MAYAN CALENDAR SYSTEMS. II

BY

```
CYRUS THOMIAS
```


CO NTENTS

Page
Prefatory note 203
Initial series of Mayan inscriptions 203
Secondary ummeral series of the Quirigua inscriptions 226
Maya chronological system 2:34
The Cakchiquel calendar $2: 5$
Maya method of calculation 282
Signification of the nmmeral series 290
Inscription at Xcalumkin, Yucatan 299
Inscription on Stela 6. Copan 301
The nephrite stone of the Levden Mnsemm 302
Calendar and number tables 303

ILIISTRATIONS

Page
Plate LXXI. Inscription on the west sile of Stela F.Quirigua. Mandslay part 12. plate x_{1} 204
LXXIT. Inscription on the west sile of Stela E, Quirigua. Mandslay, part 12, plate xxxı 308
LXXIII. Inscription on the east side of Stela F. Quirigua. Mandslay. part 12 , plate x $\because 10$
LXXIV. Inscription on the hack of Stela I, Quirigma. Mandslay. part 12 , plate xLyi $? 14$
LXXV. Inscription on the east side of Stela A. Quirigua. Mamdslay. part 11. plate VII 216
LXXVI. Part of inscription on Stela D. ('opan. Maudslay, part ㄹ. plate xLViII 292
LXXVII. Part of inscription on Stela D. Copan. Maudslay. part ?, plate xLvir 222
LXXVIII. Inscription on the east side of Stela E, Quirigna. Mandslay, part 12 , plate xxxu 232
LXXIX. Plate Lxil of the Dresden codex $2: 38$
LXXX. Plate Lxix of the Dresden corlex 240
LXXXI. Plate LXI of the Dresten colex. 244
LXXXII. Plate xxiv of the Dresden cordex 284
Figure 193. Part of inscription on "Monolithic Animal $G^{\prime \prime}$. Quirigua. Mandslay. part 1*, jlate xliv ?11
124. Face numerals for 1 $\because 12$
195. Face numeral for ? 212
126. Face numerals for 3 212
127. Face numerals for 4 212
128. Face numerals for 5 212
129. Face numerals for f 212
130. Face numerals for $\%$ 212
131. Face numerals for k 212
132. Face numerals for ! 213
133. Face numerals for 10 ?13
134. Face numeral for 11 ?13
19\%. Face numerals for $1 \geqslant$ 213
136. Face numerals for 1% 213
13\%. Face numeral for 14 214
138. Face numerals for 15 214
139. Face numerals for 16 214
140. Face numerals for 17 214
141. Face numerals for 18 215
142. Face numerals for 19 215
143. Face numerals for 20 215
Page
Firure 144. Symbols for "). (or full coment 216
14\%. Symbols for full connt. or 20 217
146. Part of inscription on the east side of Stela \mathbb{C}, Quirigna. Mandslay, part 11, plate xix 31%
14. Part of inscription on the west sile of Stela C , Quirigna. Maudslay, part 11. plate xix 218
14, Symbol for 1:3 cycles. Mandslay. part 10. plate LXXV. glyph C5 221
149. Type of face numeral 292
1.50. Part of inscription on the east side of Stela P. C'opan 204
1.51. Part of inseription on the east side of stela P. Copran. Mandslay, part t. plate Lxxxix 925
152. Glyph: west sidenf Stela F, Quirigna. Maunlslay. lart 1². plate XL จ2う
lis. Part of inseripuion on the east side of stelat F. Quirigna. Mandslay, part 12, plate Nu. 20\%
151. Part of inseription on the west side of sitela E. Quirigna. Nandslay, part $1 ?$ plate XXIL 9セ9
1in. Part of inseription on the west side of Stela E. Quirigna. Mandslay, part $1 ?$, plate Xxxı 830
1.86. Part of insrription on the west side of Stela E. Qniriona. Mandslay, part 12. plate Xxxı 931
1\%i. Inscription at Nealmmkin. Fncatan. From a pluotograplu loy Maliler 2.33
1.\%. Part of inseription on the west sidt of Stelat N. Copan. Mandslay. part 4. plate LXXIX 2.54
1.5!. Lower division of plate Lix. Dresden codex 259
160. (treat cycle symbols. Goolman. page *is 264
161. Comb-like symbols for 20 . (ioodman, page $x:$. 204
16iN. Types of great cycle symbols from the inseriptions 266
16:3. Types of the sthan (360) symbol 20%
16.1. Types of the katun symbol 268
16.). Types of the cyele symbol. 268
116. Colvmu from plate Xhin, Dresten corlex $29{ }^{\circ}$
16\%. Centerpieces of great cycle symbols 298
lin. Two symbols from a Chichen-Itza inscription 300
169. Inscription on Stela fi Copan. From plotograph lyy savillt - 301
170. Inscription on the nephrite stone in the Lefolen Musenm. 30%

MAYAN CALENDAR SYSTEMS. II

liy Crevs Thomas

PREFATORY NOTE

When the paper entitled Mayan Calendar systems, published in the Nineteenth Anmual Report of the Bureall of American Ethmology, was written, the parts of Mandslay's work ${ }^{\text {a }}$ relating to the ruins at Quirigua had not been received, and hence these important ruins corld not then be considered, except so far as they were referred to by Coomman. ${ }^{b}$ As these parts of Mandslay's work are now at hand, it is my purpose to sopplement my previous paper by some notes on the inscriptions at Quirigua, and to disenss points omitted or but lightly touched in it. One of the points but briefly moticed is the value of the different face numetals. As was stated, the determination of the value of these symbols necessitated a eareful comprarisom of the series of the various inscriptions in which they are used, especially the initial series. This examination has been made, and the results are now given.

INITLAL SERIES OF MAYAN INSCRIPTIONS

The first inscription to which attention is called is that on the west side of stela F. This is shown in the photograph (phate xxxis) and the drawing (plate XL) in part to of Manday's Arehacology, whme -, and in our plate txxi. In regard to it Mr Goodman remarks as follows:

Initial date: $54-9-14-13-4 \times 1$ - $1 \geq$ Caban- 5 Kayab. The perion mumbers here are expressed by face mumerals. Following this date are fifteen indeterminthe glyphs. They du not include the usual initial directive series, bat they probably serve the same or a similar purpose. for we can listingnish a mumber of perion symbols with accompanying mmerals, thongh unable to determine their meaning here. Then comes a reckoning which reats, reversing the order of periods for convenience as I shall do in all cases when necessary: $1 \%-9 \times 9$, from 12 Caban- $\overline{5}$ Kayab, the initial late, to 6 Cimi- 1 Tzer.

The first, or initial, time series, 54-4-14-13-1-17, 12 Calan 5 Kayab, is, at has bern explaned in my preding paper, to the interpereded as

[^0]follows: Fifty-fourth great cyele, : cycles, 14 katmas, 13 ahaus, 4 chmens, and 17 days, to 12 Caban EVayal, counting forward from 4 Ahan 8 Cumhn, the first day of the fifty-fourth great cycle, as Goodman has numbered these supposed time periods.

It is proper, however, to mention at the ontset that the terms "great cycle," "cyele," "katun," "ahant," and "chuen" are used merely for convenience in comparisons with Goodman's renderings, and that I do not accept them as appropriate, or in any way adopt his thenry that they denote real time periods, becanse I believe them to be nothing more than the orders of mits in Mayan numeration; nor must it be monderstood that I accept his theory of a separate Mayan chronologic system. As the application of these terms las been fully explained in my previons paper, it is only necessary to restate here their mumerical value:

1 chuen	20 days (1×20)
1 ahau.	360 days (18×20)
1 katun	7. 200 days ($18 \times 20 \times 20$)
1 cycle.	$144,000$ days ($18 \times 20 \times 20 \times 20)$

The great cycle as given by Goodman equals $1,87 \Omega, 000$ days or $18 \times$ $20 \times 20 \times 20 \times 13$, but should, as I shall endeavor to show, be counterd as equal to $2,888,000$ lays, or $18 \times 20 \times 20 \times 20 \times 20$. The number 54 standing in the great-crele place in the above series ($54-9-1+13-1-17$) is to be considered as having no numerical ralne; it is not to be read "5t great cycles." but "the fifty-fourth great cycle" (according to Goodman's method of numbering these supposed time periods), while the other mmerals, 9, 14, etc., are to be used as true mmbersthat is, 9 cyeles, 14 katuns, 13 ahans, 4 chuens, 17 days- the 54 being entirely omittel from the calculation. The sum of the series will therefore be as follows, the clay being the mit:

? cycles (each 144,000)	1. 296,000 days $(9 \times 20 \times 20 \times 20 \times 18)$
14 katuns (each T. 200)	100,800 days ($14 \times 20 \times 20 \times 18$)
13 ahaus (each 360)	4.680 days $(13 \times 20 \times 18)$
4 chuens (each 20)	80 days (4×20)
17 days	17 days
Sum of the series	1,401,57\% days

After the initial series the next number-series (reversed), 13-9-9, or 13 ahans, 9 bluens, and 9 days, is found in the compound glyph numbered 16 in Maudslay's drawing, the numbering of which has been retained in onr plate Lxxi. The date which follows- 6 Cimi t Tzecis foumd in the right-hand portion of glyph 18 and the left-hand portion of glyph 19.

As all the mumbers of the initial series, including that attached to the month and day forming the terminal date, are face characters, and are considerably worn and dim, the question arises, How did Goodman aserertain their number vahe?

Althongh some of these characters are so dim and imperfect that

INSCRIPTION ON THE WEST SIDE OF STELA F, QUIRIGUA
their details can not be trated with rertainty, I will orerlook this for the present and will try to get the data mocessary to determine their value.

Let ns suppose at first that the number value of mone of them has
 following the next momoral sories, in which the mumbers are of the ordinary type Jhhough the symbol interpered Tzer is too much worn to be determined form the photograph, I arernh the drawinge whirll serdns to indiate this month, as the artist hat an opporfmity of insperting the cast. The late will therefore be dimit Tzee. 'The

 date of the initial serfes as given by' (foodman. This, if the month symbol of the serond date has bern correatly interpered Tzee, gives us the value of the number sombots attarled to the dirst date, $1=$ Caban
 seen in the photograph, are searoly distinct remonh to be used in comparison, they are morr otearly shown in the drawing, and present some characteristics which will assist us, sopecially that ome (elyph 7) denoting 5 , attached to the month smbol, wher the superfix is a form of thr ortinary ahan symbol. As neither of these is refeated in the intial sroies, they aftom us no abl in determining other face numerals of the series.

It mat be well, hefore pooceding farther with our examination of the suries, fo ascortain what data are nerossary to dotermine the mombers of the time periods in an initial serios, and this can best be done by examples. Here we have, supposedly, as the intial date, than
 eyole and 12 Caban 5 Kilyab is tho concluding date ot the series. That 1 hese two items are not sufferat formermine the intermediate time periods will be admitted without ruestion.

Let us suppose, as a means of forther tosi, that the mumbers of chuens and days, "tehnens 17 days," wival ly" Goomman, arr eorrect.

 as is mamatmed by゙ (rombman, is true as may rasily low sorn ly making therealeulation.

subtracting from this remainder the 17 days which remain in the year 8 Ben, after $\&$ Ahan $\&$ Cumhn, and dividing the remainder by 365, we obtain 43 rears 16 months and 5 days. Counting forward this length of time (in the mannor pxplained in my previous paper) from 4 thau 8 Cmmhu, year 8 Ben, brings us to 12 Caban 5 Kayab, year 13 Ben. ${ }^{a}$

The "calendar round" is, as has been explained in my provious paper, the term Goodman applies to the $52-$ year eyele, at the end of which period, connting from any point, the same date as that from Which we connt returns. The casting out of these calendar romnds, each of which amounts to 18,980 days, does not affect the result, as counting the remainder from the initial to the leminal date will give precisely the same result as counting the entire sum of the seriesexorpt that to determine the lapse of time, the number of years covered by the calendar rounds cast out must he added. For example, in case of the above-mentioned series, as 73 calendar rounds were cast ont, 73×5 years must be added to the result obtained by dividing the remainder by 365 , in order to ascertain the real lapse of time from the initial to the terminal clate.

Having the date 12 Caban 5 Kayab and (supposed) the 4 churns (or months) and 17 days, we turn to my condensed eatendar or to Goorman's "Arehaic Ammual ('alendar," and search through the tables of years until we tind the year in which 12 Caban is the 5th day of the month Kiayab. 'This in Goomman's tables is fomm to be the 51 st year, or, in my table, the year 13 Ben. Counting back on the table of this year 4 months and 17 days, we reach 6 Ahan, the 8th day of the month Ceh, whieh, aceording to Goodman's scheme, will be the first day of an ahau. Tuming now to Goodman's "Arehaic Chomological Calendar" and to his 5th great cyele, we hunt for the place where 6 Ahau is the Sth day of the month Ceb. We find this in the sth erele, 14th katun, and looking at the column at the left margin wa ascertain that it is the 13 th ahat, which agrees exactly with the initial series as given above ($54-9-14-18-1-17$).

This seems to be confirmatory; however, herore aceepting it as fonclusive let ns examine a litte further. Without any change, or supposed change, from the date and numbers of chnens and days used in the preceding calculation, we look farther in Goodman's "Arehaic Chronological Calendar" to see if 6 that 8 Ceh can be found elsewhere, confining our examination to his 54 th great eyele. We do find it in the 10th cyele, th katun, 17th alan, which gives the series 54-13-4-17-4-17..

Remembrimg that the 13 th cyre, according to his seheme, is the first cyele of his great cycle, and mast, therefore, be omitted from the calculation, and counting forwarl 4 katums, 17 ahans, 4 ehuens, and 17 days from 4 Aham 8 Cmmhu, the first day of the great cyele, we

[^1]reach 12 Caban 5 Kayal, the required date, as with the preceding series. Looking farther we find 6 Alan 8 Ceh in the ed crele, $12 t h$ katun, fith ahau, giving the series $5 t-2-12-6-1-17$, which also carrics us to the proper date (12 Caban 5 Kayab). The date 6 thau 8 Ceh is also found in the 4 the cycle, 1 是th katun, 1 sth ahau, and other places in the sth meat cyele, earlh of which gives the proper result. But this is not all, as we also find 6 than S Ceh in the $53 d$ wreat crele in the 1st evele, 7 th katum, and 1थth ahan, giving the series $\overline{3} 3-1-\overline{-1}-12-$ 4-17, which, counted from 4 than 8 Zotz, the first day of the $53 d$ great crele, brings us to 12 Caban 5 Kayab, the required date. Other series which will give the proper result might be noted, but these will suffice to show that the initial and terminal dates and the chuens ant days do not afford sutheient data hy which to determine the serios. It is necessary, therefore, to know the numbers attached to one or more of the other time periods of the spries, and these must be ascertained in every instance by inspection and by a previonsly obtained knowledge of the value of one or more of the face numerals.

Referring again to the initial series under consideration-5t-9-1t-13-1-17. 12 Caban 5 Kayab—and holding to our assumption that the number of the chuens and days is correct, the date being satisfactorily detemined, we proceed to leam what additional data are necessary to determine the series.

If inspection and a knowledge of the face numbers prowe the ones attached to the erele in this instance to he 9 , then the series as given above is the only one that will agree with the data, and we are thus enabled to determine the value of the face numerals attached to the katun and ahau symbols: and should that giving the number of days be imperfect or obliterated, it would still be possible to determine the serios, as the date with the other items mentioned (number of chnens and cyeles) is abwats suffeient to fix the other numbers in the series. If the number attached to the chuens be unknown, then the series could not be determined with the other data mentioned.
suppose the number (9 in this case) attached to the ereh. symbol to bre imperfert or unknown, but that aftached to the katun (1t in this instance) to be known, the series given above is the only one that will agree with the data. If the numbers attached to the evele and katun he indeterminable, but that attached to the ahau symbol (13 in this instance) be known, the series ean still be determined, and will be as given. It is apparent, therefore, that, with the initial and terminal dates and chuens and days known, the number attached to one of the other rements in the series is necessary in order to determine the series. It is also demonstrable that with these data the series can be at once determined by Goodman's tables, though this, as I shall show, dos not prove that his theory of the Mayan timu system or his method of mumbring the croles or great eyeles is correct.

Continuing our investigation of the data necessary to determine the series, still refering to the ome mader comsideration, we will next suppose that the number of "huens can not be determined by inspection.

The terminal date fring given-12 Caban s Katal, (which falls in a ben year)-it is readily sten, ley reference to (roodman's "Arehaic Ammal Calembar," shat vear, or to me combensed catendar, that it requires 17 days, combting bark, to reath an than which faths on the Sth day of the month (trootman begins the eount with ? 2 El, but his gives ben as the 1st day or the month, and the result is the same), honee the than to be usind depends on the number of chmens-it 0 dhuens 17 days, it will be-anseen by the table refermed th- 8 , that \& Pax: if 1 chuen 17 days, the 11 Ahan is Man; if ≥-17, then 7 Than \rightarrow Kankin; if 3-17, then 13 Mhan Mace if $4-17$, then ${ }^{\circ}$ Shan 8 Ceh;

 Yaxkin; it 10-17, then : Nhans Xinl; if 11-17, then ! Ahan s Tzere; if $1 \pm-1 \%$, then \because Aham 8 Zotz; if $1: 3-17$, then 8 Ahat 8 Z Zip; if $14-17$,
 S combur if $17-1 \bar{t}$, then \because Ahans Karab. The fact that Ahan is the sth day of the month in "arh a ase greaty limits the range of 1^{n} wsibilities.
suppose that, in addition to the terminal date, the numbers of cerne and katme are also known (!) and 14 in this instance): the series (an be definitely detemineth, and will be as given above. If the numbers of cyches (!3) and ahans (1:3) are known and the mumber of katuns is manown, the suries "ot-9-1t-1:3-4-17" will give the eorrect date, but them is one othe-s:-! $1: 13-1: 3-1: 3-17$-which will also give the cormed date, 12 Caban of kayab. In this case the comed determination of the meries depents on the initial hay of the great exele, to whid attention will he cathed farther ons.

We mext take the ease where, in addition to the dates ame the number of days, the numbers of katme and ahans are known, and the number of "geles is unknown. In the seripe moder consideration the mumber of katums is 14 , of ahtus 13. These data atre sufficient to中etromine the series, and in this instane the result is as given above.

The next impuiry relates to the data nomessany to detemme the terminal date where this an mot be reconnzen be inspection, on where that given is ambems. Where nother the day mor the diay of the month is known, it is necessary to have the mation momeral serionthat is, jt-9-14-1:3-4-17. in the wample we have been using-in orter to dotermine the date. If the day of the terminal date of the series can be asertained by insection, then the tate can lo detemined withour knowing thu number of days; thas at-9-1t-13-1-?, ? Calan $?$ (month) will be suffiement to ascertain that this teminat date is 12 ('aban i) Kayals. Turning to Goohman's "Archate Chronological

6 Jhan S Ceh. Scarehing thromphis " Archaic Ammal Calendar" We find that 6 Ahan si Cehoceme only in the 51 st year, and that Caban is the sth day of the month in this year. Comenge forwand 4 montla from Ceh brings as fo Kayal), where $1: 3$ Caban is the 5 th day. We thas ascertain that 12 ('aball $\overline{\text { o }}$ Kayab is the date sought.

If the number of days, the name of the day of the terminal date, the month, and day ol the month lo mknown-thus in one example $54-9-14-13-1 \div, 12$ (rits) : (month) - it is possible to limit the result to
 In the first case, the number oll days will be 4 , and in the second 17. If the number of chuens and the day aud month ot the dato le unknown, but the mumber of the day and the day of the month known, the date can be determinma.

There are occasional side aids which may be taken adrantage of in the investigation of the face numerals. One example which we will notice, bearing on the series which has been under eonsideration (initial series $5 t-9-11-13-1-17$, west side Stela F, Quirigna), is as follows: The initial swries on the west side of Stela E, Quirigua (plate LXXII), is, ordinary numerals being used thronghout, and all distinet, 5 $4-9-1 t-12-1-1 \overline{4}, 12$ Caban 5 Cayab. This is identical with the other seribs, except that there are only 12 alaus, while in the other there are 13 .

Althongh all that is fositively known in regard to the tirst sories (so far as our present investigation has extended) is the initial and terminal dates, the number ot the days, and the day of the month on Which the than falls, we also know that the series as given above will agree with these items. If the 12 ahaus in the second series given above shoula, in fact, be 13 , there will be perfect agreemont with that on the west side of stela F . It is evident from what has been shown above that, with all the items of the series sare one being known, that item can be determined although wholly obliterated or ineorrect. Enough is given to show that, counting batek 4 months and 17 days from 12 Caban 5 Kayab, we reach 6 that os Ceh. By calculation, or by referring to Georman"s "Arehate Chronological Calemdar," $5 t$ th great cycle, $9 t h$ eycle, and $14 t h$ katum, it is seem that 6 Shau che can only be in the 13th ahath, and is not found in the same eyele and katum in either the abra or 5.the great cyele. The fuestion as to whether Goodman's tables cover the range of the initial serios will be considored farther on, when we have investigated more series. However, the fact that the wrims on the west side of stolat E , when the nmmber of ahatus has thus been corrected fas calcolation ako shows 12 to be wrong), arrees peroisely with the rendering given of that on the west side ot Stelat E is not proof that this mudering is correct, it only adds a degree of probability, supposing that Goodman las based his determination on an examination of the fare chamerers. The liaet may he noted, also, that some two or theee other inseriptions
at this place, where the mmerals are of the ordinary form, commence with ! eyrles.

As the mombers in the inseription on the east side of Stela E are all of the ordinary form, nothing in regard to the face numerals can be learmed from it.

The numbers in the initial series on the east side of Stela F (plate LXXIIf) are all face whacters, inehnding those attached the therminal date. Gordman interprets them as follows: "5t-9-16-10-18-20, 1 Jhan : Zip." As will be seen by reference to my formor paper, the 18 whtens 20 datys are to be molerstomed and eonnted as 0 chnens 0 days, and wo shall hereafter write them so. Goodman omits, probably hy printer" mistake, the 9 "ycles, lont the other numbers which hw gives make them neressary.

As nome of the numbers in this case correspond with any on the West sikn of the same Stela, excepting the ! eyeles, the glyph for which is too nearly ohliterated for determination, we gain nothing by comparison; and nothing can be learmod from other inseriptions of this locality which fresent no face numerals; these are passed orev without noticr.

Turning to plate XLIV in part 12 of Mandslay's work wo find drawings of the inscriptions on the "Xhomotithir Animal G." As the mmerals in tha initial series are face rharacters, with the exception of that attathed to the montl of the teminal date, and have not beed notieed loy Goodman in his work, I call atteation to them (figne 123). Is the eqele in most of the initial series at Quirigna appeas to be mumbered s, we will assmme that to be the number in this ease. But this is not a mere assumption without any other basis, as the gry and agrees with the type givon (see figure 1 sia) in having the eirele of dots on the chask. Alhough this does not amonnt to demonstration, it renders the interpmotation highly prohable. Jlaving determined the eyele om examination is reve mach restricted. Howerer, as we know as yet no way of tetomining the gradt ryele ly an inspection of the symbot, bur examination mast "xtemal the three griven by Groobman. But withont other data the examination on this line is vain. Examining thoseries, we notion that tho face glyphattached to the katmensmbol immediately umbor the erele is partially obliterated ant as rot is manown. l'assing to the upper patr in the next group to the right hamb, we notice that the momeral resembles somewhat closely that attached to the month (glyph $\overline{\mathrm{g}}$) of the terminal date in the inseription on the west side of Stela F (plate 1ג天s), which was found to denote 5 . The symbol on the monolith differs in having the skeleton jaw, which Goodman says denotes lo, thongh we have not as get fomm the proof of this, and we tharefore assume that it denotes 15 (10+5) (ser higme 13nti). The hand on the farce immediately behow, which is attached to the chmen elyph, at atso on the erlyph

INSCRIPTION ON THE EAST SIDE OF STELA F, QUIRIGUA MAUDSLAY, PART 12. PLATE XL
attached to the symbol for days in the upper patir of the group, to the right, denotes. aceording tordoodman, full count or 20 when days and 18 when chuens (see figure 143). Howerer, 1 consider it, as heretofore stated, a x ymber for manght. Immediately below the latter is the day (irobably Hata) of the terminal date, with the face symbol for 5 , ahready determined, prefixed (figure $12 s$ ot). The finst glyph of the lower pair of the group to the right has the ordinary charater for : prefixed. This we take to bee the month smofol, though it is monsual and indeterminable by inspection. The series, themfore, si) far as made out, is as fohlows:

It is crident that the 5 dhat of this suries must be the begiming day of an ahan, as there are neither chuens or days, and hance it should be foume in Goodman's "Arehate Chronological Calndar." Turning to this publication, we find that 5 Ahau :3 (month) canocour as the begiming of the 1 ath ahan in the st he erele in the following platers only53d great cyele, oth cycle, 17th katum; 5tthe great exole, !the cerde, tha and 17 th katme. In the first it falls in the month I'ol, in the second in Yaxkin, and in the thim in Muan. As the month symbel, so far as it remains, does not admit of interpretation as the first or semom of these, we comelude that it must stand for the third if the date is within thes range of Goomanto caltendar. This gives an
 which works out correctly by caleulation.
The "full comut" or "matugh" symbols require some discrimination in our attempes. to interpet them. In a sorise given by froorlman, ats $5+9-17-15-15-20$, or $54-13-$ (1)-2()-18-0), 18 aud 20, being so-ealled "full "onnts. "slwuld in erery instance be countent as naught, and the cipher (0) should lee introduced in their place: and this is true in ererg case where the symbols are need to represent prefixed mumbers, cxept in one
 place. Where they are used to ilenote the day of the month, as 5 El, 20 Kotz, they denote 20 , but there are special characters userl for this
purpose, as is shown in tigure 145 . It appears probable also that the haml across the jaw in the face-forms of the eqeld and great ryede is to be interpreted as indinating the use of air as a multiple, though in fare-forms of prefixed numbers it umfoubtedly siguifies naught. Goodman is possibly right in insisting that these are not absolutely naught symbols, as is our 0 , lont are used to immicate that the count in the givendenomination is complete and has been carried into the next higher denomination. Nerertheless they are-with the rexeptions montioned——muiralent to nausht and must lx so considered and used in calculating time and numberal sorios.

I insert lere, in figures $12 t$ to 145 inchusire, the types of face nmmorals selerted by Goobman from the inseriptions. I have found them to bre eorret, with soms two or there exceptions in regard to whirl there is considerable doubl ; these will be noticed in the proper eonmeetion. Some atthtional eximples will appear as we proceed.
'The next inseription of this locality to which attention is called is What on tela ol (see Mamblay's drawing, pat 12 , plate XLVI, our plate LAXIV). Sll the numbers of the initial series exompt that of the day of the month in the terminal date are face eharaters. The series
 The number of the great cyele is omitted, though it is nuessarily it arcording to his systom. We says there are no wher reckonings in the insoription, but this is a mistake, as there are two more numeral series. tach followed by a distinet date. These, however, afford no assistance in determining the initial hay, as they do not conned with it: moreoser, a large number of slyphs intorvene.

All the evidence bearing on the value of the face mmerals in this instaner may be stated ats follows: the symbol connectorl with the cyele, inturpreterl !t, shows the distinguishing features of the others

Fifi. 134. Facenumeral for 11.

d
13.
Fig. 183. Face numerale for 1%.

get modetermined in our incestigation; it is cof our figure 131. The day of the month amb the month (8 Lotz) are distinct and rasily recognizet, the momber being of the usual form. In regarel th the then and day symbols, ath we cam saty is that the hame ateross

Fig. 187. Fiwe numeral for 14. the face which appears to indicato full connt (1s and (0) or nathght (0) is sem in wach of the attached glyphes Assuming this to low eorreet, it follows that the date 8 Ahan in Zotz must bre the first day of a ath ahat.
Turning in Coodman's Arehaic Chomological Catendar to the gthe cyele of the $5: 8 \mathrm{~g}$ grat erele, we find that 8 than 8 Zotz is not the begiming of any th than in this eyedre nor in the !th eycle of the asth great ceycle, but is the beginning of the 5 th a ath of the 16 th katun in the 9th eyde of the 5 th great cacle. Even omitting the momber of the day than wro can reath the same result from the data given, and that result only. The evidene therefore apmears to be sufficient. This gives one example of the fied whactor for 16 (see figure $1: 39$ 6). As to

Fus. 138. Frce numerals for $1: \%$ the valne amd reliability of Cootman's tables in the respect moticed 1 will surak hereafter; at present I assume them to low reliathe, and I may state here that they may be
 atcoptomb, st far an out present tests are romemrnerf, as comredt in regarl to the relation of the several time periont up to and inchoding the eyelewithout, howeror, acerpting his theory in regarel to the greal cyele or the number of creles forming one of these grat perionts.
 the value of the following fare mommak: that on stela .J (glyph 1. Mandslayt plate xhit, our phate hxive prefixed to the eyche gelyph, in-
 atfixerd to the katun glyph, interpereml 16; that (aly

1

b

Fla. 1 Hil. Fare numerals for 15 . prefixed to the ahat glyph, interpered 3 : thene (olyphn 7 and 9) prefixed to the chuen and day glyphe, interpreted full connt or nanght: and that (glyph 11) prefixed to the day of the terminal date (Aham, in this instance), interpreted s. One distinguishing elaracteristic of the symbol for th the circle of

Jots on the cheek (figure 1:2) ; two tharateristies of the symbol for If are the skeleton jaw aud tho hatchet in the eye (figure 139); those of the symbol for 5 are the alan symbol on the head and the absener of the sketen jaw (figure $12 \begin{gathered}\text {) }\end{gathered}$; that of the symbol for full count or nanght is the hand arross the fate or lower jaw (figure 14:3) ; those of

Fiti. 141. Face numerals for 1 s .
the srmbol for 8 do not appear to be well defined-Goodman say they are the lobed ear ormament projecting on the cheek and the form of the forehead ornament, but neither of these appears to le exceptional.

