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Rift Valley sites in southern Ethiopia and northern Kenya preserve the oldest fossil remains attributed to
Homo sapiens and the earliest archaeological sites attributed to the Middle Stone Age (MSA). New
localities from the Kapedo Tuffs augment the sparse sample of MSA sites from the northern Kenya Rift.
Tephrostratigraphic correlation with dated pyroclastic deposits from the adjacent volcano Silali suggests
an age range of 135–123 ka for archaeological sites of the Kapedo Tuffs. Comparisons of the Kapedo Tuffs
archaeological assemblages with those from the adjacent Turkana and Baringo basins show broad lithic
technological similarity but reveal that stone raw material availability is a key factor in explaining
typologically defined archaeological variability within this region. Spatially and temporally resolved
comparisons such as this provide the best means to link the biological and behavioral variation manifest
in the record of early Homo sapiens.

� 2008 Elsevier Ltd. All rights reserved.
Introduction

Fossil and genetic data support an eastern African origin for
Homo sapiens some time in the later part of the middle Pleistocene,
�195 ka (White et al., 2003; McDougall et al., 2005; Gonder et al.,
2007). Rather than focus on species-level distinctions or ‘‘modern/
nonmodern’’ contrasts, a number of recent studies have empha-
sized the diversity among populations of middle and late Pleisto-
cene hominins in Africa and elsewhere, particularly in the mosaic of
primitive and derived features, life history traits, and complex
mitochondrial and nuclear DNA signatures (e.g., Lahr and Foley,
1998; Howell, 1999; Forster, 2004; Eswaran et al., 2005; Trinkaus,
2005; Smith et al., 2007). In Africa, the archaeological record of this
period is characterized by the replacement of the Acheulian by
Middle Stone Age (MSA) sites that preserve the first evidence for
subcontinental-scale regional variation (Clark, 1988; McBrearty and
Brooks, 2000; McBrearty and Tryon, 2006), mirroring a broader
phenomenon of post-Acheulian diversification of the archaeologi-
cal record also seen in Europe and western Asia (e.g., Ronen and
Weinstein-Evron, 2000; Soressi, 2004, 2005; Hovers and Kuhn,
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2006; see also Gao and Norton, 2002). Exploring the relation be-
tween biological and behavioral variation among geographically
diverse hominin populations within (and outside of) Africa requires
an integration of genetic, fossil, archaeological, and paleoenvir-
onmental data at fine temporal and spatial scales (e.g., Barham,
2001; Potts, 2002; Gamble et al., 2005; James and Petraglia, 2005;
Banks et al., 2006; Vanhaeren and d’Errico, 2006).

We describe here one small step towards achieving our long
term goal of understanding temporal and spatial variation among
African middle and late Pleistocene hominin populations that
included Homo sapiens, and report our recent discovery of five new
MSA artifact localities from the Kapedo Tuffs. These sites are likely
constrained to a narrow temporal window between 135 ka and
123 ka, and occur in the northern Kenya Rift Valley between the
better studied Turkana and Baringo basins. The area between these
basins is particularly important for understanding human bio-
cultural evolution, but which until now has not been the subject of
detailed paleoanthropological investigation. The Turkana Basin
preserves the fossil remains of the earliest Homo sapiens
(McDougall et al., 2005), and the Baringo Basin preserves some of
the oldest known MSA sites (Deino and McBrearty, 2002; Tryon and
McBrearty, 2002, 2006; McBrearty and Tryon, 2006). As the Kapedo
Tuffs represent a new artifact-bearing area, we first describe their
geological setting, estimated age determined through tephros-
tratigraphic correlation, and the composition of all recovered arti-
fact assemblages. We then integrate these data from the Kapedo
Stone Age of the northern Kenyan Rift: age and context of new ar-
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Fig. 1. Sketch map showing main boundary faults (tick on downthrown side) of the
Gregory Rift, geographic features including named Quaternary volcanic edifices, and
archaeological localities discussed in the text. Map after Butzer et al. (1969); Baker
et al. (1972); Wolde-Gabriel and Aronson (1987); Dunkley et al. (1993) and McDougall
et al. (2005).
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Tuffs into a comparison of archaeological data from neighboring
depositional basins to initiate studies of geographic variation in
hominin behavior among MSA sites in this area. Our comparisons of
MSA artifacts from the Kapedo Tuffs, Turkana Basin, and Baringo
Basin emphasize the role of stone raw material as an explanation
for interassemblage differences among these areas, and serve to
highlight environmental factors that affect a number of stone tool
assemblage attributes that are frequently used to interpret pop-
ulation-specific behavioral variation at Pleistocene sites.

The Kapedo Tuffs and Silali

The Kapedo Tuffs (1�040N, 36�050E), described by Dunkley et al.
(1993) and McCall (1999), consist of bedded pumiceous tuffs and
intercalated fluvial conglomerates and sands. The Kapedo Tuffs are
exposed west of Silali, the largest Quaternary volcano in the Kenyan
portions of the Gregory Rift (Fig. 1), near Kapedo village. Kapedo
marks the political boundary between the Baringo and Turkana
districts and the informal divide between local Pokot and Turkana
pastoralists. The region is semi-arid with typical daytime air tem-
peratures of 35–40 �C. Rainfall peaks in April and August, with
annual potential evaporation rates exceeding w445 mm of rainfall
per year. The area, at w780 m elevation, is predominantly bushland
or semi-desert with sparse grass, contrasting sharply with the
relatively lush doum palm-ringed alkaline hot springs south of
Kapedo and to the north at Lorusio (Dunkley et al., 1993; Renaut
et al., 1999).

The Kapedo Tuffs appear discontinuously over an area of
w50 km2, with exposures up to 20-m thick in sections along the
Kapedo River to the west of Silali (Fig. 2a). Outcrops adjacent to the
western margin of the rift are typically normally faulted and tilted
eastward in a series of blocks that dip as much as 40�. Although
thickly stratified pumice lapilli tuffs (�3 cm clasts) likely represent
proximal airfall deposits from Silali, much of the pyroclastic com-
ponent of the Kapedo Tuffs is variably reworked, as indicated by the
presence of cross-bedding, scouring, and channeling structures, as
well as intercalated sands and conglomerates (Dunkley et al., 1993;
McCall, 1999).

