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ABSTRACT 

The dynamics associated with the carbon cycle and the linkage between the oceans, the atmosphere, and 
land plants provide an opportunity to correlate marine and terrestrial sedimentary sequences using stable 
isotopes of carbon (6"13C), but few studies have tested this approach. For instance, it has been proposed that 
changes in plant community (e.g., gymnosperm-dominated vs. angiosperm-dominated) could have 
significantly altered/amplified the carbon-isotope ratios of bulk sedimentary organic matter derived from 
land plants (8

13
CTOM). compared to that of the marine carbonates (813Ccarbonate). Here, 6"

13
CTOM values in a 

terrestrial sequence of the Colombian tropics are compared to the composite Paleocene-Eocene 6"13Ccarbonate 

curve from Zachos et al. (2001) to evaluate the use of 813
CTOM values as a reliable chronostratigraphic tool. 

Sediments of the studied terrestrial sequences were deposited in a transitional setting dominated by 
mudstones, coals, and small lenses of sandstones (Late Cretaceous-Middle Paleocene sediments) and in a 
mixture of deltaic and fluvial conditions (Late Paleocene-Early Eocene sediments). The biostratigraphic 
control was based on palynological zones for the region. The 6

13
CTOM values for the studied terrestrial 

sequence show three carbon-isotope excursions, which correlate closely with those present in the marine 
record. The 6"

13
CTOM values decreased from — 24.2%o to — 26.5%o in sediments accumulated during Early to 

Middle Paleocene, increased from — 26.5%<> to — 23.8%<> during the Late Paleocene, and decreased from 
— 23.8%o to — 26.5%o near the Paleocene-Eocene boundary (52-50 Ma). Selected biomarkers indicate that 
most of the organic matter derived from both gymnosperms and angiosperms. Moreover, the analyses of 
selected biomarker ratios (CPI, Pr/Ph, Paq, and fWPP + a(3. hopanes) show some diagenetic transformation 
in the preserved organic matter. However, no correlation between diagenesis and 6"

13
CTOM values was 

detected, thus suggesting that 8
13

CTOM could be correlated with 813Ccarbonate values. The close 
correspondence that was found between 8

13
CTOM and 613Ccarbonate values (A13CTOM-carbonate— 27%«) 

provides support to the hypothesis that a tight land-plant-oceans linkage exists through geologic timescales 
via atmospheric carbon dioxide. 

© 2009 Elsevier B.V. All rights reserved. 

1. Introduction 

Significant chemical, physical, and biological changes in both 
marine and terrestrial environments have affected the carbon cycle 
during the Phanerozoic (e.g., Arens and Jahren, 2000; Beetling et al., 
2001; Freeman and Colarusso, 2001; Hesselbo et al., 2002; Thomas 
et al., 2002; Hesselbo et al., 2003; Jahren et al., 2005; Jaramillo et al., 
2006; Kaiser et al., 2006; Smith et al., 2007) by affecting the 
magnitude of carbon fluxes between different carbon reservoirs over 
geologic time scales and by altering the partitioning of carbon 
isotopes. If these perturbations of the carbon cycle are global in 
scale, they could offer an opportunity to correlate marine and 
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terrestrial sedimentary sequences, which at the moment is limited 
to a few proxies. Some studies have in fact proposed the use of stable 
isotopes of carbon as a chronostratigraphic tool for marine and 
terrestrial sequences (e.g., Scholle and Arthur, 1980; Hasegawa, 1997; 
Arens and Jahren, 2000; Strauss and peters-Kottig, 2003; Hesselbo 
et al., 2007). These studies rely on two key assumptions: (1) both 
613Q:arbonate values and 613C values of organic matter derived from 
higher plants reflect parallel changes in the carbon isotopic composi- 
tion of the marine and terrestrial realms, and (2) measured 613C 
values are identical to those of the pristine materials. 

The first assumption is based on the notion that isotopic 
equilibrium is reached within the different reservoirs over geologic 
timescales (i.e., differences in isotopic values remain constant after 
equilibration) (e.g., Grocke, 2002; Strauss and peters-Kottig, 2003). 
Despite the importance of the secular changes over long-term time 
scales (>106 yrs), significant partitioning of carbon isotopes occurs 
over short-term timescales, which ultimately drives the isotopic 
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composition of both marine carbonates (613Ccarbonate) and terrestrial 
plants (S13Cplant). 

