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8 Abstract.  Stream water-quality data are essential for understanding watershed processes and 

9 managing water pollution; but the effort and expense of stream monitoring limit how many 

10 watersheds can be studied.  For 59 small watersheds in the Chesapeake Bay drainage, we 

11 compared water quality measurements from inexpensive spot sampling to data from costly 

12 automated monitoring that used 1-3 years of continuous flow measurement and weekly, 

13 temporally composited water sampling.  Mean nitrogen (N) levels ranged from 0.01 to 16 mg 

14 N/L among streams.  There were important temporal variations in N concentrations at each site, 

15 but the differences among sites were much greater.  Spot samples were very effective at 

16 accurately and precisely placing average stream N levels within the N gradient among streams 

17 draining N-enriched watersheds.  Among watersheds, nitrate (NO3) and total N concentrations 

18 from spot samples were very strongly correlated with means from weekly composite sampling 

19 (R2 > 97%).  We confirmed this result for independent data for 85 larger watersheds in the 

20 Chesapeake Bay Non-tidal Network.  NO3 concentration from a single March spot sample was 

21 highly correlated (R2 > 92%) with flow-weighted average total N concentrations synthesized 

22 from five years of monitoring.  Spot sampling effectively quantifies average N status across N-

23 enriched watersheds because most N moves as NO3 in subsurface flow, and that flux is much 

24 less variable than the episodic surface transport of particulate materials.  For questions answered 

25 by quantifying average N levels, spot sampling can assess more watersheds at much lower cost 

26 than automated sampling, so it should be more widely used to support cost-effective N research 

27 and management.  For materials that are mainly bound to particulates, like phosphorus, spot 

28 sampling is much less effective.

29 Key words:  stream sampling; water quality; synoptic sample; composite sampling; watershed 

30 assessment; bootstrapped regression; nitrogen pollution; nitrogen management
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31 INTRODUCTION

32 Measurements of nitrogen levels in streams and rivers provide critical information for advancing 

33 basic ecosystem science as well as quantifying and managing anthropogenic pollution of aquatic 

34 systems.  Nitrogen is often the nutrient that limits plant production in natural ecosystems 

35 (Schlesinger 2009), so information on nitrogen loss in stream water is essential for quantifying 

36 watershed nitrogen balances (Jordan and Weller 1996, Boyer et al. 2002) and for better 

37 understanding terrestrial plant production and nitrogen cycling (Brookshire et al. 2011).  Low 

38 nitrogen levels also limit productivity in managed systems, motivating the application of 

39 nitrogen fertilizer, especially to croplands (Jordan et al. 1997b, a, Harmel et al. 2006a, Stewart 

40 and Lal 2017).  The resulting release of nitrogen in land runoff can pollute aquatic systems, 

41 causing eutrophication and associated ecological and economic disruption (Nixon 1995, Doney 

42 2010, Sobota et al. 2015, Boesch 2019).  Global fertilizer applications have increased roughly 

43 fivefold over the past 50 years (Foley et al. 2011), and will likely continue to increase due to 

44 population growth and increasing meat consumption (Galloway and Cowling 2002, Abbott et al. 

45 2018).  Managing the impacts on aquatic systems demands data on nitrogen levels in streams to 

46 identify nitrogen source areas, quantify aquatic nitrogen loading, and assess the value of 

47 management efforts to reduce it.

48 The most accurate methods for measuring stream nitrogen transport employ automated 

49 monitoring stations that combine continuous streamflow measurement with frequent samples of 

50 nitrogen concentration (Swistock et al. 1997).  However, one must balance the high cost of 

51 temporally intensive sampling against the acceptable level of uncertainty in water quality 

52 characterization.  Scientists and engineers have examined the effect of sampling strategy on 

53 uncertainty in concentrations or load measurements, and many have concluded that composite 
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54 sampling is an effective way to balance sampling effort against uncertainty (Harmel and King 

55 2005, Moatar and Meybeck 2005, Harmel et al. 2006b, Harmel et al. 2006c, Schleppi et al. 

56 2006a, Birgand et al. 2010).  Volume-integrated composite sampling collects frequent water 

57 samples in volumes proportional to the flow rates at the times of collection but combines those 

58 samples over time to yield fewer samples requiring chemical analysis.  Such sampling schemes 

59 yield essentially unbiased material flux estimates without requiring the chemical analysis of 

60 many samples (Schleppi et al. 2006a, Schleppi et al. 2006b).  They also ensure adequate 

61 sampling of particulate materials transported during stormflow (e. g., Jordan et al. 1986, Jordan 

62 et al. 1997b, a).

63 A synoptic survey--in which a single spot sample (also called a grab sample) of water is 

64 collected from each study site--is a much simpler and cheaper sampling strategy.  The low labor 

65 and cost enable relatively larger sample sizes to expand spatial coverage or to include watersheds 

66 encompassing greater ranges of land use, geology, or other factors relevant to nitrogen export.  

67 Synoptic surveys have been criticized because they cannot characterize temporal dynamics (such 

68 as seasonality, storm events, or trends) and can yield unrepresentative estimates for the 

69 concentrations of materials that vary strongly with stream discharge rate (Kirchner and Neal 

70 2013).  Nevertheless, many studies have concluded that synoptic surveys are effective for 

71 applications where temporal dynamics are less important, such as for understanding differences 

72 among watersheds in average loads or ranking watersheds by important drivers, such as land use, 

73 fertilizer application, human population, sewage output (Messer et al. 1988, Kaufmann et al. 

74 1991, Grayson et al. 1997, Wolock et al. 1997).  Our own experience suggests that for materials 

75 whose concentrations do not increase greatly during storm events, spot sampling can yield water 

76 quality data of sufficient accuracy and precision for many important purposes (Weller et al. 

Page 4 of 54Ecosphere



5

77 2010).  Those include quantifying average differences among watersheds in the levels of 

78 materials in stream discharge as well as placing watersheds along the gradient of a driving 

79 variable, such as geology, fertilizer application, the proportion of cropland, or the prevalence of 

80 nitrogen sinks in a watershed (Correll et al. 1995, Jordan and Weller 1996, Liu et al. 2000, 

81 Weller et al. 2011, Weller and Baker 2014).

82 In this paper, we more formally tested the power of spot sampling as a cost-effective way to 

83 characterize nitrogen status among nitrogen-enriched watersheds.  We compared estimates of 

84 stream nitrogen levels based on seasonal spot sampling of stream nitrogen concentration (Liu et 

85 al. 2000) to measurements of average annual nitrate and total nitrogen levels for the same 

86 watersheds derived from automated monitoring stations performing volume-integrated composite 

87 sampling (Jordan et al. 1997b, a, Jordan et al. 2000, Jordan et al. 2003).  We focused on nitrate 

88 concentration as a potential indicator of total nitrogen level for several reasons.  Nitrate 

89 concentration is relatively easy to sample and measure, human intervention in the nitrogen cycle 

90 often raises nitrate levels in streams and rivers (Caraco and Cole 1999, Seitzinger et al. 2002), 

91 and nitrate is often the dominant form of nitrogen in surface waters (Creed and Band 1998, 

92 Boyer et al. 2006) even in forested areas (Campbell et al. 2004, Eshleman et al. 2013).  We 

93 demonstrate that inexpensive spot sampling provides very a strong indicator of the nitrogen 

94 levels measured by the more labor intensive and costly automated sampling methods.  We 

95 conclude that spot sampling of many watersheds can often be more useful and cost-effective way 

96 to explore spatial patterns and broad nitrogen-enrichment gradients than more expensive 

97 sampling of fewer watersheds.  We recommend that spot sampling should be more widely 

98 utilized in such efforts.
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99 METHODS

100 Overview and study area

101 We used information from two data sets assembled for watersheds in the 166,000 km2 

102 Chesapeake Bay drainage, which extends over four major physiographic provinces--Coastal 

103 Plain, Piedmont, Blue Ridge, and Appalachian (Langland et al. 1995)—within the mid-Atlantic 

104 region of the United States.  We first analyzed data from our own Smithsonian Environmental 

105 Research Center study of watersheds within the Chesapeake Bay drainage (here called the SERC 

106 data) to quantify and model the relationships between spot nitrogen measurements and 

107 measurements from automated monitoring.  Then, we confirmed the results and conclusions 

108 from the SERC data with an independent data set assembled by the Chesapeake Bay Program 

109 Nontidal Network (CBNTN, Chanat et al. 2016, Moyer et al. 2017).
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110 SERC watershed data

111 Study sites.--For 59 study watersheds distributed across all four major physiographic provinces 

112 of the Bay drainage (see map, Fig. 1), we collected seasonal spot samples from the effluent 

113 stream and analyzed for nitrate and total nitrogen.  For each site, we also established an 

114 automated monitoring station that measured stream depth continuously and controlled samplers 

115 that collected volume-integrated weekly water samples, which were also analyzed for nitrate and 

116 total nitrogen (Jordan et al. 1997b, a).  The 59 sites are the subset of watersheds in which both 

117 spot and integrated sampling were done, taken from a larger group of 517 study watersheds 

118 (Jordan et al. 1997c, a, Jordan et al. 2000, Liu et al. 2000, Jordan et al. 2003, Weller and Baker 

119 2014).

120 The watersheds are distributed in 14 clusters across the Chesapeake drainage basin (Fig. 1 and 

121 Appendix S1, Table S1). The locations of the clusters represent prevalent geological types in 

122 each major  physiographic province of the Chesapeake Bay drainage basin (Langland et al. 1995) 

123 as described in (Liu et al. 2000).  Within each cluster, we sampled streams draining watersheds 

124 with strongly contrasting land covers to maximize our ability to observe and quantify the effects 

125 of land cover on nitrogen discharges and to detect differences in those effects among geological 

126 settings.  We delineated the boundary and area of the watershed draining to each sampling point 

127 by applying automated watershed delineation to digital elevation and stream maps within a 

128 geographic information system (GIS, as described in Baker et al. 2006).  To quantify watershed 

129 land cover, we used the GIS to intersect the watershed boundaries with the 2001 National Land 

130 Cover Data set (Homer et al. 2004).  To identify the physiographic province of each study 

131 watershed, we intersected the GIS layers of study watershed boundaries and physiographic 

132 province boundaries (Langland et al. 1995) as previously described (Weller and Baker 2014).
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133 Stream sampling.--From each of the 59 watersheds, we collected 6-22 seasonal spot samples 

134 under baseflow conditions over a period of 1-3 years. The sampling periods varied among the 

135 watershed clusters, but all were within 1992-2000 (Appendix S1, Table S1).  Spot samples were 

136 filtered in the field so that subsequent laboratory analyses quantified only the dissolved fractions 

137 of nitrogen species.  Correll et al. (1995) and Liu et al. (2000) provide more details on the spot 

138 sampling methods.  An automated monitoring station measured stream depth continuously for 

139 1.3-2.9 years at the outlet of each watershed.  The period of automated monitoring in each 

140 watershed overlapped with the period of spot sampling (above), and all automated sampling was 

141 within 1990-2000. At the Rhode River cluster (arrow in Fig. 1 and stations 101-111 in Appendix 

142 S1, Table S1), seven stations used V-notch weirs, so water depth was converted to flow using 

143 published equations (Correll 1977, Correll 1981).  At all the other watersheds, the automated 

144 station monitored stream depth, and we calculated water flow from rating curves of flow vs. 