It should be stated that hỵ counting forward in eaeh of the giren examples from the initial date (4 Ahan os Comhu) the number of dars indicated by the numeral series we will reaell the terminal date.
() nr next reference is to the inscription on Stela A, Quirigna, the trawing of which is given in plate vir, part 11 of vohume If, Mamdslay's Mrehatology (om plate LXXV).

In this instance the nomerals attacherl to the cyole, katmo, and alatr, and the month

Frg. 14\%. Fare numerals for 19. of the terminal date of the initial series are of the ordinary form, and those attached to the chuen, day ant the day of the terminal date are either face forms or unusual forms. The series as given by Goodman is ot-9-17-5-0-0, 6 Ahau 13 Kiaribl which is certainly correct, as the datal wiven are sufferiont, as has been shown, to determine the series. It agrees with Goodman's tables and also with ealeulation.

"

b

-

\because
ley this we aseertain that the unnsmal numerals (glyphes and 5) prefixed to the chuen and day symbols, eath of whieh eonsists of a scroll above, a hand in the midde, and a bean-shaped ehatacter behow, denote naught (figure 14t, number $\boldsymbol{7}$). The faee numeral prefixed to the day Ahan (figure 12:3) resembles that denoting 16 (see firure

13: $6,(\cdot)$, exeepting that it is without the skeleton jaw, thus apparently confirming Goobman's statement that this characteristic has the ralue of 10 . In figure 144 are shown some forms of the symbols for naught (0). Numbers $1, ~, ~, ~ 3,4,5$, and 6 in some of the types are of frecutut oecurrence in the inseriptions, as are also numbers 7 and 8 .

Fig. 144. Symbols for 0, or full count.
Nombers 9 and 10 , which show the hand across the lower jaw, also represent a common type. Nmmber is has been foumb only in the inscription on the Palace steps, Palenque. Number 11 is from Monolithic Animal 13, Quirigua, and nmmbers 13 and $1 t$ are from Stela I),

INSCRIPTION ON THE EAST SIDE OF STELA A, QUIRIGUA MAUESLAY, PART 11, PLATE VII

Copan. The small figures of number 15 are from the 1 resden corlex, and reprent a common type: the slight variations in detail are numerons and appear to have no significance.

In figure 1ts are slown the symbols forfull count, or -2 , not shown in figures 143 or 144 . - $-b, c$, and d are more or less common in all the codices; ϵ is from the Dresden codex; f, g, h, ant i are from the left slab, Tablet of the

Fig. 145. Symbols for full count, or 20. Cross, Palenute.
The inseription on the east side of stela (presents some particulars worthy of notice (see figure 146). The prefix to the eyele symbol is 13 in the erdinary form; those to

Fig. 146. Part of insription on the east side of Stela C, Quirigua. Maudslay, part 11. plate x 1 x . the katun, ahan, ant day are of the coil and hatul form, above described as indicating full comnt, or, inother words, naught; that to the chuen is of the usual form for full count in the inscriptions (see number $:$, figure 144). The date is 4 Ahan 8 Combu with ordinary mmerals. Therefore the series, according to fioodman's metliod of writing, will be : $=10-20-20-18-20,4$ Ahan 8 Cmmhn, which is as he gives it, exeepting that he places it in his fifty-fourth great eycle. Our method of writing it would he $5: 3-13-(0-0-0-0,4$ Ahatl 8 Cumhu. I gire 53 as the great eycle, according to Goodman's method of numbering these periods, as by counting back 1:3 cyeles, or $1,872,000$ days, from 4 Shans Cumhu we reach 4 Alan 8 Zotz, the first day of his fifty-third great cyele. Ilis remark in regard to it is: "This date is the begiming of the fiftyfourth great cycle." As he interprets the great eycle 54 , he virtually makes the series 5t-(1-0-0)-0-0. It must be borne in mind, as will be seen ly reference to my former paper, that instead of counting 20 eycles to the great cyele, following the vigesimal system, which I believe to be correct, he counts 13 . However, this
subject will again he refermed to. Jt any rate, we find further comfirmation of the signifieation of the nomber symbol-the combined coil, hand, amb heath shaped eharacter-in this inseribtion.

The inseription on the west side of Stela ((figure 177 an) in interpreted by (toodman as follows: ? $-1-0-0-0$, 0 than 13 Yaxkin, the mumber of the great exale being omited. As the mumerats attached to the cevele, katun, and day and month of the terminal date are of the usual form, and the symbots for

Fif. 14. Part of inscription on the west side of Stela C, Quirigua. Maudslay, part 11, plate xix. S cyeles and 1 katme or 1,303, 200 days, acomding to the method giren in my formor patery, we reach $\&$ Alanas ('umhn, the first day of the fifty-fourth great egre. Tuming to (toommans drehaic Chronological ('alendar, to the ninth eycle of the tifty-fourth wreat cycle, we find that fina 13 Vaxkin is the first day of the first katun. Thus it is seen that both the tables and calculation agree with the interpretation of the series. hy this we hava a further confirmation of the
interpretation full comit (or properly (0) of the face numeral with the hand wer the lower jaw. It may be montioned here that Mandslay agrees with me in designating these so-called "full connts" as given hy Goorlman as " no combt," or, in other works, manght (ree his text, part 11, pag(9).

Refering to inscriptions in othre lowatios, the following facts ars noted in reference to the value of the different face mumerals: the initial series of the Foliated Cross at Palenque (see tigure 2 , previons paper) appeats to be as follows: $5-1-1$ - $-5-1-0$ to 1 Aham 13 Nace Following this date, after some intervening glyphs, is the brief numeral sorios 14 ehuems 10 days, immediately after which eomes the date 1 Cauae 7 IVa.

Connting lack 14 chuens 1 ! days lom thw latter date, we reach 1 Ahat 13 Mace, the terminal date of the initial serics. This gives the value 1 to the face glyph attached to the than symbol. This fare glyph (figure $1 \supseteq \downarrow$) agrees in its fothres, excepting the ear pendant, with the face glyph attachal to the eycle symbol (figme $12 t a$), showing it to be 1 , which agrees with the above interpretation. As the face glyph attached to the ahan preriod symbol agrees with the symbot we have heretofore interpreted 5 (see figure 128 a) ; and the numbor attacled to the montlo symbol is of the ordinary form ; and that attached to the day glyph has the hand across the lower jaw, we have the following numbers of the series: ?-1-:-0, 1 than 13 Jac.

These items are not sufficient to give the remaining mumbers of the series: but aswming that it falls in the sth great eyrele, as is most probable, the other mombers will loe as given above. As the fater eharactor attached to the chmen symbol, interproterl 4 (figme 127 \quad). presents some features of the ome interpreted t on the west sidu of Stela F at Quirigua (left part of glyph t, plate Lxxi). ant this will suffice to deotermine the other numbers, we are perlaps justified in conclubling that the series is given eorrectly. That the face character attached to the katun symbol (figme 15. ce), which is intropeted is is some number greater than 10 is shown by the skeleton jaw.

Turning to the inscription of the Temple of the sun, as shown in Maurlslay's plate Lxxxix, bart 10 (see phate NLI, Nineteenth Amual Report of the Bureatu of American Ethnology, 1900), where the numbers of the initial series are all fare chatacters exept those designating the day of the montlo in the terminal date, we will try to determine them from the data so far whtainorl. As those attachet to the croble (figure $12 t c$), katun (figure $1 \not \pm 1 r$), and ahan (figure 128 b) symbols are evidently the same as those in the inseription of the Foliated Cross, ant the day of the terminal date is: C'imi $1!$ Ceh, we have the following items of the series: :-1-1N-5-:-\%, Cimi 1 ! Chh.

These data are not sutheifat to determine the remaining umbers. One other item is necessary fur this purpose. Assuming the great fyele to be that commencing with the day t than 8 Cmmln, the
su-called 5 the the remaining mombers may bredermined thos: Cimi may be the lith day of the month only in the years in which Ahan is the 13th day of the month. Ky turning to Goomman's "Archaie ("honological Catendar," stilı weat reyele ryele 1 and katun 18 , we sec that the 5th ahau hegins with the day 12 Jhau 1:3 Chen. Toming to his "Archate Ammal Cademlar," we find that 12 Shan 18 Chen falls in the year he mumbers $3 t$ (equivalent to the year ! lamat in my (condensed calendar). (imi is the 19th day of the month in this gear, but the month can not be determined until the tay number attacherl to Cimi is ascertaned. As the face mmeral attatehed to the ehmen symbol in the insoription is withont the skeleton jaw we infer that it does not excerel a, and as it has none of the signs of full count or natugh it can mot be 0 . As Cimi comes b days after Shan, then we most connt forwarl in the table of the year 34 matil we wach the 19th day of the month Ceh. This comnt we find to be 3 months and 6 days, ant the number attached to Cimi is 13 . Therefore the entire series is $54-1-18-5-3-1$, to 18 Cimi 10 Ceh, which is as it is given by Goodman. The weak point in this solntion is the assmmption of the jtth great cyele. Eren without this, we can, hy a range of nine trials, determine that no other mombers than those wiven ("anlor found within thw setpe of Goodman's three great cycles (5:3, 54th, and 55th), but this, thongh strengthening the eonclusion, is not abmolute demonstration, as the objection to his method of combing the cyeles, hereafter noticerl, and the meneranty as to the sooper of his tables, "ome into the problem. As will be seen later, the only certainty in regard to the tables of his "Archaic Chronologieal (alemdar" is the oderey amt comeet succession of dates and periods and the fact that 4 Ahan s Comhu is the first day of a great cycle. Assmming for the present that the series has heen eorectly determinerl, we tain evirlenee as to the value of two additional face numerals, 3 (figure 120 (t) and 6 (ficure 129 a).
froobmanis interpretation of the initial inseription of the Tablet of the Cross, whicl, is $53-1 \ddot{-19}-13-1-0$, 8 Ahan 18 Tzer, is not satisfactory. 'The fare momeral attacherl to the crele symbol, which he interprets 12 (figure 133 (1) has, as atuperfix, a figure very much like the sumertix to the farr eharanter which he has correctly interpreted 5 (as is shown hy the evidence I have prosented) (figure 128 a). In his repuestntation of face mumerals no one sare those denoting 5 or 15 have a smperfix of this kind, exopting one for 12 , and that one is the "hamacter of this inscription (figure $135 a$). Moreover, it laeks the sketeton jaw, which is true of some others above 10 as given by him. Is has been shown in my previons paper, where this inscription is disenssed at length, and as is admitted by Goodman, there is no connection between the tormind date of the initial series and any of the dates which follow, if the mumeral serics which intervene be taken as given in the insoription.

In addition to the suggestions offered le Gomman and those prosented in my previous paps in regan to correcting the manifest enror somewhere in these series, the following is added as a pussible solution: Change the terminal date of the initial series from 8 Ahat 18 Tzee to 1 thatus Muan, and the following numeral series will then comect the succeding lates with it, and the 1 Ahan 18 Zotz will come 1-8-0 (1 ahau 8 chacms) or 520 days alter the terminal datw of the initial series, instead of boing phaced back of it as Goomman's correction reduips. This, howerer, will slightly change the initial serios from the numbers given by Goodman. By referring to the inseription as given in Mandslay's mawing, we notice at ('5 the symbol for 13 (eycles (figure 14s). As this is not comnected with a series, amb follows immediately after the date t Ahan 8 Cumhu, wre are justified in interpreting it as an indication that m_{p}, to this point

FIG. 149, Symbolfor 13 cycles. Maudslay, part 10. plate LxXY. glyph C 13 creles have been passml orer from the initial date of the inscription, which must be 4 than 8 Zotz. The calculation is comect. subtracting the series $:-5-0(1 \mathrm{D}, \mathrm{C})$ from 13 cycles the rematinder is 1 13-19-11-13-4.
$18-(1)-(0-1)-0$
$8-5-1)$
$1 ?-19-11-18-10$

If this correction be jnstified the initial series will be $5: 3-12-19-11-$ 13-0, 1 thans Muan, which will fit into Goodman's tables. The chief objection to this is that it compels us to assume that the alboriginal artist made a mistake in his calculation, as the month symbol is elearly Tzec and the face mumeral shows the skeleton jaw, indicating that the number as given is above 10 . Howerer, we must admit that the error has not, as yot, been satisfactorily explained, aul consequently the value of hut two of the face numerals-thoss attached to the eycle and katun glyphs can be determined by the inseription. Twelve (see figure 135 a) for thr eycle and 19 (figure 142a) for the katun, as given ly (Goodmam, must apparently be accepterl on any theory as to the correction. It will be observed th t the symbol attached to the aham glyph, which Gomblaminterprets 13 (figure 130 d), is widely difterent from any of the other symbols for 13 given ly him, as is seen by refermee to ur ligure 136 , which is a cony of the examples geven him on page 19 of his work. So far, therefore, as comprison show, it may as well be interpreted 11 as $1: 3$; but, in fact, is more like 19 (see figure 142) than either. Nor can his interpretation (4) of the character attached to the chan symbel be clearly sustained by comparison, though it must be conceded that it does not resemble the determined types of 13 .

The initial series on stela l) of the Copan inseriptions (Mamdslay,

having the usual face chatacters replaced by full lorms. The eycle symbol (glybla 1) is composed of a homan figure (the numeral) and a his alparently of the parowt sperins (the eycle); the katum

 numeral) and at nondeseript animal (the ahati); the chnen (oryph 4) of a human form (the nomeral) amt a frog-like anmal (the chuen); the day (glyph a) of two haman forms, that to the right with the monkeylike face tomata backward (the tay): the day of the date (erlyph fi) (fresimably Nhatu) of a homan form (the mumeral) with a cartonch melosing another form (the Ahan) ; the month of the tate (glyph 13, pate Lxxyil) of a human form (the numeral) ant a full-formed leafhused bat (the month).

Goodman's interpretation of the series is as follows: $5-:-5-5-0-0$, t Alan 13 Zootz. Tha dots on the chin of the hmman lace of the
 ably justify us in interprefing it as 9 . The hand across the lower jaw in the chacn symbol (plate LXXVI, glyph f) and day symbol (plate LXXVI, olyph 5) indicate full count or nathght (0). Jut Goodman's rentering 5 and 5 of the number ehatacters of the katun (plate LXXVI, glyol 2) and aham (plate LNXVI, wlyh is) symbols is guestionable, as the skeleton jaw demoting 10 is quite distinct in the formor and is not present in the latter. The rendering is therefore inconsistent with Goodman's own statements in resiar to the characteristios of the faee nmmerals, and must haro been reached in some other Way than be inspection of the olyphs. If the figures
Fif. 149. Type of face numeral. with ahau stmboh on the head are face numerals, and this must be detmitted, then that of the katum (gholiz 2) should be 15, and that of The aloan (glyph 3) shoudd be 5 . if Maudslay's colored drawing is correot. Howerer, it must be admitted that the drawing of the face nomeral puelixed to the katun symbol is very doubtful. In lignre 1t: is oriven a drawing of the head alone, mate from Mamblay's phate XLIV, whirh is the antotype of the same inseription.

This inseription is the most interasting one in some resperets that has fern fomm in Mayan ruins. Entipr borlies, instead ol comventional heals, are given, amb homgh they are to some extent grotestale, yot they sem to indicate the aborginal idea of the origin of these symbols. Mandslay's happy idea of distingmishong the prefixed numerals from the priox symbok (cyrle, katum, ete.) by difference in color brings out very eloarly the forms and characteristics of the latter symbols. The evele and katun symbols are both rapacions birds; the former owl-shaped, with a rest; the latter eacte-shaped, with foathers hamging oray the front of the head. The ahath symbol is the skotetom form of a mondesoript bird-like animal with a large

PART OF INSCRIPTION ON STELA D, COPAN MAUDSLAY, PART 2, PLATE XLVIII

PART OF INSCRIPTION ON STELA D, COPAN MAUDSLAY, PART 2, PLATE XLVIII
fang; the chuen glyph is a frog-like animal. The month symbol of the date (glyph 1:3, plate Lxxil) is, as stated above, a leaf-nosel bat with a hmman face. As the name of the latter, Zotz, or "Bat," corresponds with the form, it is possible that the forms of the other symbols have some reference to the names. Ifowever, I am mable to point out this reference: thongh mosibly as "uinal" in llaya signilies "month" or "period of 20 days," and "no" "froer," the symbol may have some reference to the name. Be this as it may, it will be sorn he reference to figmes 16 : and 164 , showing the trpes of the ahau and katun symbols, that the face forms retain to a large extent the birclike features, onn of the katum symbols, figure 164 c, haring the feather fringe over the foreheall. We notice also in some of the s.mbols of both the ahan and katun little patehes of cross-hatehing, which are feather marks in the full forms of stela D.
These facts are noticed in passing merely to call the attention of students to them as possibly forming some clew to the relation between these sombols and what is represented by them.

Attention is called next to the inscription on Stela I, Copan. The numerals attached to the eycle, katum, ahan, and then symbols are of the ordinary form ; that to the day glyph is of the disk and hand type (figur 14t) denoting naught (0); and that to the day (Ahan) of the terminal date, the face charact if with the ahau headpiece denoting万. Whether the month srmbel is thistinguishable, or is one of the ohlerated glyphe which follow, as Goolman asserts, is doubtful. 'The serito is therefore ?-: $-12-3-14-0$, , othatu? (month), Goodman says if-! 1 - 1 -3-1t-0 5 than ! (month), leaving the month blank, but athe that we know it must be s Co.

The correetness of the last statement may be questioned on the folJowing grounds: Taking, in Goodman's own tables, the 5 sth great erele, Sth eycle, 12 th katun, and :dalau, we find that the first day of this whan is 11 than 8 Lo 0 ; by counting forward 14 months from this date We reach 3 Ahan \& Pax, a result which calculation shows to be correct, the initial date of this great eqele heing t Ahan 3 Kankin. The positive determination depends therefor on the proper determination of the great crele, or of its intial day, for his mubering of these supposed perioxs, as we shall soon see, is without proper gromuls.

The initial series of the inscription on the east side of Stela P (figure 15()), same locality as the preceding, is given as follows: 54-9-9-10-0-0, \because That 13 P'ol. Tho numbers attached to the eycle, katm, and ahau are face characters, those attached to the chmen and lay symbols are of the type shown in mombers $t, \overline{5}$, and 6 , figure 144 , but molh abbreriatell, am those of the terminal date are of the ordinary form. The month smbol, which Goodman interprets Pop, is apparently a variation of the usual type. As emough of the prefix to the chan smbol remains to indicate full comit or mangh (0), it may be assumed that the prefix to the day symbol, of which there seems to
be a slight remmant，is the same：therefore the terminal tate will be the first day of an ahan．＇The skeleton jaw in the profix to the ahate symbol，not well shown in Mandslatys drawing（phate Lxxxix of his

Fig．15n．Part of insuription on the Past side of Stela P，Copan．
work，part t），but distinct in his photograph，would indicater 10 or some
 katum are evidently the same，ant ont of them shows quite distinetly
the circle of dots on the cheek, indicating 9 (see figure 182). Therefore the series so far as satisfactorily made ont-assuming the nomber attached to the day Jhat to be - - is as follows: $\because-9-!-0-0,2$ Ahan 13 Pop. This is sufficient to rletermine the series, ant shows the above remrering to be correct.

Fig. 151. Part of inseription on the east side of Stela P. Copan. Maudslay. part 4, plate Lxxxix.
Although the drawings in Mandslay's work are in most cases of unusual excellence, giving details with wonderful aceuraey, that of this inseription and the one on altar Q (past 4 , plate XCII) are not up to the usual standard, failing in soms instances to luring out as clearly as might be done some of the minor details. There is some $\because \because$ ETII— $04-15$
donbt as to the valuc of the face momeral prefixed to the ahan symbor (A2, fighers lat and 150), at it is umbual, being in some respects nulikw any otler face numeral that I lave observed in the inscriptions. seler (Zaitschrift für Ethmologie, Heft 6, 1890, page $72 z$) intruperts it 13 , and gives as the tomminal date 3 Aham 3 Uayeb. This
 Layeb; however, the momber attached to the month symbol is eartainly lis. If this series is eommted from 4 Ahan 8 C'mmln, it will racha $:$ Shat $: 3$ Tayeb in the year' 5 Ezanab. 'Tho number attached to the day Alath is very mordaim, seeming more like 1 or 3 thath 2 ; aplarently 1 . I lave therefore given an exact enpy of Mandslay's photograph (figure lol), allu a carefully made drawing (figure 150), using dandslay's and seler's drawings and the photograph (antotyper) for this prrpose. I am rather inclined to the opinion that Goodman's rembering is correct. It seems that Selor has been influenced in his dotermination of the mumber placed over the Jhan symbol by Mambstay's drawing. His interpretation is not justitied by the photograph, which inticates " 1 Mhan" instead of " 3 Ahan," making the date 1 Nhatu 13 Uo, or 1 Nlanl 13 Pop.

The whole inseription, as well ats the inseription on the foont and back of the same monmment, is strange, and, as will be notieed farthr on shows some of the features of the Chiehen Itza inseriptions.
lt, is perhaps unnecessiry to follow this subject forther, as it is apparent that the value of the face symbol and other mumetal symbols can be satisfat dorily obtained. It appears that (foomman's determinations, where the data are sulfieient, are as a rule corrert; though there are a fow eases, as has bern shown, where his rembering is doubtful, aml some where the saldes given are largely guess work, the data keing insulforiont. When the momber of the great ryele is a necessary factor, another qumstion arises, which will be disenssed fiarther om.
[boford disussing the mombers of the ryeles and great eycles, whith subjerot was referred to in my previous paper, I will notiee some of the sefondary numeral series of the Quirigna inseriptions not at hand when my previons paper was written.

SECONDARY NUMERA1, SERIES OF THE QUIRIGUA INSCRIPTIONS

Returning to the inseription on the west side of stela f (blate Lxxi), We pass ofer the first subordinate series (glyph 16), learling on to f Cimi 4 'Tzec (8 lyphs 18 and 1!), as his has already been noticed. At gryph 2. follows a date, 8 than 3 Mol, but without any recognizable intermediate numeral series, thongh there wre some numbered eryphs. Passing on we find at elyph 29 the date 4 Ahau 1:3 Yax, amd immerlatry following (glyph :30 and first half of 31) the mumeral series 3 days, 13 elumens, 16 alaus, 1 katm, and following this two
dates, 12 Caban 5 Kayab (the same as the terminal date of the initial series) and 1 than : Zip, thengh the number attached to the diy in the latter is not the ortinary symbol if intemed for 1 (figure 1.ie). Counting the series given forward from 3 . Han 3 Mol and 4 Ahan 13 Yax brings us to no given date; nor will eounting batk from 12 Caban 5 Kayab reach any previons given date. If, howerer, we count back from 1 Ahau 3 Zip, we reach 12 Caban in hayal, showing that the comection is made with the terminal date of the initial series, as given by froohman. It would seem from this that the insertion of this date, after this second numeral series, is for the purpose of showing that the count is to be madn from this date, as we found in our preceding paper

Fig. 15:. Glyph 33. west side of Stela F. Quirigua. Maudslay, part 12, plate xL. to be 1 rue in some instances.

Our next reference is to the inscription on the east side of stela F (Mandslay̌s plate xl, part 12). Hem the initial series (plate lxxifi), as herenofore stated, is 51-9-1($-1(1)-(1)$ (), Ahan 3 Zip. Goodman, in his comment (page 1:5), says:
The glyphs that immediately follow are so fantastic and unfamiliar that I can make nothing of them matil the sign indicating a date to be some scure days in the 19 th katun is reached. The date is 5 Ahan 13 Mol [glyph 24]. As that begins the Ist abau, the number of score days indicated must be 1s. Two unintelligible glyphs follow. succeedel by what I believe to be this reading: 3 ceycles, 8 katuns, and 15 ahans, a reckoning embracing eb calendar rounds and extending 3608 -score days into the 13 th cycle to 1 Ahan 13 Yax. the leginning of a :3iobissextile count and of a katun also.

It is somewhat difficult to understand these statements, but 1 will trey to explain them, as 1 desire to offer one or two criticisms. Thar actual interval between 1 Nhau 3

Fig. 153. Part of inscription on the east side of stela F, Quirigua. Maudslay, part 1% plate xi. Zip, the terminal date of the initial series, and 5 Ahan 13 llol (if the first tollowing oceurrence of this flate be assmmed as the one intended) will be 18,360 days, or 2 katuns, 11 ahaus. This will bring us to is that 13 Mol, the first day of ahau number 1 in the $1!$ th katun of cyeles (as numberet by Goodman) - the one now under comsideration. What he means by tessore days is that the comnt extends 33_{0} days into the $19 t_{1}$ katm, bringing us to the commencement of the second ahata, which, according to his method of numbering, is 1 .

For some unexplainel reason, foodman makes $n o$ mention of the numeral series between the terminal date of the initial series 1 Ahan

3 Kip and 5 Ahau 13 Nol. 'This, unless I an wrong in my interpretafion, is fonm in glyphs 21 , 2.2 , ame 23 (figure 153), as numbered by Matulshy. The profixed mumerals with one exception (that prefixed to the ahan) are of the ordinary type. llowever, as the exeoption, which is a face mumeral, shows the hatal across the lower jaw we must assime, according to what has been shown, that it denotes full count or nanght (0). With this assumption, the series appear to lu 3 days, 11 chuens, 0 ahaths, and 19 katuns, or $-19-0-11-3$, the mumber of chuens being uncertain; hat this series will not conneret any preveding with any following date. Could this have been Gootman's reason lor omitting notice of the series:

It is moticeable also that the symbol he interprets 5 in the date 5 Ahat 1:3 Mol (glyph 24 , figure 153) is precisely the same as the one he interprets 1 in the date 1 Nhan : $\%$ Zip in the inseription on the west side of this stela (glyph 33). In the next place it is exceedingly donbtrul, judging from an inspection of the chatracters, whether his supposed series ":3 çeles, s katuns, and 19 ahatus" can be found in the space imlicated-that is between glyphs 24 amt 29 . There is not in it, with one exerption, a single glyph that in any way resembles ans of the forms of time prriods he has notient. The exception is Lhe firs part of glyph et; which is likethe ordinary form of the chuen symbot; but the charater over it is like that orer that in the date he gives as 5 that 13 Alol, elsewhere interpreted as 1 . Thore is a numeral, 13 , of the ordinary form wer the first part of glyph 28 , but there is no 13 in the series he gives. We take this meries, therefore, to be parely jmaginary, mand up from his tables. Aceording to Mandslay's drawing, the month symbol in the following data- 1 Ahatu 13 Yax-is really the symbol for Yaxkin. But an rxamination of the photograph does not bear ont the duaring, the glyph being as much like the Yax as the Yaxkin symbol.

Aceorling to his statement, thisimagined seriesextends" 3008 -score days into the 13th cyele to 1 Ahau 13 Yax." He must, ot eomrse, alhule to the 13 th erele of his 55th great cyele; with this umberstanding his count is correct, if he had anything to base it on.

We turn next to the inseription on the west side of stela E, the drawing of which is shown in Nandshay plate xxxi, part 1:. The terminal date of this initial series (see plate Lxxit), the number of ahans heing rorrected from 12 to 13 , as ahredy yotieed, is 12 Caban 5 Kalyals. The first mumeral series which follows is in glyphs 14 and 15 (figure 154 (t), and is 6-1:3-.; (reversed), equal to 2,423 days. The date which follows (glyph 16) is 4 that 13 Yax. The count is eorrect, as 2, 403 days from 12 Caban 5 Kiayal, year 13 ben, bring us to t Ahan 13 Yax, your 7 Lamat. The mext series is fomm in glyph 18 and, aceording to the method of rading the chuens and dass so far followedthat is, comnting the number at the left side of the ehnen symbol as days and that above it as chuens-is, in reverse orler, 1-6-1t, but

Goodman, without any rxplanation, changes it hers to 1-14-i). The dato fohowing (glyphs 19 and 20), is 6 ($\mathrm{Cini}+$ Tzec. The time given in this instance will not rearh from one of these dates to the othere. As Goohman is eertainly right in his comeremion in this instance, if the date 4 than $1: 3$ Yax the correct, we will examine it. The initial series of this insoription, including the terminal date, is, when the correction noted has been made, premisely the same as that of the inscription on the west side of stela F , ant the dirst following date there is the same as the second here. is C'imi 4 Tzec. As the intervening series is too shert to allow for a second return of the latter date, it is evident that the numeral serios must be the same. As that of stela F is $13-9-9$, then bes subtracting, in the inscription on Stela E, the (i-1:-3.3 extendingern fro ('aban 5 Kayat) to 4 than 13 Yax, from this series ($1: 3-9,19$) the remainder, (i-1t-if, must give the lapse of time from 4 Nhau 13 lax tob Cimit treee, the third thate, and calculation shows that it does. Therefore the correction from 1-h-1t to 1-14-6, and the 1 to b, giving 6-1t-6, may be acopted as justifiable if the late 4 than 1:3 Yax be correct. At any rate, it is certain that this chang* is correct or that an equiralent rhange in the preceding series ($j-1: 3-3$, manst be

Ftis. lof . Part of inscription on the west side of stela E, Quirigna. Maudslay, part li尺, plate Xxxt. made and the date altered to suit. I am therefore inclined to acerpt the correction made ly Grodman.