The geochemical evolution and chronology of volcanism on
Silali has been the subject of prior detailed study (McCall and
Hornung, 1972; Dunkley et al., 1993; Macdonald et al., 1995; Smith
et al., 1995). Silali is composed of a bimodal suite of mafic rocks of
mildly alkaline to peralkaline affinity and trachytes formed by
fractional crystallization of basaltic magma. 40Ar/39Ar age estimates
of one of the Quaternary lavas shown in Fig. 2b (the Lower
Trachytes of Dunkley et al., 1993) suggest that the initial shield-
building phase of Silali was completed by w216 ka. This was
followed by at least three major phases of explosive activity rep-
resented by the Lower Pyroclastic Deposits, the Upper Pyroclastic
Deposits, and the Arzett Tuffs (Dunkley et al., 1993; Smith et al.,
1995). The Lower Pyroclastic Deposits and the overlying Upper
Pyroclastic Deposits are visible only in the caldera (Fig. 2a). Both
consist of rubbly pyroclastic breccias with thin pumiceous layers,
zones of intense welding, and trachyte lavas with a combined
thickness of 140 m. An 40Ar/39Ar age of 135� 3 ka for the Upper
Pyroclastic Deposits has been reported [sample SIL-4A of Smith
et al. (1995: 301)], consistent with the 132� 3 ka estimate for
sample SIL-6 from the Kapedo Tuffs. The equivalence of these ages
lead Smith et al. (1995: 304) to propose the cross-section shown in
Fig. 2b, correlating the Kapedo Tuffs with the Upper Pyroclastic
Deposits. Finally, the Arzett Tuffs appear only on the western flanks
of Silali (Fig. 2a–b) and include prominent pyroclastic cones that
consist of up to 40 m of stratified pumice lapilli tuffs, breccias, and
glassy welded air-fall units (Smith et al., 1995). Sample SIL-5 of
Smith et al. (1995: 301) from one of these cones suggests an age of
123� 3 ka for the eruption and deposition of the Arzett Tuffs.
Please cite this article in press as: Christian A. Tryon et al., The Middle
chaeological sites from the Kapedo Tuffs, J Hum Evol (2008), doi:10.1016
Tephrostratigraphy and the age of the Kapedo Tuffs

Our goal is to augment the previous geochronological correla-
tion of the Kapedo Tuffs with the Upper Pyroclastic Deposits using
detailed comparisons of the chemical composition of tephra. This
approach further constrains the age of the recovered artifacts from
the Kapedo Tuffs. Although the Upper and Lower Pyroclastic De-
posits and the Arzett Tuffs are distinct in the caldera and on the
flanks of the volcano, they are difficult to distinguish on physical
criteria alone in the more distal deposits represented by the Kapedo
Tuffs (Dunkley et al., 1993: 47; McCall, 1999: 65).

We studied ten samples to assess stratigraphic equivalence
between dated deposits and those from excavated archaeological
Stone Age of the northern Kenyan Rift: age and context of new ar-
/j.jhevol.2008.03.008
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sites in the Kapedo Tuffs. Fig. 2a shows the provenance of all
collection areas and Fig. 3 provides summary stratigraphic sections
of the excavated archaeological localities. Portions of the previously
dated samples were provided by Dr. Alan Deino of the Berkeley
Geochronology Center (designated by a ‘‘SIL-’’ prefix); tephra from
archaeological localities 1 and 4 were collected by Tryon in 2006
(with a ‘‘CAT-’’ prefix).

Tephra studied here are poorly-to-moderately consolidated
pumice lapilli tuffs except SIL-5A and SIL-5B, which are welded
tuffs from the Arzett Cones. When viewed in thin section, in-
dividual pumice clasts have a vesiculated glass matrix with sparse
ilmenite phenocrysts and alkali feldspar microlites. Fresh glass is
rare in the Arzett Tuff samples (SIL-5A and SIL-5B) and absent from
the dated Upper Pyroclastic Deposit sample (SIL-4A). These
Please cite this article in press as: Christian A. Tryon et al., The Middle
chaeological sites from the Kapedo Tuffs, J Hum Evol (2008), doi:10.1016
samples exhibit interwoven plagioclase laths with the variable
presence of small areas of interstitial glass.

Analytical methods

Each sample was prepared as a polished thin section for geo-
chemical compositional analysis of glass and phenocryst phases by
electron microprobe. In the case of unconsolidated deposits, 3–4
pumice fragments were ultrasonically cleaned for 5–10 minutes in
distilled water prior to mounting in epoxy on a single slide.

Wavelength dispersive quantitative analyses of major and minor
element oxide abundance were conducted using a JEOL 8900R
electron microprobe, housed in the Mineral Sciences Department of
the Smithsonian Institution’s National Museum of Natural History,
Stone Age of the northern Kenyan Rift: age and context of new ar-
/j.jhevol.2008.03.008
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with a 40� takeoff angle. Analytical conditions consisted of an
accelerating voltage of 13 kV and a beam current of 8 nA, using
a rasterized beam over an area of w6 mm2. Counting times were 20
seconds on-peak and 10 seconds off-peak. Reference materials used
for calibration include ilmenite (USNM 96189), anorthite (USNM
137041), bytownite (USNM R-2912), Kakanui hornblende (USNM
143065), microcline (USNM 143966) and glass VG-568 (USNM
7285), characterized by Jarosewich et al. (1980). Raw data were
converted to concentrations using standard calculations with
a PhiRhoZ matrix correction. These analytical procedures are the
outcome of our extensive program of testing using USNM 7285,
a rhyolitic glass from Yellowstone, to minimize sample damage and
loss of volatile elements, particularly sodium. A volatile self-cor-
rection with a two-second interval was applied for Na, Si, and K
using Probe for Windows software (Donovan, 2006). Rasterized
area was limited by the small volume of unaltered glass in samples
SIL-5A and SIL-5B.

Fresh glass for analysis in all samples was selected using back-
scattered electron images (Reed, 1996). We acquired on average 4–5
analyses per clast for w16 analyses per sample. Only analyses with
totals above an arbitrary 88% are included here, except for sample
SIL-5B, where 85% was used as the minimum acceptable total to
increase sample size. Analytical totals for glass analyses <100% are
not normalized except where required for comparison with whole
rock analyses. Normalizing data may mask analytical errors (Hunt
and Hill, 1993) and makes unwarranted assumptions about
the composition of the parent magma (e.g., Brown et al., 1992). The
Please cite this article in press as: Christian A. Tryon et al., The Middle
chaeological sites from the Kapedo Tuffs, J Hum Evol (2008), doi:10.1016
difference is largely due to water, not directly analyzed by the
microprobe.