145 depth.  The rating curves were calibrated using measurements of depth, cross-sectional area, and 

146 flow rate under a range of stream flow conditions (Jordan et al. 1997c, a).  The automated stream 

147 stations implemented volume-integrated composite sampling by activating pumps to collect 

148 water every time a set volume of flow occurred.  Thus, the station pumped water more frequently 

149 at higher flow rates, so that the composite samples properly represented materials in the water 

150 under all flow conditions as well as the contributions from overland stormflow and groundwater 

151 emerging in the stream.  We retrieved the composite samples weekly for laboratory analysis.  

152 The number of weekly samples ranged from 51 to 144 according to the period sampled at each 

153 station.  Fig. 2 illustrates the results of automated and spot sampling of nitrate concentration 

154 relative to discharge monitoring for one station.  Previous papers provide more sampling details 

155 (Correll 1977, Correll 1981, Jordan et al. 1997c, a).
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156 Stream nitrogen levels.--We measured nitrate concentrations in spot samples with a Dionex Ion 

157 Chromatograph model 1400i.  In the automated samples, we measured the sum of nitrate and 

158 nitrite concentrations by reducing nitrate to nitrite with cadmium amalgam and analyzing nitrite 

159 by reaction with sulfanilamide (APHA, 1989).  Nitrite concentrations were always very low 

160 relative to nitrate, so we refer to their sum as nitrate throughout the paper.  Total Kjeldahl 

161 nitrogen was determined using the Kjeldahl digestion (Martin 1972; APHA, 1989) and analysis 

162 of the resulting ammonium by distillation and Nesslerization (APHA 1989).  Total nitrogen is 

163 the sum of Total Kjeldahl nitrogen and nitrate.  In the composite water samples, ammonium and 

164 organic nitrogen can be bound to particulates as well as dissolved, so the nitrogen analyses for 

165 composite samples yielded the total of the particulate and dissolved fractions.  Because we 

166 filtered the spot samples in the field, the nitrogen analyses assessed only the dissolved fractions.  

167 Nitrate is not significantly bound to particulates, so the filtered spot samples capture all the 

168 nitrate.  Dissolved total nitrogen in the spot samples was measured for only 48 of the 59 study 

169 watersheds.  Previous papers provide more details of the chemical analyses (Jordan et al. 1997c, 

170 a, Liu et al. 2000).

171 Data analysis.--We sought to quantify how well simple spot measurements of nitrogen 

172 concentration can predict the average nitrogen concentrations from high quality, flow-weighted 

173 composite sampling.  We summarized two dependent variables from the composite samples at 

174 each site: average total nitrogen concentration (TN) and nitrate concentration (NO3).  These 

175 flow-weighted averages were calculated by weighting each weekly composite concentration 

176 measurement by the volume of discharge during that week.  As potential predictors (independent 

177 variables), we calculated the simple averages of the seasonal spot measurements of dissolved 

178 total nitrogen (sDTN) and nitrate (sNO3) concentrations at each site.  Single spot samples are 

Page 9 of 54 Ecosphere



10

179 often used to characterize stream water chemistry in stream assessments (Stranko et al. 2017); so 

180 we also considered as possible predictors the dissolved total nitrogen and nitrate concentrations 

181 (fsDTN and fsNO3) in the first spring spot sample collected between March 1 and May 31--the 

182 time-of-year when stream assessment surveys typically collect water samples (e. g., the 

183 Maryland Biological Stream Survey, Ashton et al. 2014, Stranko et al. 2017).  In all, we tested 

184 two spot measurements (sNO3 and fsNO3) as estimators of composite sampled NO3 and four 

185 spot measurements (sDTN, fsDTN, sNO3, and fsNO3) as estimators of composite-sampled TN.

186 We evaluated three approaches for predicting the high quality, flow-weighted measurements of 

187 nitrogen concentration from the spot concentration measurements.  The first approach simply 

188 used the average of the spot measurements (or the first spring spot measurement) as the estimate 

189 of true average nitrogen concentration.  Many studies have interpreted spot measurements this 

190 way, including our previous work (Correll et al. 1995, Liu et al. 2000, Weller et al. 2011, Weller 

191 and Baker 2014).  The second approach exploited contemporaneous spot and flow-weighted 

192 composite samples from the same watersheds  to calibrate a linear regression model (R lm 

193 function, Venables and Ripley 2002, R Core Team 2017) that predicts flow-weighted average 

194 concentration from a spot measurement.  This approach quantifies the strength of association 

195 between spot and flow-weighted concentrations and identifies possible biases in the simpler first 

196 approach.  Linear regression also yields a prediction equation for estimating nitrogen 

197 concentrations from watersheds where only spot measurements are available.  Finally, the 

198 regression model quantifies the uncertainty in its estimates by providing confidence limits and 

199 prediction intervals.

200 The third approach applied bootstrap resampling (Efron 1982, Efron and Gong 1983) to enhance 

201 the statistical rigor of the regression approach.  The variance of concentration measurements is 
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202 typically greater at higher concentrations, and the residuals of our regression models are bigger 

203 at higher concentration (see Results).  Such patterns violate the assumption of equal variance 

204 among residuals (homoscedasticity) underlying linear regression.  Bootstrapping (detailed 

205 below) can accommodate heterogeneity in the variances of data and residuals, and it can also 

206 quantify the effects of including or excluding influential data points in an analysis.  Because 

207 bootstrapping accounts for heteroscedasticity and sampling uncertainty, we expected the 

208 confidence intervals for parameters and predictions of the bootstrapped regression model to be 

209 larger than corresponding intervals for the simple regression, but those larger intervals better 

210 represent the true uncertainty of the estimates.

211 Logarithmic transformation is a simpler and more common solution for analyzing 

212 heteroscedastic variables for which the variance increases with the mean (Snedecor and Cochran 

213 1989, Draper and Smith 1998), and log-log regression relating one such variable to another is 

214 widely applied in water quality analyses (Helsel and Hirsch 2002).  However, statisticians have 

215 documented general problems with log-transformation, including failure to eliminate 

216 heteroscedasticity and difficulty applying parameter estimates or hypothesis tests back to the 

217 untransformed variables (Feng et al. 2013, Feng et al. 2014, Choi 2016, Greenacre 2016, 

218 Rendevski et al. 2016, Curran-Everett 2018, Ekwaru and Veugelers 2018).  We chose the 

219 bootstrapping approach instead of log-log regression because it handled our heteroscedastic 

220 variables without causing these problems and because bootstrapping gave other benefits, like 

221 quantifying sampling uncertainty.  Appendix S1 in the Supporting Information provides a more 

222 thorough review of the possible problems with log-transformation.  For our data, Appendix S1 

223 also shows that log-log transformation failed to homogenize the variance and produced models 
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224 that performed poorly for predicting the high nitrogen levels that are of greatest concern in 

225 addressing management questions.

226 We implemented the bootstrap approach in two steps.  The first step quantified sampling 

227 uncertainty using a pairs bootstrap (Wu 1986, Flachaire 2005), in which we created 2000 

228 bootstrap samples with 59 observations by resampling observations with replacement.  For each 

229 sample, we fit the linear regression model, and then applied the model to predict flow-weighted 

230 average concentrations from spot concentrations ranging from 0 to 18 mg N/L in steps of 1 mg 

231 N/L.  For each of those 19 values of the independent variable, the median prediction across the 

232 bootstrap samples provided the bootstrap prediction of flow-weighted average concentration, and 

233 the 2.5th and 97.5th percentile values provided the 95% confidence limits for the median 

234 predictions.  The 19 median values formed a perfect straight line, and we used the slope and 

235 intercept of that line as the coefficients of the linear bootstrap prediction model.

236 We implemented the second bootstrap step to provide prediction intervals for the estimates of 

237 flow-weighted average concentration at a particular site.  For each of the 2000 pairs bootstrap 

238 samples, we used the fitted linear model to predict flow-weighted average concentrations for all 

239 59 study watersheds in the full data set, and then calculated the model residual (observed-

240 predicted) for each watershed.  We then implemented a wild bootstrap—a method developed for 

241 heteroscedastic data (Wu 1986, Mammen 1993, Flachaire 2005, Davidson and MacKinnon 

242 2006)--by generating 50 bootstrap samples in which we added to the predicted value for each 

243 watershed a resampled residual, calculated by multiplying the residual for that watershed by an 

244 independent normally-distributed variate with mean 0 and standard deviation 1 (Roodman et al. 

245 2019).  The resampling of model residuals accounts for the variability in flow-weighted average 

246 concentration that is not explained by the prediction model, so that the 2.5th and 97.5th percentiles 

Page 12 of 54Ecosphere



13

247 across the 100,000 bootstrap samples (2000 pairs X 50 wild) estimate the 95% prediction 

248 interval for an individual watershed.  We applied loess smoothing (R ggplot2 package, Wickham 

249 2016) across the 59 upper limits and 59 lower limits to provide a smoothed visualization of the 

250 prediction interval.

251 For each set of dependent and independent variables, we quantitatively evaluated the 

252 performance of the direct, simple linear, and bootstrapped approaches by comparing the 

253 predictions of each approach to the observed data using the gof (goodness of fit) function of the 

254 R hydroGOF package (Zambrano-Bigiarini 2020).  We report five metrics of skill.  Mean error 

255 (bias ) and percent bias account for accuracy.  Root mean squared error (RMSE) accounts for 𝜀

256 both accuracy and precision.  As a measure of precision alone, we calculated unbiased root mean 

257 squared error (ubRMSE) from bias and RMSE by rearranging the equation RMSE2 = 𝜀

258 2  + ubRMSE2 (Jolliff et al. 2009).  We also report the percentage of variance in flow-weighted 

259 average concentration explained (R2) by each approach.  We used the R statistical package (R 

260 Core Team 2017) for all of the analyses.

261 CBNTN verification data

262 Study sites.--The independent verification data for our analysis came from data on streamflow 

263 and water chemistry assembled for the Chesapeake Bay Program’s Non-tidal Monitoring 

264 Network (CBNTN).  The data have been curated and analyzed by the U.S. Geological Survey 

265 (e.g., Moyer et al. 2017).  We analyzed five years of data (water years 2012 -2016 from October 

266 2012 through September 2016) from a subset of 85 watershed sampling sites (Fig. 1, Appendix 

267 S1, Table S2) for which stream discharge and loads of total nitrogen and nitrate have been 

268 summarized (Chanat et al. 2016, Moyer et al. 2017) and for which digitized watershed outlines 

269 are available (Ryberg et al. 2017).  We summarized the 2013 National Land Cover Data set 
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270 (Yang et al. 2018) to characterize human activities in the watersheds by using a GIS to intersect 

271 the digital watershed boundaries (Ryberg et al. 2017) with the NLCD data and then tabulating 

272 land cover proportions.

273 Stream nitrogen levels.--The CBNTN does not employ composite sampling like the SERC study 

274 (above).  Instead, the CBNTN monitors streamflow continuously and measures material 

275 concentrations in discrete water samples collected throughout the year and under different flow 

276 conditions.  These sparse long-term monitoring data are combined with daily discharge, to 

277 characterize episodic, seasonal, and long-term dynamics of nutrients and sediments. During 

278 water years 2012-2016, the median number of total nitrogen and nitrate concentration 

279 measurements per site was 98 (range 55-193, Appendix S1, Table S2).  The USGS applies 

280 advanced statistical models to the flow and concentration measurements to estimate material 

281 loads, flow-weighted concentrations, and other summary quantities (Moyer et al. 2017).  The 

282 current model (called Weighted Regressions on Time, Discharge, and Seasonality, WRTDS, 

283 Hirsch et al. 2010, Chanat et al. 2016) provides unbiased estimates of nitrogen and nitrate loads 

284 (Zhang et al. 2019).  For the 85 study watersheds in water years 2012-2016, we extracted the 60 

285 monthly estimates of discharge and the average concentrations of total nitrogen and nitrate from 

286 a recent WRTDS summary of the CBNTN (Moyer et al. 2017).  For each watershed, we 

287 calculated the five-year (2012-2016) average nitrate and total nitrogen concentrations as the 

288 weighted average of the 60 monthly concentrations weighted by the product of monthly 

289 discharge and month length in days.

