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Abstract 11 

 12 

Crustacean fisheries often preferentially or exclusively harvest males, resulting in selection that 13 

alters sex ratios in fished populations. Sex-biased fisheries may occur when males are larger and 14 

fisheries are size-selective, or when regulations limit or prohibit harvest of females to protect 15 

sufficient spawning stock to maintain the population. This review explores the evidence for 16 

fishery-induced alterations in sex ratios in crustacean fisheries and the resulting effects on 17 

reproductive output at the level of the individual and population. Crustacean fisheries exhibit 18 

substantial spatial and temporal variation in exploitation, which could lead to hotspots of altered 19 

sex ratios. Experimental manipulations simulating the effects of selective harvest indicate that 20 

altered sex ratios can lead to sperm limitation and reduction in the reproductive output of 21 

individual females. The effects of altered sex ratios on reproduction at the population scale 22 

remain poorly understood. Future directions for improving our understanding of the effects of 23 

altered sex ratios on reproductive output include focused studies on sperm limitation at high 24 

fishery exploitation rates, model simulations of population scale reproductive output that account 25 

for individual variation in sperm quantity, and detailed studies of sperm storage and use during 26 

fertilization. 27 

 28 
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Introduction 30 

 31 

The global catch of crustacean fisheries is increasing despite a leveling-off of wild capture of all 32 

fishery species, highlighting a critical need to improve our understanding of the effects of 33 

crustacean fisheries on fished populations, species, and ecosystems to inform the transition to 34 

Ecosystem-Based Management (Crowder et al. 2008; Anderson et al. 2011; FAO 2018). 35 

Compared to other taxa such as forage fish, fisheries targeting crustacean populations can deplete 36 

their biomass at lower rates of exploitation, while having equivalent ecosystem effects due to 37 

biomass removal (Eddy et al. 2017). When declines in crustacean fisheries occur, recruitment 38 

overfishing is commonly implicated as a cause of decline (Jamieson 1993; Orensanz et al. 1998; 39 

Armstrong et al 1998; Miller et al. 2011), but other mechanisms also affect population dynamics 40 

including disease (Meyers et al. 1987; Wilhelm and Mialhe 1996; Lee and Frischer 2004; 41 

Frischer et al. 2018; Groner et al. 2018) and environmental variability (Shanks and Roegner 42 

2007; Parada et al. 2010; Caputi and Brown 2011; Ogburn et al. 2012; Sanz et al. 2017). 43 

However, crustacean fisheries can also alter fished populations through other mechanisms such 44 

as changes in sex ratios. 45 

 46 

Sex-biased harvest occurs in many crustacean fisheries, which can have follow-on effects on 47 

mating and reproductive output. In some fisheries, large males are more valuable than other 48 

segments of the population and are targeted by fishers (Millikin and Williams 1984; Sato 2012). 49 

In others, fishery regulations limit or prohibit the capture of females to protect the spawning 50 

stock (Jamieson et al. 1998; Miller et al. 2011). In either case, sex-bias results in population sex 51 

ratios that are skewed towards females (Jamieson et al. 1998; Miller et al. 2011; Sato 2012). In 52 
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rare cases, fisheries may selectively harvest females if there is sexual-segregation during 53 

spawning migrations (e.g. Van Engel 1958). Shifts in the ratio of reproductively-capable males 54 

and females at the time of mating, the operational sex ratio, can result in reductions in the 55 

quantity of sperm transferred to females during mating that potentially reduces their reproductive 56 

output (Smith and Jamieson 1991; Stevens et al. 1993; Lovrich et al. 1995; Carver et al. 2005; 57 