Comparative methods

Correlations between tephra deposits are best considered test-
able hypotheses, subject to continual revision with expanded
datasets (e.g., Feibel, 1999a; Brown et al., 2006). This is in part due
to the wide recognition of the many potential sources of within-
sample compositional variation, which include instrumental error,
postdepositional weathering and selective element leaching,
heterogeneous batches of parent magma, the inclusion of older
deposits during eruption and magma ascent, and reworking by
fluvial or other processes (e.g., Hunt and Hill, 1993; Orton, 1996;
Feibel, 1999a; Riehle et al., 2000; Donoghue et al., 2007). In general,
the strongest correlations are those that show concordance
between multiple independent datasets, including stratigraphic,
fossil, chronological, and geochemical evidence. We complement
prior correlations proposed on the basis of age equivalence by
focusing on potential correlates suggested by geochemical variation
within the volcanic glass phase of tephra deposits. Glass compo-
sition approximates the composition of the magma at eruption, and
due to the complexity of the eruptive processes provides a poten-
tially unique signature or ‘fingerprint’ (e.g., Feibel, 1999a; Turney
and Lowe, 2001).

We test for correlations between deposits using a number of
different approaches. As a first step, we use the mean value of an-
alyzed element oxides from each sample to characterize the general
structure of the data using cluster analysis (e.g., Campisano, 2007;
Cortés et al., 2007) and the calculation of similarity coefficients
(defined by Borchardt et al., 1972) for all possible sample pairs.
Similarity coefficients (SC) are the mean of the ratios (<1) obtained
by dividing pairs of sample means element by element, with
SC> 0.92 considered indicative of a possible correlation (Froggatt,
1992; Kuehn and Foit, 2006). Our second step focuses on sample
variance to more precisely examine the degree of compositional
similarity among these tephra. Following the reasoning of Brown
et al. (1992, 2006), we assume correlation between two deposits if
there is overlap in the first standard deviations of the means of SiO2,
TiO2, Al2O3, FeO, and CaO. We use the bootstrap (sampling with
replacement 1,000 times) to test for pair-wise differences between
the means of each sample because this method does not require
assumptions about sample size or normality (Efron and Tibshirani,
1993; Manly, 1997). Bivariate plots of all analyses are used to seek
petrologically meaningful patterns in the data. Although a strong
case has been made for the use of discriminant function analysis for
tephra correlation (Stokes and Lowe, 1988; Stokes et al., 1992;
Pollard et al., 2006; cf. Kuehn and Foit, 2006), we do not employ this
technique here because of an incomplete and insufficiently char-
acterized reference set of eruptive events on Silali, as discussed
below.

Results

Table 1 summarizes the results of 128 electron microprobe
analyses of the glass phase of pyroclastic deposits from Silali and
the Kapedo Tuffs. All examined tephra are trachytic/trachydacitic
according to the compositional scheme proposed by Le Bas et al.
(1986). Modal composition of all samples is quartz normative
(saturated) except for SIL-6, which is nepheline normative (sub-
saturated). Electron microprobe analysis of feldspars (n¼ 25)
showed minimal variation from an average composition of
An66Ab1Or33, rendering them unsuitable for correlation in this case
(but see McHenry, 2005). Sample CAT06-10 is subdivided on the
basis of individual clasts that show distinct compositional differ-
ences within Al2O3, TiO2, and K2O (Table 1).
Stone Age of the northern Kenyan Rift: age and context of new ar-
/j.jhevol.2008.03.008



Table 1
Summary results of electron microprobe analyses of glass from Silali area tephra, divided by sample locale. Element oxide results listed as weight percent mean and standard
deviation. Locality 1 samples are listed in stratigraphic order. Sample CAT06-10 is a bimodal sample consisting of compositionally distinct clasts, here subdivided into CAT06-
10a and CAT06-10b on the basis of variation within TiO2, Al2O3, and K2O. A tenth sample, SIL-4A, was examined but contained no fresh glass

Sample n SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total

Locality 1
CAT06-11 22 58.33� 0.73 0.42� 0.04 13.24� 0.19 8.97� 0.39 0.34� 0.05 0.03� 0.01 0.74� 0.07 3.82� 0.87 3.38� 0.22 0.05� 0.02 89.33
CAT06-10a 11 59.53� 0.95 0.39� 0.06 13.60� 0.44 8.69� 0.69 0.32� 0.06 0.03� 0.01 0.76� 0.14 3.52� 1.12 2.96� 0.34 0.04� 0.01 89.83
CAT06-10b 9 58.56� 0.65 0.55� 0.03 14.47� 0.11 7.76� 0.34 0.31� 0.04 0.04� 0.01 1.01� 0.05 5.17� 0.70 3.41� 0.18 0.05� 0.02 91.34
CAT06-09 12 58.25� 1.12 0.46� 0.02 14.03� 0.23 8.42� 0.50 0.34� 0.06 0.03� 0.01 0.90� 0.08 4.30� 1.14 4.21� 0.26 0.05� 0.01 90.99

Locality 4
CAT06-13 20 58.99� 0.74 0.51� 0.03 14.16� 0.17 8.28� 0.46 0.34� 0.06 0.05� 0.01 1.01� 0.09 4.40� 1.25 3.79� 0.46 0.06� 0.01 91.62
CAT06-12 18 59.74� 0.67 0.44� 0.04 13.28� 0.37 9.74� 0.66 0.33� 0.06 0.02� 0.01 0.82� 0.11 3.39� 0.91 3.88� 0.21 0.05� 0.02 91.69

Kapedo Tuffs
SIL-6 18 59.77� 1.07 0.45� 0.03 15.26� 0.20 7.50� 0.31 0.32� 0.07 0.03� 0.01 1.08� 0.08 7.37� 0.67 4.60� 0.13 0.04� 0.01 96.77
Arzett Tuffs
SIL-5A 10 59.82� 1.71 0.66� 0.07 14.61� 0.80 4.84� 0.70 0.10� 0.05 0.08� 0.04 1.26� 0.35 2.71� 0.91 4.90� 0.92 0.01� 0.04 88.99
SIL-5B 8 57.40� 1.51 0.48� 0.07 14.18� 0.94 3.94� 1.06 0.09� 0.09 0.09� 0.04 2.92� 0.30 5.29� 0.94 2.20� 0.37 0.01� 0.01 86.58
Total 128
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Our comparisons augment and refine the basic observation
apparent from Table 1: all samples from the Kapedo Tuffs, including
dated sample SIL-6, differ markedly from the Arzett Tuffs (SIL-5A
and SIL-5B) in the wt. % abundance of FeO, MnO, MgO, and CaO.