290 Data analysis.--Like the SERC composite sample data, the integrated estimates of average 

291 concentration from the WRTDS analysis were treated as the dependent variable--flow-weighted 

292 average concentration--to be estimated from simpler spot sampling.  The independent predictor 
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293 variables we evaluated were a single, discrete measurement of total nitrogen and nitrate 

294 concentration.  For each site, we selected from the CBNTN concentration data base the first 

295 uncensored  TN and NO3 measurements taken in March 2012 (see Moyer et al. 2012) for 

296 information on censoring).  The month of March begins the period when streams are commonly 

297 visited for stream assessment (see above).  We call these potential predictors fsTN and fsNO3 in 

298 the rest of the paper.

299 We applied the same data analyses used for the SERC data: first summarizing the watershed 

300 characteristics and concentration data and then exploring relationships between the spot 

301 concentrations and the flow-weighted average concentrations from the WRTDS analysis of the 

302 CBNTN data.  We compared WRTDS flow-weighted average nitrate (NO3) concentration to the 

303 first spring spot nitrate concentration (fsNO3), and we related average WRTDS total nitrogen 

304 (TN) to the first spring spot measures of total nitrogen and nitrate (fsTN and fsNO3).  We 

305 applied the same three prediction approaches (direct substitution, simple linear regression, and 

306 bootstrapped linear regression) and evaluated them with the same metrics of model skill (as 

307 described above, but with 85 CBNTN watersheds instead of 59 SERC watersheds).  Like the 

308 SERC analyses, the CBNTN analyses test how well simple spot samples can predict average 

309 nitrogen concentration as measured by much more thorough and expensive sampling and 

310 modeling (composite sampling for SERC, advanced WRTDS synthesis for the CBNTN).  We 

311 evaluated if patterns and performance for the CBNTN data supported findings from SERC data.
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312 RESULTS

313 SERC study watersheds

314 Watershed geographic characteristics.--The sizes of the 59 study watersheds range from 0.05 to 

315 324 km2 (median 9.61, mean 28.0, Fig. 3a, Appendix S1, Table S3).  The data set includes 

316 watersheds that are entirely natural forest and wetland as well as watersheds that are mostly 

317 agricultural or developed land.  Land cover percentages range from 3-100% forest (median 44%, 

318 mean 50%); 0-2% wetland (median 0.08%, mean 0.25%), 0-61% cropland (median 6.6, mean 

319 11%), 0-70% grassland (median 26%, mean 30%), and 0-80% developed land (median 1%, 

320 mean 7%; Appendix S1, Table S3).

321 A three-dimensional plot of three aggregated land cover categories illustrates the dominant 

322 patterns of human land cover disturbance across the data set (Fig. 3b).  The three aggregates are 

323 cropland plus grassland (agricultural land), forest plus wetland (natural land), and developed 

324 land.  Rural watersheds lie along the diagonal line in the plane of forest plus wetland vs. 

325 cropland plus grassland where the two aggregate categories together cover almost all of the land.  

326 Developed watersheds fall off that line and above that plane, reflecting the past replacement of 

327 natural and agricultural land with developed land.  The data set includes watersheds from all four 

328 major physiographic provinces comprising the Chesapeake Bay drainage (Coastal Plain, 25 

329 watersheds; Piedmont, 19; Appalachian Mountain, 8; and Appalachian Plateau, 7).

330 Stream nitrogen levels.--Flow-weighted average composite-sampled nitrogen concentrations 

331 ranged from very low (0.01 mg NO3-N/L and 0.12 mg TN/L) to quite high (16.2 mg NO3-N/L 

332 and 17.5 mg TN/L, Fig. 4 and Appendix S1, Table S4), reflecting the range from very low to 

333 high levels of human activity (and associated nitrogen enrichment) revealed by the land cover 
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334 data (Fig. 3b). The distributions of NO3 and TN concentrations were positively (right) skewed, 

335 with more low values and fewer high values (Fig. 4).  The central values and ranges of the flow-

336 weighted average concentrations and spot sampled concentrations were similar (Fig. 5, Table S5, 

337 and figures below), and variability in flow-weighted average nitrogen concentration was 

338 heteroscedastic, with variability increasing with the mean of either flow-weighted average NO3 

339 or TN as well as spot NO3 or TN (Fig. 4, Appendix S1, Table S5).

340 Estimating average concentration from spot measurements.--Spot concentration measurements 

341 were very strong predictors of flow-weighted average nitrate concentration regardless of 

342 prediction method, but the method did affect bias and confidence limits for the predictions 

343 (Table 1).  The simplest method used the spot measurements as a direct estimator of flow-

344 weighted average concentration (Fig. 5).  For predicting flow-weighted average NO3 from 

345 average spot sNO3, these direct estimates explained 98.3% of the variability among watersheds 

346 in flow-weighted average NO3 (R2 in Table 1), but tended to overestimate (positive percent bias 

347 of 11.0%, Table 1) because nitrate in baseflow is often higher than in stormflow or overall (see 

348 Discussion).  Implementing a simple linear regression did not change the amount of variability in 

349 flow-weighted average NO3 explained, but it did eliminate the overestimation bias by fitting a 

350 regression slope less than one (0.970, percent bias 0%, Table 1, Fig. 6a).  Unlike direct 

351 substitution (Fig. 5), the linear model also provided confidence and prediction intervals, which 

352 were quite narrow (Fig. 6a), reflecting the high R2 and low residual variation of the regression 

353 (Table 1).  Unlike the simple regression, the bootstrap model accounted for heteroscedasticity in 

354 the concentration measurements (Fig. 6b) as well as for sampling uncertainty in the predictions, 

355 especially uncertainty arising from including or excluding watersheds.  The bootstrap method 

356 achieved a slightly higher proportion of variance explained (R2=98.7%, Table 1, but had a small 
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357 negative bias (percent bias=-0.04%, Table 1) and a slightly shallower regression slope (0.952).  

358 More importantly, the 95% confidence and prediction intervals of the bootstrap model (Fig. 6b) 

359 were wider than those of the simple regression (Fig. 6a), especially at higher nitrate levels.  This 

360 reflects the ability of the bootstrap method to account for sampling uncertainty and 

361 heteroscedasticity.

362 Not surprisingly, the watershed with the highest observed nitrogen concentrations (uppermost 

363 point in Fig. 5 and Fig. 6a-f; watershed 522 in Fig. 3b and Appendix S1, Table S2) had a strong 

364 influence on the regression results.  The distributions of parameters and predictions of the 

365 bootstrapped NO3 vs. sNO3 model (Fig. 7) reveal that influence.  The distribution of regression 

366 slope estimates is bimodal (Fig. 7a).  The left mode has a median slope of 0.904 and summarizes 

367 bootstrap samples omitting watershed 522.  The right mode for bootstrap samples including 

368 station 522 has a steeper median slope of 0.985 (the median of all bootstrap samples is 0.970, 

369 Table 1).  Bimodality in the slope estimates yields bimodal predictions of flow-weighted average 

370 nitrate at high levels of spot nitrate (Fig. 7b), but not at low levels of spot nitrate (Fig. 7c).  The 

371 ability of the bootstrap model to account for the sampling uncertainty arising from including or 

372 excluding influential observations like watershed 522 demonstrates one advantage of the 

373 bootstrap approach.  The high uncertainty at high nitrogen levels also indicates a need to sample 

374 more high-nitrogen watersheds to reduce the sensitivity of the results to influential observations 

375 like watershed 522.

376 Despite the advantages of bootstrapped estimates over the simple regressions (Table 1), the 

377 associations between flow-weighted average concentration and spot concentrations are so strong 

378 that even the simple regressions yield very good predictions.  The simple regression predictions 

379 might be adequate for applications that require only predictions of mean concentration; however, 
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380 for applications that also need uncertainty estimates, the ability of the bootstrap regression to 

381 account for uncertainties from heteroscedasticity and sampling error becomes more important.

382 The single first spring spot nitrate sample (fsNO3) was almost as good a predictor of flow-

383 weighted average NO3 concentration as the average based on 6-22 spot nitrate samples per 

384 station (sNO3).  The percent of variability in flow-weighted average concentration explained by 

385 the bootstrapped model for fsNO3 (R2=97.2%) was slightly lower than the bootstrapped model 

386 based on average sNO3 (R2=98.7%), and the 95% confidence and prediction limits for the first 

387 spot model (Fig. 6c) were wider than were those of the average spot model (Fig. 6b).

388 Spot concentration measurements were also very effective predictors of the flow-weighted 

389 average total nitrogen concentration from composite sampling.  We explored four possible 

390 predictors of composite TN: average spot dissolved nitrogen (sDTN): first spot dissolved 

391 nitrogen (fsDTN), sNO3, and fsNO3.  For all four predictors, we saw the same bias in the direct 

392 method and the same enhancements with the simple regression and bootstrap methods as 

393 reported above for fsNO3 (Fig. 6, Table 1).  For the bootstrapped models, average spot total 

394 nitrogen concentration (sDTN) was a slightly better predictor (R2=98.6%; Fig. 6d; Table 1) than 

395 average spot nitrate (sNO3, R2=97.8%, Fig. 6e, Table 1), and first spot concentrations were 

396 slightly weaker predictors than their corresponding average spot concentrations (fsDTN, 

397 R2=98.0%; fsNO3, R2=96.7%, Table 1, Fig. 6f).  Importantly, even the single first spring spot 

398 nitrate sample provided a very strong indication of total nitrogen concentration (R2=96.7%, Fig. 

399 6f).
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400 CBNTN study watersheds

401 Watershed geographic characteristics.--The 85 watersheds in the CBNTN verification dataset 

402 were substantially larger than watersheds in the SERC study (Fig. 1 and Fig. 3a).  The CBNTN 

403 watershed areas ranged from 19.7 to 70,162 km2.  The median (666 km2) and mean (4,854 km2) 

404 for CBNTN watersheds were 69 and 173 times larger, respectively, than for the SERC 

405 watersheds (Fig. 3a, Appendix S1, Table S6).  Land cover combinations across the CBNTN and 

406 SERC data sets were generally similar (Fig. 3b), but the SERC set does include more watersheds 

407 with extreme land cover proportions (high agricultural land, near 100% natural land, or high 

408 developed land, Fig. 3b; Tables S3 and S6).  Among the CBNTN watersheds, land cover 

409 (Appendix S1, Table S6) ranged from 23-91% forest (median 61%, mean 58%), 0-0.79% 

410 wetland (median 0.07%, mean 0.15%), 0 to 63% cropland (median 5%, mean 11%), 0.4 to 51% 

411 grassland (median 17%, mean 18%), and 2-73% developed land (median 7%, mean 12%).

