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Abstract. Biometricians have made great strides in the generation of reliable estimates of
demographic rates and their uncertainties from imperfect field data, but these estimates are
rarely used to produce detailed predictions of the dynamics or future viability of at-risk
populations. Conversely, population viability analysis (PVA) modelers have increased the
sophistication and complexity of their approaches, but most do not adequately address
parameter and model uncertainties in viability assessments or include important ecological
drivers. Merging the advances in these two fields could enable more defensible predictions of
extinction risk and better evaluations of management options, but only if clear and
interpretable PVA results can be distilled from these complex analyses and outputs. Here, we
provide guidance on how to successfully conduct such a combined analysis, using the example
of the endangered island fox (Urocyon littoralis), endemic to the Channel Islands of California,
USA. This more rigorous demographic PVA was built by forming a close marriage between
the statistical models used to estimate parameters from raw data and the details of the
subsequent PVA simulation models. In particular, the use of mark–recapture analyses and
other likelihood and information-theoretic methods allowed us to carefully incorporate
parameter and model uncertainty, the effects of ecological drivers, density dependence, and
other complexities into our PVA. Island fox populations show effects of density dependence,
predation, and El Niño events, as well as substantial unexplained temporal variation in
survival rates. Accounting not only for these sources of variability, but also for uncertainty in
the models and parameters used to estimate their strengths, proved important in assessing fox
viability with different starting population sizes and predation levels. While incorporating
ecological drivers into PVA assessments can help to predict realistic dynamics, we also show
that unexplained process variance has important effects even in our extremely well-studied
system, and therefore must not be ignored in PVAs. Overall, the treatment of causal factors
and uncertainties in parameter values and model structures need not result in unwieldy models
or highly complex predictions, and we emphasize that future PVAs can and should include
these effects when suitable data are available to support their analysis.

Key words: Aquila chrysaetos; density dependence; ecological drivers; Golden Eagle; island fox; mark–
recapture; population viability analysis, PVA; process variance; stochasticity; uncertainty; Urocyon
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INTRODUCTION

Modeling the possible trajectories of rare and

declining populations to predict future viability and

identify management options has become a mainstay of

conservation biology. Referred to as population viability

analysis, or PVA, this approach has provided insights

into some of the most controversial issues in conserva-

tion biology (e.g., Crouse et al. 1987, Lande 1988). These

mathematical descriptions of population behavior re-

place simple statistical analyses and expert opinions,

which are usually only indirectly or unquantifiably

linked to current and future population dynamics. While

PVA models can make direct quantitative predictions of

stochastic population futures, uncertainties inherent to

any model can decrease the reliability of these predic-

tions if not accounted for properly (Taylor 1995,

Beissinger and Westphal 1998, White 2000, Coulson et

al. 2001b, Ellner et al. 2002, Doak et al. 2005). These

uncertainties arise from many sources: field methods
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may yield imprecise or biased data, small sample sizes

can produce large sampling variances around parameter

estimates for demographic rates, short study durations

can lead to imprecision or bias in estimates of the mean

and process variance of demographic rates, and finally,

the complexity of study systems will result in an

incomplete knowledge of the best mechanistic model

with which to describe and predict population behavior

and management effectiveness.

Recent advances in analytical methods are providing

a stronger foundation for quantifying both pattern and

process in demographic rates, including associated

estimates of uncertainty, although efforts to faithfully

integrate these results into PVAs have lagged behind.

For example, increasingly efficient methods are being

developed to make robust demographic rate estimates

from a diversity of data types (Easterling et al. 2000,

Gross 2002, Morris and Doak 2002, Ellner and Fieberg

2003) including techniques for separating parameter

uncertainty and process variation (Kendall 1998, Millar

and Meyer 2000, White 2000, White et al. 2001). In some

cases, likelihood methods can be used to take advantage

of frequently ignored ancillary data, such as the use of

stage-specific or whole population count data to refine

demographic rate estimates and reduce their bias

(Pascual and Adkison 1994, Besbeas et al. 2002, Holmes

and York 2003, Gauthier and Lebreton 2004, Maunder

2004, Tinker et al. 2006). Information theory (IT) is

becoming a widely accepted paradigm for statistical

model selection using metrics such as Akaike’s informa-

tion criterion (AIC), which quantifies tradeoffs between

the precision of simple models and the accuracy of

complex ones (Burnham and Anderson 2002). While IT

has more often been used to select a single best model to

describe variation in demographic rates for population

models (e.g., Lima et al. 1999, Kauffman et al. 2004), IT

techniques can also quantify uncertainty in model

selection, which can then be incorporated into models

of population dynamics (e.g., Tinker et al. 2006).

In addition to the expanded use of new analytical

techniques such as IT, PVA predictions may also be

improved by the inclusion of covariates such as weather,

conspecific densities, predators, or other ecological

drivers of demographic rates (e.g., Franklin et al. 2000,

Jones et al. 2002, Loison et al. 2002, Nicoll et al. 2003,

Altwegg et al. 2005, Armstrong et al. 2005, Smith et al.

2005a). There have been several suggestions in the

literature that incorporation of such ecological drivers of

demographic rates could improve the ability of PVAs to

simulate long-term temporal variance (e.g., Fieberg and

Ellner 2001, Ellner 2003, Maunder and Watters 2003),

but very few studies have done so convincingly (but see

Beissinger 1995, Dennis and Otten 2000, Smith et al.

2005b) and fewer still have also included unassigned

process variation to model the full range of stochasticity

in population processes (for a partial example, see Gross

et al. [1998]; see also Coulson et al. [2001a]).

The current situation is thus one in which far more

sophisticated data analysis tools are available than are

usually used in conjunction with PVAs. This mismatch is

undoubtedly due to the daunting complexity both of

current PVA models and of current analytical tech-

niques to turn field data into parameter estimates.

Successful merging of these different approaches will

require rigorous matching of the structure and assump-

tions of population dynamics models to the outputs of

parameter estimation methods, and also attention to the

synthesis of the results, in order to prevent the increased

complexity of the PVA predictions from needlessly

obscuring their use in answering important biological

questions.

Here, we present a framework for achieving this goal

of building more reliable PVAs through the construction

of models that faithfully reflect the output of advanced

demographic analyses, especially those that quantify

uncertainty (Fig. 1). To illustrate this approach, we

build a PVA for the island fox (Urocyon littoralis) that

accounts for a broad suite of uncertainties and

ecological drivers and demonstrates how to manageably

deal with these multiple issues, which improve but also

complicate the construction of our PVA. The island fox

is a rare island endemic that occurs as six distinct

subspecies, each resident on one island off the southern

coast of California, USA (Fig. 2; Gilbert et al. 1990,

Wayne et al. 1991). In 2004, four subspecies were listed

as endangered under the Endangered Species Act after

dropping to extremely low levels due to Golden Eagle

(Aquila chrysaetos) predation on Santa Cruz, San

Miguel, and Santa Rosa islands and disease on Santa

Catalina Island (Roemer et al. 2004, U.S. Fish and

Wildlife Service 2004). The island fox has been the

subject of numerous prior demographic analyses

(Roemer et al. 2001a, 2002, Angulo et al. 2007),

including at least two studies that use one or more

PVA methods (Roemer et al. 2001a, Kohlmann et al.

2005). However, none of these prior analyses has been

able to use the amount of data available to us to test and

refine model structures and parameter estimates, and

hence to build as demographically realistic a model for

this species as possible. We pay special attention to

assessing and simulating the likely form and strength of

density dependence, a particularly controversial and

consequential issue in population viability modeling

(Henle et al. 2004). Including uncertainty within PVA

models could lead to a collision of statistical approxi-

mation with biological reality, when, for example,

extreme values are randomly assigned to several

demographic rates simultaneously. Thus, we also

introduce a procedure to screen out parameter combi-

nations that predict biologically implausible behaviors.

Our objective is to present an approach to the

construction of PVAs that can serve as a roadmap for

addressing past critiques of PVA methodologies, while

still performing analyses that are biologically relevant

and directly useful for conservation problem-solving
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(Fig. 1). We focus on building models that (1) assign

temporal variation in demographic rates to ecological

drivers, (2) account for unassigned process variation,

(3) specify and incorporate model selection and

parameter uncertainty, (4) minimize bias and uncer-

tainty in estimates of demographic rates by integrating

ancillary data, and (5) produce biologically plausible

population behaviors despite the inclusion of uncer-

tainty. To illustrate the impact of our approach, we

compare PVA outputs that include uncertainty in

demographic estimates with results that ignore it. We

also contrast the gains in understanding obtained by

incorporating uncertainty with the results of simpler

and more traditional PVA results, such as the sensitiv-

ity analysis of simple deterministic models. We concen-

trate our simulation modeling on two islands with

contrasting situations: Santa Cruz Island, the largest

island, which has maintained a small wild fox popula-

tion, and San Miguel Island, the smallest island, which

is currently rebuilding its wild population with released

captives.