The dendrogram resulting from our cluster analyses (Fig. 4)
shows the basic structure of our dataset and serves as a relatively
straightforward graphic device to assist in our discussion of
potentially correlative tephra deposits. The dendrogram (Fig. 4)
shows not only the distinction between the Arzett Tuffs and the
Kapedo Tuffs but further suggests that all Kapedo Tuffs samples
from the archaeological localities are more like each other than any
are to the dated sample SIL-6, particularly in the wt. % abundances
of Al2O3, FeO, and CaO (Table 1). The similarity coefficients (SC) of
all sample pairs are shown in Table 2. The results suggest compo-
sitional similarity among all samples from the Kapedo Tuffs, with
values from archaeological Locality 1 suggesting correlation be-
tween deposits separated by w1–2 m of alluvial sediment (Fig. 3).

Despite general similarity among the Kapedo Tuffs samples,
comparisons that consider both the mean and variance of the
elemental oxide abundance for each sample do not support any
Euclidean distance
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CAT06-10a
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CAT06-10b
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SIL-5B

SIL-5A

3 2.5 2 1.5 1 0.5 0

123 ± 3 ka

132 ± 3 ka

Arzett
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Tuffs from 
archaeological

localities

Kapedo
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Fig. 4. Dendrogram of Silali area tephra samples using hierarchical cluster analysis.
Degree of sample similarity determined by unweighted pair-group average linkage
measured by Euclidean distance, calculated using Multivariate Statistical Package
version 3.13 (Kovach Computing Services, 2008). Clustering is based on centered log-
ratio transformed mean values of all available element oxides (the centered log-ratio is
the natural log of the ratio of each oxide value to the geometric mean of all oxides in
a particular sample). Data were transformed to avoid the unit sum constraint and to
maintain variable independence required for cluster analysis (see discussions in
Aitchison, 1986; Pollard et al., 2006; Cortés et al., 2007). Comparable results are ob-
tained using raw data; adding or deleting elements has little effect on tree structure,
with the Arzett Tuffs separated from other samples in each case and a lack of con-
sistent clustering of SIL-6 with other samples.
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correlations between dated samples or archaeological localities,
and serves to emphasize that the number of correlative beds varies
by comparative method (e.g., Stokes et al., 1992; Kuehn and Foit,
2006; Pollard et al., 2006). The first standard deviations of the mean
of the complete suite of five element oxides (SiO2, TiO2, Al2O3, FeO,
and CaO) do not overlap for any sample pair. Further, at least two of
the five element oxide means are significantly different (p< 0.05)
for all bootstrapped pairwise comparisons.

The bivariate plot of Al2O3 and CaO in Fig. 5 shows the degree of
within-sample compositional variation, and also suggests that
while individual deposits within the Kapedo Tuffs samples cannot
be reliably correlated, all may derive from a similar batch of magma
or related eruptions. The covariation of Al2O3 and CaO among the
Kapedo Tuffs samples (Fig. 5) suggests a general trend of different
degrees of magma evolution due to fractional crystallization of
feldspar (e.g., Wilson, 1993); Arzett Tuffs samples show no or dif-
ferent trends. The formation of crystals preferentially depletes the
magma in particular elements (in the case of feldspar, Si, Al and, to
a lesser extent, K, Na, and Ca). This process results in predictable
changes in element relative abundance in the residual magma,
which is reflected by the glass composition, and potentially
provides a relative dating tool. The stratigraphic positions of sample
CAT06-11 above CAT06-09 from Locality 1 (Fig. 3) support the hy-
pothesis of increased feldspar crystallization with time. The evi-
dence from sample CAT06-10a/b (Fig. 3) is equivocal, and it remains
unclear whether the compositional variation within this sample is
the result of heterogeneous magma at eruption or postdepositional
reworking by fluvial or other processes. However, based on the
compositional trend of covarying decreases in Al2O3 and CaO, the
position of sample SIL-6 on this trend line (Fig. 5) and stratigraphic
sequence at Locality 1, we infer that the Kapedo Tuffs samples from
the archaeological localities represent related but later eruptions of
more evolved magmas that are younger than sample SIL-6, which is
dated to 132� 3 ka.

The results of our geochemical comparisons of volcanic glass
from Silali and the Kapedo Tuffs indicate that the Arzett Tuffs are
distinct from the Kapedo Tuffs, and that all samples of the Kapedo
Tuffs are compositionally similar and follow an inferred trend
suggesting that the archaeological localities are younger than
sample SIL-6 at 132� 3 ka. Comparative methods including the use
of similarity coefficients and comparisons of variances of element
oxide abundance between samples produced different results, and
as such support a general stratigraphic equivalence rather than
precise correlations among the deposits studied here. We attribute
the absence of confirmed correlations between Kapedo Tuffs
deposits in part to the proximity of the source volcano, Silali. We
Stone Age of the northern Kenyan Rift: age and context of new ar-
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Table 2
Similarity coefficients (SC) for all Silali area tephra using SiO2, TiO2, Al2O3, FeO, and CaO. SC values are defined by Borchardt et al. (1972) as: dðA;BÞ ¼

Pn
i¼1 Ri=n, where

d(A,B)¼ SC for comparison between sample A and sample B, i¼ element number, n¼ number of elements, Ri¼ XiA/XiB if XiB � XiA, otherwise XiB/XiA, XiA¼ concentration of
element i in sample A, and XiB¼ concentration of element i in sample B. Sample pairs with SC� 0.92 may be considered potential correlates (Froggatt, 1992) and are italicized,
those with SC> 0.95, considered good evidence for correlation (Kuehn and Foit, 2006: 117), are shown in bold