412 Stream nitrogen levels.--Among the CBNTN watersheds, the five-year, flow-weighted averages 

413 of monthly nitrogen concentrations estimated by WRTDS ranged from very low (0.03 mg NO3-

414 N/L and 0.295 mg TN/L) to high (7.20 mg NO3-N/L and 7.89 mg TN/L, see Appendix S1, Table 

415 S7).  As with the SERC data, the central values and ranges of the flow-weighted average 

416 concentrations and spot sampled concentrations were similar (Fig. 4, Fig. 6g-i), and variability in 

417 flow-weighted average nitrate or spot nitrate concentration was heteroscedastic (Fig. 4, 

418 Appendix S1, Table S7).  The distributions of flow-weighted average nitrate and total nitrogen 

419 concentrations among the CBNTN watersheds are roughly like the distributions for the SERC 

420 watersheds (Fig. 4).  All the distributions are skewed right with many low values and few high 

421 values, but the SERC data set includes four watersheds with nitrate and total nitrogen values 

422 above the maxima in the CBNTN data (Fig. 4).  Those four SERC watersheds all had high levels 
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423 of agricultural land (Tables S3 and S4) and lie close to the apex representing high percentages of 

424 cleared land in the graph of land cover proportions (Fig. 3b).

425 Estimating average concentration from spot measurements.--For the CBNTN watersheds, the 

426 first spot concentration measurements were very strong predictors of the five-year, flow 

427 weighted nitrogen concentrations from WRTDS synthesis (Table 1, Fig. 6g-i).  As with the 

428 SERC data, the direct method produced biased estimates of flow-weighted average 

429 concentration, but the regression method removed the bias (Table 1).  The bootstrap method 

430 again explained the most variation in flow-weighted average concentration while also accounting 

431 for sampling error and heteroscedasticity.  Compared to the SERC results, the proportions of 

432 variance explained were slightly lower and the regression slopes were shallower (Table 1).  For 

433 example, to predict flow-weighted average nitrate concentration from first spot nitrate, the 

434 bootstrapped SERC model had R2=97% and slope=0.993 while the CBNTN model had 

435 R2=94.5% and slope=0.843.  Importantly, a single spring spot sample of nitrate concentration 

436 was again a remarkably effective predictor of the five-year average total nitrogen level estimated 

437 by advanced statistical synthesis (WRTDS) of daily flow data and 55-193 (median 98) individual 

438 TN measurements per station (Fig. 6i, Table 1).

439 DISCUSSION

440 Central findings

441 Our main conclusions are that simple spot sampling provides a surprisingly effective way to 

442 estimate average nitrogen levels in streams (Table 1, Fig. 5 and Fig. 6) and that, for some 

443 purposes, more costly and laborious sampling programs may not be needed (see Applications 

444 section below).  We demonstrated the effectiveness of spot sampling with two independent sets 
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445 of study watersheds:  relatively small watersheds from the SERC study and much larger 

446 watersheds from the CBNTN sampling network.  The two data sets gave slightly different slopes 

447 relating flow-weighted average concentrations to spot measurements (Table 1), likely because of 

448 differences in methods of sampling, laboratory analysis, data synthesis (see Methods section) and 

449 the ranges of nitrogen concentrations actually sampled (Fig. 4).  However, the differences in the 

450 relationships between the two data sets are small in a combined plot of the two data sets (Fig. 8).  

451 In both data sets, just one spring spot sample was a strong predictor of flow-weighted average 

452 nitrogen levels.  Importantly, each data set shows that one relationship between flow-weighted 

453 average concentration and spot measurements works well for all the study watersheds (Fig. 6), 

454 despite strong differences among physiographic provinces in how land use affects stream 

455 nitrogen levels (Jordan et al. 1997c, Liu et al. 2000, Jordan et al. 2003, Weller et al. 2003, Weller 

456 et al. 2011, Weller and Baker 2014).

457 Spot surveys have long been conducted to complement to automated watershed sampling 

458 (Messer et al. 1988, Kaufmann et al. 1991, Grayson et al. 1997, Wolock et al. 1997), and several 

459 studies have reported strong correlations of spot measurements with better measurements 

460 (Schleppi et al. 2006a, Schleppi et al. 2006b, Rozemeijer et al. 2010, Abbott et al. 2018).  More 

461 recently, McCarthy and Haggard (2016) recommended that spot sampling alone may be 

462 sufficient for many nutrient management purposes.  Schlelppi et al. (2006b) recommended using 

463 parallel measurements of spot and flow-weighted samples to calibrate the first against the 

464 second.  We extended that idea by calibrating spot measurements against multiyear, flow-

465 weighted measurements to estimate nitrogen levels for many watersheds spanning a gradient 

466 from pristine to strongly agricultural or developed.  Our analyses more formally tested the ability 

467 of spot samples to estimate multiyear, flow-weighted average concentrations.  Our results 
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468 rigorously demonstrate and quantify the very high efficiency of spot sampling for estimating 

469 multiyear, flow-weighted average nitrogen concentrations for nitrogen-enriched watersheds 

470 (Table 1, Fig. 6).

471 Our results for watersheds in the Chesapeake Bay drainage should be relevant in other regions 

472 with significant rainfall and nitrogen enrichment from human population or agricultural 

473 activities.  Our findings are less relevant for areas like the western United States, where human 

474 population,  nitrogen fertilization, and rainfall are all low and nitrate is not the dominant 

475 component of stream nitrogen (Scott et al. 2007).

476 Why does this work so well?

477 There are several reasons why spot sampling is such a surprisingly effective predictor of flow-

478 weighted average nitrate and total nitrogen concentrations.  One key factor is the way nitrate is 

479 transported through watersheds and streams.  Sediment and nutrients that are primarily bound to 

480 particles (like phosphorus) are mobilized during storms and transported to streams by surface 

481 flow; therefore, their stream concentrations during storms can be orders of magnitude greater 

482 than in baseflow (Correll et al. 1999c).  In contrast, nitrate is not strongly bound to soils or to 

483 suspended sediments, so it moves freely in dissolved form.  In many watersheds, nitrate is 

484 transported toward streams primarily in subsurface flow and groundwater, and is often somewhat 

485 diluted during storm events so that stream nitrate concentrations are lower during storms than 

486 during baseflow (Jordan et al. 1997c, Correll et al. 1999c, Rozemeijer et al. 2010, McCarty and 

487 Haggard 2016).  Because nitrate concentrations are not wildly amplified during storms, baseflow 

488 nitrate concentration is much more representative of stormflow concentration and of overall 

489 average nitrate concentration than are the baseflow concentrations of materials that are mainly 

490 transported on particles.
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491 Secondly, nitrate is the dominant chemical form of total nitrogen in major rivers (Caraco and 

492 Cole 1999, Seitzinger et al. 2002) and in in streams draining smaller watersheds (Fig. 7 and  

493 Creed and Band 1998, Boyer et al. 2006), even many forested ones (Campbell et al. 2004, 

494 Eshleman et al. 2013).  Stream nitrate levels increase much more strongly with increasing human 

495 impacts from agriculture and land development than do other forms of nitrogen (Fig. 7 and 

496 Jordan et al. 1997b, a, Liu et al. 2000, Jordan et al. 2003, Golden et al. 2009).  Among the 

497 watersheds we examined, nitrate becomes the majority of TN when TN reaches 0.6 mg N/L for 

498 the CBNTN watersheds and 2 mg N/L for the SERC watersheds (Fig. 9).  Above those levels, 

499 nitrate increasingly dominates TN as TN levels rise further.  The strong dominance of total 

500 nitrogen levels by nitrate, especially in streams draining human-impacted watersheds, means that 

501 dissolved nitrate in baseflow spot samples is strongly associated with total nitrogen 

502 concentrations as well as total nitrate concentrations.

503 Finally, among watersheds ranging from low to high levels nitrogen enrichment, both nitrate and 

504 total nitrogen show more spatial variation among watersheds than temporal variation within 

505 watersheds.  We quantified the fraction of total variability among watersheds and weeks that is 

506 due to differences among watersheds for the weekly SERC and monthly CBNTN concentration 

507 data.  We used a linear model with site number as a categorical random variable (R lmer 

508 function, Bates et al. 2015).  Heteroscadasticy in the concentration measurements was not a 

509 concern for this model because we used it only to estimate the among-watershed fraction of total 

510 variability, not to estimate P values for hypothesis tests.  For nitrate and total nitrogen 

511 concentrations in both data sets, the linear model explained 93% (NO3) and 87% (TN) of the 

512 total variation among all watersheds and weeks in the SERC data as well as 97% (both NO3 and 

513 TN) among all watersheds and months in the CBNTN data.  Thus, 87% or more of the total 
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514 variation can be attributed to differences among watersheds, leaving only 13% or less of the total 

515 variation to be attributable to temporal variation and error.  Spot sampling does not effectively 

516 account for temporal variation (Kirchner and Neal 2013), but that did not much limit the ability 

517 of spot samples to predict flow-weighted average nitrate and total nitrogen concentrations 

518 because temporal variation in those concentrations was much smaller than the differences in 

519 concentration among watersheds.

520 We emphasize that the dominance of spatial variation among watersheds relative to temporal 

521 variation at a watershed does not mean that the temporal variation is unimportant.  To the 

522 contrary, we observed substantial temporal variation at each site in both data sets (Fig. 2, Fig. 5, 

523 Tables S4 and S7), and nitrogen levels are known to vary among years, seasons, and storm 

524 events (Correll et al. 1999b, c, a, Kirchner and Neal 2013, Abbott et al. 2018).  Measuring that 

525 variability and understanding its causes are critical to addressing many questions in nitrogen 

526 cycling and nitrogen management, but not so critical to the task of placing the temporally 

527 averaged nitrogen levels for watersheds across a broad gradient of nitrogen enrichment.

528 Other water quality constituents

529 This paper is focused on testing the ability of spot samples to match the average nitrate and total 

530 nitrogen concentrations sampled by more costly and labor-intensive methods, but the SERC and 

531 CBNTN programs also measured other water quality constituents.  These were dissolved silicate 

532 (Si), total ammonium (NH4), total Kjeldahl nitrogen (TKN), total phosphorus (TP), total ortho-

533 phosphate (PO4), and total organic carbon (TOC) in the SERC study (Jordan et al. 1997b, a) and 

534 total phosphorus (TP), dissolved ortho phosphate (PO4), and total suspended sediment (TSS) in 

535 the CBNTN program (Chanat et al. 2016, Moyer et al. 2017).  We again used linear regression to 

536 quantify the ability of spot samples to predict the higher quality concentration estimates for these 
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537 additional constituents (see Methods).  We also again used a linear model (R lmer function, 

538 Bates et al. 2015) with site number as a random categorical variable to assess amount of the total 

539 variation among high quality measurements attributable to differences among watersheds rather 

540 than to temporal variability within watersheds (Table 2).