NATURAL AND UNNATURAL HISTORY OF THE ISLAND FOX

The endemic island fox inhabits the six largest of the

Channel Islands (Fig. 2) and is the smallest canid in

North America (mean ¼ 1.9 kg [Roemer et al. 2001c]).

Socially monogamous pairs defend exclusive territories

(mean ¼ 0.55 km2 [Roemer et al. 2001c]). Island foxes

subsist on a varied diet including insects, fruits, and

small vertebrates (Crooks and Van Vuren 1995). Adult

foxes have evolved with virtually no native predators

(Red-tailed Hawks, Buteo jamaicensis, can take island

fox pups [Moore and Collins 1995]) and their only native

competitor, the island spotted skunk (Spilogale gracilis

amphiala), occurs only on Santa Cruz and Santa Rosa

islands. Fox courtship and breeding occur January

through March, with pupping in late April and May,

weaning in June and July, and dispersal from October

through December (Laughrin 1977, Fausett 1993; D.

Clifford, personal communication), although some pups

remain on the natal territory through the second

summer (Roemer et al. 2001c).

The Channel Islands have a maritime Mediterranean

climate with periodic cool winter rains beginning in

November and a hot dry summer beginning in May.

Precipitation decreases along a southwesterly gradient

with mean annual rainfall ranging from 50.4 cm on

Santa Cruz Island to 19.1 cm on San Clemente Island

(Table 1). For all our analyses, annual time steps start

July 1, roughly corresponding to the biological year for

foxes and the rain year for the region. Most of the

islands support open grass and scrubland, but the larger

and more topographically diverse islands of Santa Cruz

and Santa Catalina have a range of vegetation types

including oak woodlands, chaparral, and pine forest.

Although the habitat of the fox is largely undeveloped

(Fig. 2), historical and current land uses have altered the

ecological setting and endangered the fox. Most

critically, feral pigs (Sus scofa) introduced to Santa

Cruz Island in the 1800s and mule deer introduced to

Santa Rosa in the early 1990s appear to have facilitated

the growth of a substantial resident population of

Golden Eagles throughout the northern Channel Islands

during the 1990s (Roemer et al. 2001a, 2002, Collins and

Latta 2006). A range of exotic herbivores have converted

large areas of native shrublands to grasslands on all

islands (Van Vuren and Coblentz 1987), reducing cover

available to foxes and possibly increasing predation risk

for the predator-naı̈ve foxes. On Santa Cruz Island,

estimated fox numbers exceeded 1300 in the early 1990s,

but only about 130 remained by 1999, a decline believed

to be largely or entirely due to eagle predation (Roemer

et al. 2001a, 2002). The population remained at low

levels on this island (Bakker et al. 2005) and a captive

breeding program was initiated in 2002 as a safety net.

Concurrently, the San Miguel and Santa Rosa island

FIG. 1. Flow chart showing recommended process for
incorporating uncertainty and both explained and unexplained
variance into population viability analysis (PVA). Generalized
steps are shown in the left column, and the specific approach
taken in this study is shown in the right column.
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populations dropped to fewer than 30 foxes, and by

2000 virtually all wild individuals on these islands were

removed to on-island captive breeding pens (Roemer et

al. 2001a, Coonan 2003).

In response to these declines, land managers initiated

several efforts to restore the Channel Islands ecosystem

and reduce predation on foxes. Golden Eagles have been

captured and relocated at great expense since 1999, but

managers have been unable to keep the islands entirely

free of these predators (Latta 2005). Beginning in 2002,

territorial Bald Eagles (Haliaeetus leucocephalus) previ-

ously decimated by DDT poisoning (Kiff 1980) were

reintroduced throughout the northern islands in hopes

of making the environment more inhospitable to Golden

Eagles (Dooley et al. 2005). And finally, to reduce the

Golden Eagles’ food supply, a feral pig eradication

program commenced on Santa Cruz Island in 2005.

These efforts appeared to ease threats enough to justify

the release of captive foxes on San Miguel and Santa

Rosa islands by 2005, and thus small populations of wild

foxes now occur on all three northern islands.

On the southern islands, where Golden Eagles are

absent, diseases, competition from feral cats, and

automobile strikes pose potential threats (Coonan

2003). On Santa Catalina Island, which hosts 5000

human residents and 1 000 000 visitors annually (Schuy-

ler et al. 1988), canine distemper virus is the primary

suspect in a crash of the fox population in 1999 (Timm

et al. 2000) from approximately 1300 individuals to less

than 100, which led to captive breeding of foxes on this

island as well (Timm et al. 2002, Roemer and Donlan

2005). The wild fox population on Santa Catalina is now

thought to exceed 300 (Kohlmann et al. 2005). On San

Clemente and San Nicolas islands, foxes are not

FIG. 2. The island fox (Urocyon littoralis) is found on six of the California (USA) Channel Islands. The three northern islands
of Santa Cruz, San Miguel, and Santa Rosa are part of Channel Islands National Park or The Nature Conservancy’s Santa Cruz
Island Preserve. In the south, San Nicolas and San Clemente islands are operated by the U.S. Navy with limited land development,
while 88% of Santa Catalina Island is protected by the Catalina Island Conservancy.

TABLE 1. Pearson correlation coefficients (SAS Proc Corr) for annual rainfall (1 July–30 June) among the six Channel Islands
(California, USA) inhabited by island foxes for ln-transformed values.

Island

Annual precipitation Correlation coefficient, r

Mean (cm) SE n (yr) Santa Catalina San Clemente Santa Cruz San Miguel

Santa Catalina 32.1 1.7 61
San Clemente 19.1 2.2 26 0.877
Santa Cruz 50.4 2.3 102 0.847 0.775
San Miguel 38.4 4.1 14 ��� 0.863 0.902
San Nicolas 23.8 1.7 39 0.894 0.860 0.878 ���
Santa Rosa ND ND ND ND ND ND ND

Notes:No overlapping data were available for San Miguel and either Santa Catalina or San Nicolas islands. ‘‘ND’’ indicates that
no data are available.
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federally endangered and populations appear relatively

stable (Schmidt et al. 2005, 2007b), although the IUCN

has recommended that the San Clemente population be

considered endangered and the San Nicolas population

vulnerable (Roemer et al. 2004).

DATA SOURCES

Annual live trapping occurred on San Clemente,

Santa Catalina, Santa Cruz, San Miguel, and San

Nicolas islands on a total of 16 grids for various time

periods from 1988 through 2004. Surveys were per-

formed from July through September following the birth

pulse using Tomahawk live traps (Tomahawk Live Trap

Company, Tomahawk, Wisconsin, USA) spaced ;250

m apart and arrayed in grids ranging in size from 5 traps

3 8 traps to 8 traps3 10 traps. On both Santa Cruz and

San Miguel islands, trapping occurred on two grids

before and during the population crash, but subsequent-

ly ceased due to extremely low densities (dates of

trapping: Santa Cruz, 1993 and 1995–1999; San Miguel,

1993–1998). On Santa Catalina Island, three grids were

trapped for two years (1989 and 1990). On San Clemente

Island, trapping occurred at different intensities from

1988 through 2003 (three grids, 1988–1997 and 1999;

four grids, 2000; six grids, 2001–2003). On San Nicolas

Island, three grids were trapped from 2000 through

2004.

Field crews initially ear-tagged foxes and later

implanted passive integrated transponder tags and

recorded sex and age based on tooth wear patterns

(Wood 1958, Collins 1993) for all captured foxes.

Detailed accounting of female reproductive success

was obtained for 30 grid-years on San Clemente Island,

9 grid-years on Santa Cruz Island, and 5 grid-years on

San Miguel Island, with pups matched to females using

one or more of the following techniques: capture

locations of females and pups, range overlap based on

telemetry, and genetic analyses. Reproductive data from

San Clemente Island, however, were known to be

substantially biased (Miller et al. 2003) and were

excluded from our analyses. Trapping data from two

grids on San Nicolas Island were censored from our

analysis because foxes there occurred at densities as

much as twice those found on any other island and

appeared to respond differently to density-dependent

factors by incorporating a large proportion of intro-

duced food sources (ice plants and snails) into their diet

and exhibiting reduced territoriality (D. Garcelon,

personal observation). We also omitted the data from

Santa Catalina Island because too few years were

sampled to support survival rate estimates. A total of

1288 individual foxes (691 males:597 females) were

captured on the 11 grids used in analyses.