The second assumption has been challenged by several studies 
showing that carbon isotopic composition of bulk terrestrial organic 
matter (6

13
CTOM) may not faithfully reflect pristine 613Cpiant values 

(e.g., Grocke, 1998, 2002; Bergen and Poole, 2002) due to the 
preferential preservation of different plant components during 
diagenesis (e.g., Beerling and Royer, 2002). These plant components 
have a different isotopic composition relative to that of whole plant 
tissues (Bergen and Poole, 2002), and their carbon isotopic composi- 
tion varies as a result of the different isotope fractionation effects 
occurring during biosynthesis (Galimov, 1985; Farquhar et al., 1989; 
Hayes, 2001; Grocke, 2002). In addition, aerobic bacteria preferen- 
tially metabolize 12C-enriched organic matter during diagenesis, 
potentially enriching the remaining organic compounds in 13C and 
possibly making 5

13
CTOM values more positive relative to 613Cpiant 

values (Hartgers et al., 1994; Bergen and Poole, 2002). To date, only a 
few studies (e.g., Bergen and Poole, 2002; Poole et al., 2004) have 
tested the effects of diagenesis on 613C values from fossilized plant 
parts (e.g., wood) using reliable tools (e.g., molecular biomarkers). For 
that reason, the goal of this study is to test whether 613CTOM values 
mirror the isotopic shifts that are recorded in marine carbonates 
during coeval time intervals. Moreover, the effect of diagenetic 
processes and differences in the source of organic matter are 
evaluated to infer their effect on 6

13
CTOM values. To achieve these 

goals, the Lower Paleogene marine carbon-isotope record (Zachos 

et al., 2001) is compared to that of a terrestrial sequence from the 
South American tropics. This chronostratigraphic interval was 
selected for the study because several isotopic anomalies have been 
reported in several marine sequences accumulated during the Early 
Paleogene (e.g., Koch et al., 1992; Veizer et al., 1999; Zachos et al., 
2001; Hollis et al., 2005), thus providing an excellent reference for 
comparing 613Ccarb0nate and 613

CTOM values. The effect of diagenesis on 
6

13
CTOM values is evaluated through the use of geochemical biomar- 

kers. Biomarker parameters are also used qualitatively to evaluate 
microbial- vs. plant-derived contributions to organic matter, thereby 
allowing an evaluation of the potential effect of microbial degradation 
on 6

13
CTOM values. These results will then permit us to determine 

whether 6
13

CTOM values are a reliable proxy for chronostratigraphic 
and paleoclimatic studies. 

2. Geological setting and sampling site 

The samples for this study were collected from well sites located in two 
contiguous basins in northern South America. Site-A (8°12'N, 72°1'W) is 
located within the Catatumbo basin, whereas Core-B (9°34'16"N, 73°16' 
45"W) is located within the Cesar-Rancheria basin (Fig. 1). Sampling was 
performed at about 10 m intervals on each site to cover the desired time 
span (Latest Cretaceous-Early Eocene), yielding a set of 134 samples (69 
from the Site-A and 65 from the Core-B wells). The time span 
encompassed by the samples was chronostratigraphically constrained 
with the aid of pollen biozones, previously calibrated with the marine 

>   0 %   \ 

%^ Venezuela 

Colombia 

Brazil 
Ecuador 

160 Km 

N 

r                s 

Peru           *•«—•*"*** 

/'• - \ 

"-- *"*'\f )  " 

Fig. 1. Map of Colombia, South America, showing the sedimentary basins for the two sections studied (modified from www.ingeominas.gov.co). Numbers 1 and 2 correspond to the 
well cuttings of the Site-A and Core-B sections (Catatumbo and Cesar-Rancheria basins, respectively). 
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chronostratigraphic record (Jaramillo and Rueda, 2004; Jaramillo et al., 
2005) (Fig. 2). The average sedimentation rates were estimated on the 
basis of the ages provided by the pollen biozones for each sedimentary 
basin and the thickness of each biozone in the wells. For the sampled 
interval, the average sedimentation rates were similar for both sequences 
(41.36 m/M.y. for Site-A and 41.44 m/M.y. for Core-B). These sampled 
sediments consisted of mudstones, coals, and small lenses of sandstones 
probably accumulated in a transitional setting from the Late Cretaceous to 
the Middle Paleocene (Catatumbo and Barco Formations) and in a mixture 
of deltaic and fluvial settings, possibly including oxbow lake environ- 
ments, that existed from Late Paleocene to Early Eocene (Cuervos 
Formation). 