541 For dissolved silicate (SERC watersheds), the average spot sample concentration was a very 

542 strong predictor (R2=97%) of the average concentration from flow-weighted composite samples 

543 (Table 2).  Like nitrate, Si is diluted rather than amplified during storm events, as are other 

544 mostly dissolved constituents, (such as Ca, Mg, K, Na, SO4, Cl, NO3, and conductivity, 

545 Schleppi et al. 2006b).  As with nitrate and total nitrogen, most of the total variability in 

546 dissolved silicate among weeks and watersheds is explained by differences among watersheds 

547 (84.9%), with much less variability potentially due to temporal variation within watersheds 

548 (Table 2).  In contrast, the other additional constituents from both data sets are materials that are 

549 transported mostly on particles (Jordan et al. 1997b, a).  Comparted to nitrate, total nitrogen, and 

550 dissolved silicate; spot samples are much less effective at predicting flow-weighted average 

551 concentration for the materials transported on particles (R2>92% for dissolved materials, 

552 R2<52% for particulates, Table 2).  Furthermore, the proportion of the total variability in flow-

553 weighted average concentration due to differences among watersheds is much lower for 

554 materials transported mostly on particles than for dissolved materials, so that the importance of 

555 temporal variability within watersheds is greater for particulate-transported materials.  Temporal 

556 variability appears to be more dominant in the SERC data (>85% of total variability) than in the 

557 CBNTN data (>43% of total variability, Table 2) due to differences in watershed size (smaller 

558 watersheds are more temporally variable (Abbott et al. 2018) and data frequency--the weekly 

559 SERC data inherently capture more temporal variation than the monthly CBNTN estimates.
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560 The SERC and CBNTN data sets both support the conclusion that spot measurements are very 

561 good predictors of flow-weighted average concentration for materials transported in dissolved 

562 form, but much less effective for estimating flow-weighted average concentrations of materials 

563 that bind to particles .  This is consistent with other reports of much higher correlations for 

564 nitrogen than phosphorus when comparing spot samples to composite samples (Schleppi et al. 

565 2006a, Schleppi et al. 2006b) or baseflow spot samples to storm samples (McCarty and Haggard 

566 2016). Table 2 also supports ranking nitrogen>phosphorus>sediment in order of predictability as 

567 reported for a variety of modeling approaches (Weller et al. 2003, Brakebill et al. 2010, Preston 

568 et al. 2011, Boomer et al. 2013).

569 Our analyses relate to the idea of spatial stability presented by Abbott et al. (2018).  They 

570 developed concepts and methods to quantify patterns of spatial and temporal variability in water 

571 quality within stream networks, and they discussed the ecological and hydrological implications 

572 of those patterns.  They proposed the correlation between instantaneous and longer-term 

573 concentrations (as in our Tables 1 and 2) as a direct measure of spatial stability of water 

574 chemistry patterns, and they suggested that temporal synchrony among watersheds promotes 

575 spatial stability.  Our analysis of the proportion of total variability among watersheds and 

576 sampling times due to spatial differences among watershed (Table 2) provides another measure 

577 of spatial stability, and the results suggest that the domination of total variability by differences 

578 among stations also promotes spatial stability.  Abbott et al. (2018) argue that spatial stability 

579 determines the sampling frequency needed to identify and evaluate critical source areas and that 

580 synoptic sampling can be useful for those purposes when water quality patterns are spatially 

581 stable.  In our data, the very high spatial stability of nitrate and total nitrogen levels across a 
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582 broad nitrogen enrichment gradient (Table 2) suggests that just one spot sample may be adequate 

583 for such evaluations of those materials.

584 Application to science and management

585 Synoptic spot sampling is already widely used in reconnaissance efforts to measure baseline 

586 levels, identify water quality problems, target critical source areas, or measure compliance 

587 (NRCS 2003), often as a complement to more frequent automated sampling at a few selected 

588 locations (Messer et al. 1988, Kaufmann et al. 1991, Grayson et al. 1997, Wolock et al. 1997).  

589 Synoptic sampling provides data for more locations, helps assess relative importance of sources 

590 throughout a watershed, and is often interpreted to identify landscape parameters and ecosystem 

591 processes correlated with water chemistry (Liu et al. 2000).

592 The relatively low costs for labor and laboratory analysis are a prime advantage of synoptic 

593 sampling over frequent automated monitoring.  (Harmel et al. 2006c) note that success of 

594 monitoring projects depends on careful attention to the tradeoff between the resources available 

595 for data collection and adequate characterization of water quality.  Automated samplers typically 

596 yield better data but are especially expensive compared to manual sampling.  The cost of 

597 automated monitoring is a significant obstacle to assessing large numbers of watersheds and 

598 restricts data available for analysis.

599 We demonstrate statistically that spot sampling is even more effective than previously reported, 

600 especially for placing average nitrogen levels in watershed discharges within broad enrichment 

601 gradient (Fig. 6).  For this purpose, the SERC data revealed that a single spot sample was almost 

602 as effective as the far greater and more costly effort of monitoring flow continuously and 

603 collecting and analyzing 52 weekly composite samples for 1-3 years (Fig. 6c, e).  Similarly, the 
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604 CBNTN analysis showed that a single spot sample was almost as effective for assessing 

605 averaging nitrogen concentration as monitoring flow continuously, collecting and analyzing an 

606 average of 98 water samples per site, and integrating the flow and concentration data with an 

607 advanced statistical model (Fig. 6i).  Of course, the more detailed CBNTN protocols remain 

608 necessary to meet the CBNTN goal of characterizing nutrient and sediment dynamics at multiple 

609 temporal scales, including events, seasons, years, and multiyear trends.

610 Spot sampling may be adequate to meet some purposes for which more expensive sampling 

611 methods are now recommended.   Current recommendations suggest automated or composite 

612 sampling for measuring fate and transport, program effectiveness, and research (NRCS 2003) as 

613 well as for predicting longer term longer term water quality, especially for smaller systems with 

614 high temporal variability (Kirchner and Neal 2013).  Cassidy and Jordan (2011) state that only 

615 near-continuous monitoring is adequate for comparative monitoring and evaluation.  However, 

616 many research and management issues lead to questions about how average nitrogen levels 

617 compare among watersheds or before and after management interventions.  Our results suggest 

618 that, for nitrogen, spot sampling can be adequate for answering those questions (Fig. 6), even 

619 given high temporal variability in nitrogen levels in individual watersheds (Fig. 2 and Fig. 5).  

620 When the focus is on differences in average nitrogen levels among watersheds driven by 

621 different amounts of nitrogen enrichment, frequent sampling may not be needed.  Our results 

622 also support stream assessment protocols that collect one spring nitrate sample to assess 

623 watershed and stream nitrogen status (Ashton et al. 2014, Stranko et al. 2017).

624 Given the effectiveness of spot sampling (Table 1, Fig. 6), we support its more widespread 

625 application in nitrogen assessment and management.  McCarty and Haggard (2016) made a 

626 similar recommendation.  They argued for a revolution in allocating water quality monitoring 
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627 resources by using spot sampling of baseflow to assess nitrogen and phosphorus pollution and to 

628 target management actions, thus freeing resources to examine water-quality at finer spatial scales 

629 and to provide a more complete information on spatial variability in water quality across 

630 watersheds.  Our analysis strongly supports their recommendation for nitrogen management and 

631 assessment, but less so for phosphorus (see below).

632 Other authors have also emphasized the need for better spatial coverage in water sampling.  

633 (Abbott et al. 2018) highlighted the need to understand sources and sinks in headwater 

634 catchments where the vast majority of water and solutes enter aquatic ecosystems (Alexander et 

635 al. 2007, Baker et al. 2007, Bishop et al. 2008, McDonnell and Beven 2014).  Those headwater 

636 systems are where water quality problems originate, yet they are too numerous (thousands or 

637 more in large river systems) to monitor frequently, presenting a “headwater conundrum”, which 

638 can be resolved with synoptic sampling (Abbott et al. 2018).

639 Spot sampling of stream nitrate could be especially useful in citizen science efforts to assess 

640 water quality.  Such efforts engage citizen volunteers to expand the capabilities of research or 

641 assessment teams and to educate citizens about science and management issues.  Nitrate 

642 monitoring with baseflow sampling could be a part of a citizen monitoring program, requiring 

643 only minimal training in sample collecting, sample storage, and using smartphone global 

644 positioning to locate and document sampling sites.

645 Enthusiasm for the success of spot sampling in predicting flow-weighted average nitrogen levels 

646 (Fig. 6) should be tempered when considering phosphorus or other materials transported mainly 

647 on particles.  McCarty and Haggard (2016) suggested using baseflow sampling for assessing 

648 other materials, such as phosphorus.  We did find statistically significant correlations between 

649 spot measurements of phosphorus and flow-weighted average levels in composite measurements, 
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650 but those relationships have much lower explanatory power (R2 < 42%) than the relationships for 

651 nitrate and total nitrogen (R2 >82%, Table 2).  For nitrogen levels, spatial differences among 

652 watersheds explain more of the observed variability than does temporal variation within 

653 watersheds, but the opposite is true for phosphorus and other particulates (Table 2).  Nor does 

654 good information on nitrogen levels help much with assessing phosphorus levels.  The 

655 correlation between flow-weighted average total phosphorus and total nitrogen is weak and not 

656 significant in both data sets (R2=8%, P=.07 for SERC composite samples and R2=0.1%, P=0.7, 

657 for CBNTN estimates from WRTDS synthesis).  Successful assessment of phosphorus levels and 

658 other particulates continues to demand monitoring methods that capture episodic, high 

659 concentrations occurring during storm events.

660 Is bootstrapping really necessary?

661 We fit linear relationships using a two-step bootstrapping procedure.  Many practitioners may 

662 not have the time or interest to implement bootstrapping, and they will seek easier ways to 

663 calibrate relationships predicting multiyear average nitrogen levels from spot sample 

664 measurements.  In our analyses of nine linear relationships (six for SERC data and three for 

665 CBNTN), the slopes, intercepts, and R2 values from simple linear regression closely match those 

666 from bootstrapping (Table 1).  The two approaches give very similar predictions of multiyear 

667 average nitrogen levels, but bootstrapping gives wider confidence limits (compare Fig. 6a to Fig. 

668 6b) because bootstrapping accounts for heteroscedasticity and sampling uncertainty while a 

669 simple linear model does not.  These results suggest that a simple linear model might be 

670 adequate for applications that need to predict average nitrogen levels but do not need estimates 

671 of confidence limits.  In contrast, simple linear models fit to log-log transformed variables did 

672 not perform well for our data.  The transformation did not eliminate heteroscedasticity, and the 
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673 models underpredicted for watersheds with high nitrogen levels--the most important watersheds 

674 for many research and management questions (see SERC Data Analysis section in Methods and 

675 Appendix S1, Supporting Information).  Analyses of our data suggest that simple linear 

676 regression using untransformed data would provide the most accurate shortcut for avoiding the 

677 bootstrapping method.  However, when needs include confidence limits or significance tests, not 

678 just predictions, a procedure like bootstrapping should be included to account for 

679 heteroscedasticity and sampling uncertainty.

680 CONCLUSION

681 The key findings of this study include:

682  Spot sample measurements estimate average nitrate and total nitrogen concentration in 

683 streams draining nitrogen-enriched watersheds almost as effectively as multiyear data 

684 from flow-weighted composite sampling or from WRTDS synthesis of continuous flow 

685 measurements and frequent water samples.

686  Estimates from spot samples are unbiased when implemented using calibrated 

687 relationships between spot measurements and flow-weighted composite or WRTDS 

688 measurements.

689  A simple linear regression works very well for fitting the calibrated relationships, but 

690 bootstrapping can make the analysis more rigorous by accounting for sampling error and 

691 heteroscedasticity.

692  Even a single spring spot sample can efficiently place watersheds within a broad gradient 

693 of anthropogenic watershed nitrogen loading.

Page 32 of 54Ecosphere



33

694  Spot sampling of nitrogen works well because it is transported to streams primarily as 

695 nitrate dissolved in subsurface flow rather attached to particles in surface flow during 

696 storms.