Sample Locality 1 Locality 4 Arzett Tuffs

CAT06-11 CAT06-10a CAT06-10b CAT06-09 CAT06-13 CAT06-12 SIL-6 SIL-5A SIL-5B

CAT06-11 1
CAT06-10a 0.96 1
CAT06-10b 0.86 0.86 1
CAT06-09 0.92 0.92 0.95 1
CAT06-13 0.87 0.88 0.96 0.94 1
CAT06-12 0.95 0.88 0.86 0.93 0.88 1
SIL-6 0.87 0.87 0.94 0.93 0.94 0.94 1
SIL-5A 0.73 0.73 0.84 0.78 0.83 0.74 0.82 1
SIL-5B 0.70 0.69 0.74 0.74 0.75 0.70 0.74 0.78 1
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infer a sedimentary archive that preserves a wider range of eruptive
events of varying magnitudes than the rare, large-scale eruptions
from distant sources typically used for correlation purposes in the
Turkana Basin and elsewhere (e.g., Brown, 1972; Turney et al.,
2006). A sample of the potential source areas on Silali (pyroclastic
and lava cones) is shown in Fig. 2a. Our data support the hypothesis
of Smith et al. (1995), based upon the age equivalence of SIL-6
(132� 3 ka) and SIL-4 (135� 3 ka), that the Kapedo Tuffs are the
more distal equivalents of the eruptions that produced the Upper
Pyroclastic Deposits, which are now exposed only in the caldera.
The absence of pyroclastic deposits of the Arzett Tuffs from the
uppermost deposits of archaeological localities 1 and 4 suggest that
the artifact-bearing strata predate their eruption at 123� 3 ka. This
implies an age range of 135–123 ka for hominin occupation of the
area.

Archaeology of the Kapedo Tuffs

Stone artifacts were recovered from five localities (Fig. 2a) in the
Kapedo Tuffs, found during the 2006 walkover survey of all visible
exposures within the Baringo District (the limits defined by our
research permit). Results are summarized in Table 3 with repre-
sentative artifacts illustrated in Fig. 6; fossils were sparse and
limited to an equid tooth and a giraffe tooth, both from surface
contexts with no clear relation to lithic artifacts. As shown in Table
3, surface and excavated artifact density within the Kapedo Tuffs as
a whole and at individual locales is very low. The surface collected
sample (from localities 1–5) is augmented by in situ artifacts
recovered from excavations at localities 1 and 4. Each locality
preserved a single artifact-bearing stratum identified through one-
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meter-wide excavated trenches that were subsequently laterally
expanded to obtain the largest possible artifact sample. All sedi-
ment was removed following natural and arbitrary (10 cm) strata
using hand tools and sieved through 6.4 mm wire mesh. All finds
were piece-plotted relative to a site datum. Summary stratigraphic
sections of these localities are shown in Fig. 3. At localities 1 and 4,
artifacts were recovered from medium sands. Sediment grain-size
and the absence of pieces <3 cm in maximum dimension suggest
winnowing by water of both assemblages (e.g., Schick, 1986),
although two sets each of three refitted flakes from locality 4 (in-
cluding surface and excavated pieces) suggests preservation of
some degree of spatial integrity.

The sample of cores and core fragments (n¼ 12) is dominated by
bifacial centripetally flaked pieces with variable cross-sectional
geometries (Fig. 6b–f). Most (n¼ 7) are asymmetrical in cross sec-
tion, with a relatively flat upper surface with numerous flake scars
and a thicker cortical base with fewer removals, conforming to
existing definitions of Levallois cores (Boëda, 1994; Inizan et al.,
1999). On the basis of flake scar patterns, these cores reflect both
the preferential and recurrent Levallois methods for producing
a single or multiple Levallois flake(s) per prepared surface,
respectively. The extent to which this variability among the Leval-
lois cores is due to size reduction at discard or other factors cannot
be determined from the present sample (for discussion, see
Baumler, 1988; Texier and Francisco-Ortego, 1995; Sandgathe,
2004). Dorsal scar patterns and cross-section symmetry suggest
that three of the five recovered Levallois flakes conform to the
traditional definition of Levallois flakes produced by the preferen-
tial method (Fig. 6g). A platform core (using the terminology of
Conard et al., 2004) from Locality 3 (Fig. 6h) shows multiple parallel
2.0 2.5 3.0 3.5 4.0
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CAT06-10b
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riance of these two element oxides among the samples from archaeological localities 1
quence of deposits at Locality 1 supports this hypothesis, with stratigraphically lower
nce.
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Table 3
Summary composition of Kapedo Tuffs archaeological localities, showing area collected and excavated. Artifact counts are listed as surface/excavated totals. Localities 2 and 5
represent isolated surface finds

Locality Surface collection area (m2) Excavated area (m2) Cores (n) Flakes (n) Flake fragments/debris (n) Retouched/shaped pieces (n) Row total

Locality 1 325 18 3/0 7/5 7/0 1/0 18/5
Locality 2 NA 0 0/0 1/0 0/0 0/0 1/0
Locality 3 2310 0 7/0 16/0 62/0 3/0 88/0
Locality 4 300 9 1/0 4/16 10/18 0/0 15/34
Locality 5 NA 0 1/0 0/0 0/0 0/0 1/0
Column total 12 49 97 4 162
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elongated removals from the long axis of the piece from steeply
angled opposed striking platforms, suggesting blade production.
Formal tools are rare (n¼ 4), and include casually flaked scrapers
and a single pick with minimal bifacial flaking (Fig. 6a) made on an
elongated cobble. The predominance of Levallois technology and
absence of handaxes or other large cutting tools are consistent with
a Middle Stone Age (MSA) attribution for the Kapedo Tuffs lithic
assemblages.

Cortical surfaces (present on 46% of the combined artifact
sample) suggest an exclusive use of stream cobbles for artifact
production. Exposures of massive w20-m-thick clast-supported
conglomerates are intercalated with and cut into the Kapedo Tuffs
where the Kapedo River is crossed by the Lomelo-Nginyang Road
(Fig. 2; Dunkley et al., 1993: 47; McCall, 1999). These represent the
only observed exposures with cobbles of sufficient size for the
production of the artifacts from sediments penecontemporaneous
with the archaeological sites. We collected and classified a random
sample of 100 in situ cobbles (cf. Shelley, 1993; Stout et al., 2005;
Texier et al., 2006). Of these, one was chert and the remainder lava,
the latter likely derived from Pliocene volcano Ribkwo (described in
a

e

f

g

h

Fig. 6. Artifacts from the Kapedo Tuffs: a, pick, surface, Locality 1; b, Levallois core, surface, L
f, Levallois core, surface, Locality 3; g, Levallois flake, in situ, Locality 1; h, opposed platform
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Key, 1987). Of the lava cobbles, only 10 are lithologically and tex-
turally similar in hand-specimen to the various trachytes and
phonolites used in artifact production. This indicates the degree of
raw material selection practiced by local hominin groups. Straight
line distance of this presumed source (the only area with greater
than pebble-sized clasts) and the artifact localities suggests occa-
sional transport of heavy (w1 kg) artifacts (Fig. 6a–b) distances up
to 5 km.