Sato 2011; Ogburn et al. 2014; Pardo et al. 2015, 2017). At extremely biased sex ratios or in 58 

species for which females preferentially mate with large males, females may have reduced 59 

reproductive success because they are unable to find mates (Rowe and Hutchings 2003; Rains et 60 

al. 2018). Selective harvest of large males may also result in micro-evolution towards smaller 61 

size at maturity (Fenberg and Roy 2008). Although altered sex ratios related to sex-biased 62 

fisheries have been observed for a variety of crustacean fisheries, the impacts on population-level 63 

reproductive output remain poorly understood for many species (e.g. Ogburn et al. 2014; Rains 64 

et al. 2016, 2018).  65 

 66 

Sperm limitation, a condition in which females obtain insufficient sperm to fertilize their lifetime 67 

potential brood production (Pennington 1985; Pitnick 1993), is a primary mechanism by which 68 

altered sex ratios reduce reproductive effort. The details of sperm limitation likely differ 69 

depending on the life history of individual species (Sato 2012). It may have a greater impact for 70 

species with internal fertilization compared to broadcast spawners, and for species with short 71 

mating seasons due to life history, behavior, or seasonal timing compared to species with 72 

extended mating seasons with more opportunities for mating events (Waddy and Aiken 1986; 73 

Sainte-Marie 1993). Species with long-term sperm storage without additional mating events 74 

could be highly impacted, especially if they have multiple broods from a single mating event 75 
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(Austin et al. 1975; Morgan et al. 1983; Paul and Paul 1992). Some mating behaviors may also 76 

exacerbate sperm limitation, such as limited female mate choice combined with recently-mated 77 

males remaining dominant mate-competitors (Kendall and Wolcott 1999; Sato and Goshima 78 

2007a; Pardo et al. 2016). The goals of this paper are to explore sources of temporal and spatial 79 

variation in size-selective fisheries, review experimental evidence supporting effects of size-80 

selective fisheries on crustacean mating systems, evaluate potential effects on reproductive 81 

output, and identify future research needs to improve our understanding of the impacts of sex-82 

selective fisheries on crustacean populations. 83 

 84 

Variation in Fishery Exploitation 85 

 86 

Fishery exploitation varies in space and time, and understanding that variation is critical to 87 

identifying hotspots of selective harvest where altered sex ratios and sperm limitation are most 88 

likely to be found in wild populations. Synthesis of fisheries catch and effort data reveal global 89 

and regional patterns of variation in fishery exploitation (Halpern et al. 2008; Watson et al. 2013; 90 

Kroodsma et al. 2018; Belhabib et al. 2018). Variation in exploitation by crustacean fisheries at 91 

regional scales can be substantial (Mullowney and Dawe 2009; Brehme et al. 2013; 92 

Vasilakopoulos and Maravelia 2016; Bueno-Pardo et al. 2017). In Northeast Atlantic and 93 

Mediterranean crustacean fisheries for example, exploitation rates for 63 stocks of six species 94 

were below maximum sustainable yield (MSY) in northern areas compared with 2-4 times MSY 95 

in southern areas despite management of all stocks under the European Commission Common 96 

Fisheries Policy (Vasilakopoulos and Maravelia 2016). Within individual fisheries, fishing effort 97 
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and exploitation rate can vary at scales of a few to tens of km (Bonine et al. 2008; Turner et al. 98 

2015), including due to sector-specific spatial patterns (Semmler 2016; Corrick 2018).  99 

 100 

Temporal variation in fishery exploitation is also common due to mechanisms including seasonal 101 

and interannual environmental variability, fishery regulations, and socioeconomic factors. 102 

Seasonal variation in fishery exploitation can be particularly common at mid-high latitudes, 103 

where patterns in exploitation can be driven by seasonal shifts in species distributions or 104 

behaviors (Van Engel 1958; George and Nayak 1961; MacDiarmid 1991; Groeneveld and 105 

Melville-Smith 1995; Robichaud and Campbell 1999; Stone et al. 1992; Stone and O’Clair 106 

2001). For example, Robichaud and Campbell (1999) observed the highest trap catch of mature 107 

lobsters Homarus americanus during summer in shallow waters of the Bay of Fundy, Canada, 108 

likely associated with movement from deep to shallow water in spring for egg extrusion and 109 

mating and a return to deeper areas in fall. Seasonal harvest is often mandated by fishery 110 

regulations, including in fisheries for crabs (Miller 1976; Bunnell et al. 2010; Rasmuson 2013; 111 