3. Analytical methods 

3.1. Bulk sediment isotopic analysis 

Stable carbon-isotope values of bulk sediment (6
13

CTOM) were 
measured via flash-pyrolisis at 1100 °C in a Costech elemental analyzer 
fitted to a Thermo Finnigan Delta plusXL isotope ratio mass spectrometer 
(Department of Geological and Atmospheric Sciences at Iowa State 
University). Carbonate was removed from the samples by HC1 digestion. 
Analytical precision and accuracy were determined on the basis of 
repeated analysis of two internal lab standards calibrated against the 
internationally accepted V-PDB standard. Overall uncertainty was better 
than 0.08%o. Organic carbon content was determined on the basis of the 
liberated C02 in the elemental analyzer. To minimize noise in the 
obtained data, a five-point moving average was applied to the 613

CTOM 

values for a better comparison between 613Ccarbonate and 613CTOM. 

SITE-A 

Comparisons between 613CTOM and other geochemical parameters were 
performed using original, non-smoothed isotopic values. 

3.2. Biomarker analysis 

A set of 27 samples from the initial 134 were selected for biomarker 
analysis on the basis of their organic carbon content and on their relative 
stratigraphic location to represent the entire sequence. Soluble organic 
matter (SOM) extractions followed the methodology proposed by Otto 
et al. (2005). The saturated and aromatic fractions were separated from 
the extracted SOM through micro-column chromatography, using 
activated silica gel. The aliphatic and aromatic fractions were then 
derivatized with 100 uL of N, 0,-bis (trimethylsilyl) trifluoracetamide and 
trimethylchlorosilane (BSTFA/TMS 99:1) at 65 °C for 30 min. Gas 
chromatography-mass spectrometry (GC-MS) analyses of the derivatized 
samples were performed on an Agilent model 6890 GC coupled to a 
Micromass GC-TOF MS (Chemistry Department at Iowa State University) 
and on an Agilent A 6890 N gas chromatograph/5973 network mass 
spectrometer (Department of Geological and Atmospheric Sciences at 
Iowa State University). Separation was achieved with a fused DBS silica 
capillary column and with helium as the carrier gas. The GC operating 
temperature ramp was as follows: temperature was held at 65 °C for 
2 min, and then increased from 65 to 300 °C at a rate of 6 °C/min, with final 
isothermal hold at 300 °C for 15 min. The sample was injected splitless 
with the injector temperature at 300 °C The mass spectrometer was 
operated in the electron impact mode (El) at 70 eV ionization energy and 
scanned from 40 to 650 Da. Individual compounds were identified by 
comparison of their mass spectra and retention times with those of 
published compounds and by interpreting mass fragmentation patterns. 
Relative abundances of the different compounds were calculated using 
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Fig. 2. Chronostratigraphy for the Catatumbo and Cesar-Rancheria basins. The geologic ages are based on the palynological zones of Jaramillo and Rueda (2004) and Jaramillo et al. 
(2005). Sedimentation rates for both sites were similar (CuOl top coincides in both Site-A and Core-B sections). Top of Pa4 at 65.2 Ma; Top of CuOl at 60.9 Ma; Top of Cu02 at 57 Ma; 
Top of Cu03 at 55.8 Ma; Top of Cu04 at 51.9 Ma. 
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Fig. 3. Total organic carbon content (TOC) in weight percentage for the Site-A (filled 
circles) and Core-B (unfilled squares) samples. 

peak areas in the total ion current (TIC) of the derivatized total extracts. 
Some individual compounds were identified using the GC trace and the 
mass spectrum of a selected ion mass (SIM). 

4. Results 

4.1. Bulk geochemical parameters 

4.1.1. Total organic carbon 
Most of the samples analyzed are mudstones that vary in color from 

black or dark gray to slightly dark brown, typical for samples with relative 
high content of organic matter. Visible wood fragments were observed in 
some of the samples. Organic carbon contents (Corg) vary between 0.01 
and 11.24 wt.% (Fig. 3). The lowest carbon contents were found in the 
Barco Formation (average Corg = 0.96 wt.%), corresponding to depths 

between 460 and 350 m below surface in the Site-A well. The highest 
contents were found in samples from the Cuervos Formation (average 
Q,rg=2.00 wt.%), corresponding to depths between 350 and 150 m in the 
Site-A well. 