Following the last date at glyphe 21 and 22 (figure 155) is the serics 15 days 18 chmens 1 aham 1 katm, or in reverse order 1-1-1s- 15 . The umbers are distinct and of the ordinary type, and are given correctly, as is shown by insweetion both of the photograph and drawing. That there is an error here (18 chuens bring full comb) seems apparent, unkes the number at the left sidw of the chmen symbol refers to clmens and that above to days, which can mot be aroppted
without proof. Goorman rads " $1-1-1(i-15, "$ but the mmmer over the symbol is 18 and not 16 . The fwo onter of the three mits are reltainly balls, and not rings or semicircles. This series is followed at glyphese and at (figure 15y) by the date 11 Imix 19 Muan, and whether We count 18 or 16 chuens or consider the 15 as chuens aml the 18 as days, it falls to conneret the peceding with the following date. Before atlempting to tind the solution of the diffenlty we will pass on to the next sitpies and date and count latek.

Passing on to grphe 27 and 28 (figure 156) we find the series 8-19-4, followed (elyph o9) by the date 1:3 than 18 (1 mm hu, and this in followed immediately (glyph 30) by the symbol for 17 katuns, apparently inserted, as it is followed by no date, to show that the date just precoding it is in the 17 th katun, or that 17 katuns laze been passed oror from the commencement of the eycle, most likely the latter. As Goodman does not

Fiti. 135. Part of inscription on the west side of Stela E, Quirigua. Maudslay, part 1\%, plate xxxr. discuss this series, although he mentions it, I give my own explanation. 'That there is an error here, it the number over the ehtuen stmbol is intended to indicate chu(ns, as there are but 18 elmens in an ahan, is apparent. let us us the count with the day ams chnen numbers re-versed-that is, on the sulposition that the serís shoulel read 8-4-19. This erpuals 2,979 days, which number combted backward from 13 Shan 18 Cumhu brings us to 11 Tmix 19 Muan, which aplarently justifies the change and phoves tho date " 11 Imix

'Turning to (inodman's "Archaie Chronologieal Calendar," to the 9th
 are located, we find that 13 Shan 18 Combu is the fiest day of the 17 the katum acooding to his method of numbering. However, it mos be remembered that he begins the count of katuns with oth, following with 1. 2. etc., upto 19 : therefore 13 that 18 Cumhu is really the first day of the kish katun, 10 ratire katums having been passed wrer from the intial (ate of the inseription (s than 18 (eht, the first daty of the !thereles). This verities our conclusion as to the signification of the symbol for 17 katums in wlyph :30.

For the prorpose of determining the thime minor series given in the inseription as $1-1-18-15$, folluwed ly 11 Imix 19 Mnam, we will comnt from the initial date of the insrription, placing side by side the series ats wien in the inscription amt as entrectert.

Initial	$\begin{gathered} \text { As given } \\ 1-14-12-1-1 \end{gathered}$	$\begin{aligned} & \text { As corrected } \\ & 0-14-13-1-17 \end{aligned}$
Secoma	6-13-:3	6-1:-3
Third	1-6i-14	6-14-6
Fourth	$1-1-15-15$	
Fifth	8-19-1	$8-1-19$
	9-16-11-6-13	$9-1.5-1.5-1-5$

If we subtract ! $-15-15-1-5$, the sum of the right column (omitting the 4 the series), from : $1-1 /-1$ - $0-0$), or, omitting the eyeles, 15-1.5-1-5 from 1/-0-0-0 (17 katmes), the remaindre is $1-4-16-15$, or 1 katun t

Fig. 1ák. Part of inscription on the west side of Stela E. Quirigua. Mandslay, part 12, plate xxis
ahaus 16 chuens and 15 days. This, if the preceding corrections are justitied, should be the the series, and should connect (counting forWard) the dates f Cimi 4 Tzec and 11 Imix 1! Muan, and calealation shows that it toes. The the series should therefore be $1-4-16-15$, or 8.97 .5 days.

It will be seen from our examination of this inscription that some eorrection has been made in the 1st, Brd, and 4 the series, and that the day and chuen numbers have been reversed in the 5 th. It must be admitted that this does not present a rery favorable showing for the theory, get 1 am comrinced that the corrections in this instance are
justified; but a simele rariation is possible (that of the 3rd date) which wond involve greater changes than those which have been mate. 'That the mumber at the left of the chuen symbol sometimes denotes chmons and the one wer the top sometimes denotes days is mentioner by Mandslay, get it is very monsual and is probably due to earelesshess. 'There is evidence of cartessness in this inscription in the writing of 18 and 19 chmens, and in giving 12 ahaus in the initial series instead of 13 , as it evidently shombld be.

The next inseription refermed to is that on the east side of Stelat E, the drawing of which is shown in Mandslay"s plate xxxir, part 12 (our plate LXXVIIf). The initial series is ot-9-17-(t-0-0, 13 Alau 18 Cumhu. fiondman does not mantion this inseription. It ends precisely where thr preceding insoription ended. Although there are distinct dates scattered throngh it, and what appear to be partial series, T am mable to determine the latter from the monsual symbols of whel they are formed, if they are pesent. The inseription apprass to eme, so far as dates are comourned, with $1: 3$ Jhan 18 Cumlm, the same as the terminal date of the initial serbes, which does not oceur again in Goodman's tables until the beginning of the gth ahan the katm 12th ryele is reached. This gives a lajse of $2-7-9-0-0$ from the torminal tate of the initial series. As mothing further in regard to the serjes can be learned from this inseription, we turn to that on stela A, Mamblay's plate viJ, part 11.

The initial series on Stela A is, as has been shown, $5-9-17-5-0-0$, f Ahat $1: 3$ Kayaly. Immediately following the month symbol of the date (glyph 16) is the symbol for 6 Ahan. This, I believe, is toshow that the preceding date is the begiming of the foth ahan, and so it is if we connt the alratus $1,2,: 3$, ete., from the commencement of the katum, instead of $20,1,2, \quad: 3$, ete., as Goomman counts them. It is my belief that the mumbrers expersed in the series denote, at least as a general mole, eompleted jeriods and not incomplete ones. Take, for example, the mmmers in the initial series in this inseription, omitting the great eycle-0-17-5-(1-0), that is, 9 eycles, 17 katuns, 5 ahaus, 0 ehmens, 0 days. This may be reat just as T have given it here, or as follows: The oth ahau of the 17th katum of the !thercle. If it should be real ast have given it, it shows that Goodman's method of combing-beginming that of the ereles with 13 following with $1,2,3$, etc., that of thr katums amd ahaus with 20 , and following with 1,2 , B, etc.-is erroneons. It we read a cyeles, 17 katuns, and 5 ahans, the meaning is that 9 full eycles, phas 17 katmos, phas 5 ahans must be combed to make the sum of the days betwern the preceding amd following date, and this is in fact the method Goodman nses, and Which must be used in making the calculation. On the other hand, aecording to his system, the series $9-17-5-0-0$ wonk indicate that the date sought is the 1st day of the bth aloan of the 17th katun of the

[^2]9theycle, but the symbol 6 than (glyph 16) denotes, if we have correctly interpreted it, that if Ahau 13 Kiayab is the first day of the 6th ahan; nevertheless, foodman's method of counting gives the correct result. Attention will again be called to the subject futher on.

Returning to our inscription, we find in the 20 th glyph the brief series 19 ahaus followed by the date if Ahan 13 Chen or 13 Zac, but the series does not connect the dates. There are no other recognizable series in the inscription.

The inscription on the west side of Stela C-the drawing of which is shown in Mandslay's plate 19 , part 11 (omr figure 145)—has, as heretofore stated, the initial sories $5+-9-1-0-0-1,0$, Ahan 13 Yiaxkin. Following this date, at glyphs 16 and 17 , is the n mmeral series $17-5-0-0$, that is, 7 katuns, 5 shaus, 0 chuens, 0 days, though in the usuat reverse order of days, chuens, alous, katums. This is in turn foblowed by the date 0 Ahau $1: 3$ Kiavab. If we count this series as 10 katums and 5 ahaus, it will exactly express the lapse of time from of Alau 1:3 Yaxkin, the preceding date, to 4 Ahau 13 Kayab, the date which follows. But turning to Goodman's " Arehaie Chronological Calendar," $54 t h$ great eyele, we find that the latter date, aecording to his numbering, is the \bar{t} th ahau of the 17th katun of the 9th eyele. Shall we aceept this as the proper reading, or shall wr conclude that there is an error in the nomber of katuns? 6 than 13 Yaxkin is the first day of the 1st katun of the Gth eyele, according to Goodman's method of connting (thongh the ond, in faet, if the comnt began with 1), and fi Shan 18 Kayab is the first day of the sth ahau, as Goodman counts (ith in faet), of the lith (18th) katun. Comting from one date to the other gives just 16 katuns 5 ahaus, as the following subtraction shows:

```
\(9-17-5-0-0\)
9-1-0-0-0
\(16-5-0-0\)
```

It is proper to bear in mind that by Goodman's method of numbering, the number given always rxpresses the number eompleted; thus, as he hegins with 15 in numbering the cycles, his 1st eycle is in reality the second, ons cyele having been completed and the ond entered upon. I am therefore disposed to correet 17 katums in the series just examined to 16 .

As these are the only series of the Quirigua inseriptions to which it is desirable to call attention at present, the next subject of examination is the great-crele symbols, but in order to enter upon this intellisently it is neeessary to discuss some foints of Goodman's system not fully examined in my provious praper. In doing this it will be necessary to go to the rery base of his sistem.

MAYA CHRONOHO(iICAL SYSTEM

The theory that Goomban has alopted. so far as it relates to the scald of units or time periods, as he terms them, may be expressed in the following series, the day being the primary unit:

This sehwme is, as was explaind in my previous paper, precisely the same as that generally accepted, so fin as the numbers are concerned, until, in ascending the scate, the number of cyeles, or units of the 5th order, forming a great cyele, or mit of the next higher order, is rearhed. At this point Groodman abambons the vigesimal system and introduces in one step 13 and in the other 73 as multipliers-mmbers which are absolutely necessary to his theory; for if cither be dropped, his theory falls with it. If these supposed time periods are, as I "ontend, nothing more than orders of units in the system of mumeration, then we must assime that the vigesimal system was followed. To this point attention is directed, and although it is discussed somewhat at length in my previous paper, there is other evidence bearing on the question, which will be introdued here. It was shown there that one series in the Dresden codex recognizes 20 cyeles to the great cyele (I shall continue to use these temms merely for convenience, to indicate the orders of units). A more sareful study of that codex shows that there are other series which also furmish conclusive evidence on this point.

The theory, therefore, which [shall attempt to show is the eorrect one is that in both the Dresden codex and the inscriptions the vigesimal system was maintained throughont, "xcept only in the second step; not only that 20 abaus make 1 katun and 20 katums make 1 cycle, but also that 20 eyoles make 1 groat rycle and 20 great cycles I next higher step, shonld the count extend sof fir.

Before we consider the examples which are to be introduced as evidence in support of this theory, it will be best, in order to sce more clearly the bearing and the foree of this evidence on the question, to present an "xplanation of the order of succession of the ereat eycles when thr rigesimal system is followed, that is, when 20 cyeles are commed to the great recte.

As the day than is fomm to be the first day of serelal, in fact most, of the initial series of the inseriptjons, and is that adopted by Goodman as the begiming of his grand era, as also of his great cyeles, I, for the present, assume it as the initial day of the latter periods.

Acoorling to his scheme of eombing theres to achel of these
periods, they all begin with the day 4 than. If the first day of the ahans is Ahan, then it is certain that the first day of each of the higher periods will be than, though we count 13 or 20 creles to the great cyche. As the days of the calendar are mombered $1,9,3$, cte., uptu 13 , the enunt then begiming again with 1 , and this nmbering is continned in regular order, and as than will return only every ?h day it is apparent that it will receive different umbers. If the days are written out in regular suecession and the series is made of sufficient length, it will be found, if we select a 13 Ahan and begin our count with it and count 340 thass (1 ahau) to each step, that the mombers attached to the days (which will of comse be Ahans) will come (the count being forward) in the following orter: $13,9,5,1,10,6,9,11,7$, $3,12, \mathrm{~s}, 4,13,!, 5$, etc., this order being maintained wheremer in the series we may begin.

As it takes 20 ahans or units of the 3rl order to make one of the thh, it follows that if the day numbers are written ont in suecerssion in the order abovestated, the first days of the katmms will be those of the soth alans, their numbers will therefore come in the following order: $11,!3,7,5,3,1:, 10, s, 6,4,2,13,11,!3,7$, etc., the order remaining the same regardless of the point at which the count begins. As ou katuns make 1 crele, the mumbers of the first days of the eycles will be the same as those of the 20th katuns, and will he as follows: $13,12,11,10,3,8,7,13,5,4,3,2,1,13,12$, ete. The begimning point in these series is arhitrary.

It may also be shown by simple ealculation that the order of the day numbers of the first days of the higher periods or orders of muits will be as given above. As the numbers of the first days of the alans rary sucuessively by 4 , if we multiply 4 by 20 (20 athans being required to make a katmo and divide by 13 , the remainder is - ; hence, if the first day of a given katun is 3, the first clay of the one which follows will be 7 than, the differenco being subtracted if counting forward, and added if comnting backward. When the number of the day is less than 3 we add 13, and then subtract in counting forwart, and in monting backward subtract 13 when the sum is greater tham this number. As it takes 400 ahans to makr 1 cyele, we multiply the difference, 4 , by this number, and divide the product by 13. This leaves a remainder of 1 , hence we subtract 1 from the number of the finst day of a given crele to tind the tirst of that which follows, or add 1 to find the first of that which precedes.

As, according to Goodman's theory, 13 cycles make a great eycle, then it renuires $20 \times 20 \times 13$ ahans to make 1 great eycle. We multiply 4 by $20 \times 20 \times 13$ (or 5,200) and divide by 13 . This leares no remainder, and hence, acemting to this shemm, the day numbers of the first hay of all the great eyclen will be the same, and so Goodman grives them in his "Perpetual Chrmolorical Calendar." Here the question of number arises. Is it 1 Ahatu. Ahau, or 3 . thau, ete., to

13 Alan? Goodman says + than. Ilr hases this, doubtless, on the fact that many of the initial series of the inseriptions lave as their first day + Ahaus Cumho, whinh he assumes, apparently correctly, is the tirst day of a great eyele. It is apparent, following his method of numbering, that if one great cycle logins with 4 Alaw, all the rest do.

As yet we have not introduced the year as a factor, but before this is done attention is called to the result of following the vigesimal system in comnting the higher orders of mits, or time periods, as Goodman considurs them. Aceording to this system, which, as I have stated, prevals in the Dresden codex, not only does it take 20 ahans to make 1 katum amo 20 katuns to make 1 cycle, but also 20 cyeles to make 1 great eycle. The order in which the numbers of the initial days of the ahatus, katuns, and eyeles follow one another will be the same in the one seheme as in the other and as already given. The difference botween the two theories appears in the numbers of the initial days of the great cycles. Following the method of calculation indicated, we moltiply + by $20 \times 20 \times 20(0 \cdot 5,000)$ and divide by 13 . This gives a remainder of 7 . The order of the nmmbers is therefore $13,14,1 \because, 5,11,4,10,3,9,2,8,1,7,13,6,12$, etc., and this is fomm to be comrert by the ahsohate test of writing out the mombers of the first days of the ryrles in proper orler and taking every $20 t h$ one. The initial dates of a sufficient number to cover all probable requirements are given here, 4 Ahans Cumhn being adopted as the basis or wheck point from which to comnt forward and backwath. In this calenlation we mast bring into the problem the year factor.

As mo lareer nomber of great cyeles has been recorded than $1 t$, in one of the Copan inscriptions, B leing the highest given in the Dres-
den codex, the initial dates given will probably suffice for all requirements. But this supposition rests on the theory that the range counting by great eycles, is not more than 14 from 4 than ec Cumhu. Our mumbering (l ft column) is, of course, purely abitrary, given merely for convenience of reference, the great egres locing, on the theory I have mesented, in preeisely the same relation to the next higher order of units-provided the dayan count extended so far-as the cycles to the great cyeles, the katums to the croles, etc. In other words, when, in connting, so cyeles are completed, one great eycle is completed and the connt passes into the gud ; and when this is completed we pass into the 3rd, ete., in precisely the same manner that we pass in our decimal system from one decimal to the next higher.

Our next step is to test the theory advanced by apmal to the high series which reach to the great eycles, begiming with those of the
 the determination of the point in question is of vital importance, the details of the demonstration will bu given somewhat fully.

Taking first plate Lail of the codex (our plate Laxix), we observe four momeral series ruming upward in the folds of two serpent figures, two of these series being in black mumerats of the ordinary form, and two in red, atso of the ordinary form. The two series in the loft serpent (ome black and the other red) are as follows reading from the top down:

Rerl	4-6-11-10-i- 2. 3 Cimi $1+$ Kayal
Black	4-6-7-12-1-10. 3 Ix 7 Pax (\%)

That is to say, the red series is 4 great eycles, 6 gycles, 11 katme, 10 ahans, 7 ehuens, \boldsymbol{Z} days, 10.3 Cimi 14 Kayah. The symbols of the dates as we give them are sormingly rerossed as compared with their positions on the plate, but the zigzag order of the suries mast bu borne in mint. The symbol of the month Pax is somewlat unsual.

The red series changed into days is as follows:

4 great cyeles (of ${ }^{4}$ cyrles each)	$\begin{gathered} \text { Dass } \\ 11.520 .000 \end{gathered}$
frerles.	864, 0001
11 katuns	79. 200
10 ahaus	3.600
$\%$ chnens.	140
2 days .	?
Total amount	12.466.942
Subtract 65.5 calendar rounds.	12.450 .880
Remainder*	$16.06{ }^{2}$

Using this remainter and connting forward from 9 Kan 12 Kayab (year 3 Ben)-the date standing over the head of the figure seated on the serpent-we reach 3 Cimi 14 Kayab, year $\&$ hen, the date standing below.

We have positive aridence, therefore, that in this instances han

12 Kinyab is the intial day of areat eycle and that oo eyeles are coment to the ereat eyele, since the number $11,520,000$ is obtained as follows:

1 cycle	144,000 days
Inultiplied by	20
1 great cycle.	$2,880,000$ days
Multiplied ly	t
4 great cyeles.	11,520, 000 days

If we follow Goodman's methorl and count only 13 cycles to cach great eycle, f of the latier, fogether with the minor periods of the series as given above, will amont to $8,422,942$ days. Snbtract 44 calendar roumbs, and there remain 5,802 days, which, connted from 9 Kim 12 Kityab, bring us to $\overline{7}$ Cimi 14 Pax. This is not correct as to the mumber of the day or as to the month. The same day should be rachet, for the number of cyeles is the only thing in the sries changert.

We take next the black series of the same pair, to wit, 4-6-7-12-110, 3 dx 7 fax. This changed into doys is as follows:

	Days
4 graat cycles (of 30 cycles each)	11,590,000
15 cyrles	864.000
\% katums	50, 400
12 ahatas	$4,3 \geq 0$
4 chuens	80
10 ไay゚ -	10
Total	12.434.810
Subtract lis. calendar rommeds	12. 431.900
Remainder*	16. 210

Using this remainder and comnting forward from 9 K゙an 12 Kayab, yar 3 len, the same initial date as before nsed, we reach :3 Ix 7 Pax, year ? lamat. 'This is correct.

Tha series in tha folds of tho right serpent (same plate as the precedinge arr as follows:

```
Black ........ - -. ......... 4-6-9-15-12-10.13 Aklaal 1 Kankin
Red..........................i-1-0-1.j-0, 3 Kan 16 (%) U0
```

Changing the red siries into days, we have the following result:

	Days
4 great crcles (of ?0 (ercles pach)	11. 520.100
6 cycles.	864.000
1 katm.	\%.200
9 ahaus.	3. 240
1.5 chmens.	300
Total	$12,394,740$
Snbtract 6.9) calendar rounds.	- 12,393,940
Remainder	800

['sing this remainder and counting forward from 9 kan 12 Kiayab (same initial date as before), We reach 3 lian 17 Vo, yeas of Lamat. This is correct, as it gives the date below, except as to the daty of the month—which is griven as 10 Lo in the original, but should be 17 Lo, as Kam is never the lith day of the month. What is meant hy the calendar rommds and the reason for sultracting them was fully explaned abore and in my previons paper.

The blate series of the same pair changed into days gives the following numbers:

	Dass
4 great cycles (of 20 cycles each)	11.520,000
ticyeles.	864.0000
9 katums	64.800
15 ahaus	J. 400
120hluens	240
19 davs	19

Commtins forward this number of days from ! Kan 12 K゙ayab, year 3 bun, we reach 13 Akbal 1 Kankin, year 13 Akbal. This also is correct.

The next series notieed is the one ronsisting of black mmerals in the folds of the serpent on phate Lxax of the Dresden corlex (our plate $\mathbf{L X X X}$). This is as follows: $4-5-19-13-12-8,4$ Eb? (month) ; the month symbol is obliterated. As the black and red are not zigzagued in this instance, the date helonging to the blate series stands immediately under it. Changed into days, the series gives the following result:

	Days
4 great cyeles (of 20 cycles each)	11,520,000
- creles	720.000
19 katums	136, 800
18 ahans	4.680
12 chuen:	240
c days.	s
Trital	12,381.728
Subtract 6an calendar rounds.	12.3.4.960
Remainuler	6,768

In this instance, an on phate Lxif of the codex, the date 9 Kan 1: Kayab stands above the serpent. Comating forward 6,768 days from this date, we are hrought to 4 Eb s Chen, year 9 Lamat, which agrees with the unobliterated part of the date given below.

We have, therefore, in the data presented positive proof that in five instances in the Dresten codox the day 9 Kan 12 Kayab is the finst day of a great cycle, and that twenty ercles are connted to one
great eyele. In these instanees 9\% Kan 12 Kayab is the initial hay of the first or more remote of the fonr great ceveles combted in the series which have been noticed. The four here, however, has no referenee to the mombers applied to the high priods, if, in fact, any were applied, but is merely the number of oft of the orders of units used in counting, just as we say " 4 thousimis, omillions," ete. Howerer, the idea intended to be set forth here will be more fully explained farther on.

In order to show that 9 kan, as used in the series examined, is the initial day of the most remote of the four great cyeles of these series, the following proof is presenter.

It we arrange thr last-mentioned series perpendieularly in ascenting order, as in the orginal, exept that we separate the great cycles, it will stamd an follows:

```
4th great cycle (completed)
3rl great cycle (completed)
2nd great cycle (completed)
1st great cycle (completed)
5 cycles
19 katums
13 ahaus
12 chnens
8dars
```

The reader must keep in mind all the way through that, although Goodman's terms are used, they are to be moderstood as repesenting merely orders of mits. Hener, 4 h great cyele, 3 da great cyele, ete, are intended to conver the same iflea that is conveyed hy" t th million, ord million," ete. These terms are uset merely as convenient designations in mumeration. Each and every series in the inseriptions and corlices signifies nothing more nor less than so many days, the day locing the mit.

Our suparation of the great cecles is therefore nothing more than separating the millions and lower denominations in the expression " $4,234,600, "$ just as has been dome above. The oljeect of this separation is to ascertain the begiming day of each of these numbers which Goodman calls time periods, as this forms a check on our calculations. For example, if I assert that 4,000 days from Thursday, January 1 , 1889, will reach Saturday, December 18, 1890, hy comnting 1,000 days we reach a certain date, and 1,000 more a certain other date, ete. If the fourth 1,000 brings us to the same date as counting at once 4,000 , we thereby check the one calculation by the other. The separation is to be understood as signifying nothing more than this, and not as implying real time periods of a chronological system.

If we ean aseertain the first day of the first of these great eyeles, and count forward from the date so obtained, one by one, t great

crcles, \bar{j} cercles, 19 katums, 13 ahans, 12 chnens, and b days, we shouk, if my theory be true, reach the same date ($t \mathrm{~Eb}$ o Chen, year 9 Lamat) as by counting the whole series, thus obtaining a check on our calculation.

	Days
Multiply 1 cycle	14t. 0100
by?	20
1 great cycle of	2. 580.000
Subtract 1.	2, 865, 980
Remainder	14.1020

Counting forward this number of days from! Kin 12 Kayab, year 3 Ben, we reach 2 Kan 17 Nul, year 3 Lamat. This should be the initial day of the 3rd great cecle, as numbered above. Counting forwarel 14 , (1) (lays from 2 Kan 17 Xul, year 3 Lamat, brings us to \& Kan 7 Kankin, year \because Ezanalb. This should be the first day of the 2ud great cycle, as mumber abore. Counting forward 14,020 days from the later date (8 Kan 7 Kankin, yeare Ezanab), we reach 1 Kan \geq Zip, rear 2 Ben. This shouh be the first day of the 1st great cycle, as numbered above, and with the subordinate periods gives the series $1-5-19-13-12-8$, or 1 erreat cycle, a egcles, 19 katums, 13 thans, 12 chuens. \& days. Counting forward from 1 Kan 12 Zip, year 2 Ben, should bring us to 4 Ebs Chen, year 9 Lamat, the date obtained by counting the phtire series from 9 Kan 12 Kayab, year 3 Ben.

In order to test it we make the calculation; reduced to days, the result is as follows:

Days

1 great cycle (of 20 cycles)	2.881.000
i) cycles.-....	720.000
19 katums	136.800
13 ahans	4. 650
12. chmens	$\bigcirc 40$
S days	8
Total	3.741.72s
Subtract 197 calendar rounds	3. $73!1060$
Remainder	$\therefore .665$

Counting forward this number of days from 1 Kan 12 Zip, year 2 Ben, we reach 4 Ebs Chen, sear s Lamat, the date at the bottom of the series, and the same as that obtained by using the contire series and counting from 9 Kan 12 Kayab.

Is a further test, we connt forward 14,020 days from 1 Kan 12 Zip, raar - Ben, and reach 万Kan \because Zac, year 1 Akbal. This should be the first day of the incomplete great cyele in which the minor periods fall. Therefore, by taking the sum of these periods and counting forward from this date, we should reach 4 Eb i Chen, yeal 9 Lamat.

$$
2=\text { ETII -04-16; }
$$

Reducing these periods（ 5 cyeles， 1 ！katuns， 1 a ahans， 12 chuens， 8 days）to days，we get the following result：

	Days
5 cycles	$\because 20.000$
19 katuns	136，800
13 ahatus	4，680
12 chuens	$\bigcirc 40$
8 ¢1ays	8
Total	861．788
Subtracting ti cal	$8.54,100$
Remainder	7.628

Connting forwam 7 ，best days from 7 Kin 2 Kac，year 1 Akbal，we reach $\&$ Eb 5 Chen，gear！Lamat，which is the proprer date．

The demonstration therefore seems to le complete that Kan，in the cases referred to，is the first day of each of the great cyeles．It is also important to notice that the mombers of these kans follow one another in predisely the same order as do those of the Ahans when 20 cyoles are comnted to the great egole（see page 236 ）to wit： $9,2,8$ ， 1,7 ，imf，if the series is continued hy calculation， $13,6,12,5,11,4$ ， $10,: 3,!, \because$ ，ete．

If wr arrange these first days of the great eyeles in the order in which they comme，adding the tays of the month on which they fall， they will be as follows－the numbering（colmm at the left）being，of comse，purely arbitrary：

	12	ar 10 Lamat
2	8 Kan 2 MLul．	year 10 Akbal
：	1 Kan 12 Muan，	year \％Ben
4	\％Kam 13 Zotz	year \％Lamat
J	1：3 Kan \％Ceh，	year \＆Ezanab
6	¢ Kian 12 Pop．	year 8 Ben
\％	12 Kan こ Chen．	year i Akbal
8	§Kan 12 Pax，	year（f Ben
9	11 Kan 1\％Tzec，	year fi Lamat
10	4 Kon \％Mac，	year is Ezanab
11.	10 Kan 12 To，	year is Ben
12	：Kan ？Yax，	year 4 Akbal
18	9 Kan 12 Kayal．	year ？Ben
14	こKan 1\％Xul，	Sear ：3 Lamat
1.1	\＆Kim ${ }^{\text {\％Kankin．}}$	year こ Ezanab
16	1 Kan 12Zip，	year 2 Belr
11	\％Kım こ Zac．	year 1 Akbal
15	13 Kan 12 Cumhu．	year 13 Ben
19	GKin 1\％Taxkin，	year 13 Lamat
31	12Kin i Muan．	year 12 Ezanab

This is calculated from！Kan 12 Kayab as a basis，beeanse we late formot it to be such for somb of the sures of the Dresten codex．

It oreler to add proof 10 sum explanation and calleulation of the series in thes sarpat figures of phate Lxit of the corlex， 1 show the result
of calculating the differenees lebwean the sordes and passing from one of the final dates to the other. I had tried this before, but, mot allowing for the rigzage eomer of the serbes, I falled foget the dates at the bottom in right relation to the series.