697  For nitrogen levels in the data sets we examined, more of the total variability across 

698 places and times was due to spatial differences among study watersheds than to temporal 

699 variation within watersheds.

700  Spot measurement of stream nitrate is a low cost, low labor way to quantify average 

701 nitrogen status.

702  Spot sampling can be a powerful tool for identifying nitrogen source areas and 

703 monitoring the results of nitrogen management actions.

704  Spot sampling should be more widely applied to make nitrogen assessment and 

705 management programs more expansive and cost effective.

706  Spot sampling is much less effective for materials that are mainly transported on 

707 particles, like phosphorus, so spot samples of such materials should be interpreted 

708 cautiously.

709 ACKNOWLEDGMENTS

710 The SERC stream data were collected with support from NSF (BSR-89-05219, DEB-92-06811, 

711 and DEB-93-17968), NOAA (NA66RG0129), the Governor’s Research Council of Maryland, 

712 the government of Charles County Maryland, and the Smithsonian Institution Environmental 

713 Sciences Program. David L. Correll initiated the SERC watershed study. We thank U.S.G.S. 

714 scientists Douglas L. Moyer, and Jeffrey G. Chanat for help accessing and interpreting the data 

715 from the Chesapeake Bay Nontidal Network (CBNTN).

Page 33 of 54 Ecosphere



34

716 LITERATURE CITED

717 Abbott, B. W., G. Gruau, J. P. Zarnetske, F. Moatar, L. Barbe, Z. Thomas, O. Fovet, T. Kolbe, S. Gu, A. C. Pierson-
718 Wickmann, P. Davy, and G. Pinay. 2018. Unexpected spatial stability of water chemistry in headwater 
719 stream networks. Ecology Letters 21:296-308.
720 Alexander, R. B., E. W. Boyer, R. A. Smith, G. E. Schwarz, and R. B. Moore. 2007. The role of headwater streams 
721 in downstream water quality. Journal of the American Water Resources Association 43:41-59.
722 Ashton, M. J., R. P. Morgan, 2nd, and S. Stranko. 2014. Relations between macroinvertebrates, nutrients, and water 
723 quality criteria in wadeable streams of Maryland, USA. Environmental Monitoring and Assessment 
724 186:1167-1182.
725 Baker, M. E., D. E. Weller, and T. E. Jordan. 2006. Comparison of automated watershed delineations: Effects on 
726 land cover areas, percentages, and relationships to nutrient discharge. Photogrammetric Engineering and 
727 Remote Sensing 72:159-168.
728 Baker, M. E., D. E. Weller, and T. E. Jordan. 2007. Effects of stream map resolution on measures of riparian buffer 
729 distribution and nutrient retention potential. Landscape Ecology 22:973-992.
730 Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of 
731 Statistical Software 67:1-48.
732 Birgand, F., C. Faucheux, G. Gruau, B. Augeard, F. Moatar, and P. Bordenave. 2010. Uncertainties in assessing 
733 annual nitrate loads and concentration indicators: part 1. Impact of sampling frequency and load estimation 
734 algorithms. Transactions of the ASABE 53:437-446.
735 Bishop, K., I. Buffam, M. Erlandsson, J. Folster, H. Laudon, J. Seibert, and J. Temnerud. 2008. Aqua incognita: the 
736 unknown headwaters. Hydrological Processes 22:1239-1242.
737 Boesch, D. F. 2019. Barriers and bridges in abating coastal eutrophication. Frontiers in Marine Science 6:123.
738 Boomer, K. M. B., D. E. Weller, T. E. Jordan, L. Linker, Z.-J. Liu, J. Reilly, G. Shenk, and A. A. Voinov. 2013. 
739 Using multiple watershed models to predict water, nitrogen, and phosphorus discharges to the Patuxent 
740 estuary. Journal of the American Water Resources Association 49:15-39.
741 Boyer, E. W., R. B. Alexander, W. J. Parton, C. Li, K. Butterbach-Bahl, S. D. Donner, R. W. Skaggs, and S. J. D. 
742 Grosso. 2006. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecological 
743 Applications 16:2123-2142.
744 Boyer, E. W., C. L. Goodale, N. A. Jaworski, and R. W. Howarth. 2002. Anthropogenic nitrogen sources and 
745 relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry 57/58:137-169.
746 Brakebill, J. W., S. W. Ator, and G. E. Schwarz. 2010. Sources of suspended-sediment flux in streams of the 
747 Chesapeake Bay Watershed: A regional application of the SPARROW model. Journal of the American 
748 Water Resources Association 46:757-776.
749 Brookshire, E. N. J., S. Gerber, J. R. Webster, J. M. Vose, and W. T. Swank. 2011. Direct effects of temperature on 
750 forest nitrogen cycling revealed through analysis of long-term watershed records. Global Change Biology 
751 17:297-308.
752 Campbell, J. L., J. W. Hornbeck, M. J. Mitchell, M. B. Adams, M. S. Castro, C. T. Driscoll, J. S. Kahl, J. N. 
753 Kochenderfer, G. E. Likens, J. A. Lynch, P. S. Murdoch, S. J. Nelson, and J. B. Shanley. 2004. Input-
754 output budgets of inorganic nitrogen for 24 forest watersheds in the northeastern United States: A review. 
755 Water Air and Soil Pollution 151:373-396.
756 Caraco, N. F., and J. J. Cole. 1999. Human impact on nitrate export: An analysis using major world rivers. Ambio 
757 28:167-170.
758 Cassidy, R., and P. Jordan. 2011. Limitations of instantaneous water quality sampling in surface-water catchments: 
759 Comparison with near-continuous phosphorus time-series data. Journal of Hydrology 405:182-193.
760 Chanat, J. G., D. L. Moyer, J. D. Blomquist, K. E. Hyer, and M. J. Langland. 2016. Application of a weighted 
761 regression model for reporting nutrient and sediment concentrations, fluxes, and trends in concentration and 
762 flux for the Chesapeake Bay nontidal water-quality monitoring network, results through water year 2012.  
763 Scientific Investigations Report 2015-5133. U.S. Geological Survey, Reston, Virginia USA.
764 Choi, S. 2016. Life is lognormal! What to do when your data does not follow a normal distribution. Anaesthesia 
765 71:1363-1366.
766 Correll, D. L. 1977. An overview of the Rhode River watershed research program. Pages 105-123 in D. L. Correll, 
767 editor. Watershed research in eastern North America - a workshop to compare results. Smithsonian 
768 Institution, Edgewater, Md.

Page 34 of 54Ecosphere



35

769 Correll, D. L. 1981. Nutrient mass balances for the watershed, headwaters intertidal zone, and basin of the Rhode 
770 River Estuary. Limnology and Oceanography 26:1142-1149.
771 Correll, D. L., T. E. Jordan, and D. E. Weller. 1995. The Chesapeake Bay watershed:  effects of land use and 
772 geology on dissolved nitrogen concentrations. Pages 639-648 in P. Hill and S. Nelson, editors. Toward a 
773 sustainable coastal watershed:  The Chesapeake experiment. Chesapeake Research Consortium, Solomons, 
774 Maryland USA.
775 Correll, D. L., T. E. Jordan, and D. E. Weller. 1999a. Effects of precipitation and air temperature on nitrogen 
776 discharges from Rhode River watersheds. Water, Air, and Soil Pollution 115:547-575.
777 Correll, D. L., T. E. Jordan, and D. E. Weller. 1999b. Precipitation Effects on Sediment and Associated Nutrient 
778 Discharges from Rhode River Watersheds. Journal of Environmental Quality 28:1897-1907.
779 Correll, D. L., T. E. Jordan, and D. E. Weller. 1999c. Transport of nitrogen and phosphorus from rhode river 
780 watersheds during storm events. Water Resources Research 35:2513-2521.
781 Creed, I. F., and L. E. Band. 1998. Export of nitrogen from catchments within a temperate forest: Evidence for a 
782 unifying mechanism regulated by variable source area dynamics. Water Resources Research 34:3105-3120.
783 Curran-Everett, D. 2018. Explorations in statistics: the log transformation. Advances in Physiology Education 
784 42:343-347.
785 Davidson, R., and J. G. MacKinnon. 2006. Bootstrap methods in econometrics. Page 1097 in H. Hassani, T. C. 
786 Mills, and K. Patterson, editors. Palgrave Handbook of Econometrics Volume 1: Econometric Theory. 
787 Palgrave Macmillan UK, London UK.
788 Doney, S. C. 2010. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328:1512-
789 1516.
790 Draper, N. R., and H. Smith. 1998. Applied regression analysis. John Wiley & Sons, New York, New York, USA.
791 Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. J. W. Arrowsmith Ltd., Bristol, England.
792 Efron, B., and G. Gong. 1983. A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. The 
793 American Statistician 37:36-48.
794 Ekwaru, J. P., and P. J. Veugelers. 2018. The overlooked importance of constants added in log transformation of 
795 independent variables with zero values: A proposed approach for determining an optimal constant. 
796 Statistics in Biopharmaceutical Research 10:26-29.
797 Eshleman, K. N., R. D. Sabo, and K. M. Kline. 2013. Surface water quality is improving due to declining 
798 atmospheric N deposition. Environmental Science & Technology 47:12193-12200.
799 Feng, C., H. Wang, N. Lu, T. Chen, H. He, Y. Lu, and X. M. Tu. 2014. Log-transformation and its implications for 
800 data analysis. Shanghai Archives of Psychiatry 26:105-109.
801 Feng, C., H. Wang, N. Lu, and X. M. Tu. 2013. Log transformation: application and interpretation in biomedical 
802 research. Statistics in Medicine 32:230-239.
803 Flachaire, E. 2005. Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap. 
804 Computational Statistics & Data Analysis 49:361-376.
805 Foley, J. A., N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, N. D. Mueller, C. O'Connell, 
806 D. K. Ray, P. C. West, C. Balzer, E. M. Bennett, S. R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. 
807 Rockstrom, J. Sheehan, S. Siebert, D. Tilman, and D. P. Zaks. 2011. Solutions for a cultivated planet. 
808 Nature 478:337-342.
809 Follmi, K. B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Science 
810 Reviews 40:55-124.
811 Froelich, P. N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the 
812 phosphate buffer mechanism1. Limnology and Oceanography 33:649-668.
813 Galloway, J. N., and E. B. Cowling. 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31:64-71.
814 Golden, H. E., E. W. Boyer, M. G. Brown, S. T. Purucker, and R. H. Germain. 2009. Spatial variability of nitrate 
815 concentrations under diverse conditions in tributaries to a lake watershed. Journal of the American Water 
816 Resources Association 45:945-962.
817 Grayson, R. B., C. J. Gippel, B. L. Finlayson, and B. T. Hart. 1997. Catchment-wide impacts on water quality: the 
818 use of 'snapshot' sampling during stable flow. Journal of Hydrology 199:121-134.
819 Greenacre, M. 2016. Data reporting and visualization in ecology. Polar Biology 39:2189-2205.
820 Harmel, D., S. Potter, P. Casebolt, K. Reckhow, C. Green, and R. Haney. 2006a. Compilation of measured nutrient 
821 load data for agricultural land uses in the United States. Journal of the American Water Resources 
822 Association 42:1163-1178.
823 Harmel, R. D., R. J. Cooper, R. M. Slade, R. L. Haney, and J. G. Arnold. 2006b. Cumulative uncertainty in 
824 measured streamflow and water quality data for small watersheds. Transactions of the ASABE 49:689-701.