4.3.2. Carbon isotopic composition of organic matter 
The fi13CT0M values for the Site-A samples range from — 21.2%o to 

—29.9%o, and they show three carbon-isotope excursions: a positive shift 
centered at 350 m and two negative shifts centered at 500 and 200 m 
(Fig. 4). The f)13CT0M values for Core-B samples range from — 24.3%o to 
—27.0%o. The three carbon-isotope excursions found in the Site-A samples 
chronostratigraphically correlate with those found in marine carbonates 
(Zachos et al., 2001; Fig. 4). The 613CTOM values decrease from — 24.2%o to 
—26.5%o from 65 to 58 Ma. This shift correlates with that in the 613Ccarbonate 
record from 1.75%o to 0.5%o for the same interval. A positive shift in 613

CTOM 

values occurs in the Late Paleocene (58-56 Ma), with values becoming less 
negative from — 26.5%o to — 23.8%o. In the 613Ccarbonate record, this 
excursion is represented by a shift from 0.5%o to 2.5%o. The third excursion 
occurs near the Paleocene-Eocene boundary (-52 Ma), with values 
changing from — 23.8%o to — 26.5%o in 613

CTOM and from 2.50 to — 0.25%o 
in (^Qarbonate. One aspect that is absent in the 613CTOM record is the sharp 
spike in marine carbonate r>13C values at the Paleocene-Eocene boundary 
(55 Ma), which corresponds to the PETM event (Koch et al., 1992; Zachos 
et al., 2001). Its absence in the 613

CTOM data set is probably due to the large 
sampling intervals (-0.2 M.y./sample) employed for this study and the 
short duration (-0.02 to 0.07 M.y.) of this event (Smith et al., 2007). 

4.2. Molecular composition of organic matter 

Analyses of the aromatic fraction revealed undetectable concentrations 
of these compounds, possibly due to the high detection limit of the 
instrument utilized for the analysis of this fraction (Agilent A 6890 N gas 
chromatograph/5973 network mass spectrometer). Thus, this study 
reports the compounds identified in the aliphatic fraction of SOM. Four 
major families of organic compounds were identified in the aliphatic 
fraction: n-alkanes, regular acyclic isoprenoids, sesqui- and triterpenoids. 
Mid- and short-chain n-alkanes, and triterpenoids were the most 
abundant types of compounds present in the studied samples (Fig. 5). 
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Fig. 5. GC-trace from the Core-B section (359.5 m), displaying the common pattern found through all the samples selected for biomarker analyses (i.e., same distribution of compounds in all 
samples). Retention times in the x-axis are in minutes, whereas relative abundances are in they-axis). Peaks with numbers correspond to n-alkanes. Pr and Ph are isoprenoids, Tp, and Tp2 are 
sesquiterpenoids, L, and L2 are non-hopanoid triterpenoids, and H1-H5 are hopanoids. 

4.2A. n-Alkanes and isoprenoids 
The n-alkane distribution in the studied samples shows an odd- 

over-even-predominance, with high abundances of short-chain 
(<nC2o) n-alkanes (Fig. 6). The identified isoprenoids pristane (Pr) 
and phytane (Ph) are present in most of the samples, with Pr typically 
being more abundant than Ph. (e.g., Fig. 5). Because of their 
interdependent response to changes in the depositional environment, 
Didyk et al. (1978) proposed the use of the pristane/phytane ratio 
(Pr/Ph) as a proxy for the level of oxicity in the sediments, with low 
Pr/Ph values (between 1.5 and 2.5) reflecting deposition under 
dysoxic conditions and high Pr/Ph values indicating deposition under 
oxic conditions. Core-B Pr/Ph values vary between 0.81 and 2.79 
(Fig. 8), with a decreasing trend with depth (Fig. 8). Site-A Pr/Ph 
values range from 0.94 to 4.59 with no visible trend with depth 
(Fig. 9). These values suggest a changing level of oxygen in the 
sediments during the accumulation of the studied sequences. 

4.2.2. Sesquiterpenoids and non-hopanoid triterpenoids 
Two types of sesquiterpenoids were present in the saturated 

fraction of SOM: a C-16 sesquiterpenoid and a cadalene-type 
sesquiterpenoid. The identification of the two sesquiterpenoids was 
achieved by the presence of the characteristic fragments 183 and 123 
in the mass spectra and by comparisons to published spectra of these 
compounds (Philp, 1985; Otto et al., 1997; Otto and Simoneit, 2001; 
Bechtel et al., 2003; Hautevelle et al., 2006). The non-hopanoid 
triterpenoids identified in the saturated fraction correspond to 
lupane-type triterpenoids. 