Data were also available for three factors known or

likely to be critical in driving survival and reproductive

rates across time and space: conspecific densities, eagle

numbers, and rainfall. Densities of adult foxes were

calculated from grid population estimates based on

capture–recapture data. Local population estimates

were made using Program Capture (White et al. 1978),

with model selection guided by Program Capture

output (White et al. 1978, Menkens and Anderson

1988). In nearly all cases, model M(h) or M(bh) was

used, consistent with the observed behavior of these

foxes, which tend to be readily trappable on their

territory. Local population estimates were converted to

densities using a buffer strip width (Wilson and

Anderson 1985) equal to the full mean maximum

distance moved (MMDM) based on our observation

that results using full MMDM (vs. the conventional

0.5MMDM) more closely approximate fox density

estimates derived from telemetry (unpublished data)

and supported by literature reports of similar improve-

ments in accuracy with the use of full MMDM

(Parmenter et al. 2003). Grid buffers had rounded

corners (Parmenter et al. 2003) and were masked to

avoid inclusion of ocean areas.

Although systematic Golden Eagle surveys and

removals did not commence until 1999, the number of

eagles present on the northern Channel Islands in each

year was estimated retrospectively from 1990, the year of

assumed colonization, onward (Latta 2005). To accom-

plish this, raptor experts from the Santa Cruz Predatory

Bird Research Group (SCPBG) used the demographic

characteristics of the surveyed eagle population, the

number of nests found, and a reconstructed breeding

history deduced from nest excavations. Aging was

performed using plumage characteristics ( juvenile,

subadult I–III, adult [Bloom and Clark 2001]) and sex

assignment was possible for captured eagles (based on

tarsal measurements) or for non-captured eagles ob-

served in proximity to the opposite sex (based on sexual

dimorphism). After aging, individuals were assigned to a

historically active nesting territory whenever plausible.

Nest activity was determined by counting compressed

nest layers, with each layer representing a single season’s

breeding attempt. The year that breeding commenced at

each nest was deduced by assuming that breeders

captured at nests had made annual breed attempts in

prior years. Combined, these observations were ade-

quate to characterize a plausible population trajectory

that accounted for all eagles observed on the islands

from 1999 through 2004, and that agreed with a simple

population model for a single pair of adult eagles

colonizing and initiating breeding in 1990, consistent

with data from nest excavations.

For Santa Cruz Island, 102 years of continuous

rainfall data were available; considerably fewer years,

frequently discontinuous, were available for the other

islands (Table 1). While mean rainfall varies substan-

tially across the islands, inter-island variation in rainfall

is highly correlated (r � 0.775; Table 1). Because only

the Santa Cruz Island data set spanned all the years

trapped, we applied these data to all islands. By using

one data source to index rainfall on all islands, we were
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able to assess the importance of temporal, but not

spatial variation, in rainfall for fox demography.

DEMOGRAPHIC ANALYSIS METHODS

Environmental drivers and model selection uncertainty

We modeled annual apparent survival from capture–

recapture data using the Cormack-Jolly-Seber module

within Program MARK (White and Burnham 1999) and

selected models based on quasi-Akaike information

criterion corrected for small sample sizes and model

lack of fit due to overdispersion (i.e., quasi-AICc,

[Lebreton et al. 1992]). Because previous island-specific

analyses indicated no differences in survival rates

between the sexes or between yearlings and adults

(Roemer et al. 2001a, Coonan et al. 2005; V. Bakker,

unpublished data), we only considered differences be-

tween pups (i.e., ,1 year old) and non-pups, which we

refer to as adults.

Following Lebreton et al. (1992), we used a two-step

procedure to identify the best model structure, first

allowing survival (/, see Table 2 for summary of symbols

used in this paper) to vary fully by location, time, and

age, as well as marked year to account for transients, and

comparing full and reduced model structures for

probabilities of recapture (Pre; see Appendix). We

considered time-varying and constant recapture proba-

bilities with interactive spatial effects. We tested for

Markovian trap response in Pre, or the potential for Pre

to increase for individual foxes after a previous capture

(i.e., trap happiness) by testing models that included an

individual covariate indicating whether a fox was

captured in the prior year (Lebreton et al. 1992). We

did not vary recapture rates by age because pups were by

definition adults by the time of their first recapture.

We then used the best model structure for recapture

rates and compared full and reduced structures for

survival, again examining time-varying and constant

models with interactive and additive spatial, age, and

marked year effects. We fit a total of 50 of these

categorical effects models. We tested for goodness of fit

of the global model by examining tests of model

assumptions using Program U-CARE (Choquet et al.

2005) and by comparing the real deviance of the global

model to those of 500 data sets simulated by Program

MARK to match the release numbers and survival and

recapture rates of the actual data, but without any

violations of assumptions (White et al. 2001). The

proportion of these bootstrapped goodness-of-fit simu-

lations with deviances exceeding those of the global

model can be considered a test of the null hypothesis

that model fit is adequate. Simulations did not include a

trap response because the distribution of this individual

covariate in the population is unknown. Individual

covariates, however, improve fit and decrease over-

dispersion, rendering our simulations conservative

assessments of fit. Finally, we corrected for over-

TABLE 2. Symbols used in text.

Parameter Description

kM Matrix-derived population growth rate (lambda) based on survival rates estimated using ecological driver
models and used in estimating F

kd Density-derived population growth rate (lambda) based on annual estimates of grid density and used in
estimating F

/ Annual apparent survival rate, estimated using Cormack-Jolly-Seber open-population model
b1, b2 Parameters of the survival modifier F, used to correct apparent survival for emigration
B Breeding rate, defined as the proportion of females producing litters
ĉ Variance inflation factor, estimated as the deviance of the global survival model divided by the mean deviance

of the simulated data sets
C Process variance of the ecological driver models for annual survival probabilities
D Estimated density of non-pup foxes
d5.9 Binary control variable equal to 1 for densities �5.9 adult foxes per km2 and 0 otherwise (survival modifier is

applied only for d5.9 ¼ 1)
EE Eagle equivalent, the mortality rate equivalent to that caused by one eagle using space and employing

predation behaviors comparable to those of the original colonizers
F Modifier function to adjust annual apparent survival probability estimates to account for emigration
G Process variance of the global survival model
L Litter size, or the mean number of pups born to breeding females
i Subscript indicating age-specific value
j Subscript indicating grid-specific value
M Two-stage matrix model for island fox
N Number of individuals
Pre Annual recapture rate, estimated using Cormack-Jolly-Seber open population model
Pqx Probability of quasi-extinction; in all cases, we defined quasi-extinction as �30 individuals
R Annual female-only reproductive rate, defined as B 3 L
S Annual apparent survival probability
SE One minus the probability of eagle-caused mortality
Smod True annual survival rate, estimated as the annual apparent survival rate modified to account for emigration
SN Annual survival probability excluding eagle predation effects
Smax The maximum survival probability, which occurs when density equals 5.9 foxes/km2

U Unassigned process variance associated with ecological driver models (i.e., G � C )
Vu Unassigned process variance as a proportion of the maximum possible variance
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dispersion using a variance inflation factor (ĉ ), estimat-

ed as the deviance of the global model divided by the

mean deviance of the simulated data sets (Lebreton et al.

1992, White et al. 2001).

To determine how ecological factors influenced

survival rates, we next fit a series of models in which

the time effect in the best model structure (and reduced

structures) was replaced with covariates representing

hypothesized ecological drivers; we refer to these models

as ‘‘ecological driver models.’’ Based upon the known

and suspected determinants of fox performance, we

considered a range of causal factors that might drive

survival rates: eagle numbers as an index of predation

intensity, fox density as a measure of competition, and

both current and previous year’s annual rainfall. Past

rainfall, a proxy for vegetative conditions and their

effects on fox food supplies, was expected to have

positive effects on fox survival (Dennis and Otten 2000),

while current year’s rainfall was expected to decrease

survival by reducing foraging opportunities during

extended storms (Roemer 1999) or increasing risk-taking

subsequent to storms (H. Swarts, personal observation).

We included rainfall in our models as a categorical

variable to distinguish the effects of large El Niño-

Southern Oscillation (ENSO) events (annual rainfall

. 80 cm), which occurred in 1994 and 1997, vs. more-

normal rainfall years. We also tested for effects of

ENSO events in the previous year. We evaluated a linear

density term with and without a quadratic term to

examine for possible Allee effects (Angulo et al. 2007).

We tested each covariate separately for interactions

with island, island group (northern islands of San

Miguel, Santa Cruz, and Santa Rosa vs. southern islands

of San Clemente, San Nicolas, and Santa Catalina) and

age, and also investigated whether environmental drivers

acted only on specific ages or geographic locations, as

suggested by a priori biological knowledge. Specifically,

we suspected that current year’s rainfall might increase

mortality only in the northern islands where rainfall is

higher while previous year’s rainfall might increase

survival only in the southern islands where rainfall is

lower (Table 1). Similarly, any of the constraints might

act disproportionately on pups because they have lower

survival and are presumably more vulnerable to mortal-

ity factors in their first year (Roemer 1999). Finally we

accounted for the number of foxes killed in 1998 and

1999 on San Clemente Island as part of a control

program implemented to protect the endangered San

Clemente Island Shrike. Our approach to building

ecological driver models started with screening each

potential driver for interactions with location and age in

a total of 42 model forms, then using the best supported

structures for individual drivers when building multi-

driver models. We refit a subset of multivariate models

with different univariate structures to test the validity of

this approach. Finally, we assessed the information

gained by including or excluding each of the four drivers,

resulting in 15 model combinations (Appendix).