The sparse archaeological record of the Kapedo Tuffs may reflect
ephemeral occupations of the immediate area by hominins, low
population density, or minimal use of stone tool-related tasks in the
area. Evidence from the Kapedo Tuffs sediments, including
intercalated conglomerates, suggests torrential, seasonal reworking
by fluvial processes (McCall, 1999) with no observed evidence for
a permanent water source in Kapedo Tuffs sediments. Water
shortage may have imposed limitations on occupation of the area
west of Silali. However, the extent to which the archaeological re-
cord of the Kapedo Tuffs reflects hominin dispersals into more
poorly watered areas during the presumed climatic amelioration at
the onset of the last interglacial (w130 ka; Ambrose, 1998; Lahr and
3 cm

b

c

d

ocality 5; c, discoidal core, surface, Locality 4; d and e, Levallois core, surface, Locality 1;
blade core, surface, Locality 3. All artifacts made on lava.
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Foley, 1998; Rose, 2005) or near-abandonment during an interval of
extreme aridity (w135–127 ka; Cohen et al., 2007; Scholz et al.,
2007) cannot be resolved with the present data.

Regional comparisons

Our discoveries from the Kapedo Tuffs enlarge the presently
modest sample of well-dated middle and late Pleistocene African
archaeological sites, but more importantly, they facilitate compar-
isons with adjacent areas to begin to test for the geographic vari-
ation considered the hallmark of MSA sites, patterning that may
signal the origins of regional identity (Clark, 1988; McBrearty and
Brooks, 2000; Barham, 2001). We compare data from the Kapedo
Tuffs with other Rift Valley MSA localities in southern Ethiopia and
northern Kenya to explore the nature of archaeological variation,
drawing upon sites from the adjacent Turkana and Baringo basins,
north and south of the Kapedo Tuffs, respectively (Fig. 1). Feibel
(1999b) and Potts et al. (1999: 783) have stressed that comparisons
between basins (rather than site-specific studies) are at the
appropriate spatial scale to examine hominin behavioral variability
as they account for variation beyond that of a single site and its
immediate environs.

We compare assemblages from Baringo Basin, Kapedo Tuffs, and
Turkana Basin using typological and technological criteria at the
coarse degree of resolution that others have used to examine
subcontinental-scale regional variants among African MSA lithic
assemblages (e.g., Clark, 1988; McBrearty and Brooks, 2000; Wurz,
2002). Our goal is not to establish the precise degree of similarity or
dissimilarity among lithic assemblages in northern Kenya and
southern Ethiopia, nor is it to erect formal industrial or industrial
complex names for assemblages from the Kapedo Tuffs or else-
where (cf. Clark et al., 1966). Detailed lithic technological studies
that establish the presence of geographically and temporally
restricted patterns of hominin behavior remain an important goal
in analyses of MSA or other archaeological assemblages (e.g.,
Tostevin, 2003a,b; Wurz et al., 2005; Soriano et al., 2007). However,
as a prelude to such a study, we explore geological processes that
might also explain interassemblage patterning in an attempt to first
reject the null hypothesis of non behavioral explanations for the
observed archaeological differences (e.g., Clark, 1980; Rolland and
Dibble, 1990; Inizan et al., 1999; White, 1998; Chase, 2006:
131–144; Dibble et al., 2006).

In doing so, it is important to emphasize that, whether the
outcome of a short, intermittent research history or an accurate
reflection of past hominin population density, the MSA archaeo-
logical record is sparse in the rift valleys of northern Kenya and
southern Ethiopia. Because of the limitations of our artifact sample
from the Kapedo Tuffs and elsewhere, our initial exploratory
comparisons serve to initiate discussion and to generate a series of
propositions that we hope will provide the impetus for further
evaluation through continued fieldwork.

Comparative sample

Turkana Basin MSA sites are from the Kibish Formation in
southern Ethiopia and from east of Lake Turkana in the vicinity of
Koobi Fora, Kenya. Kibish Formation in situ and surface lithic
assemblages are from the Member 1 sites of KHS and AHS with an
estimated age of w195 ka, based on underlying 40Ar/39Ar-dated
tephra, and site BNS from Member 3, with an estimated age of
w104 ka (McDougall et al., 2005; Shea, in press). The East Turkana
material includes excavated and surface-collected sites of pre-
sumed late or middle Pleistocene age from near the edge of the
present lake (FxJi-1, FwJi-2, FwJi-3) and closer to the basin margin
(FxJj-61, FxJj-66, GaJj-17; Kelly and Harris, 1992; Kelly, 1996a,b;
Bräuer et al., 1997). The Baringo Basin MSA sites are from the
Please cite this article in press as: Christian A. Tryon et al., The Middle
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Kapthurin Formation and comprise artifacts from excavations at
Koimilot Locus 1 and Locus 2 (Tryon, 2006) and from surface col-
lections at Nyogonyek (Farrand et al., 1976; Tryon, 2003). Koimilot
occurs within the Bedded Tuff Member and is dated to w250–
200 ka on the basis of tephrostratigraphic correlation with dated
deposits elsewhere in the Kapthurin Formation (Tryon and
McBrearty, 2006); the material from Nyogonyek is of uncertain age
and stratigraphic placement but is likely �200 ka, the estimated
minimum age for Kapthurin Formation sediments.

General similarities and differences

Rare unifacial and bifacial picks made on elongated lava cobbles
as well as diverse Levallois flakes and cores are the typological and
technological features that unify the lithic assemblages of the
Kapedo Tuffs, Baringo Basin, and Turkana Basin. Examples of picks
are found in the Kapedo Tuffs at Locality 1 (Fig. 6a), in Baringo Basin
at Koimilot Locus 1 (Tryon, 2006), and in Turkana Basin at FxJj-61
near Koobi Fora (Kelly, 1996a: 159) and in Omo Kibish (Shea, in
press). In isolation, such tool forms are poor temporal or industrial
markers, although when found in abundance in eastern Africa have
been attributed to the Sangoan industry or industrial complex
(McBrearty, 1988; Clark, 2001). Levallois flakes and cores are
present at all sites considered here, including examples suggesting
use of both the preferential and recurrent methods (see Fig. 6b–f;
Kelly, 1996a; Tryon, 2006; Shea, in press). Cores suggesting blade
production occur only in the Kapthurin Formation and Kapedo Tuffs
samples (Fig. 6h; Tryon, 2006), but their rarity severely limits their
utility as regional markers.