T'aku lises the serifes in the right-hand serpent, as follows:
Blatk
Rerl
Difference
 error), should reach 13 Akbal 1 Kiankin.

Reduring to days, we have the fohlowing result :

发	Days
8 katuns	5\%, 600
5 ahates	1, Su0
15 chmens	300
19 days	19
Total	83. 319
Subtract 3 calendar rounds	inf. 9140
Remainder	2, 319

Using this remaimkerand counting forward from ; Kan 1\% Lo, year © Lamat, we reach 13 Akhal 1 Kankin, year 13 Mkbal. This is rorreer, and proves that we shond reath 17 Lo insteat of 16.

The two series in the other (hoft-hand) seremt are at follows:

Red Black		4-6-11-10-\%-2, 3 (imi 14 Kayab
		7-12-4-10.
	Remaincler	$3-18-2-12$

This remaimler, counted forward from :3 1×7 Pax, whirla is tho fate belonging to the black series, will lumg us to: Cimi it kiayah, which is the dato belonging to the real series.

The relation butween the pairs of the 1 wo serpents is botween the like colors. For ratmple, lis asing the differenere betwoen the red
 from 3 Kan 17 L'o, wo reach :' Cimi 1t Kayab. by using the lifferwhe loetween the black srries, and eomating forwarl from 3 lx 7 Pax, we roatell 13 Akhal 1 Kankin. These results surve to confirm the results of the ralenlations when the entive series is taken into the count.

There are fise other high series in the bresten coolex, to which I haternot as yet alhaded-four in the serpent figures on phate Laxi, amel
 orer them temperarily is that somo of them reduire eorrection and others present difticultios to suceessful calculation and satisfatory intapmotalion whieh I have not as yet been able forereome. Sthe objeet in view is to diseover the truth amd mot merely to support a
theory, it is proper that these dificulties should be explained to the readep that he may judge whether they have any bearing on the question molder discossion.

Thr first of these series to which roference will be made arr thr black and red in the loft serpent on phate hat of the colex (onl phate LXXXI). Thest, as they stand on the plate, are as follows:

Black	4-13-15-1, 3 (hicchan 13 Pax
Rerd	4-6-0-11-3-\%, 3 Chicchan 18 Xul

In this instance, as on plate LxH, the dates under the series are here semingly reversed by the zigzag arrangement of the series-a fant which is to be bome in mind: therefore, that which is apparently under the black belongs to the red. The last (lowest) number of the red arries denoting days is obliterated, but walculation soon makus it apperent that it was 1 . The initial date here is the same as that of the wther sprias of this codex heretofore refered to, to wit, ! Kran 12 Kayab, which stands in the text above the serpent.

Calrulating the series as they stambl in the orisinal, "ounting from the initial date (0 Ǩan 12 K Kayab), we find, whether we assume 20 or 13 eyoles to the great cerle, that neither of the dates standing below will lereached. The proper day, and wen the day of the month, may
 great eyele, we are bronght by the black series to 1 Chiorhan 18 Chen, Toar 6 Jamat; the rad series (adding one day) brings us to 5 Chicchan 1: Mate, vad 1:3 Ben. The result in both cases iswrong. Cometing 13 reyctan to the great cyele in the back, we reath 3 Chicchan 13 Kisyab, year 9 Ben; and the red series brings us to 7 Chicelan 3 Kip, year 4 Aklral. Both results are wrong, though the first is aldatratly within one month of being correct-the day, day number, amd day of the month being right. Inowever, the two dates are in reality 32 yeats apart. We might assume the number of months (ehnens) to be 14 , instead of 15 as given in the original, if this would bring hoth sories in harmony; or wre might elange 1he month from lax to liayab, if this wonld meet the difficulty throughout. The two series, black and red, are evidontly relatm, and the difference between them must connect the dates reached by oounting each series from the initial date (! Kan 12 Kiayab). The difference in this case, $1: 3$ eyelos being counterl to the great cyele, brings the red sories to 7 ('hiechan 3 Zip, year 4 Akbal, which is wromg.

With serming intomsisteney, I propose a eorrection more radieal than wither of those sugesested above. I believe the aboriginal artist by inadrortency made an exthatege betworn the black atml red series in the ahaths athl chuens, athl that, instead of being as given above, they should be as follows:

Black	4-6i-1t-11- :3-1. : Chicchan 13 Pax
Red.	4-fi- 0-18-15-1, \% Chicchan 18 Nul

The series evidently motures that the days of the terminal dates shall ach be : Chiorlan.

Counting forward fron 9 Kian 12 Kayab, year: B Ben, the amoment of the black series (equaling $12, t s 8,801$ days), we reach 3 ("hicelan 13 lax, year 3 ben; and comnting from the same initial date the red series (equaling 12, 385 , 981 days), we rearla 3 Chiechan is Xial, rear 3 Lamat. Both results are correet, and eomuting from: Chieelan 18 Xul, rear: Lamat, the difference betwen the two series as thus eorrected (ermaling ! $49, \mathrm{t}+0$ days), we reach 3 Chicchan 13 Pax, year 3 Ben, tho torminal date of the black series.

Neither of the serios in the righthand serpent of this plate lorings the count to either of the dates which stand below them. As fet I am unable to find in what the eror consists. As the text abore this right-hand serpent has been obliterated, it is possible, thongh 1 (lo not think probable, that a different initial date is given. ds both series counted batckard rearh a 9 Kan, hut of diffrent months, 1 am inclined to helieve that the erme consists in one or both month symhols of the trrminal dates.

The wher serise which hets not been considered is the red one in the serpent on plate LXIX, Drespen eodex. The diftienlty in this catse arises from the insufficient data, the number in the katun plate hasing been omitted on obliterated, and the month symbol of the terminal date being too nearly obliterated for anthing positive in regarel to it to be doterminet. If the month symbol could be determined by inspection, the data wonld be sufficient to give the number of katmus correctly: hut with the series in its imperfect condition, we can only state that, by a trial substitution of the nombers from 1 to 19 in the katun place. We find that this number most be either 1 or 14 . If it be 1 , the terminal late is $4 \times 12 Z \mathrm{ip}$; if it be 14 ,
 symbol, small as it is, apparently forbids the smpposition that it is Zac, it is probably Zip.
Taking the difference between the red spries, as thas corrected, and
 5 Chen, year 9 Lamat, which agress with the result of counting the black series from the initial date. 'The solution, therefore, appears to be satisfactory.

As Dr Seler raises another question in regard to these high series of the Dresden codex, we will aonsider it before passing on. It will be noticed that in the text (double rolumn) at the left of the serpents on plates LNI and LXIX, there is, in 'ach arase, a numeral series given in symbals in the same form as those in the insériptions. The

 The datte following in earh rase is ! Kan 12 Kayab, and hore date

righty understand him, contends that this suries belongs to, or is connocled with, the serpes in the rerpent figures, and is to show that the
 he has fated for make romederion between the dates by the series in the toxt.

As the initial athd ferminal dates (t Ahans Cumhu and 9 Kan 12 Kataly) ate the same on both plates, and the number of the katums and ahtus the satme in both, it is certatin there is a mistake in one or the other in regard to the momber of ehuens and days-one being t choms, t days, and the other 1 chmen, 3 days-as the derminal date (abluot oreme twice in the lapse of time between ome and the other, that is, in flats. IFoweres, neither serjoswill comect the two dates. The series on plate wax when redncerl to days is as follows:

	Days
15 katme .	108.000
9 : 1 hans	3. 3414
4 chmens	50
4 dias	4
Total	111.824
Sulitract is calenrtar rommls	94.900
Remainder	16. 424

Contuting this number of days forwarl fom + Ahath in Combun, gar
 later than the poprer one: nor will eounting hackward give the proper pesult. It is apmarent from the problem itself that the numeral serfos must he materially chamger in order fo comncet these dates, if this was the object of the aborivinal artist. That the two dates are 100 prominent for wither to be changed will hre admitterl.
 the year : Bath, the lapse of time from the former to the later, counting forwarl (the necessary direction on seleres assumption) is 2,004 days (plas any number of calendar momds): while the momber of days oxd amd alove the catemdar pommes in one of the series (plate LXIX) is $16,42 t$ days, and in the other (plate LXA) is 16,263 days. The
 the series, th the dates can not be ehanged, involves dropping out
 pootion hy any chaner in the nomber of chnens amo days, and as the katums and ahatis are the same on looth plates, it is presumable that they are as they were intended to bre. Therefore, while the pesitions of the dates in the text in relation to the momeral series Would serm 10 indioate that they were intanded to be commerted hy it, Ho fustifiable correrotion or reasomable mamipulation of the srries appears to bear out this theory It womblerm from these face sis that the datal do not sustain seleres assumphion.

Suppose, howerer, that it was the intention of the aboriginal artist to connect the dates loy these short series, ant that each of them contains some ertor, and when rorrected would make the commetion, let us see what the result would be. The entire series on plate LXIXtaking that in the text as it stands, and the blark one in the serpent figure, making 1.5-9-1-t phas $1-5-19-1: 3-1 \because-8,4$ El $\because($ month $)$-wonld throw back thr initial date $12,493,00^{2}$ days, or a litale over $3+, 226$ feas, frevious to the teminal date $t \mathrm{~Eb}$ of the series. This is wholly inconsistrut with the idea expressed ly Seler (ruoted farther 0n) that the terminal dates of the inseriptions indicate, respectively, the time of the erection of the monument, and that these dates fall within or after the 10th crele (Goolman's ith of the 5tth great cyele). If the t thatu 8 Comhu of this series is the same t than s Cumhu in aetual time as the first of Gombman's 5 tha great ryclo- m, as seler calls it, the " nommal date"-then the series must ron far into the actual future, or all the dates of the inseriptions must lne far bank in the past, and are morely theoretical. The only other smpposition is that the ! lian 1e Kayab in the columms at the left is not iflentical with the ! Kian 12 Kayab that stands above the serpent, and with which the series in the folds are monoubtedy comnected.

As the final date in the series refermed to in the precerling paragraplo is incomplete, in lacking the day of the month, we will try the one on plate LXI. Using the black series in the folds of the loft serpent, as this is the largest of the four great suries on this phate and hence presumably the last (though the rate, if corvet, should hold gool with any of the serios), we have 15-4-1-3 phas $4-6-14-13-15-1$ (as they stand on the plate). Comoting 20 covles to the great erele and (hanging to diys, we arrive at the following result:

4 great cycles	$\begin{gathered} \text { Days } \\ \text { 11. } \begin{array}{c} 20(0.010 m \end{array} \end{gathered}$
6 creles	S(3t. 1 mm
14 katums	
13 ahans -	4. 6×10
1.) chuens	300
1 day.	t
	12. 4*9. 2×1
Alll anount of short series	111.96\%
Total	12.601 .114
Subtract difi ralendar rounds.	$12,583,740$
Rematinuer	17.304

 use the series as comected on a previous page, to wit: t-fi-14-11-3-1,
or $12,4 x, 8=1$ days. Whding the shortw serics and combing forward from + Ahtur 8 Cumbn, we reach the date 4 Kan \supseteq Taxkin. This again is wrong. Tsing the larger series as corrected and counting from! Kan 12 Kayab we rach, as has ahrady been shown, the correct date, 3 Chicehan 1:3 l'ax. It is therefore fair to conclude that there arr no sufficient gromeds for Seler's supposition.

These erroneons conclusions arise chiefly from the mistaken idea that these mumbers, ahans, katmen, ete, are real time perionk. Moreover, it does not necessarily follow, where such high numbers are used, that 4 than 8 Cmmbu is what Seler calls the "normal date"; that is to say, the initial day of Goodman's 5th great cyele. But this does not matter in the present cass, as the date can not be connected with any of the others given in the serics.

Eren conld the sories be reasonably changed so as to make the connection hotwen the given dates, we still have staring us in the face the fact that 9 Kan 12 hayab is actually and beyond question used in the coder as the initial day of the so-called great cyele in six instances, and that a Kan is the initial date in 3 times 6 other instances. It is true that these so-called great cyeles are but orders of mits, steps in numeration, and not real time periods; nevertheless, they are just as real when counting from a Kan as from an Ahau.

In orm that the realer may clearly understand the object in view in introducing these calcolations, and see the bearing they have on the question, it is neressary again to refer to the basis of Goomman's theory of the Mayan time system, and especially of his supposed separate "chronological calendar."

Goodman maintains that in addition to their regular annual calendar in which time was comnted by years, months, days, "te., the Mayas male use of another time system which he terms the "chronologieal malendar." In this system, according to his theory, they counted time by certain determinate periods, which, according to the nomenclature arbitrarily adopted by him, are termed churns (each of 20 days); ahans (each of 18 chuens or :36 dars); katuns (eath of 20 ahaus or $\overline{7}, 200$ days); cyeles (each of 20 katuns or 144,000 days); great eycles (each of 13 cecles or $1,872,000$ days), and a gram era equal to 73 great eyeles. These he believes to be mal time periods, as truly so as the frars, etc., of the amual eatendar, systematically arranged and all abore the rluens always (so far as time count in the inseriptions is concerned) begiming with a day Aham, the great cyeles always with the day 4 Ahan. It is in this supposition that Goodman's great error lies, and, in order to support his premise, he changes two of the stepes of the Mayan numerai system withont the slightest evidence on which to hase the change, and he also introduces factors into the numeral system which are wholly unknown to it. If these statements which 1 make can be maintained loy satisfactory evidnem, then his theoretic "Arehaie Chrombogieal system" falls to
the gromm, though his discoveries as to the signification of certain glyphs and the mamer in which they were uscd be gennine, and his calculations of series be correct, and though his tables be also correct in the main.

The annual calentar system, which is that one long ago explainert and atcepted (that of months, years, we.), is not in dispute. It is his thenry of another time system, his so-called "Chronological Catentar," which I assert is without hasis of fact. This calendar, which he says he "finally deduced," he expects will be challenged, but he "leaves it to defeud itself, conscions that it is as infallible als the multiplication table."

Before referring to the proof bearing on this subject already presented, we shall call attention again to Coodman's method of numbering these perionls. The chuens he says were numbered 18, $1, \Omega, 3$, etc., up to 17 ; the ahans and katuns were numbered $20,1,2,3$, ete., up to 19 ; the creles, $13,1,2,3$, cte., up fo 12; and the great eyeles, $73,1, \because, 3$, ctc., up to -2. On this subject he remarks as follows:

Another consideration which must be constantly borne in mind is that all Maya dates relate to elapsed time. When a date is given it must be remembered that it is not the beginning of a period yet to run its course, but the legimning of one denoting a period already concluded. The ingenious numeration of their periods was lesigned to prevent confusion in this regard. The first day. chuen. ahan, katun, cycle, and great cycle is not mumerated 1 . but $20,18,20,20,13,23$ as the case may be, denoting that the full romb of the period has run and that this is the commencement of a new connt. In other words. these beginning numerals are equivalent to naught or no connt. the periods being designated only until after they had fully passed. It is very difficult to keep track of this style of numera-tion-so difficult. in fact. that familiar as I am with it I am distrustful of having marle some lapses in these pages.

That he has made a mistake in this statement, in order to fit the facts with his themry, and that he earries this mistake throughont his entire work, is easily shown, and will appear from what follows.

That the count is forward to some date in the future, as compared with the initial date, in most of the series of the inserijtions, is apparent from the examples given by Mr Goomman in his work; and that it is forward to some future date, as compared with the initial dar, in every initial series, must he admitted. Therefore, his assertion ean not be intended to contradict this fact. What he intends to declare is this, that when a date is given, as the first day of the end katun or ahan, we must understand that it is really the first day of the 3rd katun or ahau, the ent being rompleterd; or when \because ahatus alld 3 chuens are mentioned, wo are to understand 2 completed ahaus and 3 completed chuens.

Let us set if we can ascertain how this strange method of numbering these so-called prifols originated. It must be remembered that this mumbering is the consecutive numbering, as that of the days of
the month, and not 1 he mombering (in the 13 series) of the day Ahan as montionerl above. I (fuote again from his work (fages 12 and 1:3):
Poor Don Pin: To have the pearl in his grasp and be maware of its priceless-ness-like so many others! But I must not exult too munch yrt. The snccession of the katuns, reckoned according to this principle, is yet to be ascertained before my fancind discovery can be established by a crucial test. I score the ahans off in the foregoing order, and, sure enongh, the twentieths give the desired result: 11, ! , , , 5, 3. $1,12,10,8,6,4,2,13$. Eureka! The perturbed ipirit of the Maya calmudar. Which has endearonred so long to impare its message to the world, may rest at last.

But, thongln confident I had discovered the secret of the ahan and katun connt, when I tried the plan on the dates and reckonings of the inscriptions it proved totally inapplicable. There were periols into whose nature I had no insight, and if those 1 sumised to be ahans and katuns were really so the former wonld not come in the right order. while the latter were excessive and numerated in a way quite mintelligilule. It was discouraging, but 1 did not lose faith in my discovery. The inapplicability of the Tucater scheme to the reckonings of the inscriptioms, probably, was simply owing to different methods of computing the ahaus anl katuns. There was no alternative hut a patient and exhanstive analysis of the Archaic dates and time reckonings.
It would be tedions as useless to recount trials-failure outranking snccess a thousand fold-the results of which constitute the bulk of this hook. I will only state, in brief, that 1 determined the character of the chmen and great cycle perions: that 1 discovered the first chmen was numerated 18 , the first ahan, katm, day and day of the month, 20 and that the first cycle of the great cycle was mmbered $1:$ - the unit attaching to the secomd period in all instances: that I ascertainel the eycle was composed of twenty katums, mmerated $20,1,2,3$, etc., up to 19. instuad of according to the Sucatec orter: that I finally deduced a chromological calendar whose perfect accord with the principal dates and reckonings themghont the inscriptions is proof of its correctness, and by reversing the process sncceeded in reconstructing the ontlinps of the entire Arehaic chronological scheme. I expect my calendar to be challenged. It womld he withont precedent in the history of discovery if it were not. But I leave it to defend itself, comscions that it is as infallible as the mnltiplication table and knowing that all antagonists monst fimally go down before it.
by reating between the lines of this quotation, and noting the difficullies he momuteral, we readily so that his theory was outlined belore the differulies presented themselves. Why shonk he find it neressary to momber the dirst chnen 18, the first ahan 20 , and the first efele 1:3 were this not so? Take the short seriss 13-9-! from 12 Caban a Kayab to 6 (imi 4 Treec, which ho mentions, and says works out all right. There is no diftimuly if we comnt it $1: 3$ ahans phen 9 chnens phes of days, just ats we misht say 13 hundreds 9 tens and 9. If we reat it as it really is, $1: 3$ units of the ord orter (360 each) phas
 there is no diffoulty in showing that it is an exact measure of the lapse of time between the given dates.

The dilliculty, as we may safely assume, arose from the fact that the count would not lit in with the theory he had formulated hut had
not perfected. He had probaby omtined the tables of his "Arehate Chronological Calemdar," but instead of mombering them as we find then now given in his work, the cyeles were mumbered $1, \ddot{2}$, 3 , wt., , up to 13 ; the katuns, $1,2,:$, ete., to 20 , we. Conceiving the ileat that the numbers in the series (as the $1: 3-5-!$) shond express the numbers in his seheme-that is to sar, should be read the 13 th ahath, 1 he 9 th chucn, and 9th day- I Le fonm that it would not give the eorreat result. Hore indeed was a difieculty, a diffornlty of fitting facts to a theory, but not one in realitr, for the series taken as it stands works out compertly. In omere to overomme this diffaulty and at the same time sare his theory he seemingly hit upon the ingenions derice of a supposed Mayan method of numbering periods somewhat as the surveyor mombers his stations, heginning with 0 (natght), or what gives the same result and aroids the use of the eypher, which he contends was not nsed by the May: of, of binging forwat the last number of the freededing perion! to be the first of the one following. Thus in his "Avehato Anmaal Calendar" he has pushed down one step the trme dominical days, Akbal, Lamat, ben, Ezanab, althongh retaining their proper numbers, and has brought forward, with the number 20 attached, the proomling days, Ik, Manik, EL, Caban, and bogins the numbering of the chnens with 18 , of the ahans and katuns with 20 , ete. This, of course orerames the difienlty, as what is mumbered the first ahan, the, is, in fatt, the seeond, and in the example given the 13 hathan is, in fact, the $14 t h$, and the 0 eh chorn the loth, and hence, by his method of nombering, the 13 th ahau, stle chum, !th day is equivalent to $1: 3$ complete ahans, plus ! completa ehurus, plus ! flats. This plan will undoulotedly preserve the proper order of smeeession. The only ral erros it introduces, if considered morely a mothod of numbering, is in making the wrong days dominicals and in carrying the last day of one month forward to become the first day of the next. one or two examples of which arr pointed out in my previons paper. Thesw examples iave since been more fully discussed he Xr. Bowditch, with the result of strongly inclining him to accept Goodmans theory in this respect. They are noted in my May Vear (figure zo), though not lisenssed there as to the forint here raised.

As further evidence bearing on this ruestion, I add the following: There is no suth method of mumbering found in the inscriptions, or in the corlices. Mayan or Mexican, moless in the examples abore refermed to, and there is no such methor mentioned by any of the early writers. Perhaps, howerer, the most important point to be decided in this commeetion is the query, Did the Mayas in fact number these so-alled perionds: Itow many were to be takrn was indicated by symbols, lmt there is no evidence. so far as I am atware, that they were numbered, rxeept in a single instance found

On the north and sonth faters of stela of dopan. Here, it is true, We fund a suceession of atam symbols of the usual type, plated in somewhat regrlar ordar and mambered in resular sucerssion from 1 to 16 , leyond which the remaining elyphs (only two, however) are obliteraterl. Whether these mumerals are intended ats a suceessive numbering or intended merely to indicate so many ahtus, is not known; lowerar, it lowss like rogntar nombering, and is so acoppted. but, unfortmately for Goodman's theory, the serios clearly begins with umbore 1. 'To get aroumd this difficulty he assmmes that it is to be understood that 1 aham has passed, yet he admits that the symbol on that numbered 1 signifies "beginning." Thus the only example of numbering these so-ealled probers found in all the recorls is emphatically against his theory, in order to sustain whirh he literally begs the ruestion by suting it must bu assumbl as understool that 1 ahat has passed. We are justified, therefore, in regarding his scheme of numbering as wholly mmecessary to explain the mumeral and time series of the inseriptions, for considering his so-called time periods merely orders of units will give a full explanation, sof far as the comnting is converned, in every case.

But these items do not show all the arrors in the ahope-quoted statrment from Goolman's work. That but 13 eyeles were eonnted to the great cycle, 1 have shown by mathematical demonstration is nutruc, so far, at least, as the Dresden codex is concerned. I lawe shown that this codex, instead of counting 13 eyeles to the great eyele, comnts 20 , thus following regularly, as would maturally be supposed, the rigusimal system. It is true that Goodman admits that the corlices belonging to what he calls the Vucatec group not only eount eo ceres to the great cyele, but count from some three or four different initial days. This armission, lowerer, does not avail him anything in the Way of clearing his theory of the dificulty presented. In the first plate, the Dresden codex ran not be classed with the so-ealled Yucatec group). This group, which includes the Troano and ('ortesian eodices, and the codex used by Landa, makes Kan, Muluc, lx, and Camac the dominical days; while the Dresten eorlex, from which the examples given above showing the use of 20 cyeles to the great refen were taken, follows the system of the inseriptions in using throughout Akbal, Lamat, Bell, and Ezanab as dominical days. Moreorer, it gives high serieswholly unknown to the Troano and Cortesian eodiees; and it intrownees in some three or four places, its momerical characters, precisely the same symbols as those of the inscriptions named by Goodman katm, ahan, and chmen, and in me or two places uses a fare chamacter to represent the what

What grounds, thorefore, can foomman have for asserting that the system used in the inseriptions is difterent from that used in the Ihesden corlex, which he evidently inchudes umber the term "Incatee
stistem ": There is nothing in rither the Troano or Cortesian cordex by whirla to determine the number of erches they count to the great egele. What system was used in the Yacatan inseriptions is not positively known, but, as is shown brlow, they probably agreed with the Troano and Cortesian coolices. (foodman sats he has been mable to find a single Yucatec inseribed date. After careful inquiry and examination of the casts of insarij)tions in the chief eastern mosemms and all the photographs, drawings, and tigures in reach, without tinding one, I have had my attention callert by Mr sarille, of the New York Musenm of Natmal IListory, to a photograph by Mahler, taken at Xealumkin, in Vucatan, which is reproduced in Le Plongeon's "(Qnern Moo," which, if I cormectly interpert it, may be an imdication of the system nsed in the Yencater inseriptions. This is shown in figure 157 from a copy of the photorgaph kindly furnished hy Mr. sarille.

The day (A11) is evidently S Caban, the th day, apparently, of the month Zotz, thongh the momth symbol is somewhat unusual in form. If the day symbol is poperty interpreted Caban, of which there can soareely be a doubt, then, as the f dots over the month symbol are rery distinet, it is certain (whether we can determine the month symbol or not) that the rear must begin with the day Ix, hemee the dominical days must be Kan, Mulue, $I x$, ama Canac. This is the calendar system of the Troano and Cortesian eorliees and also of the codex followed by Tamda. This result I must confess is contraty 10 my exper ation and carries

 catan. From a photograph by Maliler. back the Vncatece colfendar systom to the days of the inseriptions. It is tron that a single inseriberl date is a slender basis on which to reach a decisiom. bat we must arcept it matil other evidence on the point is fortheoming. Goodman suggests that the Coromes, Xins, Chels, and Itzas had each theit own "chronological system, using a
common calendar." On what he bases this opinion, which is equivalent to saving they hat different numeral systems, I an not aware. That the syistem in vogur at Thikal (in the Itza region of the Peten district) Was the same as that of the inseriptions at Palenopre, Copan, and Quirigua is well known.

Let us return to the exceptomal series of the Copan inseriptions
it was dismbsed at some lehgih in my previous paper, a reexamination has bronght to light some facts overtooked in the first examination, which have an important bearing on the question involved; and thay will be noticed here. This series reversed is ats follows: $14-7$ - $-19-10-0-0$ to 1 Ahans Chen (figme 15s). Written ont it is $1 t$ great eycles, 17 cyoles, 19 katuns, 10 ahatus, 0 elmems, 0 dayse to 1 Whan 8 Chen. Changed into days it gives the following result, combing 20 (rycles to the great cyele:

If we wount back this nomber of daty from 1 Ahan S Chom, year :3 Ben, it brings us do 12 Ahan 13 \%otz, year is Lamat, which will be the first day of the inst, or most remote, of the $1 t$ great ryeles, connting the serbes in this manner uphard from the 15 th:

Flu. 1:s\%. Pirt of in sirription on the west sirle of sitcla N, Co. pan. Mamblay, part 4. plate bxxix.

```
1st great cycke
znd great cycle, ete., to
14th great cyole
(1)th great cycle)
1% cycles
19 Ratmus
10 ahans
0 chulens
O days
```

 1! katmos, and 70 ahatus, we reath the first day of the (incomplete) Irth grat revele as we have mombered them above. This day is 5

Ahan in Cumhn, gear 9 len. If we count batck the great creles one be one (comenting eycles to a great crele), we shall tind the intial dates 10 be as follows-the numbers given the great creles being, of courser arbit ary :

?nd great cycle	12 Ahan 13 Zotz, year is Lamat i Ahan 3 Ceh. year \pm Ezanah
ord great cycle	11 Ahan s Pop, year + Ben
4th great cycle	4 Ahan is Mol. year 3 Akinal
ith great crele	10 Ahan * Pax, year 2 Ben
lith great cycle	3 Ahan 1:3 Tzec. year 2 Lamat
ith great cyole	S Ahan 3 Mac. year 1 Ezanab
Sth great cycle	\because Ahan s Uo. year 1 Ben
Sth great cycle	- Ahan 18 Chen, year 13 Akhal
10th great cycle	1 Ahan \& Kayal). year 12 Ben
11th great cycle	T Ahau 13 Sul. year 12 Lamat
13 th great cycle	13 Ahan 3 Kankin. year 11 Ezanab)
13 th great cycle	(f) Ahau 8 Zipr year 1t Ben
14 th great cecle	12. Ahan 18 Yax. year 10 Aklual
1-th great crele	\% Ahan 4 Cumhn year © Ben

'This result shows out calendation to be correct, taking the day of the inseription (1 Jhan 8 Chen) as that from which to comnt hack. As there are 14 complete grat eycles, whiol we estimate at 20 cyeles each, and the minor periods (17 eyeles, 19 katums, and 10 ahans), the lattor must fall in the loth great eycle, whicl is incomplete. Connting back thre minor periods, we reach, as has been stated, 5 that 8 C'umhn, year 9 ben, as the first that of this $15 t h$ great eycle. Comnting back from this latter date 20 egcles (or 1 great cycle) we reach 12 Ahan 1 s Iax, year 10 Ikbal, the first day of the 1 tht great ryele, and so ont to the initial day of the first, which we find to be 12 Ahan 13 Zotz, year o Lamat, giving exactly the same result as our calculation of the whole as one single sories. By both methods the first day of the entire serios, and hence the tirst great rycle as numbered aboro, is found to be 12 Ahan 18 Zotz. But this, though correct so far as collenlation is concerneat, is mot proof, ats the results given must meressarily follow if the date comntod fiom is 1 Whan 8 Chem, and 20 reves are commet to a great eyele. This is mosatisfartory, as it fats to bring in as the dirst day of a great revele t than is Comhn, which Was a momal date at Copan.