We also fit models with other forms of environmental

drivers, but these consistently yielded poor or biologi-

cally implausible fits, so we only briefly discuss them.
These drivers include: rainfall as a continuous variable; a

two-year lagged rainfall effect; an eagles 3 year

interaction to test for changes in the effects of eagles
on foxes over time, which might occur if foxes evolved

behaviors that reduced predation risk (Roemer et al.

2002); an eagle3density interaction, which would occur

if eagles exhibited a functional response to foxes
(Holling 1959, Angulo et al. 2007); and, finally, the

effects of grid-specific habitat differences. Grid-trapping

data provided little basis for investigating habitat effects
due to the limited spatial coverage, so we also assessed

the effect of cover in the home range of radio-collared

foxes on Santa Cruz Island from 2000 through 2004
using a Cox’s proportional hazard model to identify

predictors of survival time for individuals (Proc PHREG

[SAS Institute 2005]). We found no support for a cover

effect, likely due to the coarse mapping of habitat
currently available, the small-scale patchiness and

interspersion of habitat types, or, least plausibly, the

lack of real effects on fox demography.

For breeding probabilities, we used logistic regression

(SAS Proc Logistic) to compare models in which the

likelihood of breeding varied fully by age, location, and
time, as well as a series of reduced models. We

approached model selection for mean litter sizes

similarly (using SAS Proc GLM), but we did not look
for age-specific variation because previous analyses

based on the same data found no such differences

(Roemer et al. 2001b). While we also investigated

ecological driver models, there was poor support for
these models and inconsistent relationships between

environmental factors and reproductive performance,

probably because the data set was relatively sparse and
imprecise (Miller et al. 2003). As with survival analyses,

we used AICc weights as a measure of model support.

We used analysis of deviance techniques to quantify
the explanatory power of the ecological driver models

(Skalski et al. 1993, Altwegg et al. 2003). This approach

compares the proportion of overall variance in survival
rates explained by an ecological driver model relative to

that explained by a model with categorical year, grid,

and island effects. We made these comparisons in two

ways. First, we quantified the variance explained by
different ecological driver models relative to a global, or

fully parameterized categorical effects model, which

essentially provides the best fit possible to the data:

DevðConstÞ � DevðDriverÞ
DevðConstÞ � DevðGlobalÞ : ð1Þ

Here deviance (Dev) is twice the negative log-likelihood,

a measure of model fit (low deviance indicates better fit),
Driver is the ecological driver models, Const is an

intercept-only model, and Global is the global categor-

ical effects model with variance by age, location, and

time. We also used a second analysis to more specifically
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assess the proportion of variance explained by tempo-

rally varying ecological drivers relative to that explained

by fitting a distinct categorical effect for each grid and
year, controlling for all other factors. To achieve this we

used the following equation:

DevðEffectsÞ � DevðEffectsþ DriversÞ
DevðEffectsÞ � DevðEffectsþ Grid 3 YearÞ : ð2Þ

Recalling that ecological driver models consist of

categorical effects (e.g., age, marked year) and ecological

drivers, either in additive or interactive forms, the Driver

model from Eq. 1 above can be expressed as Effects þ
Drivers. Thus, here we include the same categorical

effects (Effects) in each model and assess the reduction

in deviance attained fitting a driver model (Effects þ
Drivers) to that achieved fitting a time-varying model

that includes these categorical effects along with distinct

effects for each grid and year (Effects þ Grid 3 Year),

both relative to a time-constant model that includes only
these categorical effects (Effects).

Process variance

For any given time series of demographic data,
observed year-to-year variance is approximately the

sum of within-year sampling variance, a measure of

uncertainty in measured rates, and true temporal, or
process, variance. Thus, to estimate process variance,

the directly estimated temporal variance should be

discounted for the effects of sampling variance (mean

rates also require adjustment; see Kendall 1998, White
2000, Morris and Doak 2002 for further discussion). We

used random effects models in Program MARK to

estimate the age- (i ) and grid- ( j ) specific process
variance, Gij using the global model (White 2000, White

et al. 2001, Burnham and White 2002); we summarized

the overall global process variance for each age class, Gi,

as the mean of these separate grid-specific estimates
weighted by the inverse of the sampling variance of the

estimate for each grid (Zhang 2006). To ensure that the

population models based on ecological drivers account-
ed for the full global process variance, we estimated the

unassigned age-specific temporal process variance, Ui, as

the weighted average difference (Zhang 2006) between

the process variance estimates of the global model, Gij,
and those of the covariate models, Cij. We estimated Cij

as the simple variance of estimated rates across all years

for each grid. For the purposes of the PVA model, we
expressed each unassigned process variance, Uij, as a

proportion of the maximum possible variance, which for

a survival rate is set by the mean, S̄ (i.e., S̄[1 � S̄ ])
(Morris and Doak 2004; see Simulation methods: Adding
unassigned process variation). Our overall estimate of Vu

(unassigned process variance as a proportion of the

maximum possible variance) for each age class was the
mean of the grid-specific Vu values, weighted by the

inverse of the sampling variance of the estimate for each

grid (Zhang 2006). Process covariance between age-
specific survival rates was imposed by covariance in the

fitted coefficients of the logistic functions that predict

survival rates. We estimated covariance between other

demographic rates as appropriate.

Parameter uncertainty

Uncertainty, or sampling variance, was estimated for

all parameters in each of the best-fitting models for

reproduction and survival. For the regression coeffi-

cients of the logistic survival models, we used estimates

from the sampling variance-covariance matrix produced

by Program MARK, which relies on central difference
approximations to generate the Hessian matrix and

inflates values to account for overdispersion by multi-

plying by
ffiffiffi

ĉ
p

(White et al. 2001). We estimated

uncertainty in each grid-specific proportional unas-

signed survival process variance for each age class, Vuij,

using a standard variance decomposition approximation

(i.e., a delta approximation) as

varðVuÞ ¼
varðGÞ þ varðCÞ
ðS̄� S̄

2Þ2

" #

þ ðG� CÞð1� 2S̄Þ
ðS̄� S̄

2Þ2

" #2

varðS̄Þ ð3Þ

for each grid 3 age combination (subscripts omitted for

clarity). We do not include covariance of G, C, or S in

this approximation, as our model-fitting does not yield

estimates for these terms and because there is no reason

to expect any appreciable covariance to exist. Compo-

nent variances were estimated using standard theory

(i.e., var(S ) [White 2000]; var(G), var(C) [Doak et al.
2005]). Variance of the overall Vu estimate for each age

class was estimated as the inverse of the sum of the

inverses of these grid-specific variances (Zhang 2006).

Estimating bias in apparent survival estimates

A widely known problem with survival rates derived

from simple mark–recapture analyses is that permanent

emigration is unaccounted for and can act to inflate

mortality rate estimates (Conn et al. 2005). While the

degree of bias may be negligible for highly philopatric

species or studies extending over large areas, for island

fox data, emigration may result in substantial bias due

to the small size of grids relative to home range size, as is

supported by the observation of an inter-grid movement
rate ranging from 0% to 10% of animals captured on a

grid (mean 0.6%). Over the broad range of densities seen

in foxes, this bias is likely to change as a result of density

effects on movement distances and probabilities. Our

survival models ultimately predicted strong positive

density dependence at low densities, in marked contrast

to both the known natural history of island foxes and

recent observations that very small and low-density

reintroduced populations have maintained high survival

rates (based on telemetry data, on San Miguel Island,

where densities were less than ;1 adult fox/km2, and

annual survival exceeded 86% for 2 years) and can

VICTORIA J. BAKKER ET AL.84 Ecological Monographs
Vol. 79, No. 1



increase rapidly in the absence of eagle predation (V.

Bakker, unpublished data). Because the presence of

transients in the sample can decrease apparent survival

rates, increases in transients at low densities could

produce this apparent positive density dependence.

However, we included a transient class in our survival

models, and the effect persisted.