Kincaid and Rose 2014), shrimps (Watson et al. 1993), and mixed species, (Samy-Kamal et al. 112 

2015). Environmental factors such as unfavorable weather conditions (Pet-Soede et al. 2001; 113 

Sbrana et al. 2003; Bastardie et al. 2013) and seasonal occurrence of hypoxia (Purcell et al. 114 

2017) can drive seasonal spatial patterns of fishing fleets. Multi-year shifts in target species 115 

distribution also occur under warm or cold conditions or long-term climate change (Armstrong et 116 

al. 2010; Parada et al. 2010), as observed for red king crab Paralithodes camtschaticus in Bristol 117 

Bay, Alaska (Zacher et al. 2018). Finally, seasonal timing of exploitation can vary due to 118 

economic or social drivers (Stephenson et al. 2018), such as concentration of fishing effort 119 

targeting male blue crabs Callinectes sapidus in summer that yields localized exploitation rates 120 
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>50% per month (Semmler 2016) that coincides with the minimum operational sex ratio and 121 

sperm quantity transferred during mating (Ogburn et al. 2014).  122 

 123 

Experimental Manipulation of Sex Ratios  124 

 125 

Experimental manipulation of mating events provides strong evidence suggesting that sex-biased 126 

fisheries can cause sperm-limitation. Males often require days to months to recover the quantity 127 

of sperm used in a single mating event (MacDiarmid and Butler 1999; Kendall et al. 2001; Sato 128 

et al. 2005, 2006, 2010). For example, male spiny king crab Paralithodes brevipes had 129 

significantly lower sperm stores 28 days after mating compared to unmated males, indicating that 130 

they are unable to recover sperm stores between mating events within a mating season (Sato et 131 

al. 2006). Males that mate more frequently than the recovery time can deplete the sperm stores 132 

and transfer fewer sperm in subsequent mating events (Kendall and Wolcott 1999; MacDiarmid 133 

and Butler 1999; Kendall et al. 2001, 2002; Hines et al. 2003; Sato et al. 2005, 2006, 2010; Sato 134 

and Goshima 2006; Rubolini et al. 2007). Depletion of sperm from successive mating events 135 

may be a particularly important mechanism of sperm limitation in species like the blue crab C. 136 

sapidus, in which males use a large fraction of their sperm quantity and females obtain their 137 

entire lifetime supply of sperm during a single mating event (Jivoff 1997a, 1997b).  138 

 139 

The amount of sperm transferred during mating can also be regulated by a variety of other 140 

factors related to reproductive biology and behavior. The quantity of sperm transferred can be 141 

related to male size, female size, or the relative sizes of a mating pair (MacDiarmid and Butler 142 

1999; Gosselin et al. 2003; Sato and Goshima 2006; Sato et al. 2006, 2010), although size and 143 
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sperm quantity are unrelated in others (e.g. Kendall et al. 2002). Females of some species are 144 

only receptive for brief periods of a few days or less (Sato and Goshima 2006; Moyano et al. 145 

2015), which can combine with male mate guarding behaviors to limit the opportunity for sperm 146 

transfer (Rondeau and Sainte-Marie 2001; Kendall et al. 2001, 2002; Jivoff 2003). Males may 147 

also exhibit plasticity in sperm allocation, reducing the amount of sperm transferred during each 148 

mating event (the sperm economy hypothesis) as observed in snow crab Chionoecetes opilio 149 

(Rondeau and Sainte-Marie 2001) and crayfish Austropotamobius italicus (Rubolini et al. 2006). 150 

Other species such as the stone crab Hepalogaster dentata and marmola crab Metacarcinus 151 

edwardsii do not exhibit sperm economy, instead increasing sperm transfer with increased mate 152 

competition (Sato and Goshima 2007b, 2007c; Pardo et al. 2018). Experiments simulating the 153 

effects of selective harvest by manipulating sex ratios or removing large males resulted in 154 

reduced female reproductive success (fertilization rate and/or individual reproductive output) 155 