Page 35 of 54 Ecosphere



36

825 Harmel, R. D., and K. W. King. 2005. Uncertainty in measured sediment and nutrient flux in runoff from small 
826 agricultural watersheds. Transactions of the ASAE 48:1713-1721.
827 Harmel, R. D., K. W. King, B. E. Haggard, D. G. Wren, and J. M. Sheridan. 2006c. Practical guidance for discharge 
828 and water quality data collection on small watersheds. Transactions of the ASABE 49:937-948.
829 Helsel, D. R., and R. M. Hirsch. 2002. Statistical methods in water resources. Report 04-A3, U. S. Geological 
830 Survey, Reston, Virginia USA.
831 Hirsch, R. M., D. L. Moyer, and S. A. Archfield. 2010. Weighted Regressions on Time, Discharge, and Season 
832 (WRTDS), with an Application to Chesapeake Bay River Inputs. Journal of the American Water Resources 
833 Association 46:857-880.
834 Homer, C., C. Huang, L. Yang, B. Wylie, and M. Coan. 2004. Development of a 2001 national land-cover database 
835 for the United States. Photogrammetric Engineering and Remote Sensing 70:829-840.
836 Jolliff, J. K., J. C. Kindle, I. Shulman, B. Penta, M. A. M. Friedrichs, R. Helber, and R. A. Arnone. 2009. Summary 
837 diagrams for coupled hydrodynamic-ecosystem model skill assessment. Journal of Marine Systems 76:64-
838 82.
839 Jordan, T. E., D. L. Correll, W. T. Peterjohn, and D. E. Weller. 1986. Nutrient flux in a landscape:  the Rhode River 
840 watershed and receiving waters. Pages 57-76 in D. L. Correll, editor. Watershed research perspectives. 
841 Smithsonian Institution Press, Washington, DC USA.
842 Jordan, T. E., D. L. Correll, and D. E. Weller. 1997a. Effects of Agriculture on Discharges of Nutrients from Coastal 
843 Plain Watersheds of Chesapeake Bay. Journal of Environmental Quality 26:836-848.
844 Jordan, T. E., D. L. Correll, and D. E. Weller. 1997b. Nonpoint Source Discharges of Nutrients from Piedmont 
845 Watersheds of Chesapeake Bay. Journal of the American Water Resources Association 33:631-645.
846 Jordan, T. E., D. L. Correll, and D. E. Weller. 1997c. Relating nutrient discharges from watersheds to land use and 
847 streamflow variability. Water Resources Research 33:2579-2590.
848 Jordan, T. E., D. L. Correll, and D. E. Weller. 2000. Mattawoman creek watershed nutrient and sediment dynamics: 
849 Final contract report to Charles County, Maryland. Smithsonian Environmental Research Center, 
850 Edgewater, Maryland USA.
851 Jordan, T. E., and D. E. Weller. 1996. Human contributions to terrestrial nitrogen flux. Bioscience 46:655-664.
852 Jordan, T. E., D. E. Weller, and D. L. Correll. 2003. Sources of nutrient inputs to the Patuxent River estuary. 
853 Estuaries 26:226-243.
854 Kaufmann, P. R., A. T. Herlihy, M. E. Mitch, J. J. Messer, and W. S. Overton. 1991. Stream chemistry in the eastern 
855 United States: 1. Synoptic survey design, acid-base status, and regional patterns. Water Resources Research 
856 27:611-627.
857 Kirchner, J. W., and C. Neal. 2013. Universal fractal scaling in stream chemistry and its implications for solute 
858 transport and water quality trend detection. Proceedings of the National Academy of Sciences, USA 
859 110:12213-12218.
860 Langland, M. J., P. L. Lietman, and S. Hoffman. 1995. Synthesis of nutrient and sediment data for watersheds 
861 within the Chesapeake Bay drainage basin. U.S. Geological Survey, Lemoyne, Pennsylvania USA.
862 Liu, Z.-J., D. E. Weller, D. L. Correll, and T. E. Jordan. 2000. Effects of Land Cover and Geology on Stream 
863 Chemistry in Watersheds of Chesapeake Bay. Journal of the American Water Resources Association 
864 36:1349-1365.
865 Mammen, E. 1993. Bootstrap and wild bootstrap for high-dimensional linear-models. Annals of Statistics 21:255-
866 285.
867 McCarty, J. A., and B. E. Haggard. 2016. Can we manage nonpoint-source pollution using nutrient concentrations 
868 during seasonal baseflow? Agricultural & Environmental Letters 1:1-5.
869 McDonnell, J. J., and K. Beven. 2014. Debates—The future of hydrological sciences: A (common) path forward? A 
870 call to action aimed at understanding velocities, celerities and residence time distributions of the headwater 
871 hydrograph. Water Resources Research 50:5342-5350.
872 Messer, J. J., C. W. Ariss, J. R. Baker, S. K. Drousé, K. N. Eshleman, A. J. Kinney, W. S. Overton, M. J. Sale, and 
873 R. D. Schonbrod. 1988. Stream chemistry in the southern Blue Ridge: Feasibility of a regional synoptic 
874 sampling approach. Journal of the American Water Resources Association 24:821-829.
875 Moatar, F., and M. Meybeck. 2005. Compared performances of different algorithms for estimating annual nutrient 
876 loads discharged by the eutrophic River Loire. Hydrological Processes 19:429-444.
877 Moyer, D. L., R. M. Hirsch, and K. E. Hyer. 2012. Comparison of two regression-based approaches for determining 
878 nutrient and sediment fluxes and trends in the Chesapeake Bay Watershed.  Scientific Investigations Report 
879 2012–5244. U. S. Geological Survey, Reston, Virginia USA.

Page 36 of 54Ecosphere



37

880 Moyer, D. L., M. J. Langland, J. D. Blomquist, and G. Yang. 2017. Nitrogen, phosphorus, and suspended-sediment 
881 loads and trends measured at the Chesapeake Bay Nontidal Network stations: Water years 1985-2016. U.S. 
882 Geological Survey data release https://doi.org/10.5066/F7RR1X68
883 Nixon, S. W. 1995. Coastal marine eutrophication:  a definition, social causes, and future consequences. Ophelia 
884 41:199-219.
885 NRCS. 2003. National water quality handbook. Natural Resources Conservation Service, U.S. Department of 
886 Agriculture, Washington, DC USA.
887 Preston, S. D., R. B. Alexander, G. E. Schwarz, and C. G. Crawford. 2011. Factors affecting stream nutrient loads: a 
888 synthesis of regional SPARROW model results for the continental United States. Journal of the American 
889 Water Resources Association 47:891-915.
890 R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical 
891 Computing, Vienna, Austria.
892 Rendevski, V., B. Aleksovski, M. Kolevska, D. Stojanov, K. Dimitrovski, A. M. Rendevska, V. Aleksovski, A. 
893 Petlickovski, D. Trajkov, and K. Stojanoski. 2016. Effects of data transformation on multivariate analyses 
894 in intracerebral hemorrhage. Macedonian Pharmaceutical Bulletin 62:37-42.
895 Roodman, D., M. Ø. Nielsen, J. G. MacKinnon, and M. D. Webb. 2019. Fast and wild: Bootstrap inference in Stata 
896 using boottest. The Stata Journal 19:4-60.
897 Rozemeijer, J., Y. P. van der Velde, H. de Jonge, F. van Geer, H. P. Broers, and M. Bierkens. 2010. Application and 
898 evaluation of a new passive sampler for measuring average solute concentrations in a catchment scale water 
899 quality monitoring study. Environmental Science & Technology 44:1353-1359.
900 Ryberg, K. R., A. J. Sekellick, and J. A. Falcone. 2017. Ancillary data related to nutrients in the Chesapeake Bay—
901 Data supporting structural equation modeling of nutrient loads. U.S. Geological Survey data release 
902 https://doi.org/10.5066/F7NG4NQ4
903 Schleppi, P., P. A. Waldner, and B. Fritschi. 2006a. Accuracy and precision of different sampling strategies and flux 
904 integration methods for runoff water: comparisons based on measurements of the electrical conductivity. 
905 Hydrological Processes 20:395-410.
906 Schleppi, P., P. A. Waldner, and M. Stahli. 2006b. Errors of flux integration methods for solutes in grab samples of 
907 runoff water, as compared to flow-proportional sampling. Journal of Hydrology 319:266-281.
908 Schlesinger, W. H. 2009. On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences, 
909 USA 106:203-208.
910 Scott, D., J. Harvey, R. Alexander, and G. Schwarz. 2007. Dominance of organic nitrogen from headwater streams 
911 to large rivers across the conterminous United States. Global Biogeochemical Cycles 21.
912 Seitzinger, S. P., R. V. Styles, E. W. Boyer, R. B. Alexander, G. Billen, R. W. Howarth, B. Mayer, and N. van 
913 Breeman. 2002. Nitrogen retention in rivers:  model development and application to watersheds in the 
914 Eastern U.S.A. Biogeochemistry 57/58:199-237.
915 Snedecor, G. W., and W. G. Cochran. 1989. Statistical methods, 8th Edition. Iowa State University Press, Ames, 
916 Iowa USA.
917 Sobota, D. J., J. E. Compton, M. L. McCrackin, and S. Singh. 2015. Cost of reactive nitrogen release from human 
918 activities to the environment in the United States. Environmental Research Letters 10:025006.
919 Stewart, B. A., and R. Lal. 2017. The nitrogen dilemma: Food or the environment. Journal of Soil and Water 
920 Conservation 72:124A-128A.
921 Stranko, S., D. Boward, J. Kilian, A. Becker, M. J. Ashton, M. Southerland, B. Franks, W. Harbold, and J. Cessna. 
922 2017. Maryland biological stream survey: Round four field sampling manual. Maryland Department of 
923 Natural Resources, Annapolis, Maryland USA.
924 Swistock, B. R., P. J. Edwards, F. Wood, and D. R. Dewalle. 1997. Comparison of methods for calculating annual 
925 solute exports from six forested Appalachian watersheds. Hydrological Processes 11:655-669.
926 Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with S.  Fourth edition. Springer, New York, 
927 New York USA.
928 Weller, D. E., and M. E. Baker. 2014. Cropland Riparian Buffers throughout Chesapeake Bay Watershed: Spatial 
929 Patterns and Effects on Nitrate Loads Delivered to Streams. Journal of the American Water Resources 
930 Association 50:696-712.
931 Weller, D. E., M. E. Baker, and T. E. Jordan. 2011. Effects of riparian buffers on nitrate concentrations in watershed 
932 discharges: new models and management implications. Ecological Applications 21:1679-1695.
933 Weller, D. E., T. E. Jordan, D. L. Correll, and Z. J. Liu. 2003. Effects of land-use change on nutrient discharges 
934 from the Patuxent River watershed. Estuaries 26:244-266.