To address this problem, we developed a new method

to estimate emigration rates and correct for bias in our

survival estimates. Some techniques have emerged

recently to account for permanent emigration with

mark–recapture data by combining data types or

pooling data from different sites. Joint models, for

example, use dead recovery or live resight data from

outside the study area to estimate fidelity, and multistate

models use data from multiple sites to estimate

movement (Williams et al. 2002). As is commonly the

case, we lacked adequate data to parameterize either of

these model types (Conn et al. 2005). Nonetheless, we

had relevant ancillary data, density estimates from daily

trapping records (vs. survival estimates from annual

trapping records), which were essentially independent

and could be used to assess whether predicted densities

based on survival models match those actually measured

or whether an adjustment factor was supported. To

accomplish this, we compared the annual rate of

population change estimated from adult densities for

each grid to rates estimated from demographic models

built with our survival and reproduction parameter

estimates coupled with a survival rate modifier function

that re-assigns some natural (non-eagle-caused) appar-

ent mortality to survival (i.e., emigration).

For each of the best ecological driver models of

survival rates and the best estimates of breeding rates

and litter sizes, we constructed a separate matrix model

for each jth grid 3 year combination:

Mj ¼
0:5S1modB1L 0:5S2modB2L

S1mod S2mod

� �

ð4Þ

where B1 and B2 are breeding probabilities, L is mean

litter size, and S1mod and S2mod are modified survival

probabilities for pups and adults, respectively (all equal

to best estimates for the jth grid 3 year, subscripts

suppressed for clarity). Apparent survival probabilities

were modified by adjusting the natural, non-eagle

survival rate upward. Specifically, Sijmod ¼ SijE(SijN þ
F ), where SijE is one minus the risk of eagle-caused

mortality for stage i in the jth grid 3 year, SijN is the

corresponding apparent survival rate accounting for all

other mortality sources (all estimated from ecological

driver models), and F is the modifier function that

reassigns some part of apparent mortality to survival.

We used the same modifier function for both pups and

adults, as we have no additional data with which to fit

stage-specific functions or parameters.

We initially evaluated three sets of modifier functions

that differed in the maximum amount of apparent

mortality that could be reassigned to survival. We

present results for those in which

Fj ¼
d5:9ð1� SjNÞ
ð1þ expb1þb2Dj Þ ð5Þ

and for reduced models in which one of the coefficients

b1 or b2 is set equal to zero; Dj is the density in the jth

grid3 year and d5.9 is a binary control variable equal to

1 if densities were less than 5.9 adult foxes/km2, the point

at which estimated apparent survival is at its maximum

(Smax), and equal to zero otherwise. We used the d5.9
parameter to limit operation of the modifier function

only to the low densities where apparent positive density

dependence operated. We tested other model forms in

which (1 � SjN) was replaced with either the difference

between apparent survival at a given density and Smax,

or between apparent survival and a linear bound running

between f5.9 foxes/km2, Smaxg and f0, 1g. Results from

these alternative models are qualitatively identical and

quantitatively extremely similar to those of the first set

of models. Finally, we only present model fits for the

northern islands. Model forms that applied to all islands

or modified survival rates for high as well as low

densities were uniformly less well supported.

Our approach to parameter estimation and model

choice for the modifier function relies on a comparison

between population growth estimates, kMj
, obtained

from the population matrices Mj, built with the modifier

functions (Eqs. 4 and 5), and those from the growth rate

estimates arising from grid densities, kdj
. For each

modifier function and its associated bj parameter values

we obtain a mean estimate, kMj
and an estimated

variance, Var(kMj
), for each year 3 grid. Var(kMj

) arises

from uncertainty in the survival and reproductive rates

and was estimated using a delta approximation. Note

that in making these kMj
estimates, we are implicitly

assuming that in each year foxes in a grid are at the

corresponding stable stage distribution (SSD) for that

year’s transition matrix. We eschewed the empirical

stage distribution because the variable timing of grid

trapping relative to parturition and the comparatively

small number of pups captured each year make

empirical estimates of stage distributions both imprecise

and biased to an unknown degree. Given this problem

and the relatively limited variance in likely stage

structures, we accepted the SSD assumption as reason-

able. To obtain a likelihood, ‘, for Fj for a given year 3

grid transition we used normal probability density

functions (pdf) to predict the corresponding kdj
value,

which has its own uncertainty, var(kdj
), arising from

uncertainty in density estimates. The likelihood of each

Fj in the presence of var(kdj
) requires integrating over

the range of possible kdj
values:

‘ðkdj
; varkdj

jkMj
; varkMj

Þ

¼
Z þ‘

kj¼0

pdfðkjjkdj
; varkdj

ÞpdfðkjjkMj
; varkMj

Þdkj:
ð6Þ
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We used Matlab’s symbolic math capabilities to solve

this integral directly and sum the logs of the resulting
likelihood values for each transition to obtain an overall

negative log likelihood for each of the two best
ecological driver models for survival rates. We then

used a minimization routine to find the maximum
likelihood estimates of the parameter values for each
modifier function and compared the functions using

AICc values and also the biological plausibility of the
different predictions.

We also performed a check on this fitting procedure.
Eq. 4 and 6 assume no estimation covariance either

between or within the sets of kdj
or kMj

estimates, but
both do, in fact, have substantial covariance structure.

Both covariance matrices, however, are large and
singular, making general formulae for the estimation

of multivariate normal probabilities unworkable. To
obtain an estimate of model fit that still considered

covariance structure, we performed a simulation in
which we drew 1000 values from the multivariate

distributions of both kdj
and kMj

(while estimating
multivariate pdf values of singular covariance matrices is

difficult, selecting sets of random values in this situation
is straightforward). For every combination of kdj

and

kMj
values selected, we calculated the Euclidean distance

in multivariate space as a measure of predictive accuracy
and took the average of these distances over sets of

lambda values as a measure of overall model fit. Using
this metric to find the best parameters for the modifier

function gave results that closely matched those of our
more formal likelihood calculations and thus we

proceeded with our initial approach that ignored
covariances.

DEMOGRAPHIC ANALYSIS RESULTS

Environmental drivers and model selection uncertainty

The best model structure for recapture probabilities,
Pre, included only a location effect, with differences

between San Miguel Island and all other islands, and a
positive response to trapping (trapresp), in which Pre

increased for foxes captured in the previous year

(Appendix). We considered our global model to be one
in which survival rates, /, varied by grid, year, age, and

marked year but Pre took its most parsimonious form
/(grid 3 year 3 age 3 markedyear), Pre (miguel þ
trapresp) hereafter, Global model). We used this
reduced parsimonious form for Pre due to the large

number of unidentifiable parameters if Pre varied
temporally, the limited a priori basis for suspecting

substantial temporal variation in Pre, which integrates a
week of trapping effort, and the absence of support for

such a highly parameterized model. Simulations, which
excluded trapresp and are thus conservative, did not

support rejecting the null hypothesis that the model
adequately described the data (P ¼ 0.07) and indicated
only minor overdispersion (ĉ ¼ 1.10).

Using the most parsimonious structure for Pre, the

best categorical effects structure for survival rates varied

by island and year and included marked year as an

additive effect /(isl 3 yearþmarkedyear), Pre (miguelþ
trapresp). The marked year effect indicated lower

apparent survival rates during the year following first

capture and marking for both pups and adults. This

pattern is likely attributable to the presence in the

sample of transients captured once and never recap-

tured; the effect on survival estimation of transients

moving out of the study area is identical to and

indistinguishable from true mortalities.

Ecological driver models were initially built on the

basic structure of this best categorical effects model (i.e.,

/(islþmarkedyear and drivers), Pre(miguelþ trapresp)),

with drivers considered as both interactive and additive

effects. In univariate screening, models without island

effects were also considered because one covariate,

density, was grid-specific and might explain location

effects adequately. In addition, because of the relatively

high support for age effects and their potential

importance to understanding population behavior, we

also considered age effects in driver models. The best

covariate forms identified in univariate screening were: a

linear additive eagle effect (egl), linear and quadratic

density effects with interactions by island group (i.e.,

density þ density2 þ density 3 southern þ density2 3

southern: this model is denoted as dns), current year’s

ENSO event acting only on pups in the northern islands

(i.e., ENSO 3 northern 3 pup, denoted enso), and

previous year’s ENSO event with location-specific

interactions (i.e., previous ENSO þ previous ENSO 3

southern, denoted penso). Age effects improved support

for all covariate models significantly while island effects

reduced support; thus, we included the former and

excluded the latter in all multivariate model building.

All of the best ecological driver models included a

strong negative effect of eagle numbers. We refer to the

units for this effect as eagle equivalents (EEs) to indicate

a mortality rate equal to that caused by one eagle using

space and employing predation behaviors comparable to

those of the original colonizers for which we have data.

Although it is not surprising that eagles have a

consistently strong negative effect across all models

considered, multivariate model building using Program

MARK allowed us to quantify the strength of eagle

predation while accounting for all other supported

effects. Mean annual mortality rates corresponding to

one EE are 0.033 6 0.0005 (mean 6 SE) for pups and

0.021 6 0.0004 for adults, across a range of densities of

0.1–12.0 adult foxes/km2 and of number of eagles

present of 1 to 10 (because eagle effects are part of a

multivariate logistic function, the relative per eagle risk

varies as a function of other all other parameters in the

model).