(MacDiarmid and Butler 1999; Rondeau and Sainte-Marie 2001; Sato and Goshima 2006), 156 

although few experiments have had a sufficient duration to evaluate consequences for 157 

reproductive output. 158 

 159 

Reproductive Output 160 

 161 

The critical question for fishery managers is whether the sperm limitation due to altered sex 162 

ratios observed in experimental settings translates into reductions in the reproductive output of 163 

wild populations. For some fished species including snow crabs (Rondeau and Sainte-Marie 164 

2001), king crabs (Sato et al. 2005, 2006, 2007), coconut crabs (Sato 2011), and lobsters 165 

(MacDiarmid and Butler 1999), there appears to be little debate that some females could be 166 
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sperm-limited and that reproductive output may be diminished as a result. In contrast, there has 167 

been substantial debate about whether sperm limitation reduces reproductive output at the 168 

population level in other fisheries (Ogburn et al. 2014; Rains et al. 2016, 2018).  169 

 170 

The blue crab C. sapidus in Chesapeake Bay provides a case study highlighting the difficulty of 171 

evaluating the potential for population-scale sperm limitation. Mature female blue crabs mate 172 

within one to several days following the molt to maturity and are not thought to molt or mate 173 

again (Van Engel 1958). Sperm from the single mating period are stored for up to several years 174 

and are used to fertilize multiple broods of eggs (Hines et al. 2003; Dickinson et al. 2006; 175 

Darnell et al. 2009). Although the average female only survives for one spawning season, an 176 

estimated 15% survive to a second spawning season (Miller et al. 2011). Large-male biased 177 

fisheries result in altered sex ratios resulting in substantial variation in the quantity of sperm in 178 

males (Carver et al. 2005), and that females receive during mating (Kendall et al. 2002; Hines et 179 

al. 2003; Ogburn et al. 2014; Rains et al. 2016). Ogburn et al (2014) found that the quantity of 180 

sperm females received declined at low operational sex ratios (the ratio of mature males to pre-181 

pubertal females) suggesting sperm limitation occurs in wild crabs, however Rains et al. (2016) 182 

failed to observe a similar pattern in response to the sex ratio of adult crabs (note that sex ratio 183 

was calculated differently in the two studies).  184 

 185 

Simulation studies of reproductive output of Chesapeake Bay blue crabs have arrived at opposite 186 

conclusions regarding population-scale sperm limitation. Ogburn et al. (2014) simulated the 187 

lifetime reproductive output of individual female blue crabs at different levels of initial sperm 188 

stores obtained during mating, rates of sperm decline during long-term storage, and sperm:egg 189 
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ratios during fertilization, finding that some individuals are likely sperm limited if they survive 190 

to reproduce in a second spawning season. In contrast, Rains et al. (2018) used an individual-191 

based model to evaluate the effects of different selective fishing scenarios on operational sex 192 

ratio and sperm quantity and found that simulated populations were only sperm limited when sex 193 

ratios became so extreme that females were unable to find mates. Because unmated female blue 194 

crabs are extremely rare in Chesapeake Bay (Hines et al. 2003; Ogburn et al. 2014; Rains et al. 195 

2016), Rains et al. (2018) concluded that the population is not sperm limited. However, they 196 

evaluated sperm limitation using the average number of sperm per female for the population, a 197 

metric that is unlikely to detect sperm limitation if a relatively small portion of a population is 198 

sperm limited. 199 

 200 

A simple scenario illustrates the potential consequence of evaluating sperm limitation using 201 

population average sperm quantity rather than individual reproductive output. Consider a 202 

population of 10 female crabs that must receive 0.9 of the maximum amount of sperm during 203 

mating (assigned a value of 1.0) to produce their full lifetime potential reproductive output. At a 204 

low operational sex ratio, 2 of 10 crabs receive only 0.5 of the maximum load of sperm and the 205 