4.2.3. Hopanoids 
Hopanoids are compounds occurring in bacteria (Peters et al., 2005; 

Otto et al., 2005). These compounds, after n-alkanes, were the main 
constituents present in the saturated fraction of both Core-B and Site-A 
samples (Fig. 5). The identified hopanoids compounds were 17a- 

22,24,30-trisnorhopane,17a(H),2ip(H)-hopane,17a,2ip(H)-norhopane, 
17p(H),21PJ(H)-hopane, 17a(H),2ip(H)-homohopane, 17[J(H),21[J(H)- 
homohopane, unknown C32 hopanoid, and 17a(H),21[i(H)-trishomoho- 
pane (H1,H2,H3,H4,H5,H6,H7,H8, respectively) (Fig. 5). Both set of 
samples display similar hopanoid distributions (Fig. 7), although the 
heavier hopanoids (H5 through H8) were commonly absent in the Core-B 
samples. 

5. Discussion 

5.1. The 8nCToM values as a proxy for changes in the carbon cycle 

The carbon isotopic composition of plant-derived organic matter 
(i.e., bulk organic matter, fossil wood, cuticles, etc.) has been used in 
geologic studies to evaluate the evolution of the carbon cycle through 
geologic times (e.g., Hasegawa, 1997; Grocke et al., 1999; Hesselbo et al., 
2003; Strauss and peters-Kottig, 2003; Smith et al., 2007). The bulk 
organic matter in the Core-B and Site-A samples displays 613C values 
around — 27%o (Fig. 4), which are typical for C3 plants (Farquhar et al., 
1989). The good correspondence between the marine and the terrestrial 
isotope data (Fig. 4) provides support to the notion that a tight linkage 
exists between the oceans, the atmosphere, and land plants, confirming 
that perturbations occurring between 50 and 65 Ma were global in 
extent. However, the implication of the parallelism that exists between 
the marine and terrestrial r>13C values still relies on the assumption that 
S

13
CTOM values truly reflect 613Cpiant values. Although 6

13
CTOM values 

tend to reflect those of plant-derived organic matter (Lane et al., 2004; 
Rodelli and Gearing, 1984), other effects, including the extent of 
microbial alteration, could potentially alter 613CTOM values by up to 
2%o (Grocke, 1998, 2002; Bergen and Poole, 2002; Beerling and Royer, 
2002). For instance, variations of ~ l%o between 613CTOM and the isotopic 
composition of charcoal and lignite from the same stratigraphic horizons 
have been found (Heimhofer et al., 2003; Grocke et al., 2006). Moreover, 
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the sedimentological analysis of the studied deposits suggests that some 
sediments accumulated in environments where the contribution of 
aquatic plants to the sedimentary organic pool could be significant (e.g., 
oxbow lakes). 

The effect of diagenesis on carbon-isotopic values has been evaluated 
through different approaches, including those relying on comparisons 
between 613

CTOM and 513C values of plant cuticles (e.g., Arens and Jahren, 
2000), fi13CT0M and 613C values of woody fragments (e.g., Grocke, 2002) or 
on evaluations of the level of microbial degradation of fossil wood inferred 

from molecular components (biomarkers) (Bergen and Poole, 2002; Poole 
et al., 2004). For instance, Bergen and Poole (2002) identified high 
amounts of organic matter derived from bacteria as a result of the 
alteration of organic matter in fossilized woody fragments, which could 
potentially alter pristine 613Cpiant values, thus constraining the use of 
6

13
CTOM as a reliable proxy in estimating the evolution of the carbon cycle. 

To evaluate the role of diagenesis and the sources of organic matter on 
6

13
CTOM values, several biomarker ratios were employed in this study 

because of their demonstrated response to diagenesis and/or their 
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specificity to different sources of organic matter (e.g., vascular plants, 
algae, bacteria). These ratios were calculated from the relative abundances 
of the different compounds identified in the saturated fraction of the SOM. 