Page 37 of 54 Ecosphere

https://doi.org/10.5066/F7RR1X68
https://doi.org/10.5066/F7NG4NQ4


38

935 Weller, D. E., T. E. Jordan, K. G. Sellner, K. Foreman, K. Shenk, P. Tango, S. W. Phillips, and M. Dubin. 2010. 
936 Small watershed monitoring designs. Chesapeake Bay Program Scientific and Technical Advisory 
937 Program, Edgewater, Maryland USA.
938 Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer, New York, New York USA.
939 Wolock, D. M., J. Fan, and G. B. Lawrence. 1997. Effects of basin size on low-flow stream chemistry and 
940 subsurface contact time in the Neversink River Watershed, New York. Hydrological Processes 11:1273-
941 1286.
942 Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of 
943 Statistics 14:1261-1295.
944 Yang, L. M., S. M. Jin, P. Danielson, C. Homer, L. Gass, S. M. Bender, A. Case, C. Costello, J. Dewitz, J. Fry, M. 
945 Funk, B. Granneman, G. C. Liknes, M. Rigge, and G. Xian. 2018. A new generation of the United States 
946 National Land Cover Database: Requirements, research priorities, design, and implementation strategies. 
947 ISPRS Journal of Photogrammetry and Remote Sensing 146:108-123.
948 Zambrano-Bigiarini, M. 2020. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed 
949 hydrological time series, R package version 0.4-0. https://doi.org/10.5281/zenodo.839854
950 Zhang, Q., J. D. Blomquist, D. L. Moyer, and J. G. Chanat. 2019. Estimation bias in water-quality constituent 
951 concentrations and fluxes: A synthesis for Chesapeake Bay rivers and streams. Frontiers in Ecology and 
952 Evolution 7.

953

954

Page 38 of 54Ecosphere

https://doi.org/10.5281/zenodo.839854


39

955 SUPPORTING INFORMATION

956 Additional supporting information may be found online at: 

957 DATA AVAILABILITY

958 The SERC data are available in the Supporting Information (see Data S1 and Metadata S1), and 

959 the CBNTN data are available in the references cited.

960
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961 Table 1.  Measures of skill for three methods of estimating multiyear average nitrate or total 

962 nitrogen concentration from spot concentration measurements applied to the SERC and CBNTN 

963 data sets.

 Relationship Method Intercept Slope Mean Error % Bias RMSE ubRMSE R2(%)
SERC

NO3 ~ sNO3 Direct 0.213 10.1 0.455 0.403 98.3
Simple linear -0.142 0.970 0.000 0.0 0.392 0.392 98.3
Bootstrap -0.109 0.952 -0.008 -0.4 0.353 0.353 98.7

NO3 ~ fsNO3 Direct 0.058 2.7 0.553 0.550 96.6
Simple linear -0.065 1.003 0.000 0.0 0.550 0.550 96.6
Bootstrap -0.041 0.993 0.002 0.1 0.503 0.503 97.2

TN ~ sDTN Direct -0.223 -6.3 0.506 0.454 98.2
Simple linear 0.170 1.019 0.000 0.0 0.450 0.450 98.2
Bootstrap 0.174 1.011 -0.018 -0.5 0.403 0.402 98.6

TN ~ fsDTN Direct -0.354 -10.0 0.652 0.548 97.4
Simple linear 0.337 1.006 0.000 0.0 0.547 0.547 97.4
Bootstrap 0.358 0.988 -0.029 -0.8 0.487 0.486 98.0

TN ~ sNO3 Direct -0.565 -19.6 0.742 0.481 97.8
Simple linear 0.503 1.027 0.000 0.0 0.474 0.474 97.8
Bootstrap 0.511 1.018 -0.014 -0.5 0.433 0.433 98.2

TN ~ fsNO3 Direct -0.720 -24.9 0.966 0.644 96.2
Simple linear 0.584 1.063 0.000 0.0 0.617 0.617 96.2
Bootstrap 0.587 1.057 -0.008 -0.3 0.578 0.578 96.7

CBNTN
NO3 ~ fsNO3 Direct 0.084 6.1 0.468 0.461 94.1

Simple linear 0.144 0.843 0.000 0.0 0.370 0.370 94.1
Bootstrap 0.143 0.843 -0.002 -0.2 0.356 0.356 94.5

TN ~ fsTN Direct 0.141 8.0 0.533 0.514 92.1
Simple linear 0.124 0.861 0.000 0.0 0.450 0.450 92.1
Bootstrap 0.133 0.855 -0.001 -0.1 0.440 0.440 92.5

TN ~ fsNO3 Direct -0.311 -17.6 0.572 0.481 92.7
Simple linear 0.481 0.883 0.000 0.0 0.435 0.435 92.7

  Bootstrap 0.482 0.880 -0.003 -0.2 0.420 0.420 93.2
964
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965 Table 2.  Analyses relating multiyear average concentration to spot concentration for additional 

966 water quality constituents sampled by SERC and CBNTN.

Linear Regression % of Total Variation

Constituent Slope R2 (%) Rs
2 (%) Station Residual

SERC
NO3 0.97 98.3 97.1 92.9 7.1
TN 1.02 98.2 89.3 86.6 13.4
SI 0.78 96.9 86.8 84.9 15.1
NH4 1.33 51.8 78.0 14.6 85.4
TKN 1.77 44.1 44.4 10.0 90.0
TP 4.47 35.1 62.9 8.3 91.7
TOC 0.95 17.6 33.6 5.6 94.4
PO4 2.28 14.4 41.5 8.7 91.3

CBNTN
NO3 0.84 94.1 93.1 93.9 6.1
TN 0.86 92.1 82.2 94.0 6.0
PO4 Ϯ 1.06 26.4 37.9 56.2 43.8
TP 0.05 0.8 16.3 56.4 43.6
TSS 0.03 1.8 0.4 14.2 85.8

967

968 Slope and R2 from linear regressions of flow-weighted average concentration in weekly 

969 composite samples vs. average spot sample concentration (SERC), or of flow-weighted average 

970 concentration from WRTDS synthesis vs. the first spring spot sample (CBNTN).  Rs
2 is the 

971 squared Spearman rank-order correlations (R cor function, R Core Team 2017).  The Station 

972 column is the percentage of total variation among weeks and watersheds (SERC) or among 

973 months and watersheds (CBNTN) attributable to differences among watersheds.  The Residual 

974 column is the remainder due to temporal variation within watersheds and to error.  For each data 

975 set, constituents listed above the dashed line are transported in dissolved form while constituents 

976 below the dashed line are primarily transported on particles.

977 Ϯ We placed CBNTN PO4 below the dotted line even though the CBNTN measures dissolved 

978 PO4 on filtered samples.  PO4 is transported in streams and rivers mostly on particles (Follmi 
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979 1996, Jordan et al. 1997b, a), and dissolved PO4 exchanges with that particulate PO4 (Froelich 

980 1988).  Therefore, the factors that drive high temporal variability in particulate PO4 

981 concentration can also affect dissolved PO4 measurements.
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983 Figure Legends

984

985 Fig. 1.  Boundaries for 59 SERC (blue outlines) and 85 CBNTN (red outlines) watersheds within 

986 the Chesapeake Bay drainage (outer black boundary).  Shaded areas within that boundary are 

987 four major physiographic provinces (Langland et al. 1995).  The underlying base map of the U.S. 

988 mid-Atlantic region (ESRI 2019) shows the coastline and boundaries of six states (NY, PA, MD, 

989 DE, WV, and VA) intersected by the Chesapeake watershed.  The diagonal arrow points to the 

990 Rhode River watershed cluster.

991 Fig. 2.  SERC stream sampling scheme for one station.  Top, stream discharge measured 

992 continuously (solid line), with the timing of spot samples marked by ticks on the horizontal axis.  

993 Bottom, nitrate concentration in weekly flow-weighted, composite water samples (solid line), 

994 seasonal spot samples (blue dots), and the first spring spot sample (red square).  Horizontal lines 

995 mark the average nitrate concentrations for the weekly composites (black solid line) and the 

996 seasonal spots (blue dashed line), as well as the concentration in the first spring spot (red, dot-

997 dash line).

998 Fig. 3.  Geographic characteristics of the study watersheds.  (a) distributions of watershed area 

999 (SERC, left bars, blue; CBNTN, right bars, red).  Note log10 scale on horizontal axis.  (b) land 

1000 cover proportions:  SERC (blue circles and square) and CBNTN (red triangles).  The aggregated 

1001 categories shown on the three axes together cover more than 95% of the land in every watershed.  

1002 The blue square is SERC station 522, which had the highest TN and NO3 concentrations across 

1003 both data sets.
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1004 Fig. 4.  Frequency distributions of flow-weighted measurements of nitrogen concentrations.  (a,b) 

1005 nitrate concentration. (c,d) total nitrogen concentration.  (a,c; blue) averages from automated 

1006 composite sampling of 59 SERC watersheds. (b,d; red) averages from WRTDS synthesis for 85 

1007 CBNTN watersheds.

1008 Fig. 5.  Average flow-weighted nitrate concentration versus average spot nitrate concentration for 

1009 59 SERC watersheds and variability in those measurements.  Light blue lines mark the ranges for 

1010 both variables.  For composite measurements only, dark gray lines and whiskers mark one 

1011 standard deviation while black lines and whiskers mark one standard error of the mean.  The 

1012 dashed line is the 1:1 line.  The uppermost point is watershed 522.

1013 Fig. 6.  Regression models for predicting average flow-weighted concentration from spot 

1014 measurements:  (a-c) flow-weighted average NO3 vs. spot measurements for SERC data. (a) 

1015 linear regression of flow-weighted average NO3 vs. average spot sNO3.  (b) bootstrapped linear 

1016 regression of the same variables.  (c) bootstrapped regression of NO3 vs. first spot fsNO3.  (d-f) 

1017 bootstrapped regressions of flow-weighted average total nitrogen concentration (TN) vs. spot 

1018 measurements for SERC data: (d) average spot dissolved TN, (e) average spot NO3, (f) first spot 

1019 NO3.  (g-i) bootstrapped regressions of average flow-weighted concentration from WRTDS 

1020 synthesis vs. spot measurements for CBNTN data:  (g) WRTDS average NO3 vs. first spot 

1021 fsNO3, (h) WRTDS TN vs. first spot fsTN, (i) WRTDS TN vs.fsNO3.  Note differences in axis 

1022 scaling between SERC (a-f) and CBNTN (g-i) data.  All panels show the 1:1 line (long-short 

1023 dashed), the regression line (solid), the 95% confidence interval (dark gray shading), and the 

1024 95% prediction interval (light gray shading).  For bootstrapped models, the outer dashed lines are 

1025 loess-smoothed representations of bootstrap prediction intervals.
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1026 Fig. 7.  Distributions of the regression slope (a) and predictions (b,c) for the bootstrapped model 

1027 relating average composite-sampled nitrate (NO3) to average spot-sampled nitrate (sNO3).

1028 Fig. 8.  Relationships of flow-weighted average nitrate (NO3) vs. first spot nitrate (fsNO3) for 

1029 SERC composite samples (blue circles) and CBNTN WRTDS estimates (red triangles) 

1030 watersheds.  Solid lines are the bootstrapped regression models (Table 1), and the dashed line is 

1031 the 1:1 line.

1032 Fig. 9.  The fraction of total nitrogen (TN) as nitrate (NO3) versus TN concentration.  Left, flow-

1033 weighted averages from composite samples at 59 SERC watersheds.  Right, flow-weighted 

1034 average WRTDS estimates for 85 CBNTN watersheds.  The black line is a smoothed curve (R 

1035 loess function, R Core Team 2017)) through the NO3 data (black points).  The (red) shaded area 

1036 below that line is the smoothed fraction of NO3 at any level of TN.  The (blue) shaded area 

1037 above that line is the fraction of other nitrogen components (essentially ammonium plus organic 

1038 nitrogen).  Above the dotted line, more than half of the TN is NO3.
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