other 8 receive the maximum (1.0). Calculating the population average sperm quantity yields a 206 

value of 0.9, suggesting that there is no sperm limitation. However, two females only have 207 

sufficient sperm to produce 55.6% of their lifetime reproductive output, clear sperm limitation if 208 

they reach their full lifetimes. For the population as a whole, the sum of the reproductive output 209 

of the individual females is 92.3% of the reproductive output calculated using the population 210 

average. Thus, the effect of sperm limitation on population reproductive output may be difficult 211 

to detect if population average sperm quantity is selected as a metric rather than the sum of 212 
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individual reproductive output. For the blue crab, additional detailed biological data like the 213 

pattern and rate of sperm decline after mating, the number of sperm per egg used during 214 

fertilization, and the minimum sperm:egg ratio required for successful fertilization are required 215 

to accurately estimate whether reduced sperm stores lead to reductions in reproductive output 216 

(Ogburn et al. 2014). 217 

 218 

Future Directions 219 

 220 

This review explored patterns in crustacean fisheries likely to concentrate fishing effort and 221 

effects on sex ratios in space and time, experiments exploring mechanisms by which altered sex 222 

ratios affect reproduction, and evidence that selective harvest affects population scale 223 

reproductive output. The observed effects of selective (male-biased) harvest suggest a pattern 224 

that the impact of altered sex ratios increases as female reproductive opportunity decreases, from 225 

external fertilization to internal fertilization with a single brief period of receptivity (Table 1). 226 

Further evaluation of the effects of sex-selective harvest on crustacean populations is a high 227 

priority to increase fishery sustainability. In a review of the impacts of selective fisheries on 228 

decapod crustacean populations, Sato (2012) suggested that a combination of management 229 

actions (marine reserves, slot size limits, and maintenance of large individuals in good condition 230 

after capture and release) should reduce selectivity for large individuals that can have the most 231 

detrimental effects on populations. Evidence from the American lobster H. americanus suggests 232 

that strict enforcement of such regulations may mitigate the effects of selective harvest, perhaps 233 

even enhancing fishery production through increased population reproductive output (Comeau 234 

and Hanson 2018). In order to understand whether such outcomes are possible in other fisheries, 235 
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several critical data gaps should be addressed in future studies on species subjected to selective 236 

harvest. 237 

 238 

 Identify hotspots of intensive fishery exploitation that could increase the likelihood of 239 

altered operational sex ratios and sperm limitation and conduct field studies to determine 240 

if females are receiving reduced sperm quantities (e.g. Pardo et al. 2017) 241 

 Develop models of selective harvest scenarios and evaluate model results by scaling up 242 

individual reproductive output 243 

 Conduct experiments testing the sperm economy hypothesis in species managed by sex-244 

biased or male-only harvest controls 245 

 Conduct longer term experiments to determine whether reductions in the amount of 246 

sperm females receive during mating result in diminished reproductive output (e.g. Sato 247 

and Goshima 2006) 248 

 Determine the pattern and rate of decline of stored sperm following mating for species 249 

with long term sperm storage 250 

 Determine the number of sperm per egg used for fertilization and the minimum 251 

sperm:egg ratio required  252 

 253 

Summary 254 

 255 

Size and sex selective fisheries alter sex ratios in some crustacean populations. Fishery 256 

exploitation varies in space and time, indicating that studies on the impacts of selective fisheries 257 

on sex ratios, and the sperm limitation and reductions in reproductive output that can result, 258 
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should account for this spatiotemporal variation. Manipulative experiments suggest the sperm 259 

limitation is likely to occur in wild populations, however there are still few examples with clear 260 

links between altered sex ratios, sperm limitation, and reduction in population reproductive 261 

output. Future studies focused on identifying sperm limitation in wild populations, evaluating 262 

consequences for reproductive output at the individual level, and improving our understanding of 263 

processes occurring during sperm storage and fertilization are needed to improve our 264 

understanding of the population level impacts of selective harvest strategies that alter sex ratios. 265 

  266 
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