I am strongly incliued to belierr that the terminal dato of thr series instearl of 1 thatis (then, ats given in the inseription, strould be 18 Ahan © (hen, which falls in the yar 2 ben. If we count back from this date 1 a eyeles, litkatums, 10 ahams, 0 ehmens, 0 days, it witl bring us to than S Cumbu, veare Ben, as the first day of the 15 th great (fold, as we have abhitraty numbered themabove. If wo connt hack therotimeserios, 14-17-1:-10-n-0, from 13 Ahan A Chen, rear: Ben, it brings us tu 11 Ahatu 13 Kotz, year + Lamat, as the first day of the ist
great eycle as numbered above. The first days of the great eycles would then be as follows:

1st great cycle...... 11 Ahan 13 Zotz, year 4 Lamat 2ni great cycle -..... 4 Ahan 3 Celı, year 3 Ezanab	
3 rl great cycle $-\ldots-{ }^{10}$ Alan 8 Pop, year 3 Ben	
th great cycle .-.... 3 Aham 18 Mol, year 2 Akla	
th great cycle 9 Ahan 8 Pax, year 1 Ben	
6 th great cycle 2 Ahau 13 Tzec, year 1 Lamat	
Th great cycle..... 8 Ahan 3 Mac, year 13 Ezanal	
Sth great eycle 1 Ahan \& Uo, year 13 Ben	
9th great cycle \% Ahan 18 Chen, year 12 Akhal	
10th great cycle-13 Ahan 8 Kayab, year 11 Ben	
11th great cycle -.... 6 Ahan 13 Xnl, year 11 Lamat	
12th great cycle 12 Ahan 3 Kankin, year 10 Eza	
13th great cycle-5 Ahan 8 Zip, year 10 Bern	
14th great cycle 11 Ahan 18 Yax, year 9 Aklal	

The method of numbering the great cyeles must he understood as wholly arhitwey, given merely for convenience, and to include the 15 that are refered to in the comnt. I do not belier that there was :my consecutive numbering of these supposed time periods in the sense indicated by Goodman; in fact, as I expect to show, they were not time periods in any true sense of the term.
The reason for believing that the date following the inseription should be 13 Ahan 8 Chen insterad of 1 Alan 8 Chen is that t Ahan 8 Cmmbn, as appears from the inseriptions at Copan and Quirigua, was the favorite initial date, most of the initial series going lack to it, and that comnting hack the minor periods of the series from 13 Ahat 8 Chen brings us 104 Ahau 8 Cumhn. If we turn to Goodman's "Arehaic Chronological Catendar" and count forwarl, from the beginning of his atth great eyele, 17 eycles, it will bring us to the the evele of his 55th great cyele, and to the 19th katum of this eycle and the $10 \mathrm{th}_{\mathrm{h}}$ ahan of this katm, where we find the day to be 1.3 Ahaus Chen. We are therefore of the opinion that the terminal day of the long series should be 13 Ahan 8 Chen, and that Gondman is wrong in rejecting it. As there are 17 cycles, it proves, as it slamds, that the authors of the inseriptions comed 20 eyples to the great eycle, whiclo is consistent with their system of numeration. I have shown in my previous paper why t Ahan \& Kip can not be the inital date of this series.

As bearing on the explanation of this series, the following facts in regad to the symbols are worthy of special notice. It will bee seen by an inspection of the series shown in figure 158 that the great egele symbol (glyph 5) is a face chatacter very much like that of the cyele, except that it has a supertix, which unfortmately is too nearly obliterated to be traced. Howerer, it is moticeable that in looth it and the cerce symbol the hand figure is across the lower jaw. Aecorting to Goodmam, "the hand on the cheek, the thumb or wrist forming the
lower jaw, usually characterizes the face sign for 20 " (page 5a), and this conclusion is sustainad by the evidence we hatregiven above. Goodman's perverseness in contradicting his own evidence in orker to maintan his theory is shown in raference to this sign. It is fonnd almost universally on the ryole face charaters, as may be sem in his eximples on page 25 of his work. It is true that it may be contended, as Goorman in faet does eontend, that it signifies that of of the next lower order make one of thisorder. Ahmit this; it follows that when the same sign is foumd on the weat eycle symbot, it signifies that 20 of the next lower orter (or erole) make one great ryele. Ahthongh but one example of the great cycle face symbol has been found, it bears clearly and momistakably this hand sign, and not only is this not denied by Goodman, hat is areepted by him and eopied as ath (sample of the symbol of this period on page 25 of his work.

Thus it will be seen that from whatever side we view the evidence bearing on this auestion, it is against Goodman's theory of only 13 eycles to the great eycle. However, before closing the discussion of this point I desire to call attention to one other series, fonm on Steka C of Quirigua, which seems to have a bearing on the question. This is as folkows: $5 t-13-0-0-0-0$, + Ahau 8 Cumhu-in other words, ith great eycle, 1 B cyeles, 0 katuns, 0 ahatus, 0 chuens, 0 days, to 4 Nau - Cumhu, the 13 being the ordinay numeral symbols, dots and shopt lines, and rery distinct. (foodman's only comment (page 127) is, "This date is the begimning of the 5th great cyele." As 4 Ahatu S Cumhu, is, aecording to his reckoning', the initial day of the sth great cycle, the series, according to this explanation, covers no lapse of time whatever. Yet, accorting to his theory, the numbers in these series always relate to time which has elapsed. Hence the 13 ryeles relate to 13 of these so-ealled periods which have passed and still signify no time whaterer. This is a palpable contradietion into which he has been led in his effort to maintain an erroneons theory. It he had written the series " $5: 3-13-0-0-0-0$ to 4 Ahan 8 Cumhu," it would have been correct so far as the count is concerned.

Dr Seler in his able article, "Die Mommente von Copan und Quirisua und die Alter-Platten von Palenque" (Zeitschrift fur Ethologie, Heft 6, 18:5, pages 670-738), makes some remarks in regard to the series above noticed to which it is desirable to call attention."

It appears from this article that he follows Goodman in counting 13 cyeles to the great eycle, or $1: 3$ units of the 5 th order to make one of the sixth (I repeat again that Gootman's terms are used merely for convenience). Moreorar, he seems to look upon these as real time periods. That he, who is so familiar with the subject, las not

[^3]entered into a carefnl examination of the basis on which Goodman's theoretical "Chromogical sistem" rests, and that he has aceepted Goodman's theny of 13 'ycles to the next higher period, withont thoronghly testing it, and noting the 20 cydes of the Dresten codex, is somewhat surprising to me. However, he may have reserved the discussion of these points for a future article.

In speaking of the series last referred to, 5t-13-0-(0-()-1), 4 Ahan 8 Cumhu, he says:
Here one sees that the final date is the normal date itself. Its distance from the normal date can he placed only at 0 or the above-named immense period of 18,720 years. The builders of the momments have done neither. They have provided aft the lower multiplicands, or smatter periods, with the index 0. but to the highest and greatest they have placed the multiplier 13. Thirteen is the number of the index figures which are possible with the tun, the katun, and the cycle names. If, consequently, here at the beginning of the initial series the thirteen cycles are named, nothing else is meant than "the periods or epochs generally." And the whole initial series would consequently give abont the following idea: "This is a chronological monnment. The heginning of the numbering is the day 4 Ahau 8 Cunku." And the fact that on the west side of the same stela another definite date and its distance from the normal date is named agrees very well with this.
Similarly, in my opinion, are to be understord the thirteen cyeles which are chiseled on the two sides of Stela C of Copan, immediately under the katun signs, the initial and chief hieroglyphs.

It seems elear from this that he has adopted Goodman's interpretation of the series, maware of its incongrnity with the interpretation of all the other initial series, and the fact that it stands in opposition to his own conclusion stated a lithle farther on in the same article. As proof of the latter statement, I refer to the enotation from his article given hereafter (page 292).

Now, it is apparent that, if the series be interpreted as signifying no lapse of time, but as a mere assertion that the date of the event commemorated was 4 Ahau 8 Cumho the first day of the 5 the great eycle, which interjretation Seler adopts, then the momment must have been erected 3,550 yors before the begimning of the eyche which he numbers the tenth (Goodman's ninth). It is apparent, therefore, that he has failed to see the contradiction between this statement and that which places the erection of the monmments of Copan and Quirigna in the tenth acle. We objeets to the lapse of 3,160 years betwern the erection of the monnments of Palenque and those at Copan and Quirigua, as improbable, but here admits, by his interpretation, a lapse of 3,550 years between monuments at Quirigua.

I have stated athove that Goodman's so-ealled time periods, chuens, ahaus, katuns, etc., are in reality mothing more than orders of mits, or steps in mumeration. Although this point has bern discussed to some extent in my previous paper, I will add here some further evidence baring on it.

As a means of illustrating the use of numbers by the Mayas, in relation to time, the following example-which is part of a series on plate LIN of the Dresten corlex (figure 159) -is presented:

13 Caban 1:3 Cauac 13 Imix 13 Akbal $1: 3$ C'hicchan 13 Manik
As this series ascents toward the left hand the forwad count will be in that direction. Starting with the columm at the right hand, we subtract it $(3-15)$ from the next one to the left, and this one fom that immediately to the left of it, amd so on to the last.

The difference in each case is found to be $3-18$; that is, $: 31$ wenties (3×20) plas 18 equal of days, the day being the mit. Connting for-

Fic. 159. Lutrer dirision of 1 late hix, Dresden cudex.
ward 7 didays from 13 Mank of any year (say 13 Manik 20 Zotz, year 12 Lamat) we reach $1: 3$ ('hiochan (in this case 18 Jlol, same year). Countiner forward $7 s$ days from the last date we reath 13 Akbat 16 Celt, sathe var: 78 more (always rounting from the last date), $1: 3$ Intix $1+$ Tha, same reat; 78 more, 1: Canac 7 Co, Jear $1: 3$ Ben. If we count harek os days from 13 Manik 30 Zotz (first column at the rioht hand), we reach $1: 3$ Mulue 2 Pop, rear 12 Akbal, which is the initial day of the whole series, the month and gear of the first given day beinge as assumed above.

Atention is called to this series shot because it presents any peculiar feature, but to show that considering the mumerals morely as mombers in respectibe orlers of mits wilh fumish a full and satisfactory explanation of their object amm use. I take for granted that the simplest axplanation, if it monts erery refuirement and presents nothing inconsistent with the known facts regaming the Maya time
and momeral systems, should be ateceptet dather than a theory whels introdnces new and hithorto unknown features.

If we use ordinary numbers in plater of the numeral symbols, ant kerp them in the relative positions givon above, the result will be as follows:

Brat order of muits	1				
?nd orrler of units	1	1.7	11	9	3
1st oricr of units	10	12	1.4	119	18
	13) C'anat	13 Inix	1) Akbal	13 Chicclian	18 Manik

If we assume these to be successive orders of mats indirated by reative position, increasing upwarl, the day being connted as the primily $\begin{gathered}\text { mit and the vigesimal system bring used, except jn passing }\end{gathered}$ from the secome to the third order, where tha maltiple is 18 , all the reruirements of the series will be met. Thas, in the first, or righthamb, columm, we have 18 mits of the 1 st order and 3 of the seemm, of $: 3 \times 20=60$, making together $60+18=78$; and in the seeond eohnm . 14 of the 1st order and 7 of the end orlar, or $7 \times 20=140$, making togethar $140+16=150$, and so on to the fiftli colnmm, where we find 10 of the 1 st order, 1 of the secomm, or $1 \times 20=20$, and 1 of the 3 d omter, $\quad 18 \times 0 \times 0=360$, making loget her $360+20+10=390$. These mombers give correct results, as, eomoting TS daystrom 1:3 Mulue, we reach 1: Manik; comnting 156 from the same initial date, we rearll 13 ('hicchan, or counting 390 days, we reath 13 (athete. It is clear, therefore, that if we take these mumerals to indirate the mumber of different orders of whits, the ordors being indieated by relative position, all reruirements of the serjes are satisforl and the proper results are obtained.

If we take one of the high series we find that preciscly the same rule ohains, as, for example, whe of those on phate LSII, Dresten codex (see plate LANTN):

4 wt the sith oriler of mats.	- . . -
6 of the 5th order of umits.	
4 of the 4 th orrer of mits	. . . ${ }^{\text {a }}$
15 of the 3ril order of units.	
12 of the shd order of mnits	-
19 of the 1st order of mits	,

This is upon precisely the same principle as ont method of expressing mumbers, "xeept that it is acourding to the vigesimal system, whild $W 0$ use the decemal. 'lake the momber $64: 9,527$, where the relative positions express the relative vahos, it lecomes possible to represent the namber thus:

> 6 hmmirer thomsands
> 4 ten thomsands
> 8 thomsants
> 5 hmmireds
> 2 tems
> $\%$ muits

If, instead of adding the written hames, simply the digme should be given, the relation positions lecing maintained and understood, we womld have the Maya methon, and the satue would the know as well as by ond ordinary methot ot writing numbers horizontally.

I hater given thesp details of emmentary rubes and primeiples in order to lad up, to this point, viz, that symbols maty be used to indicate orders of mits instead of position. In the last example given ahove, at symbel may be adopted for the "humberl thomsands," another for "ten thomsands," another for "thomsames," etc. Thee. may then he grouped in ayy regular order most romenimt, and get he as correetly wat as bexstion. This is precisely what hat hem done in the inseriptions. Symbols have been adopted to indicate the orders of units, an it was ineonvenient to do this be means of relative position alone with the dots and short lines-at ans rate it is apmarent that the latter methou is mot so well adapted to the glyph form in the inseriptions: but eren here we see a strong tombene to maintain the relative position which almost universally obtains and is often the only means of determination. If wh take Gombluan's work amb go through it from beginning to end and substitute in every series where they oceur "units of the ?nd onder" for his chacms, "units of the :3m order" for his allams, "units of the the order" for his katums, "units of the ath orter" for his egcles, and "muits of the bith order" for his great cercles, the result will ln correct in every instance. I am fully a ware that this will be true whether we call them real time periode or orders of units. The point, howerer, for which I am comtenting is, that as the Mayas had a system of numeration and must haye nised it in expressing numbers in the comices and inseriptions, and this mumeral system iomresponds exactly with Goodman's supposen time periods sufar at these are given numerically rorrect hy him, there is no mecesity or reason for the themry of a semate Maya chmonological sysem (identical so tat ats comertly givell with the laya momeral system ats used in counting time), differing from their caldudar systom.

From the evidence given in the watier bart of this pana and what has bemp presented in my precoding baner, the following conchasioms abpear to ba charly juntified:

That Mr fombman hat discorered indepemtently the signitication and numeral raluse of the symboh found in the inseriptions which he designates by the mames cyele, katum, aham, chmen, amd calembar round, though this hant hem abrenty done in part by others.

That he has diseovered that woratin fate and othere chatanters are momber symbols, and has ascertained their vahes.

That he hats determined the objeect and use of the mumeral serine, and the method of combting the same series trom the preceding and following dates, as well as to them.
[1. is also (equatly alpharent that his theory of a Maya chmomological system, listinet from the Maya ealendar system-the Hayan method of numbration in combting time-and his method of connting 13 so-abled rycles only to the so-ealled great eycle and 7 gereat eyrles fo his so-called grame era we mot justified by the facts, nor is his method of numbering the cyeles, katmas, we., beginning with 73,13 , and 20. satisfactorily proved; and also that his selection of Tk, Manik, Els, and Caban as the dominicaldays is erroneons, the trode dominical days boing Akbal, Lamat, Bom, ant Ezanab, both in the inseriptions amd Drasden codex.
let us timm next to his mothor of numbering the sorealled great evelas. Aleording to his theory, the have sern, 73 great eyeles are (ownted to what he calls the erand ara, the common multiple of all thu factors of thr calentar system and supposed "chromological system." The reason why he atoped this theory is explained in my previons paper, and the exptantion need not be repeated here, exwept so far as merely to state that in orter form a common multiple of the varions time periods, one must include the number 365 , which comtans the prime nomber 73.

That there was in the Maya system a momber or oriter of umits correspouding with droodman's great rycle is certanty true, but this protained to their momeral, and not their time, system. It is also admithed that the large quadruple gryph that msially heads the initial sories is the symbol used to represent this mumber or order of mits. But, as has bren shown, there is no reason whatever for helieving that they were mombred otherwise than in aroordance with the vigesimal
 to the nexthigher mit. It is neessary, therefore, for Goodman, before his theory ath be acoped, to show by satistactory evidence that, on reaching the cyoles amd great cyeles, the ordinary methom of proceeding by the vigesimal system was abondoned and other multiples were introduced. That there was a change from this pule in passing from the ond order of anits, or ehuens, to tha : ord oreler, or ahetus, where 18 Wes made the moltiple, is proved loy ineont rovertible evideners and hence must be admitted, even thongh we may not be ahbe to show by alsolate demonstration why the rhange was made. Nowertheless, we are justified in believing that, in this instanee, the methorl of numeration was made to correspond with the momber of months in the year. but no such reason appxars for Goodman's proposed change in the highor onders of mits; wo are, therefore, institied in rejerding the idea until other proof, besides its uecessity formport a theory, is shown. It mast be madre evident ly proof that the series ean mot be of herwise explatined, whith we have shown is not the case, or it mast bo shown that the great eyrle symbols present, hy their forms, the numbera assigneal them.
before reforing tothe ummbers of the great ryeles as obtained by a staty of the forms of the symbols，I introdere the following ginotation from（fooduan＇s work（fage 3及）：
The number and diversity of these signs and the fantastic character of some of them－notably the fice series－suggest a hieratic design to conceal the purport of the inscriptions from the uninitiated；lont l think the determinative feature of their numeration．the lesire to give symmetry and grace to their glyphs，and the possible purpose to aroid sameness and repetition．sufficiently account for the variety withont ascribing it to a cryptogramic intention．It is probable，there－ fore，that all the other series of numerals were as intelligible to the populace as the simple one of dots and bars－being，as it were，a mere difference in the style of characters，such as is to be seen in fancy printing or ornamental sign－writing．

While it is likely that in most instances there is a full series of similar signs， just enough modifierl to distinguish them from each other，runuing from 1 to $: 0$ ， I do not think this to be the case thronghout．It will be foumd．I beliere，that there are many sporadic signs．or sigus withont any serial counection．The fre－ qu：nt use of certain numbers accounts for this．and it is to designate these that solitary symbols are oftenest employed．There will probably be more signs dis－ cosered for 13 ，15，aud 20 ．than for any other number．
I do not claim that the ralue of any sign abont to be given is correct heyond question．On the contrary，I think it very likely that in some instauces I shall mesself find reason for a change．But，as in most cases I shall explain why I have attached the valne given to particular signs the reader will not be misled．but can accept，reject，or modify my estimate，according to his own judgment．It will be only by persistent trial．assumption，alteration，aud readjustment，until a figure that fulfils the requirement of every condition under which a character appears is hit upon，that we shall be able to fix the ralues of all the numeral signs．

That the great cycle symbol can be determined by position in a series，even thongh imperfect in form，is evident from what has been shown，but the number mast be detemmed otherwise．In order to show on what Gootman hases his conchasion as to the numbers of the great eycles so far as determined by the form，I quote the following from his work（page 83）：

ELEMENTS UF THE GREAT CYCLE SIGN゙

Here the reckoning reverts to the \bar{i}－day period．It is multiplied by Ta，making an ahau：that hy 20，making a katun；that by 20 again，making a cycle；and that by 1：3，making a great eycle．The last multiplier is the outflaring trinal character at the top［figure ：R0］．It is a 13 sign．Iuplicated to balance the glyph．The two ？m multipliers apmear only in the first of the symbols given above－or，rather， only in that does the single one extend all the way to the lottom，as is commonly the case．There sbonld be two separate signs，however，as shown in some of the glyphs：hut I have selected these particular specimens for another purpose． which I shall presently state．The 20 sign in the first glyph looks like anything but the same sign in the other two，and resembles a fish more than anything else． Yet they are ildoutical in character．both representing the feathered dragon，the fringerl jaw alone of which，reduced to the cursive comb－like character，is the commonest sign for 20 ．The evolution of this character is so curions and
interesting that I lerewith give a series of glyphs, all taken from great-cycle symbols. showing the gratations [figure 161].

The reason why I selected the particular symbols given above, is that ithink the number of the great cycle is specifically staterl in them. Close observers will have noticel several peculiar things abont the great-cycle character. The most peculiar of these is that, while the form of the katun symbol is preserved in it fully in every other respect, the cume sign disappears from the superfix and is replace? by some other character. In more than three-fourths of the dates in the it th great cyele a dragon`s head oceupies its place: a tiger's head predominates in the 5.5tl. While the remainle is made npof faces and signs that may represent a day, a cycle. or some other period. Whatever their character they have no

Fif. 1in. Great cycle symbols. Goodman, page 83.
peculiarities that can at present be construed into numerals, except in case of the three glyphs here repromed; so, if the others have any mumeric value, it must be arbitrarily expressed. The three in question indicate the 54th great cyele, and I think that all of them announce that fact, but each in a different way. The center of the katun superfix in the first is composed of a sign for 18 and a face. If it were plainly the face for $: 3$ we shomid be left in no doubt: but, in consequence of the defacement of the stone, it is impossible to determine if a band-the characteristic of the 3 head-extends accoss the forehead or not. In the second glyph the ik symblola sign for 6 -appears in an inclosure that probably represents 9 . but as the coil is not clearly liscernible we are again left in uncertainty. The third glyph has the meaningless face. which elsewhere serves as a mere vehicle

Fig. 1ti. Comb-like symbols for 91 . Goodman, page 83.
for nnmerals, bearing a sign for 9 , sumounted by three ohjects evidently intemled for spheres, whose value is donbled ly the dotted lines in them, rendering it probable that the combination was designed to express $9 \times 6=54$. I make no claim to absolute certainty in any of these cases; but, however uncertain the renderings may le separately, they collectively derive a high degree of probability from a single significant fact. The mmmistakable numeral sign in each glyph is a divisor of 5t. That these glyphs-the only ones with recognizalle nmmerals-should contain signs for three ont of the sis numbers by which it is tivisible, is a circumstance t on singular to be attributed to accident when a more reasonahbe explanation is to be fomm in the thenry that these three particular figures were chosen with the definite purpose of arriving at that number.

Ls (hoorman admits in the passage quoted, it is only in the three grat eyele signs presented (see figure 160) that the evilence of mumbering is fomm; letusexamine this evidence. "llere," hesays, "the redkoning retums to the a-day beriod. It is multiplied by ra, makines an :han," ret he fails to allude to anything in the figure to justify the statement. That the comb-like "haracters and their substitutes lave the ratue of 20 is probably correct, the sign being dupleaterl, as Goodman sugests, for the sake of symmetry. The fair inferemes is that in the katun symbol they indicate that this time period or order of units is equal to 20 ahans $(20 \times 360=7,200)$. This ahmission, however, as will be seen, is fatal to Goodman's theory.

The three figures miveri represent, aceording to this anthor, the 5ttla grat eycle, and indicate by the dotails, lout each in a different way, tho nmber 54 . This, be says, is shown in the first (1) in the cunter of the stipertix, where ho finds a sign of 18 and a face denoting :-though he admits that the later is too imperfect for positive metermination. The fact is that he has presented no prouf that the dotesa eonl denotes 18 . Ile asserts in his explanation of the ahan sedes on Stela . I. Copan, copied in full in my previons paper, that the donble coil denotes ls, but wives no proot to sustain thestatement. Dis symbol for 18 in the ear ornament (page st) is wholly ditferent. Iloreover, the face in the smperfix, so far as the details remain, corresponts in no tespect with the face numerals for 3 given on page 43 of his work, but on the contrary bears atrong resemblance to at least two of the fate charaters for 1 (page 42). It is unnecessary to follow him in ordar to find the desired number in the other two figures (b, a $)$, as not a particle of proof is offered to sustain his assertions. It is apparent from his language that he felt his attempt here was at fallure, hot it Was necessary to offer sommthing on the point in behalf of his theory. Why of was given as the number of this great eyele, which begins with the day 4 than s Comhu, is apparent from the great-cyole colmmof his "Perpetmal ("homologieal C'alondar"; but his reason for herinning the series with t Than $1: 3$ Yax will be werped to farther onn

Hn order to make rear what is stated below in regard to the forms and details of the symbols of the great eycle, katun, ete., a number of the types of the great-cyelesymbol are shown in figure $16 \boldsymbol{z}$; of the ahan in figure 16:3: of the katun in figure 16t: and of the eyele in figure $16 \mathrm{~m}_{\mathrm{i}}$.

That this symbol-sereral rarieties of which are shown in figure 162 (ako seen in dgure 160 , and as initiak in plates LXXI-LNXIII, LXXV, LXXVI, and LXXVII, and tigures 146,147 , 151 , and 158 -is built up from, of bese on, the aboblay or alatu symbol of the ordinary form, as shown in number !, figurw 163 , is evident. The katum symbol of the ordinary type (k, figure 164), has the samme body form as the ahan symbol, but there is athed a superfix eonsisting of a comb-like fixuro on each side, with a middle character usually resenbling a Canare symbol.

Fif. 109. Types of great cycle symbols from the inscriptinas. 1, Stela E, Copan, Maudslay, part
 Mandslay, part $1: 2$, plate xpro; f, stula D, Quirigua, east ide, Maudslay, part 12 , plate xxv:

 Maudslity, part 2 plate XIS (both sperimens on thin plater: in, Stela A, Copnu, Mandslay, part 2 ,

$$
\therefore
$$

$$
=
$$

$$
1
$$

.
r
-

$$
\because: \quad \text { s-e }
$$

$$
-\quad-
$$

$$
\sim
$$

$$
11
$$

numbers 2 to 12. llaving worked out his system in tabular form, fonorman finds that 4 Nhan 8 Cumhu is the first day of his 5 the great

Fifi. 1hit. Types of the katun symbol.
Cycle, assuming, as he dees, that 4 Nhat 13 Yax was the first day of his grand ara. The partiralar process by which he reached the con

clusion that 4 Ahan 13 Yax was the initial day of his first great cycle, anm henor of his grand orat, is not clear. The choice was apparently
abitrary, thomen it was neressary that the date chosen shonk make conmection with + than 8 C'umhu as the first day of a great eycer. llis explanation of the erand erat on pages 26 and 27 of his work, shows the relation of the minor periods to it aroroting to his theory, but does not give the reason for selecting \pm than 13 Yax an the initial date. On page $3 t$ hespeaks of the date as an important one in the inseriptions, but still does not give the reason for making it the begiming of the grand era.
'That any other t that, which would bring 4 Ahan 8 Cumhu as the first day of aterat eycle, wonld answer as well as 4 Ahan 13 lia, feven on his theory, is easily shomm. Is the Mayan time count is ant orenty roumb, a wiven dat recmring at the end of a certam periorl, it is eviclent, as evergonn acquanted with the system knows, that the connt of periods may begin at any point, unless some fixed point in the series is foumb with its proper number. One check in this respect found in the inscriptions is the fact just mentioned that, according to Goodman's system, 4 Ahan 8 C'mohn appears to be the initial day of a great eyele, and the initial dates of the other great eyrles must fit correctly with this determined initial date-that is to say, following his theory and comoting 13 eycles to the great cyele, these initial dates must all be a day 4 Ahan. Another possible check is the long series In the Copan inscription, which goes hat 14 great eyeles precoding that beginning with 4 thau S Cumhn.

Lot us turn to Gootman's "Perpetual Cheonological Calentar," to the great-cyole colmmm. Suppose that instead of commencing with the date thau 1s irax, with which he brgins the grand era, we bexin with 4 Ahau 18 Zotz, the initial day of his futh great cycle. The series will then be as follows, if we adopt his methorl of nombering:

	. A Ahan IN Zotz
	1. 4 Ahan 1 s Cumln
	2. \& Ahan 19 Kankin
	3. 4 Ahaw s Yax
	4. 4 Ahan : Xuk
	5. 4 Ahau 18 Pop
	6. 4 Aham 1s Muan
	\%. 4 Ahan 13 Zac
	\&. 4 Alıan * Yaxkin
	9. 4 Aliatl 3 Zip
	10. 4 Ahan : Kilyab
	11. 4 Ahau 1s Ceh
	12. 4 Ahaw 1:3 Mol
	13. 4 Ahatr - Zotz
	14. 4 -thull s' 'ımhu
	15. 4 Alaan :3 Kankin
	16. 4 Ahan 18 Chen
	1\%. 4 Alaan 1:3 Tzec

	18. 4 Ahau s Pop
	19. 4 Almau \& Muan
	20. 4 Ahau 3 Zac
	21. 4 Ahau 18 Nuk
	29. 4 Ahan 13 Uo
	2\%. 4 Ahau 13 Pax
	24.4 Alhau 8 Ceh
	25. 4 Ahau 3 Mol
	26. 4 Alan 18 Zip
	2\%. 4 Ahau 18 Kayal
	2s. 4 Ahau 13 Mac
	29. 4 Ahau sthen
	30. 4 Ahau 8 Tree
	31. 4 Ahau 3 Uaỵu
	82. 4 Ahau 1s Kankiu
	33. 4 Ahau 18 Vax
	34. 4 Ahau \& Snl

And so om to the $-\frac{1}{6}$, the next being 4 Ahat 18 Kotz, with which tho numbering began.