Despite broad similarities in large tool and core forms, the
Turkana Basin material differs from assemblages further to the
south in: (1) the more frequent use of chert and other cryptocrys-
talline siliceous rocks as raw material, (2) generally smaller artifact
size, and (3) more abundant retouched tools including points.
Points, presumably hafted as hunting implements, are particularly
important in this context, as they are considered the diagnostic
implement of the MSA and a key signal of geographic differentia-
tion (Clark, 1993; McBrearty and Brooks, 2000; Lombard, 2005;
Brooks et al., 2006; Shea, 2006; Villa and Lenoir, 2006). The results
of our investigation suggest that all of these differences among Rift
Valley MSA sites in northern Kenya and southern Ethiopia can be
explained by the geological abundance of cryptocrystalline sili-
ceous rocks as a potential raw material source, providing a series of
hypotheses for further testing and an important initial demon-
stration of the challenges facing identification of regional variation
in hominin behavior.

Raw material types and abundance

More frequent use of chert distinguishes the Turkana Basin MSA
lithic assemblages from those of the Baringo Basin. Integration of
the Kapedo Tuffs artifacts suggests a geographic gradient in the
frequency of chert (here defined as all cryptocrystalline siliceous
rocks precipitated from an aqueous solution of lacustrine or hy-
drothermal origin) and related rocks at Rift Valley MSA sites in
northern Kenya and southern Ethiopia, increasing northwards from
the equator (Fig. 7). Although of variable quality, available data
suggest an identical trend in the geological abundance of chert
(Fig. 7). The high frequency of chert at archaeological sites relative
to its geological abundance is consistent with the preferential
selection of this material by hominins. Such a hypothesis is also
consistent with a wider trend seen at MSA sites of the increased use
of fine-grained cryptocrystalline rocks (e.g., Merrick et al., 1994;
Raynal et al., 2001; but see Negash et al., 2006), and made more
apparent through comparison of the lava- or quartz-dominated
Early Stone Age sites from the same region, particularly Turkana
Stone Age of the northern Kenyan Rift: age and context of new ar-
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Basin (e.g., Isaac et al., 1997; de la Torre, 2004). However, the con-
comitant northward increase of geological and archaeological chert
abundance among the sites studied here suggests that differences
between basins in use of this material at MSA sites are most simply
explained by its natural availability.

Artifact size

The nature of a lithic assemblage is determined in part by stone
raw material abundance and form (e.g., Kuhn, 1995; Roth and
Dibble, 1998; Dibble et al., 2005; Moore and Brumm, 2007), and the
small average size of the Turkana Basin material may be largely
dictated by diminutive chert clasts available for use. Following Toth
(1985), Fig. 8 plots core size against distance to the Rift Valley
margin for chert and lava cores. Maximum core size is used as
a proxy for average artifact size because cores are sufficiently large
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linear dimension of Andrefsky (1998: 139) shown here as the mean and first standard
deviation. Sample size (n) indicated for each comparative group. Distance for the
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to be unaffected by the minor stream flow processes that winnow
sites or by the collection bias towards larger pieces inherent in the
surface collected samples used here. Estimated distance of each site
from the Rift Valley margin (Fig. 1) serves as a rough measure for
clast transport distance, as this topographic break divides the vol-
canic highlands where source rocks are eroded and the lower lying
areas where most stream deposits and archaeological sites occur.

Core size diminishes with increased distance from the Rift
Valley margin, with chert cores consistently smaller than those of
lava (Fig. 8). Core size is unlikely to reflect intensive reduction due
to raw material conservation during transport in these cases, as
local sources were used for even the smallest sized assemblages
from the Kibish Formation (Shea, in press). Instead, the pattern
appears to reflect downstream reduction of fluvial clast size with
increased transport distance. This process is widely documented
(e.g., Pettijohn, 1975), and occurs due to progressive size sorting
with decreased channel gradient and, to a lesser extent, clast
abrasion (cf., Jones and Humphrey, 1997; Rice, 1999; Lewin and
Brewer, 2002). Although other factors such as particle shape or
material density provide complicating factors (Frostick and Reid,
1980), the consistently smaller size of chert cores regardless of Rift
Valley margin distance points to smaller initial clast sizes. Although
initial size cannot be estimated with precision, most chert deposits
in the rift valley formed in shallow lakes or as hydrothermal pre-
cipitates infilling voids and cavities in lava and typically occur as
thin beds or nodules (10�1–100-m-thick), whereas Rift Valley lava
flows show a greater size range (100–102-m-thick; e.g., Hay, 1968;
Eugster, 1969; Chapman et al., 1978; Davidson, 1983; Key, 1987;
Hackman, 1988; Key and Watkins, 1988; Renaut and Owen, 1988;
Haileb et al., 2004). From this perspective, geological rather than
behavioral factors likely explain most of the interassemblage vari-
ation related to artifact size due to the dimensions of available raw
material ‘packages,’ and the proximity of Rift Valley-margin sources
may in part explain the presence of large (>10 cm) lava Levallois
cores from the Kapedo Tuffs (Fig. 6b) and the Kapthurin Formation
(Tryon et al., 2005).

Retouched artifact frequency

Points and other retouched pieces are relatively abundant in the
Turkana Basin sample; they are rare or absent in those from the
Kapedo Tuffs and Baringo Basin. Comparisons of retouched piece
frequency to total artifact count show stark contrasts among chert
and lava raw material types (Fig. 9). As shown in Fig. 9b, log-
transformed sample size and retouched artifact count among chert
artifacts show a strong statistically significant correlation
(r2¼ 0.893, p< 0.000), a result not observed for artifacts made of
lava (r2¼ 0.166, p¼ 0.093). The difference in the slopes of the two
regressions is statistically significant (p< 0.000; Zar, 1999:
360–364), showing that amongst this sample, lava retouched arti-
facts are always rare relative to those of chert. Our sample combines
both surface and excavated assemblages, the typological composi-
tion of which may differ due to a number of postdepositional
processes (see Rogers, 1997). In Fig. 9b, chert artifact abundance is
plotted for both the surface and excavated portions of the FxJj-61
assemblage. The results are comparable although, as expected, the
relative abundance of retouched artifacts is higher for the surface-
collected sample. This further emphasizes the differences between
artifacts of the two raw material types, as lava retouched artifacts
are rare even from large surface collections from the Kapthurin
Formation (e.g., Nyogonyek) and elsewhere.