The saturated fraction shows that n-alkanes display an overall odd- 
over-even predominance (Figs. 8 and 9), which is usually associated with 
significant input of organic matter from terrestrial vascular plants (Bechtel 
etal., 2003; Otto etal., 2005). Odd number long-chain n-alkanes are major 
components of plant cuticular waxes formed as a result of elongation and 
further decarboxylation from a fatty acid precursor (e.g., palmitate) 
(Harwood and Russel, 1984). Although this odd-over-even predominance 
of n-alkanes is a good indicator of terrestrial contributions, Peters et al. 
(2005) suggested that a better evaluation of the potential contribution of 
land plants to the bulk organic matter can be achieved with the Carbon 
Preference Index (CPI) ratio, which is determined through the following 
equation: 

CPI = 1 / 2*(25 + 27 + 29 + 31+ 33) / (24 + 26 + 28 + 30 + 32) 
+ 1 / 2*(25 + 27 + 29 + 31+ 33) / (26 + 28 + 30 + 32 + 34). 

The numbers in the equation represent the number of carbons in an 
n-alkane molecule. CPI values for the Site-A and the Core-B samples 
range from 1.24 to 1.92 and from 1.6 to 2.47, respectively (Figs. 8 and 9). 
While CPI values of the Site-A samples increase with depth (Fig. 9), those 
of the Core-B samples show no trend and they fall within a narrow range 
(1.7-2.1), with the exception of the values at 470 m (Fig. 8). These 
obtained CPI values are lower than those commonly observed for extant 
vascular plants (Van Dongen et al., 2006), which are commonly >3, but 
they do suggest significant contributions of organic matter derived from 
these higher plants, since CPI values greater than 1 correspond to a 
predominantly land-plant input (e.g., Ficken et al., 2000; Schefufi et al., 
2003; Muri et al., 2004; Peters et al., 2005; Van Dongen, 2006). Although 
both n-alkane distribution and CPI values suggest the predominance of 
vascular plant-derived organic matter, the presence of short chain lipids 
in the saturated fraction in significant abundances (-80% in average, 
Figs. 6 and 7) suggests other type of contributions different than those of 

terrestrial land plants. Short-chain lipids are commonly associated with 
the input of organic matter derived from freshwater photosynthetic 
algae and/or macrophytes (submerged/floating plants) (Cranwell et al., 
1987; Mello and Maxwell, 1990; Bechtel et al., 2003; Muri et al., 2004; 
Van Dongen et al., 2006). Because some aerobic bacteria decompose 
organic matter when anoxic conditions are not rapidly reached, short- 
chain lipids could also come from such organisms (e.g., Cranwell et al., 
1987; Bechtel et al., 2003), and their contribution to the studied 
sediments cannot be ruled out. 

Despite the potential influence of lacustrine algae and/or bacterial 
organic matter, the odd-over-even predominance showed by the CPI 
index shows that, within the high molecular weight n-alkanes, land- 
plant-derived organic matter contributed significantly to the bulk of 
the straight-chain compounds. The compounds nC25, nC27, nC29, and 
nC31 are the dominant compounds, rather than even number long- 
chain n-alkanes, which are synthesized by bacteria and marine 
organisms (Tissot and Welte, 1984; Peters et al., 2005). 

Because of the abundance of short-chain lipids and their possible 
origin (freshwater photosynthetic organisms), the terrestrial/fresh- 
water plants (Paq) ratio developed by Ficken et al. (2000) can be used 
to assess the source of most of the long-chain lipids preserved in the 
studied sediments. The Paq ratio is defined as the ratio between the 
abundance of mid-chain n-alkanes (nC23, nC25) produced by sub- 
merged/floating freshwater plants (macrophytes) over the amount of 
long-chain n-alkanes (nC27, nC2g, nC31) produced by terrestrial plants: 

Paq = (23+ 25)/(27+ 29+ 31). 

Paq values <0.4 suggest a predominant terrestrial input, values 
>0.75 reflect a primary submerged/floating plants contribution, and 
values between 0.4 and 0.75 reflect a mixture. The overall decreasing 
trend in Paq values towards shallower (younger) depths indicates a 
transition towards more terrestrial conditions in younger samples 
(Figs. 8 and 9). Core-B samples display lower values relative to those 
from the Site-A 1 samples, suggesting a higher input of terrestrial 
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plants to the bulk organic matter into the Cesar-Rancheria basin or 
the result of a poor preservation conditions (i.e., conditions not 
allowing plant-derived organic matter to be preserved in sediments) 
in the Catatumbo basin (Site-A). This index, thus, suggests a mixed 
contribution of terrestrial and freshwater plants. 