All the best models also included positive linear and

negative quadratic terms for density (Appendix, Table

3). Apparent survival rate increased with density up

until 5.9 adult foxes/km2 then declined (Fig. 3),

suggesting an Allee effect combined with negative
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density dependence. Most well supported models also

included a complex effect of previous year’s ENSO that

was negative in the wetter northern islands and positive

in the drier southern islands, and many included a

negative ENSO effect on pups in the northern islands

(Table 3). Because there was strong support for a

negative effect of the lethal control program on San

Clemente Island, all models included this effect as a

nuisance parameter. The two best supported models for

survival probabilities using ecological drivers accounted

for over 90% of the QAICc weight (Appendix; Table 3)

and provided good matches with the island- and year-

specific predictions of the best categorical effects model

(Fig. 4). Drivers in the best supported models explained

;52% of the variance accounted for by the year effects

in the best categorical effects model and ;39% of overall

variation (Table 4).

The two best models for breeding probability

suggested differences by island and age, either additively

or interactively (cumulative AICc weight¼0.71, Tables 5

and 6), but there is some support for a third model in

which breeding probability varies by age only (AICc

weight¼ 0.16). Litter sizes appear to be constant across

space and time (AICc weight ¼ 0.58), although there is

support for a model in which litter sizes vary by island

(AICc weight ¼ 0.26; Tables 6 and 7).

Process variance and parameter uncertainty

The maximum likelihood estimate (MLE) for global

process variance, G, was 0.029 for adults and 0.036 for

pups. The estimated process variance of the best

ecological covariate models, C, was 0.013–0.014 for

adults and 0.010 for pups. Thus driver models accounted

for a weighted mean of 52% of the process variance for

adults and 34% for pups. The mean survival probabilities

of the global model were 0.640 6 0.045 for adults and

0.426 6 0.035 for pups, and the maximum possible

TABLE 3. Regression coefficients and standard errors (SE) for logistic functions to estimate
annual survival probabilities based on environmental drivers.

Variable

Model 1 Model 2

Estimate SE CV Estimate SE CV

Intercept 0.586 0.284 0.485 0.601 0.284 0.473
Marked year �0.464 0.120 0.259 �0.455 0.120 0.263
Pup �0.253 0.162 0.639 �0.318 0.157 0.492
Eagle �12.041 2.060 0.171 �12.240 2.028 0.166
Density 60.700 11.801 0.194 60.122 11.520 0.192
Density2 �5.002 0.982 0.196 �5.075 0.965 0.190
Previous ENSO �0.720 0.327 0.454 �0.628 0.320 0.509
Previous ENSO 3 southern 1.215 0.420 0.346 1.115 0.413 0.370
ENSO 3 northern 3 pup �0.931 0.548 0.589

Notes: Coefficients are shown for the two best ecological driver models, which comprise 91% of
the cumulative quasi-AICc (QAICc) weight for all driver models considered. Eagle number, fox
density (no. adults/km2), and (fox density)2 were rescaled by dividing by 100 to aid in numerical
convergence. ENSO is the binary variable indicating an El Nino-Southern Oscillation (high
rainfall), and previous ENSO is the occurrence of an ENSO event in the previous year.
Proportional QAICc weights, which rescale original QAICc weights to sum to 1 and indicate the
probability of selecting each model in simulations incorporating model selection uncertainty, were
0.62 (Model 1) and 0.38 (Model 2).

FIG. 3. Relationship between island fox survival probabil-
ities and densities and the effect of a modifier function to
correct for emigration off study grids, based on the best-
supported models. Annual apparent survival estimates (dotted
lines for adults, dashed lines for pups) and modified true
survival rate estimates (solid lines) are shown for adults (thicker
lines) and pups (thinner lines) for Santa Cruz Island (a) in the
absence of ENSO events and with no eagles present, and (b)
with the median number of eagles present during the population
crash (13).
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process variances defined by these means were 0.231 and

0.245, respectively. Based on the difference in process

variance between the global and ecological driver models,

the weighted mean unassigned variance as a proportion

of this maximum, Vu, was 0.046 6 0.021 (model 1) and

0.048 6 0.020 (model 2) for adults and 0.093 6 0.030

(model 1) and 0.094 6 0.030 (model 2) for pups.

We did not estimate process variance for reproductive

rates because neither breeding rates nor litter sizes varied

by year (Tables 5 and 7). Similarly, we did not estimate

covariance between survival and reproductive rates,

given the lack of process variance in the latter.

Estimating bias in apparent survival rate estimates

We found the strongest support for a logistic modifier

function that contained a direct density effect but no

constant term (Table 8). The predictions of this model

result in essentially no change in survival until quite low

densities are reached (Fig. 3). At these low densities, the

model corrected the predictions of extremely low

survival rates, which are not in accord with observed

growth of recent low density populations, and reduced

but did not entirely eliminate the apparent Allee effect in

survival estimates.

The next best modification model (with no direct

density effect) has extremely small impacts on survival

(results not shown); while this model has an AICc weight

of 0.392 it does not correct the mismatch between the

apparent survival and model predictions. Given the

lower biological plausibility of the second best model,

and the poor power of our data set to distinguish

between models that differ in low density predictions

(only a small number of grid by year combinations for

which we have data were at low densities: 1 case with

density �1.0 foxes/km2 and 7 with density � 1.5

foxes/km2, out of 73 total cases), we used only the best

supported model in our PVA simulations.

FIG. 4. Comparison of estimated survival probabilities from the best categorical effects model, /(isl3 yearþmarkedyear), Pre

(miguelþ trapresp), and the best ecological driver model, /(ageþmarkedyearþ eglþ dnsþ pensoþ enso), Pre (miguel), for two
islands and two age classes (see Table 2 for definition of symbols), where isl is island (Santa Cruz, San Miguel, San Nicolas, San
Clemente), year is year of trapping, markedyear is a dummy variable indicating first year an individual was captured, miguel is a
dummy variable indicating San Miguel Island, trapresp is a dummy variable indicating captured in previous year and used to model
behavioral trap response, egl is estimated number of eagles present on the island, dns is density of adult foxes at annual summer
surveys with a quadratic term and interactions by island group, enso is current year’s ENSO event acting only on pups in the
northern islands (i.e., current ENSO3northern3pup), and penso is previous year’s ENSO event, with interactions by island group
(i.e., previous ENSO, previous ENSO 3 southern).
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The final step in our analysis was a direct search to

define the likelihood surface for the single parameter

value of the best modifier model for each of the two

apparent survival models. The resulting surfaces, which

quantify parameter uncertainty for the modifier, are

highly asymmetric (results for the best apparent survival

model shown in Fig. 5), and are skewed toward values

that apply lower correction factors.

POPULATION SIMULATION METHODS

Basic model structure and demographic rates

Our models delineate four classes of foxes, defined by

sex and two age-classes: pups and adults. The popula-

tion matrix (Caswell 2001, Morris and Doak 2002)

defining the average dynamics of the population

assumes that each annual census occurs directly after

spring reproduction:

female
pups

female
adults

male
pups

male
adults

M̄ ¼

0:5S1modB1L 0:5S2modB2L 0 0

S1mod S2mod 0 0

0:5S1modB1L 0:5S2modB2L 0 0

0 0 S1mod S2mod

0

B

B

B

@

1

C

C

C

A

:

ð7Þ

Here, S1mod and S2mod are the annual survival rates of

pup and adult foxes, respectively; B1 and B2 are the

probabilities of pup and adult females breeding in each

year, and L is the mean litter size for all breeding

females.

Survival probabilities for pups and adults for each

year of each simulation were initially determined using

one of the two best ecological driver models for survival,

given a constant number of eagle equivalents, simulated

random rainfall, and adult density. We accounted for

potential transients by discounting the marked year for

adults, thereby limiting survival estimation to known

TABLE 4. The proportion of overall variance explained by
survival models using ecological drivers as covariates.