These preliminary results suggest that in many instances, the
presence or abundance of retouched pieces such as points at MSA
sites, is related not just to sample size (e.g., Grayson and Cole, 1998)
but also to the abundance of siliceous stone raw material, a result
mirrored at Early Stone Age sites from Olduvai Gorge, Tanzania
Stone Age of the northern Kenyan Rift: age and context of new ar-
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(Kimura, 2002). Although this general finding may relate to hom-
inin preference for this rock type, it may also result from differences
in raw material mechanical properties. That is, while some retouch
reflects deliberate flake removals designed to shape a piece, other
instances of flake removals are the result of the rejuvenation of
worn edges or even accidental postdepositional breakage by
trampling or other processes (e.g., McBrearty et al., 1998). Impor-
tantly, relative to those of lava, chert retouched pieces have edges
that dull faster, fracture more readily, and leave more abundant
macro- and microscopic traces of resharpening (e.g., Kamminga,
1982; Jones, 1994). Whatever the interpretation of the cause of
retouched piece frequency, the influence on assemblage typology is
the same. Retouched tools such as points continue to play a key role
in our understanding of MSA variability at sites throughout the
Africa (e.g., McBrearty and Brooks, 2000; Garcea, 2004; Villa et al.,
Please cite this article in press as: Christian A. Tryon et al., The Middle
chaeological sites from the Kapedo Tuffs, J Hum Evol (2008), doi:10.1016
2005; but see also Wurz, 2002), but their presence or abundance
may be strongly dictated by the available stone raw material.

Discussion and conclusions

The Kapedo Tuffs archaeological record is sparse and consists of
lithic artifacts recovered from five localities over a w50 km2 area of
discontinuously exposed outcrops of tuffaceous sediments. The
artifacts are typologically Middle Stone Age (MSA), characterized by
the reduction of locally available lava cobbles using various Leval-
lois and other flake production methods. Rare retouched artifacts
include casually flaked scrapers and a pick. More than 128 electron
microprobe analyses of ten tephra samples from the Kapedo Tuffs
and the adjacent Quaternary volcano Silali provide the basis for
stratigraphic correlation between 40Ar/39Ar-dated deposits and
those found at archaeological sites. Correlation of the Kapedo Tuffs
with the Upper Pyroclastic Deposits of Silali (Smith et al., 1995) and
the absence of overlying deposits from the Arzett Tuffs indicate an
age range of 135–123 ka for the archaeological sites. This age esti-
mate implies that sediments of the Kapedo Tuffs were deposited
rapidly, represent a narrow interval of time, and preserve an
archaeological record with a high degree of temporal resolution
relative to many other Pleistocene localities. Furthermore, this age
estimate suggests the presence of hominins in the Rift Valley in
eastern Africa between 1�–2� N latitude, during or slightly before
the onset of the last interglacial, and are thus relevant to address
proposed hominin population expansions during this climatic
interval (e.g., Ambrose, 1998; Lahr and Foley, 1998; but see also
Cohen et al., 2007; Scholz et al., 2007).

The Kapedo Tuffs are geographically intermediate between the
Turkana and Baringo basins. Data from the Kapedo Tuffs thus serve
as important points of comparison for understanding the nature of
regional archaeological variation between these better-studied
areas, reducing the spatial gaps that serve to exaggerate differences
and mask clinal variation. We present here the first attempt at
a regional synthesis of Rift Valley MSA sites of northern Kenya and
southern Ethiopia. As sites and artifacts are sparse and research
history is short, our initial comparisons await fuller evaluation
through additional fieldwork. Comparison of MSA sites from these
three areas suggests general technological parity in the rare pro-
duction of heavy-duty tools (sensu Clark, 2001) and the use of
diverse Levallois methods of flake production. Given the present
limitations of our dataset, the nature of the comparison and the
degree of observed similarity are insufficient to erect formal
industrial names or to infer shared behavioral traditions. However,
the explanations of the observed differences among these lithic
assemblages are instructive for future attempts to do so, which
remain an essential step in the analysis of African Pleistocene
hominin behavioral variability. Among the MSA sites of the Kapedo
Tuffs, Kapthurin Formation, East Turkana, and the Omo Kibish, our
data fail to reject the null hypothesis that the observed archaeo-
logical differences are due to nonbehavioral explanations, in this
case the geological abundance of chert or similar cryptocrystalline
rocks. That is, among the sample studied here, hominin use of chert
is positively correlated with its availability, and chert abundance
has a pronounced impact on average artifact size (a morphological
difference that could be attributed to cultural preference) and the
abundance of retouched pieces (important in many typological
comparisons).

Finally, our discovery of sites in the Kapedo Tuffs demonstrates
the still largely untapped potential of the northern Kenya Rift. Basic
geological mapping of this portion of the Rift Valley has already
been accomplished, accompanied by suites of precise 40Ar/39Ar
dates on eruptive deposits from all Quaternary volcanic edifices in
the region (e.g, Key, 1987; Dunkley et al., 1993). This provides the
framework for additional archaeological reconnaissance and
Stone Age of the northern Kenyan Rift: age and context of new ar-
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relatively rapid age approximation using established stratigraphic
frameworks, augmented in our case by tephra correlation. MSA
artifacts are sparse from western Turkana (e.g., Whitworth, 1965),
and much of the Rift Valley between Lake Baringo and Lake Turkana
remains to be archaeologically surveyed; potentially promising are
the late Pleistocene and younger deposits of paleo-Lake Suguta
north of Silali (Truckle, 1976; Casanova et al., 1988; Dunkley et al.,
1993; Sturchio et al., 1993; Trauth et al., 2005), where only sparse
Holocene-aged material with poor provenience has thus far been
reported (Sutton, 1990) due to minimal investigation.

Defining the nature, scale, and chronology of regional
differences among Middle Stone Age sites is a critical task still
confronting archaeologists. This forms an essential step towards
examining fine-scale geographic variation in the behavior and
morphology of Pleistocene African hominin populations that in-
cluded early representatives of Homo sapiens (cf. Clark, 2002; Foley
and Lahr, 2003). Accomplishing this goal requires data at finely
resolved spatial and temporal scales and an understanding of the
causes, behavioral or otherwise, that define archaeological varia-
tion. Our work in the Kapedo Tuffs points the way towards how this
may be achieved, reveals some of the limitations confronted when
doing so, and indicates important areas for future research.
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