This will meet every requirement, induding the limitations above mentioned, as fully and as eompletely as the series given hy Gooman, even if we hohd to his theory of $1: 3$ eycles to the great cyele and 73 great cyeles to his grand era, and follow his own method of counting. The same thing is true if we select, as the first wreat cycle, any other of the 40 which precede that with which we beran the count.
'There is another fact which appears to conflict with Goodman's theory and, infeed, to be imeconeilable with it. Aecording to this theory, the grand eat, consisting of $136,650,000$ dilys, is the least eommon multiple of all the different factors of the regular calendar as well as of his chromological calendar, at the beginning of which all the periods starl anew on their grand round. That this number is the common multiph of all these periods or fartors is true. But how are we to raconcile the therry with the fact that he begins this great era with the day t than 13 lax, which is certainly not the begrimning day of a year or of a month? It is true the $136,450,000$ days is an exact multiple of 365 , but, starting the count of 365 with the day t than 13 Yax makes the latter nomber a mere numeral factor; no degular Mayan year conla begin with the day 4 Natu or with the 13th day of the month Yax. From February 1, 1599, to the following Jannary 31 , in our time system, is a year's time, but the perionl is composed of parts of two calendar years.

Goodman's theory, in order to be correct and keep the time periods in proper order, if his grand era is a true and absolute rombing-ont period of all the minor periods, absohntely requires that this great period shall begin with the lst day (or aoth if he profers this mmbering) of the month Pols, and the first year of the 5 -year eyche or walendar round. Otherwise, when the era ends, it will be in the midde of a year, as it will if it bexins on $\frac{1}{}$ Ahau $1:$ Yax, and closes with 3 Canas 12 Iax.

The question next in importance is, are his tables eormert, thongh hased on an erroneons theory Those of the first series, termed the "Arehaie Anmal Calendar," are nothing more than the ordinary calendars of the 52 years of what has heretofore heen termed a "ryele" but to which he applies the name "calendar round," each year bring givon sefarately. They are all contamed in my comdensed catendar. This is hothing new, as the method had been in use for a mmber of Feans before Goomman commenced his investigations. Ashis" Arehaie Chonological Calendar" is nothing more than a "ontimous series of ahaus, or B60-day periods, using That ats the "initial day" through 39 of the 5 th orem of mits, following one anothere in rexular succession, it is correct-with certain exerptions to be noterl-where than is resed as the initial day in the count, but will not apply when any other day is soleeted as the initial date. It is erromeons in cobuting 1 ib of the eydes or the 5th order of units to the next higheromder, and in beginning the mombering of the so-called periods with $7: 3,13$, and 20 . Lis tables of years are also eroments in the latter respert.

It is apparent to anyone at all ampainted with the Jayan time and numeral systems that, having a continnons series of days written out in regular order and of sutiefont length, with the day numbers and month mumbers attached, we maystart at any point and count off the numbers given in the ahan, katun, and cele periods, and we will have precisely what is given in Goolman"s "Arehaic Chronologital Calendar," excent that we may have some other initial day than Aham. If it should be kam it would at some point correspond exactly with the series of the Dreslen condex which have been referred to; if Ahau, then the periods would agree with those of the inscriptions and some of those in the Dresten codex. Now, it is evident that in counting off a number in the next higher group above the so-called eycle, if we come off the latter periods by 20 , instead of 13 , the succession would be as regular as in the other case, there being nothing whatever in the system requiring or eren suggesting 13. Ifence we might take Goodman's tables, it more extcuded, and making 4 than 8 Cumhu our starting point, comt forward or backward by steps of 20 cyeles each, and thus find the correct initial days of the great eyeles as we hare shown above. With the tables given in his work we can only come forward from the beriming of his 54th great cycle to the 7 th cycle of the 55 th great cycle as he has numbered them, showing that 10 Ahan 13 Yaxkin is the begimning day of the next great cyele, counting 20 creles to the great eycle, which I have shown to be the correct method.

I shall not discuss Goodman's theory of the mmber values of the day and month symbols, as there does not appear to have been any use made of them as numerals.

Let us turn again to the order in which the numbers of the ahaus follow one another, to wit: $13,3,5,1,10,6,2,11,7,3,12,8,4,13$, ete. This hats heen fully diseussed in one light in this paper, but the object at present is to view it in another light and with special referenfe to Goodman's theory in regard to it. That has also heen noticed to some extent in my provions paper, but there are some points omitted in that discussion to which it is desirable to call attention. I quote in full Goodman's stafment of his discovery of the order of succession:

Ymix is the day following Ahau: hence. I reasoned to myself, if a period hegin with the former it must terminate with the latter; moreover. 1 succeeding 18 in the day count. if 1 Imix hegin a period 13 Ahau must end it; and, further, this purion being composed of $1: 3$ lesser ones of 20 years each. it is at a distance of 260 years apart in the annual calentar that I must look for a corresponding 1 Ymix and 13. Ahau. recollecting that I need not expert to find them falling on any fixed date. But. as the order of the 13 smbdivisions is given. with the terminal Ahan numbers, it is not necessary to attempt so extended a research, and prudence dictates that I keep my exjeriments within the narrowest possible limits to guard against mistake. I will. therefore, at the start proceed only to the end of the first 20 -year period, or katun. and lonk for 11 Ahan. The trial is made. It proves abortive. as I anticipated. The than number at the end of 20 years is \boldsymbol{T} instead of 11 . The desired 11 Ahan is is montlis away to the left. It is the same old
story of failuse over again. But wait a minnte! Fire months are equivalent to 100 days. To divide ly 20 would take just π days from each of the 20 years of the katun. Frars? What if they weve not years at all that Landa was talking about, but only periods of 350 days? They may be the ahans. Let me hasten to find ont how the numbers will run in a division of this possihle Katun into 20
 Ah. this is significant: That paragraph of Perez, what are its exact words? "Tho lulians of Incatan had yet another species of cycle. lout as the methord followed hy them in nsing it can not be fomm, nor any example by which an idea of its nature might le imagined. I shall only copy what is literally said of it in a manmscript, viz: • There was another number which they called une kutu", and which served them as a key to find the katuns. According to the order of its march it falls on the days of the maych yath and revolves to the end of certain years: katmes 13, 9.5.1. 10, 6, 2, 11, 7, 3, 12, 8, 4.". Poor Don Pio! To have the pearl in his grasp and be maware of its pricelessuess, like so many others. But I must not exult ton much yet. The snccession of the katuns, reckoned accorting to this principle, is yet to be ascertained hefore my fancied discovery can be estallisherl by a crncial test. I score the alians off in the foregoing order, and. sure enongh. the 20ths gire the desired result, 11, 9. 7, 5, 3. 1. 12. 10. 8. 6. 4, 2,13. Eureka! The perturbed spirit of the Maya calendar. which has endeavored so long to impart its message to the world, may rest at last.

That taking the day mambers of the dirst days of the ahaus in a katur will give the order of suceession mentioned is certamly frue, as we late shown, but the duestion to be disensed lere relates to the statement of the anthority dnoted by Perez. Accorring to this statement as givell by Gooduan, "There was another ntmber which they" called ua katun, and which served them as a key to find the katums. Aceording to the order of its mareh it falls on the days of the mayeb yaab, and revolves to the end of certain rears; katumes $13,9,5,1,10$. $6,2,11,7,3,12,8,4 . "$

It will be best, however, to give Peraz's exact words as found in the appendix to Brasseur"s mition of Lantats " De las Cosas," page 41s:

- Hahia otro número que llamaban The Katum el que les servia como llava para acertar y hallar los katnnes, y segnn el orden te sus movimientos cae á los dos dias del Uuyel, luad y dá su vuelta al cabo de algnuos años: Katmes 13, 9, 5, 1, 10, $6,2,11.7 .3,12,8,4 .{ }^{*}$

Brasseure translation is as follows:
 de clef. pour ajnster et tronver les latun et suivant lordre de ses monvements, il tombe anx demx jours du Cuynblumb et retonme à la finde quelques annees: Katun 13, 9, 5, 1, 10, 6. ., 11, 7. 3, 12, s. 4."

A closer translation than that by Goodman, which mmits one important worl, may be given as follows:

They lave another mumber which they called na katun, which served them as a key to regulate and find the katms, and according to the order of its movements falls on the two days of the nayeb haab and returns at the end of certain years; katuns 13, rec.

The important word omitted by Goomban and which is usually omittet in English translations is the "two." brasseur's translation

Gontains it，and leraz recognizes it hy his（erroneons）reterence on the same page as the pasage quoted，the＂seeond＂intercatary day． l called special attention to this important word in my＂study of the Manmseript Troano，＂page 0 ．

Now，it is eertain that the mannow anthor of this passage was some what lamiliar with the Maya time system，otherwise he conk mot have hit upon this order of numbers which is found in at least thee different relations in the system；and it is abo certain that his reference is to true llayan years（as is shown by the reference to the mayeb haab，or five intercalated days），and can not he made to apply to fremedman＇s ahatis．

As the term＂years＂in the passage quoted can have no other pos－ sible meaniug than that of 365 days，the question arises，what is meant by the term＂katun＂as therein used？That it conk not be Goodmanis katun of $\overline{7}, 200$ days，or 20 ahaus of 360 days each（which selerabou clams to have tisencered）．is erident．Althongh we may not be able to demonstrate what is meant by the term in this comection， we can how where and how his order of succession occurs，using the last of the intercalated days．As the number of the day with wheh the gear ends is the same as that with which it begins，the order will be precisely the same as that in which the years are numbered．If the calendar of the inseriptions and the Dresden codex is used，whose fominical days are Aklal，Lamat，Ben，and Ezanab，the terminal days will be Manik，Eb，Caban，and Ik，and their numbers in the successive yats will be as shown in the following table，which extends through the crole of 52 years，after and before which the same series will be repeated：

Manik	El，	Caban	Ik
1	2	3	4
5	i	7	8
4	10	11	12
13	1	2	3
4	5	6	7
8	9	10	11
13	13	1	2
3	4	3	6
7	8	9	10
11	12	13	1
2	3	4	5
6	2	5	9
10	11	12	3

Beginning at the bottom and running up the right－hand column，we find precisely the order of succession given in the gnotation，to wit， $1: 3,9,5,1,10,6$ ，ete．Precisely the same order will be fonnd by run－ ning up either of the other columns．Each step，it is true，covers four years，but it forms a lasis for easy and ready counting；moreover， the quotation says．＂returns at the end of certain rears．＂It does
not say the "mmmers" which so return are katums, but that they "served as a key to timd the katuns," clearly distinguishing between the "katme" and "certain years." There is nothing, therefore, in the quotation which implies that the numbers in the series $13,9,5$, ete., were the numbers of the katuns, nor is there any mention therein of the numbers of the katuns of of the number of years constituting a katm. It is to Landa that we must go for information on the latter point. According to his statement, which has been oft repeated, the Mayas connted their ages by go years, ${ }^{a}$ but he says nothing in reference to the order of numbering. ${ }^{\text {b }}$

As the periods referred to are uncucstionably years, the katums must be periods of years; and writers who lavesoncontended are correct in this respect, and so years is the mmber assigned to a katmo by all the early authorities, whether right or wrong.

The directiom of counting, it is true, is backward, but, as Goodman states, the reference among the Mayas is generally 10 past time, and the example Landa gives of counting time, in connection with the passage referred to, relates to what hat passed. He says an elderly man of whom he had spoken could easily count back 300 years by means of the katuns or ages. Thisauthor, if \mathbf{I} rightly understand his language, indicates that they had ia still higher count of 13×20 years. His language is as follows:
No solo tenian los indios cuenta en el año y meses, como queda dicho, y señalado atras pero tenian cierto modo de contar los tiempos y sus cosas por edades, las duales hazian de veynte en veynte años, contando xim veyntes con una de las xx letras de los meses que llaman Ahum, sin orden sino retruecanalos como pareceran en la siguiente raya redonda; llaman les a estos en su lengua K'utunes.a

Thiteren timesen is afo, or five cecles of years cach, the same number of years that there are days in theirso-called sacred year. Ponsibly, however, he may refer here to the 260 -day periont

When we free our minds entirely from any thought that ahans, katmis, etc., remesent or have any relation to time periorls, and look upon them morely as numbers, just as we think of tens, humdrens, ete., the diftienlties raised by Gomman's theory of a Maya " chronological ealemdar" ranish. The Mayas of onesection, for some historical, tratitional, or mythological reasom, selected a particular initial date for their era, and, as a usual thing, comed lomer periots from it, and in doing so nsed numbers in accordane with their mumeral system, and representer these in their inscriptions ly certain symbols. This is all of Goodman's supposed wonderful chronological system-this and nothing more.

It wonld have been much better if he han used the real Mayan mumeral terms as they stand (as Dr Brintom has suggested), or in a

[^4]molified form, to indicate the variation of time numeration from the regular vigesimal sistem, thas:

```
20 units = 1 kal in place of chmen.
1S kal = 1 bak in place of ahan.
?0) bak = 1 pic in place of katmn.
O0}\mathrm{ pic =1 calab in place of cyrle.
20 calah = 1 kinehil in place of great cycle.
20 kinchil = 1 ahan in place of grancl era.
```

It is true that abowe the kal the nombers would vary from the true vigesimal combt in consaduence of connting but 18 instead of 20 kal to the next higher order. This, however, might have bron shown by prefixing "minor," thas, "minor bak," "minor pic," ete., lut no real conftision wonld have resulted from using the simple names as Brinton has sugqesterl. Srler suggests "uinal" in place of chuen; "tun " in place of ahan, bat retalins "katun" as applied by Goodman.

TIIE C」KCHI?UEL C」LENDAR

If the " Innals of the Cakrhiquels," written or supposed to have been written soon after the spanish comfuest by a member of the Nahila family, are to be trusted in regatd to the Cakrhigmel catembar system, this system was peculiar, differing in some important respects from that of the Mayas, whiel has been dereribed in the preceding part of this paper. All that is known in regard to its peculiar features is foumd in these Annals, and must be gathered from incidental mention of dates. In order to plare the data belore the rearler, I quote the more important of these mentions from the translation hy Dr Brinton in the Library of Aboriginal American Literature, vi, "The Annals of the C'akrhiquels," 1885.

Is a noted revolt, deseriberl ats the "revolt at Iximehe," is selereted byy the author of the Ammals ase the rat from which to reckon all subsequent erents, wr begin the quotations with the passages relerring to and fixing the datr of this erent.
(1) The day of the revolt was appointed by this chief. Cay Hmahpa. and on this day. 1 th th. the reont hroke out [page 15in].
(?) Thirty-ome days after the revolt, as the Quiches desired to destroy those of Tibaqoy, these Tukuches removed to Chiavar and pat to death the Quiches, who yielded in a hattle at a place named Yaxontzni, on the day $9 t h$ Caok [page 1.:! !
(:;) On the 3ith day after the revolt Cimahitoh perished . . on the day 11 th Can [ibid.].
(1) One year less ten days after the revolt was hansed the chief wator Ahmoxnay on the day 11th Akbal [ibinc.].
(.) The tay 8 Ah was one year after the Revolt [page 161].
(i) The day is th was two years after the Revolt [ibid.].
(a) The day ? Ah was three years atter the Revolt [ibid.].
(s) The day 12 Ah completed the fourth year after the Revolt [ibid.].
(9) The! Ah completed the fifth year after the Revolt [page 168].
(10) The if Ah completed the sixth year after the Revolt [ibid.].
(11) on the 3 Ah there werp seven years firm the Revolt [ibid.].
(12) In the eighth year after the revolt, the Tzatuhils were defeated by those of Xeymu and Xepalica: they were slanghtered. Zakbin ant Ahmak having perished in the adtion on the day $1: 3$ Almak [ibid.].
(1:3) On the day $1: 3$ Ah thew were eight years from the revolt [inin.].
(1.1) On 10 Ah there were nine years from the revolt [ibid.].
(1.)) Twelve days were lacking to complete the tenth year aftor the revolt . . the day \& lmox [ibid.].
(16i) The day : Ah completen the tenth year after the Revolt [ilid.].
(1i) In $4 A_{2}$ there were eleven years after the Revolt [ibint.].
(1s) On 1 Ah there were twelve years [ibid.].
(19) On 11 Ah there were thirtesn years after the Revolt [ibit.].
(90) The day is Alh completed the 14th year after the Revolt [page 16is].
(?1) The day 5 Ah completed the 15th year after the Revolt [ilinc.].
(29) The day 2 Ah completed the lfith yoar after the Revolt [ilid.].
(2:3) The day 12 Al completed the 1 ith year after the Revolt [1age 16ia].
(:4) The day 9 Ah completed the 1sth year after the Revolt [ilnid.].
(2.) On the day 3 Cank the dores passed wer the city of Iximche. . . One hundred days after the doves had heen seen the locusts came . . . on the day \boldsymbol{z} Yg [ibict.].
(26) The day 8 [0 : $]$ Ah completerl the 19th year after the Revolt [ibicl.]
(2i) The day 3 Aly completed une cyele [1age 169].
(2s) With the day 13 Ah another yar was completed [ibid.].
(2!) A second year was completed on the day 10 Ah, after the levent [ibid.].
(30) On the day i Ah was completed the third year of the second cycle after the Rerolt [ibid.].
so far the dates given are in regular steression as fonnd in the Anmals: the others given are only those which are considered important.
(31) On the day $1 \pm$ [12?] Camey died the King Hunyg [page 1;1]. . . A hmmed days after the death of the kings Hmyg and Lahnh Noh. there were electer] as kings Cahi Imox and Belehe Qat, on the day 1 Can [page 17:3].
(32) Twenty days after the chiefs began to rnle there was an insurrection . on the day 10 Qnell [page 1\%ia.
(33) We married yom mother. O my children. one year after the death of yome grandfather [Hmyg]. We took her to wife on the day 1 : Toh [pages 105-1\%门.
(34) On the day in Ah was the eighth year of the first [second] cycte. It was dming this year [meaning the year following?] that the Castilitns arriven. . . . On the day 1 Ganal the Quiches werd destroyed by the Castilians. . . . On the day $\&$ Qat three chiefs, the king and the next in rank, were burned alive ly Tunatinh [page 1:\%].
(35) It was on the day 1 Hunahpu when the Castilians arrivel at Iximehe with their chief, Tmatinh. . . Only five days after. Tunatiuh went forth from the capital. Then the Tzutuhils were conquered by the Castilians. It was the day i Camey [page 179].
(3, 3) Twenty-five days afterwards Tumatinla went forth from the cajnital to Cuzcatan . . On the day 2 Queh Atacat was slain . . . On the tay 10 Ilmahpu he [Tunatinh] returned from Cuzcatan. He had heen absent uniy 40 days [page 1.s $]$.
(:37) Dur city [Iximele] was abamioned on the day i Amak . . . Ten days after we had lett the city, war was hegmn by Tmatiuh . . . on the day 4 Canty . . . Ome hmmlred and eighty days after the desertion of the city was completed the ninth yar (of the secomb eycle). On the day 2 Ah was completen the soth year atter the Revolt [1rage 183].
(38) There were lacking 120 days to complete two years since we had abandoner the capital when Tmatiuh came there in orler to set fire to the city. On the clay 4 Camer, two years less six monthe after the beginning of the war, he set fire to the capital and returnod [1age 1sin].
(3:) On the day 1^{2} Ah was completed the 3nth year after the Rewolt [ihid.].
(40) On the day 9 Ah was completed the 31st year after the Revolt [ibi.1.].
(4i) In the course of the following year . . . Chiixut was alhandonct. . . . Three hundred days after Chiixot was taken began the payment of trilmte . . . on the day if Tzi [pages 1s.i-1si].
$\left(f^{2}\right)$ It was tiro year: leas 120) days after the beginning of the tribute when died the chief Ahtm cuc Tihax . . . on the day 6 Akbal. . . ()n the day ? Ah was completer the :33d year [page 18i].
(43) For sh days these chiefs had hid in the roods. . . On the day i Ahmak the chiefs decided to come forth. . . . On the day 13 Ah was cumpleted the 36th [34th] year after the Revolt [page 18"].
(44) On the 10 th Ah was completed the 3ith year after the Revolt. Forty days were lacking to complete three years from the date of the submission of the kings when Belehe Qat died . . . on the ith Queh [page 188].
(4.5) On the 'th All was completed the 40th year after the revolt. On the ith Ah was completed the first year of the third cyele [page 1.90].
(46) It was on the lay 11 Ahmak that he [Tunatiuh] killer the All-tzil). On the day 2 Ah was completed the second year of the thirl cycle. One humbred and twenty days after the death of Ahtzib and of the return of Tunatinh. the prince Mantunalo departed . . . Two humired and sixty days after his return Tunatiuh hanged the king Ahpozotzil Cahi Imox, om the day 13 Gant [iages 189-190].
(ti) The day 12 Ah completed the third year of the third eycle. Two hundred and eighty days after the execution of the king Ahrozotzil he hanged Chury Tzíquinn . . . on the day 4 Can [page 190].
(\&) On the day 9 Ah was completed the fourth year of the third cycle after the revolt. . . On the day \& Tihax . . . the wife of Tmatinh was drowned. One hundred aum sisty days after this disaster there arrived on fathers of St. Dominic . . . on the day 12 Batz [page 190].
(49) On the day \& Ah was completed the 13th year of the thind cycle. . . Ahtzil Jnan Perez . . . died on the day 12 Tihax. Eighty days after . . . there wat an ermption of the momatain Chigag . . . on the day 9 Ah . . On the day 12 Ah was completed the 16 th year of the third cycle [page 19 ?].
(31) Died the chief Don Francisco Ahpozotzil . . on the day 1 Can. a Monday, the 14th lay of the month Octoler [page 193].
(. 51) On the day 6 Ah was e mpletel the 1 sth year of the third cyele. . . In the 13th month the day of Sanctiago occurred on the day 1 Tzicuin. . . . On that day was imangurated . . . the Emperor Don Peliphe. . . . The day St. Francis [was] the day I C'amey [pages 143-194].
(o) On the day 3 Ah was completed the 19th year of the thirt cycle after the revolt. The Alcaldes in the year 155\% were . . The day 5 Ey [was] 20 days before the close of the thirl crole. . . On the day 13 Ah was completed the third cycle . . in the year 1sis [page 194].

The foregoing notes and quotations contain, it is believed, atl the data found in the "Amands" throwing any light on the Caknhiquel calendar. But in order that the reater, who may not have the works relating to this calemdar at hand, may be fumished with the data necessary to follow me in my discussion, I introduce luere a list of the days of this calcmdar in the order asmally given, with those of the Daya calendar placed beside them in correxponding order.

	$\begin{aligned} & \text { 'akr-hiquel } \\ & \text { fays } \end{aligned}$	$\begin{aligned} & \text { Mayn } \\ & \text { dayw } \end{aligned}$		$\begin{aligned} & \text { Cakchiquel } \\ & \text { days } \end{aligned}$	$\begin{aligned} & \text { Maya } \\ & \text { days } \end{aligned}$
1	Jmox	Jnix	11	Batz	('hanen
2	low Yg	1k	$1:$	Ee	Eb
\%	Alhal	Akbal	13	Ah	Lell
4	Kıat	Kan	14	Yiz	Ix
5	Can	Chicchan	1.5	Tri¢uin	Menl
6	C'amey	Cimi	16	Almak	(i b)
7	Quth	Hamik	1%	Noil	('abear
8	Ǩanゃl	Lamat	15	Tihax	Vzanal
9	Trn	Mnlua	111	Cauk	Cinlau
10	'Tzii	Oe	211	Hunahym	Alatu

As the athlore of the Ambats embls the year with the day Ah, it mast hato begun with Yiz, if there was no arbitrary ehange in the sucoession of days. The following condensed calemdar is theretore constructerl on this basis as a mathe of eomnting time:

Cubroluruel ('olemelor

1 Jiz	1	*	$\stackrel{1}{2}$	$!$	3	10	4	11	.	13	6	13	i
\% Tziquin	$?$	9	3	10	4	11	i	12	19	18	7	1	8
3 Ahmak	3	10	4	11	5	12	6	13	T	1	8	$?$	9
4 Noh	4	11	5	12	6	1\%	\%	1	s	2	9	3	10
5) Tihax	T	12	6	13	\%	1	*	\because	9	3	10	4	11
f Cank	6	1\%	\bigcirc	1	8	2	!	3	111	4	11	j	1 ?
\% Hmalipur	;	1	N	2	9	3	10	4	11	5	12	1	13
\& Jmox	sis	$?$!	:	10	4	11	-	12	1	13	7	1
! Jk	$!$	3	10	4	11	5	12	6	13	\%	1	s	2
10 Akbal	111	4	11	i	12	6	13	7	1	S	2	9	3
11 Kiat	11	-	12	6	13	7	1	s	2	!	3	111	4
12 Can	$1:$	1	13	7	1	\leqslant	2	!	3	10)	4	11	5
13 Camey	18	7	1	8	$?$	9	3	111	4	11	i	12	6
14 Queh	1	\checkmark	\cdots	!	3	10	4	11	5	$1 ?$	6	$1: 3$	
1.) Kanel	\because	(1)	3	10	t	11	5	13	6	13)	7	1	8
16 Toh	3	111	4	11	.)	$1:$	4	13	i	1	s	?	9
1i Tzii	4	11	-	12	${ }_{6}$	13	7	1	\checkmark	\because	9	3	10
18 Batz	'	19	(j)	13.	7	1	sis	\because	!	3	10	4	11
19 Ee	\%	18	;	1	8	$?$	9	3	10	4	11	\%	12
$\because 1 . \mathrm{Ah}$;	1	8	$?$	9	3	10	4	11	-)	13	6	13

In using this to comb forward, we eomnt on to the end of the right-
 barkward, the direction is reversed.

It will be observed from the quatations giveen that the years all end with the day A h, that the 1 umbering of the days is by 1 to 13 as usual, and that the terminal A has of the rears sumered whe another in the
 $11,5,5,2,12,9,6,3,13,10,7, f, 1,11,8$, ote., thw momber of any given year leing ' less than that of the one whiel preceded.

It is apparent, therefore that the rear comld not have eomsisted of
$3 f 5$ dans, that is, of 18 months of 20 days eadh and 5 alded days, for even the supposition that these added days were noither numbered nor connted does not wive the order found in the Innals. Nor will Goorlman's supposition that they counted 3utj days to the rear give this succession, though he eomnts the system alluded to in the Amals ats distinet from the Cakehiquel Anmual Calendar. Drinton -4ys:

The calendars in use were of two different kinds, the one called ghol kih, litcrally " the valuer ur appraiser of dars." which was employed exclusively for astrological and divining purposes. to decide on which were lucky and mulucky days, and may kilh. " the revolntion or recurrence of days." which was for chronological purpuses."

I time no other explanation of a calendar whieln wonld wat in the manner montioned in the Ammals, than a fear of 20 months of 20 days each, or $f(0)$ days, the days heing numbered in the msual Mayan method of 1 to 13 . Seler" gives this explanation and foodman also arlopts it for their chronological year. That if we count this number of momths to the year the different years will end on the same day is evident, and that the day nombers will follow ons another in the order mentioncel above can be seen by reference to the above condensed "alematar. If wr count 20 months, the year beginning with 1 Yiz will end with 10 Ah, and the next Jear will begin with 11 Yiz; or if we commence with the column headerl 11 , and count 20 months, the year will dud with 7 Ah, and the next year will begin with 8 Yiz; if we commence with the eolumn headed S, and count ol monthis, the rear will end with t th, ete. This appears to be the only rxplanation of this singular calendar, if we suppose the annalist to be correet in his statements as to the dates on which the gears ended.

As proof that the amalist counted 400 days to the realr we have the following evidence from the abore quotatious: By number 1, we laarn that the Revolt, which he takes as the begimaing of his era, took phace on 11 Al ; by nmber 5 we see that the first year of the Revolt ended on of th: in number 4 it is stated that "One year less ten days after the revolt was hanged the chief orator Ahmoxnoy, on the day 11 Akbal." The day 11 Akbal will oceur twiee only in the ordinary year of 365 days, and twice only in the year of 400 days. As the Revolt occured on 11 A , the first year thereaîter must have hegun with the day 1: Yiz. The day 11 Akbal would oceur first at the end of 6 months amd 10 days-or 130 days. That 10 days added to this cond not have completed the frat will be eonceded. The next oceurrenee of 11 Akhal would be at the emb of 19 months and 10 days, or 390 days, 10 days more reachines the day 8 Ah, the end of the first year. Athough neither 140 nor foo days correspond with any natural phenomena it is sate to assume that 400 dats was the period the annalist roferred to and not 140 days.