Covariate models

Overall variance explained
by covariate models

Ecological drivers
vs. global model

Ecological drivers
vs. year effects

/egl dns enso penso 0.389 0.518
/egl dns penso 0.382 0.506
/egl dns enso 0.368 0.483
/egl dns 0.363 0.476
/egl enso penso 0.297 0.369
/egl enso 0.286 0.350
/egl penso 0.289 0.356
/egl 0.279 0.340
/dns penso enso 0.296 0.367
/dns penso 0.283 0.345
/enso penso 0.231 0.261
/penso 0.212 0.230
/dns enso 0.223 0.248
/dns 0.216 0.237
/enso 0.129 0.097

Notes: To assess the amount of overall variance accounted
for by ecological driver models, we compared the reduction in
deviance attained when fitting the ecological driver models
compared to a constant (intercept-only) model, relative to the
reduction attained by fitting the global model (comparison
denoted: ecological drivers vs. global model). To compare the
proportion of overall variance explained by ecological driver
effects relative to year effects controlling for all other factors,
we compared the reduction in deviance attained fitting a driver
model (age þ markedyear þ ecological drivers) compared to a
time-constant model with age and marked year effects only
relative to a model with age, marked year, and grid 3 year
effects (ageþmarkedyearþ grid 3 year) (comparison denoted:
ecological drivers vs. year effects). Models are listed in order of
descending QAICc value (see Appendix). Definitions of
variables: egl, estimated number of eagles present on the island;
dns, density of adult foxes at annual summer surveys with a
quadratic term and interactions by island group (southern vs.
northern; i.e., density, density2, density 3 southern, density2 3
southern); enso, current year’s ENSO event (rainfall . 80 cm, 1
July–30 June) acting only on pups in the northern islands (i.e.,
Current ENSO 3 northern 3 pup); penso, previous year’s
ENSO event, with interactions by island group (i.e., Previous
ENSO, Previous ENSO 3 southern).

TABLE 5. Comparison of logistic regression (SAS Proc Logistic) models predicting breeding probabilities, where ‘‘x’’ indicates
components included in a particular model.

Island Year Age
Island
3 year

Island
3 age

Year
3 age

Island 3
year 3 age AICc Delta AICc AICc weight

x x x 244.39 0.00 0.39
x x 244.77 0.38 0.32

x 246.17 1.77 0.16
x x x 248.87 4.47 0.04
x x x x 248.90 4.51 0.04
x x x x 249.88 5.49 0.02
x x x x x 251.17 6.77 0.01

x x 252.46 8.07 0.01
x x x x x 255.76 11.37 0.00
x x x x 257.46 13.06 0.00
x x x x x 257.56 13.17 0.00
x x x x x x 258.35 13.96 0.00
x x x x x x x 262.20 17.80 0.00
x 263.40 19.01 0.00

263.71 19.32 0.00
x 270.40 26.01 0.00
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residents. For pups, however, we took a conservative

approach in including the marked year effect in survival

rate estimates because of the potential for high

mortality during dispersal off the grid. These survival

rate estimates were then corrected for emigration by our

best density-dependent modifier function. Based on

reproductive rate analyses, we modeled breeding

probabilities and mean litter sizes as identical in all

years but with the supported spatial or age effects

(Table 6). We assumed based on limited evidence that

island foxes are unlikely to breed successfully in the

absence of an established mate. Although extra-pair

fertilizations are not uncommon (Roemer et al. 2001c),

females appear to have an induced estrus brought on by

intersexual social interactions (Asa et al. 2007). Thus, to

reduce the probability of female breeding in the

presence of mate limitation, we used a marriage

function based on limitation by the least abundant sex

(Caswell 2001). When the number of female pups

(N1Fem) and adults (N2Fem) exceeded the overall number

of males (NMale), we allocated males to adult females

first, such that breeding probabilities for pups (B1) and

adults (B2) were

B1;t ¼ B1

NMale;t � B2;tN2Fem;t

NF1;t

� �

ð8Þ

B2;t ¼ min ðB2Þ; B2 3
NMale;t

N2Fem;t

� �� �

: ð9Þ

We compared results using these functions to results

of additional simulations using the harmonic mean

marriage function and found no discernible differences.

Rainfall simulation

Because ENSO events are important drivers of

survival, we sought to model realistic rainfall patterns

on the Channel Islands to simulate variability in survival

rates. Much of the literature on weather simulation

begins with daily or even hourly rainfall records.

Instead, we focus on total annual rainfall, since data

on fox survival is taken at annual increments. Given the

high correlation between annual rainfall on the different

islands (Table 1), we used the 102-year record from

Santa Cruz Island to analyze rainfall patterns. These

data are normally distributed after a log-transformation

(P ¼ 0.655, Lilliefors test) and, surprisingly, show no

evidence of significant autocorrelation or patterning at

any lag up to 40 years using autocorrelations, partial

autocorrelations, or Fourier analyses (all P . 0.05).

Looking further, we found no graphical or statistical

evidence for positive autocorrelation in drought years or

negative autocorrelation between high and low rainfall

TABLE 6. Mean and sampling variance for breeding probabilities (probability that a female produces a litter) and litter sizes (mean
number of pups per breeding female) for models with the greatest AICc weight.

Parameter, model, and island Age Mean SE CV
Proportional
AICc weight

Breeding probability

Model 1: Island þ age þ island 3 age 0.446
Santa Cruz pup 0.429 0.089 0.207

adult 0.618 0.124 0.201
San Miguel pup 0.176 0.023 0.131

adult 0.571 0.039 0.068

Model 2: island age 0.340
Santa Cruz pup 0.346 0.048 0.139

adult 0.686 0.111 0.162
San Miguel pup 0.222 0.052 0.234

adult 0.541 0.010 0.018

Model 3: age 0.184
All pup 0.266 0.022 0.083

adult 0.586 0.034 0.058
Mean litter size

Model 1: constant 0.692
All all 1.92 0.119 0.062

Model 2: island 0.307
Santa Cruz all 1.731 0.148 0.085
San Miguel all 2.028 0.208 0.103

Notes: There was no process variance in either variable. Proportional AICc weights for these models rescale original AICc

weights to sum to 1 and indicate the probability of selecting each model in simulations incorporating model selection uncertainty.

TABLE 7. Model comparison for estimating mean litter size
(SAS Proc GLM), where ‘‘x’’ indicates components included
in a particular model.

Island Year
Island
3 year AICc Delta AICc AICc weight

�11.46 7.84 0.58
x �9.85 6.22 0.26

x �7.89 4.26 0.10
x x �6.67 3.04 0.05
x x x �3.63 0.00 0.01

Note: Data were for five years on two islands; n¼ 55.
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years, such as that produced by ENSO weather patterns.
We found identical results for a 144-year record of

annual rainfall from Los Angeles. Given these results,
we simulated Santa Cruz rainfall as a normal indepen-
dent, identically distributed (i.i.d) process. Based on our

survival analyses, we then converted rainfall to a binary
variable to indicate ENSO years (�80 cm), which occur
with a probability of 11% each year.

Unassigned process variance

Use of the logistic function to predict survival in
response to environmental covariates alone ignores the
remaining, unexplained process variance, but the best

approach to incorporating this unassigned variability
into PVA simulations is not well established. The most
obvious way to combine these two types of variability is

to first choose an expected survival rate, S̄t, using the
logistic function and then to use the estimate of
unassigned variability in combination with this mean

to pick a random, realized survival rate for that year.
But, this direct use of the estimated variability may
violate limits on the maximum variability possible for
random probabilities, as discussed above. Thus, in each

year of our simulations we pick random values for pup
and adult survival rates from beta distributions, using
for each a mean determined by the expected rate, S̃t,
estimated from our ecological covariate models, and a
variance estimated as Vu S̃t(1 � S̃t), which constrains
unexplained variability to be less than or equal to its

theoretical maximum in any year. This approach
assumes that as annual values of a survival rate increase
or decrease the unexplained variance, as a proportion of

maximum possible variance, remains steady. While we
do not have the data needed to test this assumption, it
represents a logical assumption about variance–mean
relationships for random probabilities (Morris and

Doak 2004). To evaluate the effects of this unassigned
process variance, we also ran simulations that did not
include unexplained variance in survival rates (Pu) or

included it in only adult or only pup survival rates.

Demographic stochasticity

In addition to annual environmental stochasticity in

survival rates, we also incorporated demographic sto-

chasticity in survival and breeding rates by picking

random binomial variates based on the mean rate and

numbers of individuals in each year and age class.

Similarly, we picked the sex of offspring using binomial

probabilities with mean of 0.5. We invoked demographic

stochasticity only when the numbers in any particular

age and sex class fell below 20 animals, as initial model

runs showed no significant changes in outcomes as a

result of this speed-enhancing simplification. We also

added minimal demographic stochasticity to total annual

births, using as each year’s realized rate a Poisson

deviate based on the product of the number of females

breeding and the annual expected value for litter sizes.

Model and parameter uncertainty

We ran four groups of models in order to compare

our results with those from previous analyses and with

assumptions made in simpler demographic PVAs. First,

we ran no-uncertainty simulations based on the single

best covariate model of survival probabilities, parame-

terized with the maximum likelihood parameter esti-

mates (Table 3), and, similarly, the single best model

structures and parameter estimates for breeding proba-

FIG. 5. Likelihood surface for the survival modifier
parameter, b2 (density coefficient) used to correct apparent
survival estimates to account for permanent emigration.

TABLE 8. Support for different survival modifier functions, F.

