DSpace Repository

Global prevalence and distribution of genes and microorganisms involved in mercury methylation

Show simple item record

dc.contributor.author Podar, Mircea en
dc.contributor.author Gilmour, Cynthia C. en
dc.contributor.author Brandt, Craig C. en
dc.contributor.author Soren, Allyson en
dc.contributor.author Brown, Steven D. en
dc.contributor.author Crable, Bryan R. en
dc.contributor.author Palumbo, Anthony V. en
dc.contributor.author Somenahally, Anil C. en
dc.contributor.author Elias, Dwayne A. en
dc.date.accessioned 2015-11-04T11:28:57Z
dc.date.available 2015-11-04T11:28:57Z
dc.date.issued 2015
dc.identifier.citation Podar, Mircea, Gilmour, Cynthia C., Brandt, Craig C., Soren, Allyson, Brown, Steven D., Crable, Bryan R., Palumbo, Anthony V., Somenahally, Anil C., and Elias, Dwayne A. 2015. "<a href="https%3A%2F%2Frepository.si.edu%2Fhandle%2F10088%2F27494">Global prevalence and distribution of genes and microorganisms involved in mercury methylation</a>." <em>Science Advances</em>. 1 (9):<a href="https://doi.org/10.1126/sciadv.1500675">https://doi.org/10.1126/sciadv.1500675</a> en
dc.identifier.issn 2375-2548
dc.identifier.uri http://hdl.handle.net/10088/27494
dc.description.abstract Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in &gt;3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential. The hgcAB genes were found in nearly all anaerobic (but not aerobic) environments, including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost soils, coastal "dead zones," soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of methylating Hg emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic Archaea may have been the first to perform these biotransformations. A global metagenome assessment reveals a low risk of methylmercury production in humans and a high potential in Arctic permafrost. A global metagenome assessment reveals a low risk of methylmercury production in humans and a high potential in Arctic permafrost. en
dc.relation.ispartof Science Advances en
dc.title Global prevalence and distribution of genes and microorganisms involved in mercury methylation en
dc.type Journal Article en
dc.identifier.srbnumber 137635
dc.identifier.doi 10.1126/sciadv.1500675
rft.jtitle Science Advances
rft.volume 1
rft.issue 9
dc.description.SIUnit SERC en
dc.description.SIUnit Peer-reviewed en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account