et al., 2015; Visser et al., 2018), and experimental liana removal
increased tree growth by 25–372% (Estrada-Villegas & Schnitzer,
2018). Thus, lianas decrease AWP, AWRT and, thereby, AGB.
Mean AGB decreases more than two-fold with increasing liana
abundance across sites (Duran&Gianoli, 2013), and experimental
liana removal increased AGB accumulation in secondary forests by
75% (van der Heijden et al., 2015). Further, lianas differentially
affect trees of different species (Muller-Landau & Visser, 2019),
and thus likely influence tree community functional composition,
which maymagnify or mitigate the direct effects of lianas. Tropical
lianas are themselves very diverse, with local species richness
typically on the order of a third to half of that of trees, and thus liana
functional composition also may play a role. Liana species vary in
their traits and effects on trees (Ichihashi & Tateno, 2011), and
shifts in liana composition among sites may thus contribute to
variation in forest C dynamics (Muller-Landau & Visser, 2019).
The incorporation of lianas in models involves unique challenges
because of the complexities of their interactions with host trees, but
may be critical to reproducingmajor changes in forest structure and
functioning associated with variation in liana abundance along
successional, climate and disturbance gradients (Brugnera et al.,
2019).

Most research on variation in plant functional composition has
focused on direct environmental influences on plant performance.
However, environmental conditions also may influence plants via
changes in antagonistic andmutualistic interactions withmicrobes,
invertebrates, and vertebrates. For example, there is some evidence
of higher herbivory in sites with higher soil fertility, where plant
tissue nutrient concentrations are higher (Campo&Dirzo, 2003).
Differences in vertebrate abundance and community composition
contribute to savanna–forest boundaries and possibly differences in
forest structure among biogeographic regions (Corlett, 2016). In
addition it has long been hypothesized that pest pressures are higher
at wetter sites, and may drive compositional shifts and higher plant
diversity (Janzen & Schoener, 1968; Givnish, 1999), although
evidence to date remains limited (but see Spear et al., 2015). The
influences of biotic interactions have been assumed to be secondary
to more direct environmental influences, and have been ignored in
vegetation models; however, they may be critical to predicting
future forest C dynamics under global change, including defauna-
tion (Dirzo et al., 2014).

3. Conclusions and future directions

An overview of decades of empirical research in tropical forests
suggests general patterns in productivity, residence time, and
estimated AGB variation, but studies to date have important
limitations. First, essentially all studies have sizable sampling errors
(see Section II, Methods), and these are especially large for studies
with smaller plot sizes, smaller numbers of sites and shorter
measurement periods (Clark et al., 2017). Second, studies to date
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all rest on the application of one or a few allometric equations across
multiple sites, and almost none involve site-specific measurements
of branch turnover. Systematic differences in biomass allometries
and/or branch turnover along environmental gradients could lead
patterns in true AGB, AWP and AWRT to diverge substantially
from those estimated by currentmethods. Third, study sites are not
well-distributed across tropical forests, owing to local and global
bias in plot placement and research effort (Figs S1, S9). There is a
critical need and opportunity for future empirical research that
overcomes these limitations by taking advantage of new technolo-
gies such as laser scanning to more directly measure biomass
allometries, branch turnover and their variation among sites
(Stovall et al., 2018), and of new and forthcoming satellite remote
sensing products that will provide much larger and better
distributed datasets on forest C cycling (Schimel et al., 2019).

We also critically need a mechanistic understanding of the
emergence of observed empirical patterns, so that we can reproduce
them in models for the right reasons and have some hope of
correctly predicting responses to future novel climate conditions
(Wright et al., 2009). Research to date provides considerable
support for various hypotheses regarding contributing mecha-
nisms. However, every environmental pattern involves multiple
mechanisms, and we lack an understanding of the relative
importance of different mechanisms and their interactions. A
combination of mechanistic empirical studies and mechanistic
modeling is key to resolving this uncertainty, yet many of the
hypothesized underlying processes are not yet represented in
models, which currently fail to reproduce key patterns (Fig. 2). This
is not surprising considering the models’ very limited representa-
tion of tree mortality (Galbraith et al., 2013; Johnson et al., 2016),
tropical tree functional diversity (Sakschewski et al., 2016) and
many other processes.

Fortunately, a new generation of models has been developed in
the last decade that better captures some spatial variation in tropical
forest biomass.Whereas oldermodels represented forest vegetation
as a ‘big leaf’, new vegetation demographic approaches explicitly
model the growth, survival and reproduction of trees or cohorts of
trees (Fisher et al., 2018). When run with prescribed meteorolog-
ical conditions, these models have succeeded in reproducing a
multitude of patterns within individual tropical sites, as well as
general patterns of among-site variation along some environmental
gradients (Seiler et al., 2014; Levine et al., 2016; Xu et al., 2016;
Longo et al., 2019; Medvigy et al., 2019; Koven et al., 2020;
Mart�ınez Cano et al., 2020). However, most still contain large
systematic errors, such as predicting too many large trees (Koven
et al., 2020), and/or excessively high tree mortality rates (Longo
et al., 2019). Furthermore, they mostly lack the mechanisms
needed to capture temporal responses to drought or spatial
variation with soil fertility, disturbance and biogeographic region.

Tree mortality, branch turnover, tree functional composition,
and biotic interactions of trees with lianas and other organisms are
key areas for further research, both for empirical data collection as
well as modeling. Advances in remote sensing promise to yield
much more and more widely distributed data on tropical forest
structure and function (Schimel et al., 2019), but adequate
investment in concurrent ground data collection in the tropics is

vital if thesemissions are to fulfill their promise (Chave et al., 2019).
Every type of evidence on its own has key limitations; triangulation
across multiple lines of evidence is needed to reach robust
conclusions (Munafo & Smith, 2018). We must integrate
empirical studies and mechanistic modeling to make progress on
the big questions of the mechanisms of extant variation in tropical
forests today and the implications for their future trajectories
(Hofhansl et al., 2016; Fisher et al., 2018).
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Dataset S1 Database of the literature results on environmental
variation in tropical forest productivity, woody residence time and
biomass that appear in Figs 3, 6 and 7.

Fig. S1 Global distribution of data underlying the studies of
tropical forest productivity, woody residence time and biomass
reviewed here.

Fig. S2 Distribution of tropical land area and forest area with
respect to mean annual precipitation and mean annual tempera-
ture.

Fig. S3 Literature results on spatial variation in productivity,
residence time, abovegroundbiomass, and associated variables with
precipitation, dry season length and other measures of climatic
water availability, graphed in relation to the range of temperature in
the study sites.

Fig. S4 Mean annual cloud cover in relation to temperature in
tropical forests.

Fig. S5 Literature results on spatial variation in productivity,
residence time, aboveground biomass and associated variables with
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elevation or temperature, graphed in relation to the range in
precipitation in the study sites.

Fig. S6Map of relevant SYNMAP land cover classes in the tropics.

Fig. S7Variation in the distributions of mean annual temperature,
mean cloud cover and mean annual precipitation in relation to
elevation in tropical forests, when tropical forests are defined to
include land cover type ‘trees and shrubs’ in addition to ‘trees’.

Fig. S8Variation in the distributions of mean annual temperature,
mean cloud cover and mean annual precipitation in relation to
elevation in tropical forests, when tropical forests are defined to
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addition to ‘trees’.

Fig. S9 Interactive version of Fig. S1, showing the global
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