In number 15 it is staterl that 12 dass were lacking do comphete the tenth gear alter the Revolt, ete, on the day it Imox; ant in number 16 that tha day 7 dh combleted the loth year. As it is stated in number It that 10 Ah was the end of the oth fear after the Revolt, s Imox would oremr $1=5$ and 385 days thereafter. Couming 12 days from thr latter brings us to 7 Ala and gives 400 as the number ot days in the fear. This result must be aecepted, or we must decide that thr rear consisted of only 140 days, which is unreasonable. Jn 111 mber $2 \pm$ it is stated that 9 Ah completed the 1 sibly yar after the Revolt, and in number 26 that $8(\%)$ Ah completed the 19 th rave (that this
 follows it). In mumber 2.5 , which relates to the $19 \mathrm{~m}_{\mathrm{h}}$ year, it is staterl that on the day 3 (aok the doves passed orer the city of Iximelie; and that 1 oo days after the dowes had bern seren the low usts came, on the day $2 \mathrm{Y} g$ (or Ik). Now, the first occurvence of 3 (aok in the 19 th year after the Revolt, that is, the year following 9 Ah (the year heginning with 10 Yiz), is a months and 6 days after the commencement of the rear. One humdred days more briug ms to 12 Cabk, the fith
 mont of the year. This is not the day given, bat connting t days more we reath 2 Yis or 1 k , the day mamed. As 10 is a romm nomber, the 104 may be assumed as correct. As this, erom if the mmber be limited to 100 , gives more than 140 dats in this gear we hate evidence that a year of 400 days was commed hy the ammast.

In numbers : $: 1$ and 32 , and two or three items not given in the quotations, we have conchnsive evidanca that ton days were conntor to the yoar hy the Amals. They are as follows:

1 Ah completed the 5th year of the second cyche (2nth year) after the revolt (pago 1:1).

In the following year, ending on 11 Ab, Hunyg died on 12 Camer. (ihin. Brinton's translation gives $1 f$ Camey, but this is wrong, as there could be no 14 Camey; the original says 12).

100 days after was the day 1 Can (page 173).
20 lays later was 10 Queh (page 17.5).
The day 11 Imox follows in this sear (ibid.).
The day ? Batz oceurs after this same year (ibid.).
The year ends on 11 Ah (ihid.).
As the proceding year ended on 1 Ah , this gear began with 2 Yiz, and 12 (amey would be the 13th day of the 12 th month. One hundrod and twenty days more (or exactly 119) amb not 100, as the ammalist says, would reach 1 Can, the 12 th day of the $16 \mathrm{H}_{\mathrm{h}}$ month; 22 days more would reath 10 Queth, the 14 th day of the 17 th month. The day 11 Imox world be the 8th day of ithe 18 th month, and 9 batz the 1ath day of the 2oth month, just two days before 11 the the close of the yeat.

In the reale following of (number 3t), that is 10 say, the seat begiming witla 6 liz, the following events, with tates, are mentioned (numbers 35, 36, and 37):

> On 1 Ganel the Quiches were destroyen.
> On 4 Quat the chiefs were lmmed by Tunatinh (Alvarado).
> On 1 Hmalipn the Spaniards reacherl Iximehe.
> Fire days after. Tunatiuh left the capital: then the Tzutuhils wereronquered on a Camey.
> Twenty-five hays afterward Tmatiah went forth to Cuzcatan and slew Atacat om thr day 2 Queh. (on 10 Hnnahpo he retumed, having been absent 40 days.
> Iximeche was abandoned on \% Amak.
> Tell days after, on 4 Camey, Tmatiuh began war.
> One hundred and eighty days after the city was abandoned the s!th year after the revolt was completed on ? Ah.

The day 1 (Ganel (or Kianel) was the 1ath day of the ed month; 4 Qual (or Rat) was the 11th daty of the 30 montli; 1 Itmaliph the fith day of the sth month. "Five days after" should be is to readl 7 Camer, the 1:3th day of the shamonh. "Twenty-five days atterwards" (after 7 Camey) should he 21 to reach 2 Qneh, 1 th day of the lith month, aud 10 llunahpu is the \bar{t} th day of the 10th month, hernce the f1 days, if counted from 2 Queh, wouk be wrong. The 7 Amak would bo the $3 d$ day of the $12 t h$ month, and 4 Camey the 13 th day of the $12 t h$ month. From 7 Amak, the day Ximehe was abandomed, to 2 Ah, the end of the rear (still comnting 400 days), was only 177, the round number given by the amalist being 180 .

Theme items of evidence are suffient to prore, beyond any reasomable doubt, that the anmalist counted 400 days to the year, and that the years of the calember which he nsed always hegan with the day Jiz. The begiming and ending days of the years would therefore be as follows if we start with $1:$ Yiz, the first year after the Revolt:

Beginning day	Ending day	Beginning day	Endiug lay
Viz	Ah	Yiz	Ah
12	\checkmark	1	1)
!	;	11	T
fi	?	s	4
3	12	5	1
1:3	\bigcirc	2	11
10	(12	s
7	3	anci so on.	
t	13		

The next question that arises, and the one of most importance in the discussion, is this: Wias the writer justified in indicating that such a calemaly as this was in use among the Cakehiquels at the coming of the spaniards: On this point we must judge chiefly by internal evidence. As what is known in regard to the history of the manuseript is given by brinton in his introduction, it is unnecessary to
repeat it here. 'The writer elaims to have heen a descembant (gratudson) of the ruling (hief of the Cakelifutur at the time of the arrival of the Spaniards, and was then a youth of probally some 16 or 18 gears. Judging by his method of giving dates, les serms to have been familiar with a calendar then in use. Moroover his station wond inticate that he had been trainerl in the study of the chronology of his tribe. I am, theretore, inelined to acespt as substantially corrert his statements so far as they bear on the ealendarsystem, thongh the traditional portion may he of very little or no historial value. If this view lo aceepted, it may throw some light on one troulblesome feature of the Maya calendar-the introdution of the multiple 18 in counting the months. Why the ehange from the lunar period to a period of twenty days to the month was made, is not easily accombed for, except on the supposition that, having derided for wemonial or other reason to abandon the lnnar eonnt, it was natural fo follow the rigesimal system, hence the 20 dalis to the month, 20 months to the year, and eo years to the eyele or ahan. The neeessity, however, for some adjustment between the ceremonial and true year brought about at length the adoption of 18 months and 5 added days, and the substitution of 18 in place of 20 in time numeration. It seems possible, if the annalist be correct in his time comet, that the peculiar native calendar may have come into use somewhat in this way.

I ean find no grounds whatever for Goorlman's assortion that the
 in a historical mention which I have failed to find, but ly no possible means can this year le made to agree with the calendar of the Annals withont assuming an arbitrary break in the succession of the days at the end of eatch year.

MAYA METHO日 OF CALCTLATION

As I hate, in my papere on the " Mexican and Central Amorican Numeral Systems," a brought, up the question, llow did the Maya priests actually pryom their calenlations relating to timeseries, some of them reaching into millions: I propose to discuss the sulbject somewhat more at length here. As was statod in that paper, these calculations sometimes reduifed changing series of days, chmens, alatus, katuns, "yeles, and even great cyeles (or more eorrectly units of the 1 st , 20,30 , the 5 th, and even the 6 th order in the vigosimal systom), to years, months, and days, reaching from ond given dato to another. As such calculations could not possibly have been made mentally, the authors of the inseriptions and codices must have had some methot of " "iphering," to use a sehool-boy term, or of making the caleulation by marking on some object. Is was stated in the paper referred to, the only allusiom to the suibject by an early authority, so for as is known, is the statement ly Lamdathat they performed them "on the erround or some that thing."
"Ninetecuth Annual Report of the Bureau of American Ethnology.

As the different kinds of stmbols used by the Nayas 10 express :umbers hara leen refered to, 1 assume that the reader is familiar with them. That direet maltiplication and division wonlal seem 10 be impossible with their charaders where both mumbers inclarded units alowe the tirst order, or, all most, first and secomd orders, will be atmitted. Tha suggestion hy lophessor DeGee (reformed to in thas baler on numeral systems) that these operations might hato heen performod by addition and subtration surms to be the key to the probleme, as I slatl attempt to show.

That the Mayas could add and subtrate numbers expressed in the ordinary numeral symbols (dots and shont lines) is known from lundreals of examples in the Inesten codex: and that for these eharacters they combl readily substitute ratuivalent symbots of othre forms in use is evident. Take, for illustration, bart of a series from phate
 that it is to be taken from lolt to right instead of from right to left, as in the origeinal. The date hrenw add colamn is written ont, and instead of the nathght symbol a (ripher (1) is insorted:

If we write these in Arabir fignres, preserving the gelative positions and omitting the dates. as those given can be refered to, the series will be as follows:

		1	1	$?$	$?$
8	16	4	12	0	8
\because	4	6	$j(s)$	10	12
0	0	0	0	10	0

Dombling the first column (8-彐-1) we get 16-t-0; ading again
 this colnmm shond be x, as by atiling s-a-0 to it ats than cormected We get $--0-10-0$, ther 5 th collmonn, ete. $)$.

If we write the equivalent of each mumber in days, mantaining the same relative positions, and wive the smm of ach colnmm below (making the correction noted), the result will he as tollows:

		7,200	7.200	14.400	14.400
2.850	5. 760	1.440	4.3?0	1	9.880
411	S0	$1 \geqslant 0$	160	204	2411
0	0	1	$1)$	0	()

 and adding the same number to the sum of the secomb, we ohtain the sum of the third, and so om. liy commting forward 2 , !? (days from S Man, the date mater the lirst cotum, we reach 4 Ahatu, the date mader the ond column, etce.

These fimary steps are, of rource, well maderstom by reaters who hawe given any attention to the subject, hat it is necessary to present them as learling up to the object in view in the discussion.

- .
 (1)
in this series, but the process is carried on bey addition. Howerer, before we proeed, it is meessary to call to mind certam facts in redation to the ealendar. The first is that a day of any given name returns at, every outh day, whether we comet barkwarl or forwatd, but mot with the same number; the seeond, that any given day returns with the same day muber at every 260th day, whichever way we comit, but not in the same month nor on the same day of the month beyond the tirst year. As carch comnt reaches than in this instance, and :on is not an even divisor of 2,20 , the basal factor must be 20 , and the day numbers will be different, as we find them to be. Athough we maty not be able always to state why particular factors on comers we selected, yet in this case il would seem that $2, ?$ on wats chosen becanse this is exactly the nomber of days in eight years. As the dates are the efore just cight gears apart, they necessariby fall in years having the same dominical day, and, conserquently, on the same day of the month. Howerer, these specitie features must be umberstood as applicable to this particular series, and not as of gencral application, for we shatl find serics in which there is no reference to the year; but these time periods have a bearing on the practical methorl nsed in Maya calculations.

Now, let us see theoretically how, starting with a given date, the initial date of a high series may be rathed. Nine cycles and the lower fractional numbers, counting from 4 Ahan 8 C'umhan as the initial date, form the most frequent series of the Copan and cuirigua inscriptions. We will try to form such a series, selecting at rambom 3 (hicolan 18 Yax, year 1 Lamat, as the terminal date, and 4 Ahan fiomhan ats the initial date. As the former date must be the more weent on this supposition, it follows that the count was batekward (thomgh this is he moms necessary, as it could be forward as well); so our count in this ease will te bekward. In order not to makn the serins ten long and terlions, we will select as our factor or sum to be atdled-

 the wiven date ($;$ Chiochan 18 Yax) retmoning at the and of this probl. For eonvenience we make the series ascending toward the right, amd after a few additions domble the rolumms to make progress
 firnt rolumm: the rolmmme am numberel as a moans of roference.

(1)	(2)	(3)	(1)	(5)	(i)	(i)	(-)	(\%)
				-		- . .	-•	-••
- -		-•	- -	-	-		-•	\cdots
\pm		-••	\cdots	-	- •	- -	-••	-
-••	-•*	-••	-	-••	--	- •	-•	$1)$
11	11	11	0	$1)$	0	0	$1)$	0

'The connter or tirst columm is added to itself, or donbled, to form the sceromd: the first is added to the second to form the : m d: the first to the :ird to form the thi font to haster the process they are dombled sureessively from this point to the Sth. Is donbling the sth would raise the number above that contemplated, only the number necessury 10 give the ! eycles is added, but this must be the rounter (first column) or a multiple of it. The reduired number is found in the 5 th \cdot ohluma; this added to the Sth gives the !ath. The sum of the sifh colnmm, if no mistake has been made, shoukd, connting back from : ' Chicrata 18 Yax, loring us again to the same late.

As a count of a cyele of 5 at rats (our first colnmu) inclutes the "ntire series of days and day momhers known to the system, \& Ahan s Cumhn must be contaned therein, and the romet to it from the date rearohed must be less that the amount represented by our first column. Onr noxt step, therefore is to ascertain the lapse of time from our last date (3 ("hiowhan 18 Yax) to the next preceding oceorrence (ats we ar (oonting backwarl) of 4 than s ('mmho. Just what mothorl the authors of the inseriptions and corlices employed for this pmopose, as there are more than one, 1 can not state positively, but giva one which 1 am satisfied they conld follow.

They rould reatily ascertain, as is shown by almost eyery muneral series with a date, that the day 3 Chicchan 18 Yax foll in the year 1 hamat, and 4 than \& Cumhu in the yoar si ben; hence they could "asily tell, by comnting on theit tingers or making marks: that from the latter to the former is 18 years and the traetions of the two fears-
 -•• . . .
17 or $-\therefore$ As the yad is represented hy of the lis yeats wond be....

By a daliner to this the and \cdot, on together ——, we obtain the sum representerl by \quad. Nat this to the toth colmm, the $\cdots \cdot$
result is the following nmmber, 10 wit: or 9 cycles, 10 katuns,

14 ahams, 15 chmens, 5 days.
If no mistake has been made, this number, if we count lack from 3
 the first day of Goodmans so-called ith great eycle. Trial proves it to be correct, thus:

Commtine back this number of days from 3 Chicehan is Yax brings us to than \& C'mmhan. Turning to Goodman's" "hromologieal Calendar," 5 th great cycle, oth cycle, 10 th katm, and 1 thth ahan, we find the date is 10 than 18 Mac. Fifteen months and 5 days from this just reaches : Chicehan 18 Yax. The serjes is therefore a correct one, formerl upon the same plan the those of the Dresten corlex, amd withoul bsing angthing not in the reach and comprehernsion of the aboriginal artist.

The series on plate XXIF of thr Dresden codex (omb plate LAxxit) appears to close with a minor addition (in the lower lefthand cornere) to rearh the desired date, just as the theoretise me wiven above, excopt that in this case the mont is forward. 'The' serios indurles the right half of the plate and reads from risht to left and by lines from the bottom upwarel, elosing with the lines in the lower lefthand coomer. lhere tho steps have been in part from 1 Ahatu to 1 that
 then follows thu number $8-2-0,4$ than 8 (tumhu. The latfor mamber ehangel into days is the latise of time brom 1 Jhan 18 Kayah, the last puresting date, to that 8 ("mmhtu. Woweror, as there are some munsual features in mard lothe ahlitions in a part of this serises attention will again ion called do it a little farther ons.

In order to show that resort was hat to increasing the added number to shorten the process, as was done in the theoretice example, the following example is wiven from plates LNX and LxXI of the Dresden codex. Ominary mumerals are used in plave of the symbols, and the serios, which in the corlox asconds from right to left, is reverself the days below the columms are also given:

(1)	(2)	(3)	(4)	(5)	$(1 i)$	(0)
15	1%	19	18	1%	16	15
10	9	9	0	0	0	0
16	18	0	0	0	0	0
90 C	9 Eb	9 Ix	9 Ix	0 Ix	9 Ix	0 Ix

It will be seen by subtracting that the diffrence between the first and soomb columns and between the secomd and thitd is $1-17-2$, or 1 ahau, 17 ehuens, 2 days, equal to 70.2 days, white the difference between the 3 and 4 th columns is $2-18-9-0$, or 2 katums, 18 ahaus, 9 chucns, 0 days-equal to 21,060 days; ant that the difference between the 4 th and sth, the 5th and 6 th, and the 6 th and 7 th is, in each case, $1-19-0-0$, or 14,040 days. There is therefore an increase of the added number or factor in passing from the 30 to the 4 th columu.

It will he noticed that the days lrelow the lst, ad, and 3 d columns difter, white from this point onwarl they are all 9 Ix. The chomge in this respeet requires a change in the counter. Why the combter was made larger in passing from the 30 to the theolumn than between the remaining colnmms is not clear, as the difference letweren the 3¢ and th columns wond have reached the desired day, 9 Ix. It is possible that the month date, though it does not apperar, was here taken into consideration. Issmming that the first 9 Ix (under the Bl (olumm) was 9 Ix 2 Pop, year S Ben, the coment forward of 1-19-(1-0 would reach 9 Ix 12 Chen in the rear \bar{T} Akbal, while the count forWatl of 2-1ヵ-! - 0 wonh rearlh 9 Ix 17 Mac, year 13 Ezanalh. Is the first (onumter (702) is not a multiple of 260 or of 20 , it must have been bastel on 18 , whe of the lactors of 260 . The counters 14040 and دf(n;) arr multiples of 2 (on; and there is possibly something in the fact that the former (14040) is 54 times 200 aml that the first comber (al_{2}) is it times 13. Athongh we are not able at present to solve abl these problems, it is evilunt that tho anthor of the codes increased thr counter as he procecdrd, presumably to shorton the prowess.

The series appears to close with two columms in the upper mindie portion wi platr LEx, the dates here having the month given. With these (notwithstambing the obliteraterl gortion of the saries) we might determine the fred lates of the portion given abore, and thas possibly solva, to some extent, the problems mentioned; but mfortunately there art so many errors in these two columns that it seems impossible to determine the true numbers and dates. The chuen number, or
number in the place of the secomot order of mitn, is 15 or 19 (there being a space where ond dot may have been obliterated), either of which is wrong. The date below one is ! Ix el Pop, the other is ! Ix 1: lax or Traer, both of whiel are wrong, as Ix is never the 13 th or goth of the momth.

A goorl example of this methot of increasing the cotnoter as the serios proceeds is fonme on plates LNX-LXXIl of the same colex. Athough this ruas from right todeft, we give it here in reverse order and in ordinary figures as follows:

(1)	(?)	(2)	(4)	(.3)	($\mathrm{j}^{\text {) }}$
					[1:]
3	6	9	13	16	1: [1\%]
5	111	1.7	$1)$	5	11
4 Caban	4 Ik	4 Manik	4 Elb	4 C'aban	$\pm 1 \mathrm{k}$
(i)	($)^{\text {(}}$	(9)	(10)	(11)	(12)
1	1	1	1	1	2
4	s	11	14	17	8
1.5	(1)	\%	10	1.5	11
4 Mamik	4 Els	4 C'abar	4 Ik	4 Manik	4 Eb
(13)	(14)	(1.5)		(16)	(1i)
2	\because	\because		\because	3
fi	9	11 [12\%]		11;	1
.	10	1.5		11	-
4 Caban	+ Ik	4 Manik		4 Eb	4 C'aban
(18)	(19)	(31)		(31)	(20)
3	3	3		3	3
4	T	11		14	17
10	1.5	11		5	10
41 F	4 Manik	4 Eb		4 Caban	4 Ik
(23)	(24)	(2.5)		(26)	(27)
4	4	4		4	4
\because	6	9		12	1.5
15	0	-		10	1.5
4 Manik	4 Eb	4 Caban		4 Ik	4 Manik
(2s)	(29)	(31)		(31)	(3)
				2	;
5	111	15		0	$1)$
1	2	3		8	12
()	0	1)		0	11
4 Eb	4 El	4 El)		4 Elı	4 El
(38)	(34)	(35)		(36)	(3i)
					1
4	5	6		8	0
0	1	1		1	12
16	2	6		10	3
()	0	$1)$		0	0
4 Eb	4 El	4 Eb		4 El)	4 El

'The figures in parenthesis are merely arbitrary numbers given to the colmmas as a means of reference. The comnter is $3-5$, or 65 days,

 an increase in the connter, int this rase a large one, riz, to $1-\dot{-j-1}$), of ! , 100 days; but at the mext step the added number to form the : 3 and colmmen is only $1-(1-t-0$, wr 7 , 2-Al dass, just one-half of the 31st columm. This comuter is used to the end of the series: however, tha in the 3lthe colmmon is an "ritest mistake: it should be 7 .

The number 65 is a vary eommon eonnter in this and othere corlices; in this case 13 is the basal fitetor. In the other counters afo is the permanent fiactor. The first comnter, which is just one-fourth of the second, always reaches a day with the same number, though not the sameday-but repeating by series of four. However, aside fiom these frestions, we late the fact of the increase of the eomele in the procras. to show which was the ohject of calling attention to the series.

Returning now to the serime on pate XXIV (our piate LXXIf), to which reference has been mate, I call attention to the musual changes in thr counter or added umbler. The series in the fourth tier from the bottom, given in the way adopeted above is an follows:

(1)	(2)	(3)	(4)
1	4	0	1
5	12	11	\vdots
5	4	\vdots	14
11	0	0	4
1 Ahat	1 Alhatu	1 Ahat	0
1	Ahath		

The values of the different units ant sums of the columns ate as follow: :

			144.11010
$\therefore 200$	2-. 5010	(i4. Sillo	36.1107
1.stm)	4.300	3.9160	5. 18.411
100)	1611	140	(i)
0	$1)$	0	0
9. 1011	33.3801	15. 0 (1)	18.5. 131

It will be foumd by trial that the greatest fommon dirisor of these totals is able, and that it is contamed in the first total 35 times; in the socond, 126 ; in the third, 265 , and the fourth, 712 times. Athough each stip) must have required long and tedions arditions-no two having a common added numbu or maltiple thereof-and the reason for thus varying the added number is not apparent, get it is evident that the aboriginal seribe chose 2 got athe fator to be used, and also that the desirad result could he reathat hysumessive additions. In fact, the serites and the others we hate noticed seem to be mere records of the steps in the process of determining the lapse of time between two widely selparated clates.

Thes examples are sufficiont fos show that all the series in the rodiees and inscriptions coult have been formed by the aboriginal
authors with their namoral symbols by addition and subtraction. It may also be added that the evidence presented to show this is fitted to impress us with the belicf that some, if not all, of the series of the Dresten conlex are but records of the process of calculation.

There arises in connection with this examination a duestion, the proper answer to which may, if determined in aceordance with a view that has been expressed, have an important bearing on the history of the Mayan tribes.

On several of the plates of the Dresden codex there are what appear to be supplemental series comecting with the so-ealled " hormal date," 4 Ahan 8 Cumhn. However, the disenssion of this question will rome more appropriately under the next section, which relates to the signification of the series of the inseriptions.

SIGNIfICATION OF Tlle NUMERAL sERIES

Why were these series formed: What is their signification? These are questions impossible for us to answer satisfactorily with our present knowledge of the subject. It may be possible, however, to limit the inquiry by certain considerations.

Our first cuestion is, Were they intended, by the initial or terminal days, to refer to actnal dates hearing some relation to events in the history of the respective tribes to which they pertain: By the term "initial dates" I allude to the dates from which the series (whether initial or minor") were counted, and by "terminal dates" to those whieh follow the series in connting forward. The latter are assumed to be later in actual time than the former.

That the initial date may be thrown back any desired distance in lime is admitted, as for example, we may take as our initial date the begiming of the Christian era (A. D.), or the supposed initial date of the work era (A. M.), or any other beginning date which, through fancy, tradition, or mythology, has been adopted or arbitrarily chosen by different proples. It is not necessary, therefore, that we shouk assume that the initial dates of the Mayan codices and inseriptions have any relerence to historical or even supposed historical events. That such all assmmption wonld be preposterous is shown by the fact that several of these dates reach back in time 33,000 vears, and a large proportion of those of the inscriptions neally 4,000 years, and others to a still more distant time. The initial dates must therefore relate, as will be concederl, to some assumed date, traditional or mythological, or arbitrarily chosen, according to the fancy of the calculator.

Do the terminal dates refer to events or incidents in the history of the tribes-erents which were noted down hy the scribes sufficiently near the time of occurence to give the proper or probable dates thereof:"

If we take the terminal dates of the initial seris at (Quirigna (omitting from consideration thos of the minor series) we find the difference betwen thr earliest and latest, with two exceptions to be motiend, is muly some 83 or st yars. This difference is so moderate an to be entirely consistent with the idea that the dates were engraved near the time of the events or incidents to which they refer, if, in fact, this was the object in giving thrim. The two execpted are mmbers 6 and 16 of the list given below. The mallation 1 give is based on what seem to be the reliable series and dates, learing ont of consideration the exceptional and doultful series. Comparing the earliest and latest of those at copan, we find the difference to be about 222 years. This is by mo means extravagant, hence the dates may refer to historical events. When we come to those at Palenque, we find the difference-eren exeluding the most meeent date, which Goodman andmits is donbtful-to be wer 3,800 rars. Althongh a difference in dates as great or greater than this hats been fomm in the inseriptions of the ruins of Egypt and Assyria and acecpoted as reasonably correct, no archoologist of the present day not caried away by some extravagant theory will believe that inscriptions were chiseled at Palenque at dates 3,800 years apart in actual time, the earliest (counting from the coming of the Spaniards) going back more than Q, 20 years before the Christian era.

Now, it is the opmion of Goodman and Seler that the terminal dates of the inscriptions (the latter excepts those at Palencue, as explained below) refer to the times when the monuments were erected or the inseriptions chiseled. The assertion of the former on this peint (pages $14 \bar{i}-8$) is ats follows:

Particular emphasis is intended to be laid upun "initial " dates in the foregoing estimate. There are two kinds of dates in the Archaic inscriptions. The dates of one character, and those of most frequent occurrence. appear in the body of the texts. and designate the points from or to which the reckonings extend. Sometimes they are hat a day apart; at others, they are a few months or years. while occasionally a flight is made wer thonsands of years and back again, with the ease and swiftness with which in Eastern story the conch of the prince is transported ly genii. These dates have no significance beyond their relation to other dates and the corresponding reckonings.

But with the other class, the initial dates, as Maudslay has very appropriately named then, it is quite different. The inscription on nearly every temple. stela, and altar legins with one of them. reciting the great cycle cycle, katnn. ahan, chuen. month, and day. Snch conspicmousness and circumstantiality, in my estimation, comld have but a single purpose-that of recording the date at which the monmment was erected. Some of the stela have different initial dates on opposite sides. but in these instances one date is reckoned from the other. the later one mondontedy designating the time of dedication. I think there is nothing we can assmme with more assurance of certainty than that these initial series mark the date of erection of the respective monmments.

Taking this for granted, also. we will turn to the inseriptions and see to what these conchosions lead. The latest initial date is foum on a stela at Quirigna.

average of initial dates in the other Qnirigua inscriptions. The next latest initial date is on a restored stairway in one of the temples of Palengue. It is
 dates at Palemure. These are long periuds, lnt the limit is not yet reached. In thr m memm at Leyten is the mismamen " Suratee" stone, exhnmed in digeing a cut on the line letseen British Homdmas and Guatemala, ahout a humberl miles from Copan. It is a slim slab of jadite. alont a foot long and fonr ineles wine, if my recollectiom of it is correct. Both sinles are inserihed in rather a rude manner, the rudeness apmarently hang more attributable the the lardness of thre stone than to a lack of skillin the artist. The carving on the front represents a warrior trampling an enemy under his feet. The stome. therefore is evidently a memorial of some victory or concuest. The inseription on the baek consists of an initial date in the Arelaice form and characters. It is $5: 3-14-3-1 \times 12-1$ Elı-ラ Zac. That is $8, * 幺 ;$ years anterion to the latest initial late in Qurigna. Now, if in accordance with my theory respecting the era of the Archaie cities the a.By yoars that have elapsed since that Quirigna late was mide be alled to the above predod, we slabll arrixo at the time when that andirnt Maya comrneror trod his enemies multry foot- $10,7: 31$ years dro-the oldest historical date in the world.
1)relars "pinion on this point is axpressad in the following yuotation from his paper in the Keitsehrift für Ethmolowie, ITeft 6, 1 S!! :

Thave in conclusion. now tospeak of the relation in which the varions mommments Which we have become acomainted with stand to sedel other. Here at theontset is tobe kept in mind the noteworthy litference whichexists between the altar platesof Palenque and the remaining monmments. I lave already mentioned that the initial series of all momments whicll we are able to read contain in the first member the multiplier nine: and I can add that the same lolds also for the stelae of Quirigna (which 1 have not yet been able to treat of. as they have not yet been published in Mandslay ${ }^{*}$ work) and for stela 6 of Copan. "xomated by the engineers of the Peabody Mnsemm. On the altar plates of Palenume on the contrary. so far as we have heen able to deripher them. there stands in the first member the moltiplier me. If, as inteed is a priori most probable the date clesignated at the end of the first series gives the time of erection of the momment in guesfiom. then we must conclude that all other monmments within the tenth eyrle after the begimning and normal date 4 Ahan 8 Cmonk- the Temple of the Cross II of Palenume, the Temple of the Sun and perhaps also the Temple of the Cross I-were constructed within the second cyole after the legiming and mormal date. In other worts, we must conchnde that hetween the timp of the erection of the tomples of Palpmome and of all the other mommments there lies a perion of alnomt 8.100 years: that the temples of Palenone are about 2.100 years alrev than the momments of Copran and Guiriond, and than the steps of the towering palace of Palencue not far from the temple. This is, in itself, not frobithe, and all the less sn as one would. from the style of the hieroglyphe and figures. be rather inclined to explain thr temples of Palengue as youmger than the stelse of Copma. The solntiom of the ridale may bu a lifferent one. It may be that, in the initial series of the temples of Palemque. the emal date does not represent the date of erection of the temple, hat an earlier sacrod date which it han leen detwmined to bring into view. It may, however. also lre that the time of the erection of the nomment was loronght into view, not throngh motation of the setual traditionally acceled distanse from the nommal date, but as it were in withmetical fanhion throngh notation of ome difference whith lod from the nommal date to a day of this name.