Supporting the conclusion that higher plant-derived organic 
matter is present in the studied sediments, sesquiterpenoids were 
identified in the saturated fraction (Fig. 5). Bicyclic sesquiterpenoids 
have been identified in a variety of geological materials, from recent 
and ancient sediments to coals, oils, peats, ambers, and fossil resins 
(Otto et al., 1997; Otto and Simoneit, 2001; Bechtel et al., 2002, 2003; 
Tuo and Philp, 2005; Hautevelle et al., 2006). Sesquiterpenoids are 
widely distributed among vascular plants, including both angios- 
perms and gymnosperms (Otto and Simoneit, 2001). The exception is 
cadalene, which is a compound that appears to be related to 
gymnosperm-derived material (Otto et al., 1997; Bechtel et al., 
2003). Although cadalene has been recognized as a major component 
of resins in several conifer (gymnosperm) species (Philp, 1985; Otto 
et al., 1997), it has also been reported to result from the degradation of 
resins produced by some angiosperm species (Otto et al., 1997). 

Both cadalene and the C16 sesquiterpane were identified in the 
studied samples (Tp, and Tp2, Fig. 5), suggesting the contribution of 
gymnosperm-derived organic matter to the studied sediments. In 
addition to the possible contribution of gymnosperms, the following 
angiosperm-associated triterpenoids were found in the saturated 
fraction: lupane- (L2) and normoretane-type (L,) compounds. These 
two compounds have been found in leaf, wood, root, and bark tissues 
of these plants (Sukh, 1989; Bechtel etal., 2003). The presence of these 
compounds in the studied sediments, coupled with the presence of 
sesquiterpenoids, supports the CP1 data, suggesting that vascular 
plants were an important source of the organic matter in the Site-A 
and Core-B sediments. 

5.2. Preservation of the organic matter 

Although CPI values reflect a slightly dominant contribution from 
terrestrial plants to the bulk organic matter, the predominance of 

short-chain over long-chain n-alkanes could also result from a poor 
preservation of the heavier compounds. Redox conditions govern to a 
large extent the preservation potential of organic matter, with oxic 
conditions leading to poor preservation. Because of its sensitivity to 
redox conditions, the Pr/Ph ratio can be used to evaluate the effect of 
oxicity during the accumulation of the studied samples (Didyk et al., 
1978; Bechtel etal., 2003). 

Variations in the Pr/Ph ratios for the studied samples (Figs. 8 and 9) 
suggest the existence of two different redox regimes governing the 
depositional settings of the two basins (Catatumbo basin for Site-A and 
Cesar-Rancheria basin for Core-B). Core-B samples, covering the time 
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interval from -66 to 57 Ma, show Pr/Ph vales indicative of a change from 
anoxic (below 450 m) to dysoxic (450-350 m) and possibly oxic 
conditions (above 350 m). Site-A Pr/Ph values suggest that the organic 
matter in those sediments was deposited under dysoxic to oxic conditions 
between 450 and 600 m (Catatumbo Formation), changing to anoxic/ 
dysoxic conditions between 450 and 300 m (Barco Formation), and 
shifting towards more oxic conditions at depths above 300 m of the 
section (Cuervos Formation). 

This increase in oxic conditions leads to the degradation of less 
resistant compounds by microorganisms, which can be evaluated through 
the compounds that they produce (Peters et al., 2005). Hopanes (H1-H8, 
Figs. 5 and 7) are important constituents of the saturated fraction in the 

studied samples, and these compounds are associated with microbial 
contributions to the bulk organic matter (Peters et al., 2005). For that 
reason, hopane abundances can be used to estimate the intensity of 
biomass degradation by using the ratio p(i/(pp + a(i) hopanes (Fig. 10) 
(MacKenzie et al., 1981; Bechtel et al., 2003; Van Dongen et al., 2006). 