The end dates of all the remaining mommments which we are able to read fall, as said. within the tentl rescle after the begimmoge and momal date 4 Alam. 8 Cunko.

It is alparront from these quotations that both Goodman and seler hold the opinion that the terminal date in an initial series is intended to imblicate the time when the monment was ererterl，though the lapse of time given her forman（whon docs mot reem to object to long periocls）to the dates of erection of the varions monuments differs rery widely from that allowed by soler．The differencen 1 have indicaled are，an was stated above，limited to those which rematin after rejeeting those which seem doubtful．

Let us discuss this question on the data furnished by the insorip－ tions and Dresten colex，taking，where there are not gow ！nounds for objecting to them，the interpretations of the initial seriw log fook－ man and seler．Differences in the numbers of the periods or orders of mits below that which Goodman terms＂katun＂have mo bearing in this discussion．In order that the reader may have the data before his ere， 1 give helow a list of the imitial series，retaining，for con－ renience，Goodman＇s great cycle numbers．The numbers at the left are merely for reference．

Palentuer

	53－12－19－13－4－19．	S Ahan	18 Tzec．	Temple of the Crus．
	） $5+1-15-5-3-6$ ，	13 Cimi	19 Ceh	Temple of the s
	（）it $1-15-$ i $-1+0$ ．	1 Ahan	13 Mac．	Temple of the Foliatect
	（ 5t－9－$+0-0-0$ ．	13 Aha	18 Yax．	Temple of Inscriputio
	（3） $55-3-18-12-1.5-12$ ．	Q Eb	15 Pol ）	Inscribed steps of palace．

		6 Ahan	1：	
	．5－9－14－13－	12 Caba		
	（ 5 t－9－1t－13－4－1\％	12 Caban	Raya	Stela E．
	5t－9－16－5－9	8 Ahan	st	Stela J．back．
	（1）it 9－15－10－1）－0	1 than	3 Zip．	Stela F．eas
	）5t 9－16－13－1－17	－Cabam	－Yiaxkin	Stela D．wrest
	（2）it $5-1 i-10-10$	12．Ahan	＊Pax	Animal B．
	（1） 5 5－9－15－5－10－ 1	15 Aha	13 Kayals．	tela A，ea
	．it 9－1\％－1．	5 Ahat	Inam	mal
	it 9－14－1．5－0－0	3 Ahat	3 Yax．	Stela K
	－13－（0－ $11-0$－ 1	4 Ahan	nm	Ste
，	（i）it 9－11－1．5－0－0	i	is Pop．	Stela D，east si

Copern

The Leyden Stom.
(32) $53-8-14-3-1-12.1$ Ely 5 "(Yaxkin?).
(rootman also mentions (1). 148) the following as at Quipigua:
(38) 5is- 3-19-2 0.0 . 7 Ahau $1 \times P_{0} p$. Stela?

Examining this list, we see that the terminal dates of atont of the 33 series fall in the 10 th (coommans!th) ryele from 4 Ahan 8 Comhn, the initial day of Goodman's $\boldsymbol{i t h}$ great eycle. It can not be dombered, therefore, as we also find the same initial date the most prominent ome in the Drasden collex, that, for some reason moknown to us, it was selected ly the people who made the inscriptions aml conlex as their principat era date. As the $2+$ series ending in the 10 th evele run lack from the earliest (orminal date (number 6) $9-1-0-0-0$, or $3,5 \% 0$ years, and from the latest terminal date (number 15) : $-18-15-(0-0$, or 3,920 years, it is evident, as has bern stated above, that the nomal date (4 Ahans Cumhu) selected as the commencement of thisera could have no refrence to an historical event remembered by the Mayan prople. Even if we suppose that the last of these inseriptions was not chiseled until the close of the fifteenth century, this wouk rarry hack the era date 2,400 years before the Christian era. The only salfe and reasomable conclusion, therefore is that the initial date was arbitrarily selected for some mythological, mystical, or arithmetical reasom. It. is especially worthy of notice, however, that the lapse of time bet ween the terminal dates of the earliest and latest of these series is only ahout 350 years, and, if number 6 be omithed, less than ! \% years. This fact would sem to give color to the suggestion of Goodman and Seker that the tominal dates of the initial series refer to the time the monnments were erected. Nerortheless, there are some serious difficultirs to be orercome before this theory wan be considered as satisfactority established, some of which it will be my object now to point out.
so far ats the foregoing list is concerned, all the series which begin with 9 eyeles (the ot indicating the so-ealled great cyele is omitted from consideration) hate, berond question, the initial fate 4 than 8 Cmon. It must be remembered, howevr, that this date returns at the end of every come of 18,980 days, or 52 yans. Now, the phestion arises (and it is a crucial one in this diselussion), Does the count in "ach one of these series go batk to identically the same 4 thau 8 Cumhn, or merely to any t than 8 Comblut lf, as 1 think 1 have succressfully shown, the so-called abans, katuns, eyoles, and great cyoles are not absohte time periods, reognized as surh in any Mayam time system, but are mere orders of mits in the layan method of numeration, these counts would he preciscly like the following in our ordinary timesystem: Thurshay the 1ath day of the Th month of the toth year of the century. What "entmy': (hr 1,025 years, 7 monthe and 15 days from Derember 马ath to 'Thursilay the !th day of the sth momth. It is evident that withot the first or last date lecing fixed in some recog-
nized calendar the 1,005 years, etc., may be pushed backward or furwatrd at will. Hence a llayan soribe may write ! 1 -15-0_0-0 from 4 Ahau 8 ('umhu to 4 Alan 13 Vax (as in number 26); and 52 years later another may write the same series, as in number 27 , and both will be strictly correct, but the 4 Ahan 8 Cumbu of the first will be 52 years earlior than that of the second. The mere fact, thorefore, that 4 Ahan s Cumhu is reacherl by counting back the different numeral series is not evidence that in each case identically the same 4 Ahan S Cumhu is reached. Other evidence having some bearing on the question must be introduced to establish this identity. The only fact apparent in the series themselyes which seems to favor the theory of identity is that each runs back ! eycles plus the minor numbers. This undoubtedly farors the theory of identical date.

Let us turn now to the Dresden codex, and give attention to what I have termed smbsidiary series; that is to saty, short series apparently, as was suggested in the theoretical series given above, intended to ronnect with t Ahau s C'umbu. As I have expressed doubts as to the correctness of seler's suggestion about that on plate LXIX, attention is called to the long compound series on plate XXIV (see our plate Lxxint). This series begins at the right-hand edge of the bottom seetion and runs leftwatd to the middle; it then passes to the mext section above, and so on to the top wi the page, the concluding colnmn being that in the lower division of the lefthand portion. No months are given exeept at the bottom of the long number columns and the one short column in the lower left-hand portion of the plate. The last date standing in the lower left-hand corner is 4 Nhan 8 Cumhu, and orer it is the number series $6-2-0$ (the 0 symbol in a red loop). The next date to the rieght is 1 Ahan 18 Kayab; this stands under the nomeral series : $0-16-0-0$. Counting back from 4 Ahan 8 Cumlun, the short series, t ahans, 2 chuens, 0 days, or 2,200 days, we are brought to 1 Ahau 18 kiayab, while if we count forward from the same date it brings us to 7 that 18 Cumlu, which shows the backwarl count to be the correct one, if the design of the artist was to connect the two series; moreover, the count of the long series, if made toward the right, is backwat.

We know that in all the series given in the above list, where 4 Ahau δ Cumbu is the principal date, it is the initial day and the numeral series follows it; in other words, the count must be backward to reach it. Taking number 15 of the list-Stela K of Quirigua$\therefore t-1-18-15-0-0-w e$ fimd that the terminal date lies 3,920 years subsequent to t than 8 Cumhu. Turning to the last column of the series on plate XXIN of the Dresden codex, whicll is 9-9-16-()-0, we find that the count, when the shome serises of 2,200 days is added, reaches batekWiad from 4 Aliau 8 Cumhu $: 3,750$ years. In other words, we count forward in the codex 3,750 yours to 4 Ahat 8 ('umhu, and in the insuription serios forwarl from this date $3,9{ }^{2} 0$ gears, making the total
lapse of time from the begimning date of ont and the ending date of the other 7,6 g years. Is it at all probable that the one 4 Ahat 8 Cumbu is the seme in actual tame ats the other: That the conme is necessatily forwalld in the codex series may be prover thas: The last rolumn (hat in the fower lerthand portions) reatehes batek to the
 terminal date which stands below the eolmon. Now ill the supposition be rompert that, is is ustall in this rothex, this column is the sum of the series, and there is no mistake on the part of the aboriginal artist, the dirst number eolmmn, that in the extreme lower right-hand
 the fourth dot is hid ly the red border line, as can dasily he shown by the steps from dato to date toward the left) shombly give the exare lapse
 days, from 1 Jham 18 Kayab, year 2 Akbal, we reach ! Ahau 18 Kiayal, sear 10 Akbal, the date maler this first columm. Counting forward $\because,!20$ days (the diference between the finst colnman and the next one to the left) from the last date (9 Ahan 18 Kayab), we reach + Ahan is Kayab, year 5 Akhat, the date under the second colmma. Counting back the sum of this second colmmo-5, 840 ditys-we reach, as we should, 1 that 1 Kayal, the initial date.

As farther proof that the series is contimons and the count forward, let us select at random the thinel eonman, counting from the right, of the third section from the bottom, to wit, $48-10,11$ Ahath. Counting forward 32,120 days, the sum of this column, from 1 Ahatu 15 Kay゙ak, we reach 11 Ahan 18 Kayab, year 12 Akbal- 1 he day under this column. If we take the column immerliately above (hhird from the right in the fourth division from the bottom of the page) which reads : $1-11-7-0,1$ Nhath, equal to 68,900 days, and combt forwarel fom the initial date 1 Jhat 18 Kayah, we reach 1 Jhan $1: 3$ Mac, vear a Latmat. Subtracting this column from that to the left of it-

$$
\frac{\begin{array}{r}
1-5-11-1-0 \\
9-11-\tau-0
\end{array}}{16-2-1.5-0}
$$

 ward this nomber of daty from 1 Nhat 13 Mate, the date muler the thiml column from the right, we reach 1 Ihan 18 Co, year 3 Akbal, the date under the last or fonth colmun from the right, whiel proves the stops thus far taken to be correct.

Althombthe npuer division is too nearly olaliterated for any of its colmmas to be nsed to ealculate forward to the final rolthm, we can do this an eomeretly ly subtrating the last eolmmof of formeth division from the terminal column of the entire series, thas-

[^5]Using this remainder, which amounts to 1,1 si, 4 to days, subtracting
 of 4.6 sel days, and comnting torward from 1 that 18 Uo (the date under the left colmm of the fourth division), we reach 1 than 18 Kayab, the date umder the final colum in the lower left portion of the phate. No doubt, theretore, is lett that the count in this long series is 10 ward the loft and forward in time, and that the 1 Ahan 18 Kayab under the final eolumn is $3,7 t y$ yars later in time than the initial date, which is also 1 thau 18 kayah.
Comang forward from this terminal date the short series in the extreme lower lefthand column (2.200 days), wo reach t than 8 Cmmha, the date in the corner below this short column. It is certain, therefore, that t than 8 Cmmh is the terminal date of the long series on this plate. Is it the "normal date," the same initial 4 than s Combur from which the series of inseriptions are counterl? To show that Goodman's ratculations agree exactly with this result, we have only to comnt batk on his chronological tables from 4 than 8 Commh, the first day of his 5 th great eyce, the 9 creles, ! katuns and 16 ahaths of the final large column and the f ahaus of the short colnmen. This will reach 2. Ahau 13 Pop, the first day of the 1sth ahan of the sth katun of the 3rd cecle of his sinrd great ceck. Counting back from this the two months of the short cohumn we reach 1 Ahau is Kayab, the initial day of the long series of the codex plate.
This fate will tend to throw a strong doubt on the theory of forodman and seler in regard to the signification of the series. Moreover, if we tum to plato LxX of the codex we see high numbers, some reaching to is and others to 9 cereles, one being as high as (3-19-11-13-(0. These are followed by a short sub-

Fif. libi, Colimn from plate Noint, Dresden coder. sidiary serios ending with t than 8 Cumhu. Here, then, this "normal date" comes after the long series of 3,937 years, and if seler's idea that the 4 than 8 Cumhn in the texts of pates Lxi and Lati is 10 lo connected with the high series in the serpent figure be correct, then it must stam at the commencement of a perioxd extending back from the terminal date some 33,400 years.

As an example clearly illustrating the statements in the preceding paragraph occurs on plate xLIII of the Dresden codex, I shall motice it here before passing from the point under diseussion. This consists of a single column shown in figure 18if. At the head of the colnmm is the day : Lamat; immediately below is a tigure with a turned-up nose, probahly a conventionalized 1apir head, which, as it oceupies the same relative position as the ereat "ycle symbol in the inscrip-
tion, may, and in fact probably does, stand for the same purpose here. Following the latter, reading downward, is the series $9-1!1-8-15-0$ (9) cyckes, 19 katums, 8 ahans, 15 chmens, 0 days); next eomes the day 3 Lamat, which is followed by the short series $17-12$ (17 chuens, 12 days), the cohme (nding with the day 4 Ahan, though no month symbol is given.

Assuming the date at the bottom to be 4 Ahan 8 Cumhn, we count batek 17 months and 12 days ($=352$ days) from this date. This brings us to 3 Lamat 1 Uayeb in the year 7 Lamat. Comnting back from the latter date 9-19-8-15-0, of $1,435,980$ days, we reach 3 Lamat 11 Mann, yoar 1? Ezanab, the day standing at the head of the columm. It is true that we have no absolute proof that the terminal date (4 Nhau) is intended for t that 8 Cumhn, as the comnt will give the same result from any other 4 Ahau. The eolumn given is the sum of that is to say, includes-the long series which ocenpies the right portion of the middle section of plate xlim ant the left portion of the middle section of plate XLIV, and seems to be here precisely what an initial series is in the inscriptions. This smpposition, which seems to be confirmed by the tapir-head symbol, which apparently stands for the great eyele is in direct opposition to the assmmption that

the terminal 4 than is the initial day of a great eyele. On the other hand, the assumption that it is the initial day of a great eycle, as Selor seems to think, necessitates the conchusion that the date 3 Lamat 11 Muan, from which the count of the series starts, is not the bewiming of a great cyede, or that great eycles may overlap ome another. The latter conclusion would indieate that the starting point is arbitrary, and that the supposed time-periods are simply orders of mits in expressing numbers.

At any rate, if the 4 dhan is assumed to be 4 dhan 8 Cumhn, the whole of the series lies back of, or anterior to, the commencement of Goodman's $54 t h$ great cyele.

As an indication that the conventional tapir head on plate XLII of the Dresden corlex is used as a great eycle symbol, attention is ealled to the centerpieces of the three great cyele symbols shown in figure 16\%, the one marked a being from the east side of Stela F, Quirigua; b from Stela N, Copan, and č from Stela (i, Copan. The resemblance to the corlex symbol is too strongs to be orerlooked.

In addition to these facts which seem to stand against, or at least to remele doubtful, the supposition that 4 Ahans C'umhn, when stand-
ing ats the initial or terminal day of a series，is to be taken as the date of the chosen era，there is the additional fact that in quite a number of tho inscriptions there are series connected with，but sub）－ serguent to，the initial series，sometimes mmming into the hundeds of years．If the terminal date of the initial series designates the date of ereetion，then the other subsequent dates must have been ehiseled after the monument was erected．This would require the supposition that the tablets at Palentue were quaried and dressed to a partica－ lad size with a profound knowledge of or keen foresight as to the additional space that wouk be needed in the coming years．

Such are some of the difticulties that stand in the way of the theory advanced hy（foodman and Seler as tor the signification of the inserij）－ tions．Nor are these all the differulties；others appear when we discard Goodman＇s theory of a great ehromological system and look upon his so－called time－［reriorls as hat orfers of mits，and count，as should be done， 20 of the 5 th order of units（cycles）to one of the 6th order（great crele）．Howerer，notwithstanding these serious diticalties，the theory，if a little more seneralized，so as to apply to the latest date in the inseription as that denoting the time of erection on erent com－ memorated，is perhals the most aceeptable which has been pre－ sented，thomgh it be very doubtful．Many of the long series in the Dresten corkex appear，in fact，to be records of the steps of＂alcula－ tion in finding the lapse of time lotween widely separated dates， seemingly tor ammsement or mystical purposes．The anthor of the Dresden corlex serms to have been of a mathematical turn－far more so than the authors of the Troano and Cortesian codiees，which fact probably aceouts for the long series in the former；and it may be added that a strong mathematical turn of mind has probably led Mr． Goodman to form his grand but，mofortumatey，imaginary Mayan chronologieal system．

INSCRIPTlON AT NCALしTMKN，YUCATAN

Attention is called again to figure 157 （page 253），showing an inscription foumd at Xralumlin，Y＇ucatan，by Mahler and photo－ graphed by him．A copy was obtained by Dr Le Plongeon and pub－ lished in his＂Qucen Noo＂（page so，plate Xiv），but without any partionlars or attempt at exphanation．As Mahler has not，so far as I am aware，publishod any aceount of this discovery，and I am imblebed to Dr Saville for the copy used，I ran only refer to the insoription，which is errtainly interesting in sereral respects．

It is apparent at a r lance that the majority of the symbols differ very considerably from those at Palenque，Tikal，Copan，and（onirigua to which reference has been made in my previous paper and the finst part of this paper．So great is the difference that we are mable to say whether the first symbols，il to bes，are numbral characters repre－ senting an initial serios．That the part of A3 which is a rartouch inclosing a serpent is to be laken as a day symbol may be safoly
assumerl. If this sumbe be correot, it is a type diflerent from any hitherto fomm in a Hayan inseription. It a llayan day symbon, it must, beyond any rasomable donbt, represent Chicehan, which is the only day in the calembar that has reoriver the interpretation "sorpent." and is that whirh corresponds in position with Cohnatl in the Mexicom calemlar. It this conclusion be eomect, it contirms Brinton's interpretation ot the name "Chieclan" (Native Calendar, page 25).

The important glyphs of this inseription are the 1 wo at the bottom, A6 and Bb. Thesi I think may safely be read "s Caban i Zotz," and in 1 his I am grad to say that saville agres with me. Whether the determination of the month symbol be correct or mot, the four dots over it are clear and distinct, showing the day to be the th of the month. There can scamely be any dombt that the day symbul is That of Caban, which can only be the the day of the month in years beginning with lx. This conforms to the ralendar of the Jroanoamd Cortesian corlives and that used ly Landa, in which the dominical days are Kian, Mhlur, Ix, Cauac.

This is a rery important faet, which, if comobomated by other discoveries, will carry back the use of the Yutater ralembar to an carly date. 1 was inclined to the opsinion that this calendar was of compabatively recent date, but this evidence, if accepterl, mast carry it batk to the ara of the inscriptions, and place it, in time, parallel with that of the other seretions.

A simgle date, it is trme, is slember aridence on which to base a conclusiom of so mueh importance as this. Howerer, as it is the only evidence as yot obtaned bearing on the question, it must be accepterl matil other data are obtained. It is possible that ome other fata is given hy Mandslay in plate XIX, part is, in am inseriblion foumd at Chicher-lza and shown in onr figure les. Jossibly this maty be internded for \because Than \because ('umhn, and if' so would be the second day of tho month in Canac years, and in aecordande with the Vncatec calemdar. It must ho admitted, however, that this is rery doubtenl. It will be noticed that in the inseripuion fiom Nealomkin the glyh $13: 3$, to the right of the supposed Chicehan symbol, consists of two fiates, hence is presumably double, and were eath are two large dots. If the first or loft ome be intended for a montla symbol, there is still correspomenoe with the lncatec calendar, as ('hiorhan is the soomd day of the month in lian years. Itowever, it mast be anmitterd that as yet we are malale to solve the problam.

In regard to the types of the erlyphs their nearest approacla is to those on Stelal', Copan (see Maumblay, plate Lxxxvin, part t).

In tixhme lit: is given a copse of ath inscription ont Stota di at Copatn. Is the photographe of this inseripetion has heren kindly furnished her Ins siarilla, who may intomel to publish further notice of it. I shall notice only the initial serves.

This sorves is as follows (the great erole being neglected): ! $-1:-10-(1) 0$, ! A Ahat is Zotz. The rhmen and day symbols ame too indistinct to be determined by inspertion. The symbul of the day! Nhan is the riehthand portion of glyph lie: and that of 1 s Zotz is the right-hand portion of eryelin lit. Changing the 4 creles, 12 katmos, ant 10 ahatas to days gives the following rexult:

	Da̧s
4 cyeles.	1.296.000
I? katuns	8f. 400
10 aliaus.	3.6011
Tutal	1,306. 1100
Subtract is calendar ronmets.	1.35.5.54
Remainder -..	469

Comnting back 460 days from ! That Is Zotz, yar 10 Akbal, we are brought to 4 Dhan S Cumhn, year \& Ben, the initial day" of Goorman's sth great eyele. Thr series, as given above, may therefore be accepted as eorreet, and the lower part of ghysh in as denoting $1 /$ chuens, 1 dats. or at least (oluthes. Enongh of the left hatif ot the lower portion ot this glyph rematns to how berond guestion the symbosl wit full count or maught.

Dr Savill hat also presented me with photographs of inseriptions discovered at suball, daatemala, but those are short and comlath no initial serios. The only predlatrity noticrable is the prominerne at this place of the date 3 Nhat 8 Karab, which shathls at the head of some of the inseriptions. This shows that the eatendar unded here was the same as that in nse at the other points not in Yueatan, to wit. that hatring Akbal. Lamat. leen, and Ezanab as the dominical days.

Fur. Lis. Inscription on Stela 6, Copan. Flow photograph by saville

THE NEPLIRTTE STONE OF TUE LEYIOEN MUSETH

Reference is made to the inseription on this stone (figure 170), which has been frequently notical heretofore, merely to show the date from which the initial series is comoter. The selies is as follows, omitting the great cyole: $8-14-3-1-1 \approx 2$, 1 Eち 5

Fig. 170. Inscription on the nephrite stone in the Leyden Museum. (month). The month symbol, thongh distinct, is mumsual, in fact minue, maless it includes the "kin" "rlyph immediately below, which is very probable; in this case it is most like the Yaxkin symbol. Reducing the series to days and subtracting 60 calentar rounds, wo have the following result:

	Days
x cyeles	1.152, 1000
14 katuns	100, 800
3 ahans	${ }^{1} .080$
1 chuen	20
12 days	12
Total	1.853.912
Sultract lif calendar romnds	
Remainder	1.23?

Counting forward 1.232 days from 4 Nhan 8 Comblu, the first day of Gootman's ith great (eyele, seler"s " normal date," we reach + 1x 10 Xul. 'This is wrong; but hy eonnting forward from 4 Nhan 8 Zotz, the first day of Goodman's 53 rl geat reycle, we reach 1 Eh 5 Zace, whieh agress with the inseription so far as the day and day number and the daty of the month are concorned, but still leaves the dombt as to the mouth. 'This result also agrees with Goodman's tables and his interpretation of this serites (fage 14x). Assmming it 10 be eorrect, We find the terminal date to be fils, 088 days batek of or anterior to the "mommal date," t Ahaus ('umhu; and the commencement of the 10th (Guodman's !th) eyclo of the 5tth great cycle statuds $1,296,000$ days after this normal date: hence the time of inscribing the sorios on the wephrite stome (assuming the treminal date 10 indicate this time) wat 5,244 yeats antwior to the brginning of the loth eyce, the anterior limit fixed by seler for the date of the inscriptions. Llowever, it must be remembered that this caleulation is hased on the theory that the series on this stone falls in one of the three great eyeles tabolated hy Goodman. This theory, as is
apparent firom what has been shown in this paper，is not entirely sat－ isfactory．If the eount be barkwarl from 1 Eb 5 Vaxkin，the appar－ ent date of the inseription，we reach，as the beximning day of the series， 4 Ahau 1：C＇molm，which is the initial day of Goodman＇s 11 th great eyele；hut it must be remembered that 4 than 13 Cumhm will appear again and again，in fact hundreds of times，and at much more recent dates than this immonse stretch of morr than 224,500 years． Horeorar，it is proper to hear in mind the fact that Goodman＇s list of 73 great cycles covers the list of ahatus or 360 －day periods com－ mencing with $\&$ thatu；hence any date having t than will be found somewhere in it．

CALENDAR AN゙D N゙MBER TABLES

Althongh the following tables are given in my previons paper，it is thought best to reinsert them on the following pages（303，30t）for the convenience of readers disposed to test the calculations made in this paper．

$x=\equiv$ 二豕

Working tulows

Calendar rounds				C＇alendiry rounds			
1	18.980	21	399， 5 50	41	T8． 180	61	$1.15 \% .750$
2	82，960	22	415．．960	42	797	$6 ?$	1，176， 2150
3	56，940	$2: 3$	430.540	43	S16， 140	63	1，1！\％，if
4	－5．900	24	4－5，520	44	83．5． 190	6if	1，214． 220
5	94.900	25	tit． 500	4.5	8.54 .10 m	6.5	1．23\％， 200
6	113．8．8！	26	493，480	416	8.3 .080	66	1，25こ，1580
\％	13\％， 960	37	－12，460	fir	592．060	15	1，2：1，65t
8	151.840	28	－3．31，440	48	\＄11．040	（is	1． 290.1541
！	170.820	29	二，0）， 420	49	930.020	69	$1,304.1920$
10	189． 800	30	5199． 400	510	949．000	T1	1．824．f60
11	205.350	31	SNS． 3×0	． 1	915%	71	1.345 .580
12	22\％． 36	32	607,360	52	986.964	72	1．366， 390
13	246． 740	33	$6 \stackrel{31}{ }, 340$	313	1． $00.5,940$	73	1，350，540
14	365.20	34	64．5，321）	54	1.024 .930	It	1． 404.520
1.5	284.700	3.7	f6ft， 300	55	1． 043.900	75	1．493．500
16	303.680	36	$68: 280$	56	1．062， 880	16	1．442． 480
17	392 9660	37	下いき，260	97	1，081，860	7	1．461． 450
18	341．640	38	T21，241	58	$1.100,840$	Ts	1． 480.440
19	360,120	39	740,220	． 39	1，119，820	70	1， $494.4 \geqslant 0$
20	379.604	40	7．59， 200	60	1，138， 000	81）	1，51\％． 401

Abans		Katuns		Crcles	
1	360	1	7．201	1	144.000
$\stackrel{\square}{*}$	$\because: 3$	2	14，400	2	$\because 88.1000$
3	1．080	\because	21.600	8	432,000
4	1．440	1	2x．501	4	556.1000
j	1．500	\％	$36 \% .000$	5	2011．000
（i）	$\because, 160$	6	43,200	6	864．000
i	－．820	7	50． 400	7	1.008 .000
\checkmark	?. SM0	s	Si，gem	8	1．152．000
9	$3.2+0$	9	（i4．Š00	！	1，9915，000
$11)$	3．600）	10	－2，000	10	1． 440.000
11	3．960	11	2\％． 2000	11	1．584．000
12	$4.3 \because 0$	12	S（i），40）	12	1． 228.1000
13	4．890	13	［13，600）	13	1，852，000
14	5． 11.40	14	1190， 81019	14	$2,016.000$
15	5.410	15	108．000）	15	2． 16010.000
16	T． 760	16	11．5．200	16	$2,304.000$
17	（i，120）	17	12 P .400	17	3.448 .000
14		18	129.61010	15	2．592，000
19	7． 8.840	19	1376， 210	19	2． 2350.000
20	－． 2001	2）	144.0011	20	\because S（S1）． 1100

[^0]: a Maudslay, A. P. Biologia C'entrali-Americana: Archeology. London. lxas-l.ne.
 ${ }^{\text {b Guodman. J. T. Archaic Maya inscriptions appendix to the preceding i. London, 1Nat. }}$

[^1]: "For condensed calendar and table of sears see the end of this paper.

[^2]: INSCRIPTION ON THE EAST SIDE OF STELA E, QUIRIGUA MAUDSLAY, PART 12. PLATE $\times \times \times 11$

[^3]: "This article was not receired brye until all this paper. except the last few pages and the botices of it which hare bern inserted, had heen written. As 1 have seen no reason, hecause of Seler's article, to change anything preciously written. I make this statement as due to myself.

 22 ETH- $14+17$

[^4]: "Landa, De Las Cosas, p. 312.
 "It will doubthess be revalled that in the "study of the Mamuseript Troano" I contended that the alans or katuns consisted of "t jears, hasing my conclusjon on the order giren above: hut a monco "aruful stuly of the passage runted abovi from Perez dues not neressarily indicate that these periods were numbered acording to the order given.

[^5]: 9-9-16-(0-0)
 $1-\overline{5}-14-1-0$