Commonly, low (ip/((i(i + a(i) values (below 0.5) are indicators of 
moderate to high degradation of organic matter, because a(i hopanes are 
more kinetically stable as diagenesis degrades sedimentary organic 
matter. Fig. 10 shows that Site-A and Core-B samples display parallel 
trends, which suggest that, despite the differences in preservation and 
contribution from terrestrial sources, the organic matter at both sites 
experienced similar degradation patterns. 
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5.3. Evaluation of813CTOM values 

The CPI values and the sesquiterpenoid and lupanoid abundances 
confirm the assumption of a predominant terrestrial origin for the bulk 
organic matter in the studied sediments, which is also supported by the 
pollen data. However, the predominant dysoxic-oxic conditions during 
deposition (as determined from the Pr/Ph values) and the significant 
levels of biomass degradation during diagenesis (as interpreted from p(J/ 
((i(i + ap) values) could imply that the measured 6

13
CTOM values are 

different than the original 613Cpiant values. To evaluate this potential effect, 
6

13
CTOM values were plotted against our diagenetic proxies (i.e., Pr/Ph, 

Corg, and pp/([ip + ap). In addition, 6
13

CTOM values were also plotted 
against CPI and Paq to evaluate the possible influence of the type of organic 
matter on the observed trend in 613

CTOM values. 
No significant correlation exists between each of the parameters 

analyzed and 6
13

CTOM values (Figs. 11 and 12), indicating that neither 
depositional environment nor the degree of biomass alteration during 
diagenesis has significantly altered the measured 6

13
CTOM values. 

Consequently, considering that similar results were obtained from the 
organic matter of two different basins, this study indicates that the 
measured 613CTOM values could be used for chronostratigraphic purposes, 
since they are possibly close to those of the ancient plants. The higher CPI 
could account for differences in the amount of land-plant contribution to 
the preserved organic matter, which might be the cause for the noise in the 
Core-B samples. 

Although our proxies indicate that the secular shifts in 613
CTOM values 

recorded in the present study are probably related to changes in original 
613Cpiant values and not produced by diagenesis or varying contributions 
from different organic matter sources, some studies (e.g., Hesselbo et al., 
2003; Grocke et al., 2006; Hesselbo et al., 2007) have reported an offset 
between 5

13
CTOM and 513C values derived from preserved plant 

components (e.g., Hesselbo et al., 2003; Grocke et al., 2006). Consequently, 
it is important to assess the possible effect of diagenesis (as presented 
here) to ensure that a 613

CTOM record is a useful chronostratigraphic and 
paleoclimatic tool. The shifts in isotopic values that occurred in the 
Colombian tropics (Site-A and Core-B sections) between 65 and 50 Ma 
reflect the shifts in isotopic values recorded in marine deposits (Zachos 
et al., 2001), thus confirming a connection between the oceans and 
terrestrial biomass via the atmosphere. This connectivity implies that 
long-term changes in marine <f3Ccarbonate values should cause similar 
changes in r)13Cpiarlt values, which are ultimately reflected in 6

13
CTOM 

values. 
Fig. 4 shows that, despite minor variations recorded in both marine 

and terrestrial 513C values, there is a consistent difference between 
6

13
CTOM and 613Ccarb0nate values. This difference of about — 27%o is also 

observed in modern settings (Farquhar et al., 1989; Strauss and peters- 
Kottig, 2003). However, Beerling and Royer (2002) and Strauss and 
peters-Kottig (2003) suggest that this difference was probably not 
consistent in the geologic past as a result of different oxygen/carbon 
dioxide ratios in the atmosphere, which were more significant in the 
Paleozoic (360-240 Ma). Although this study does not address this 
issue since oxygen/carbon dioxide ratios between 50 and 65 Ma were 
not significantly different relative to today's conditions (see fig. 9 in 
Strauss and peters-Kottig, 2003), future research should focus on 
evaluating this potential effect. 

6. Conclusions 

The secular variations in the carbon cycle that occurred between 
65 and 50 Ma, as inferred from marine 613Ccarbonate values (Zachos 
et al., 2001), have now also been recognized in the 613CTOM values 
of terrestrial sequences accumulated in the South American tropics 
for the same time interval. The different biomarker ratios utilized in 
the present study (CPI, Pr/Ph, Paq, and ^/(pp + ap) hopanes) 
show no significant correlation with 613

CTOM values, thus indicating 
that the secular changes in 6

13
CTOM values were not caused by 

changes in depositional environment, oxygen levels, type of land- 
plant inputs, or degree of biomass alteration. The similarity in 
isotopic trends reinforces the assumption of an isotopic connection 
between the oceans and the terrestrial biomass via the atmosphere, 
thus making 6

13
CTOM values a potentially reliable tool for paleocli- 

matic interpretations and stratigraphic correlations between mar- 
ine and terrestrial sequences, only if these values reflect those of 
pristine plant materials, which can be evaluated using biomarkers 
as demonstrated in this study. 
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