Modifier functions k

Ecological driver model

1 2

AICc AICc weight AICc AICc weight

d5.9 3 (1 � SjN)/(1 þ exp[b2Dj]) 1 13.35 0.45 15.09 0.45
d5.9 3 (1 � SjN) 3 b1 1 13.65 0.39 15.37 0.39
d5.9 3 (1 � SjN)/(1 þ exp[b1 þ b2Dj]) 2 15.47 0.16 17.20 0.16

Notes: Modifier functions were used to remove bias in apparent survival estimates at low
densities due to permanent emigration. AICc results arise from comparing population change,
kMj, based on demographic estimates for the jth grid 3 year to kdj based on 73 grid 3 year
estimates of adult density (Dj). Note that d5.9¼ 1 for Dj � 5.9 adult foxes/km2, and 0 otherwise; k
is the number of parameters in modifier function.
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bilities and litter size (Table 6). For each of these

simulations, we assumed a constant number of eagle

equivalents (i.e., constant eagle-driven mortality rates)

ranging from 0 to 10 EEs. Because we have no estimates

of how EEs or their effects on fox survival are likely to

vary through time, we did not incorporate annual

variation in eagle effects, above and beyond that created

by the unassigned variance estimated from the ecological

driver model. While these model runs include our best

estimates of the manifold environmental effects on fox

survival and reproduction, they do not account for any

uncertainties in these estimated effects.

We also ran three sets of simulations incorporating

either model uncertainty, parameter uncertainty, or

both. In model-uncertainty simulations, we selected

one of the two top survival models for each replicate

simulation in proportion to its AICc weight, and

similarly chose reproductive models for each replicate

from the best two (litter size) or three (breeding rate)

models using AICc weights (Tables 3 and 6).

For parameter-uncertainty simulations, we included

uncertainty in parameter values but not in model

selection by restricting ourselves to the best supported

survival and reproductive models but choosing different,

random sets of parameter values for each replicate run

to reflect imprecision in parameter estimation. For

survival models, we used the MLEs and approximate

covariance matrix for the parameters of the logistic

function and assumed a multivariate normal distribution

for the coefficients. For the single parameter of the

modifier function, which has a strongly asymmetrical

distribution, we randomly picked parameter values

bounded by the upper 95% likelihood confidence limit

(0.25) and by a lower bound of�6.0 (corresponding to a

minimal, 0.25%, change in survival rates at density¼ 1),

with each value chosen in proportion to its relative

likelihood. After picking a set of survival model

parameters, we reestimated the mean and variance in

proportional unassigned process variance, Vu, using the

estimated explained process variance from the covariate

model fit with these parameters (see Process variance):

this procedure accounts for the effects of the survival

model parameters on the estimation of assigned and

hence unassigned process variance relative to that of the

global model. For each set of parameters, we used the

reestimated mean and variance to choose a random

value for Vu to employ in the population simulation. We

chose random values for breeding rates from beta

distributions and for litter sizes from stretched beta

distributions (Morris and Doak 2002) based on a

maximum litter size of five (Moore and Collins 1995).

Finally, we introduced comprehensive uncertainty

into the PVA model in full-uncertainty simulations by

combining both model and parameter uncertainty. We

accomplished this by randomly selecting the survival

and reproductive models used for each replicate run,

using the model-uncertainty simulation methods de-

scribed above, and then introducing parameter uncer-

tainty into all variables of the selected models, according

to the parameter-uncertainty simulation methods just

outlined.

Screening for biological reality

Before using a parameter set to generate PVA

predictions, we first tested each set to ensure that the

incorporation of uncertainty did not result in biologi-

cally unrealistic population behavior. This is a simple

form of Monte Carlo filtering that has occasionally been

used in other ecological contexts (Van Winkle et al.

1997). We reasoned that in the absence of eagles or

ENSO events, low to moderate density populations

should be stable or growing on average. Thus, we

discarded parameter sets in which deterministic lambda

estimates were less than 1 at densities of 0.5 adult

foxes/km2. We did not screen for unrealistically high

growth rates because all k values were less than 1.6, even

when assessed at Smax. For models with full uncertainty,

screening to ensure biologically plausible behavior (i.e.,

growing populations at low densities in the absence of

any threats in average years) eliminated about 57% of all

potential parameter sets.

Simulation and analysis procedures

To help guide recovery planning for the fox, we ran

simulations to assess the relative risk of extinction for

different starting population sizes and numbers of

eagles. Adult density in year one was determined based

on starting population size, island area, and the stable

stage distribution of the basic matrix model (Eq. 7)

parameterized with the best-supported parameter val-

ues. Because short to medium-term risk analysis is most

important for fox management, we ran each simulation

for 50 years and used a quasi-extinction threshold of 30

foxes, set by the U.S. Fish and Wildlife Service island

fox recovery team (personal communication), to further

account for unidentified biological and sociopolitical

uncertainties.

Each set of parameters, whether it incorporated

model selection uncertainty, parameter uncertainty, or

both, was used for an entire 50-year trajectory. To assess

how much replication was needed to yield stable

estimates of probability of quasi-extinction (Pqx), we

compared predictions under a range of conditions and

replication levels. Using parameter sets with full

uncertainty, we assessed stability using the coefficient

of variation (CV) and range of extinction risk predic-

tions for ten replicate simulations at two EE levels (0

and 4) and two starting population sizes (100 and 400)

for Santa Cruz Island. In each replicate, either 100, 200,

500, 1000, 2000, 5000, or 10 000 random parameter sets

were used once. With full uncertainty simulations,

probabilities of extinction stabilized at 1000 replicate

parameter sets, at which point Pqx ranged �0.042 and

the CV of Pqx was �0.077. Running multiple simula-

tions with each parameter set (10, 20, or 50 times) had a

negligible effect on estimator precision. Thus, for all
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remaining analyses, we used 2000 replicate parameter

sets to obtain viability estimates.

Sensitivity analyses

In addition to our simulations of population dynam-

ics, we also conducted several analyses on the simple

deterministic matrix models that correspond to asymp-

totic population behavior at fixed densities. These results

are not designed to predict actual numbers or extinction

risks but rather to aid in the interpretation of the

stochastic behavior of simulated fox populations. For

these analyses, we constructed models for Santa Cruz

Island in the absence of ENSO conditions and without

mate limitation. These models simplify to female-only

matrices with two stages, pups and adults. We used these

models to estimate asymptotic growth rates (k) and also

to calculate their sensitivity and elasticity values

(Caswell 2001). We performed these analyses on

matrices built with one EE (to allow an evaluation of

sensitivity to eagle effects) at three fixed densities: 1

adult fox/km2 (low), 5.9 adult foxes/km2 (corresponding

to the highest k), and 11.4 adult foxes/km2 (correspond-

ing to k ¼ 1 or a stable population). Sensitivities for k
evaluated at this highest density are approximately

equivalent to the sensitivity of equilibrium numbers

(Caswell 2001). We performed these sensitivity analyses

both for aggregate vital rates, stage-specific survival and

reproduction (S1, R1 and S2, R2 for pups and adults,

respectively), as well as for the lower-level parameters

determining these vital rates.

We also investigated the sensitivity of stochastic risk

predictions to individual parameters used to determine

vital rates. Specifically, for each of 2000 parameter sets

incorporating parameter uncertainty, we simulated 500

futures, then regressed (SAS Proc Reg) arcsine-square-

root transformed extinction risk values on model

parameters and generated squared semi-partial correla-

tion coefficients (SSPCC) for each parameter. These

SSPCCs indicate the amount of total variance explained

by each variable above and beyond that accounted for

by all other variables. Because parameter sets reflect

actual parameter uncertainty, results indicate the influ-

ence of sampling variation in each parameter on

estimated extinction risk.

We performed two additional analyses to assess the

influence of parameter and model uncertainty on

population growth and viability estimates. To examine

how uncertainty altered the average performance of

populations and also the variation over time in

performance, we generated 500 k values for each of

500 parameter sets for each type of uncertainty, all

assuming a density of 5.9 and either 0 or 8 EEs. In

addition, to investigate the distributions of risk predic-

tions made by the individual parameter sets, which

underlie the overall risk estimated under different forms

of uncertainty, we summarized the results of 1000

replicate simulations for each of 1000 parameter sets

incorporating parameter uncertainty, model uncertain-

ty, both, or neither.

POPULATION VIABILITY ASSESSMENT

Deterministic behavior and sensitivity results

A fox population model with no uncertainty exhibits
weak positive density dependence and considerably

stronger negative density dependence in deterministic
k, a pattern that changes little with increasing eagle-

caused mortality rates (Fig. 6a, b). This negative density
dependence is strong enough to produce low-amplitude,

but sustained oscillations (Fig. 6c), indicated by the
slope of the stock–recruitment curve of ,�1 at the

equilibrium population density (see Fig. 6b, May 1976).
These deterministic, stable oscillatory dynamics are

important in interpreting the instability of population
numbers seen in our stochastic simulations (described in

the following section).
We next consider the sensitivity of k to stage-specific

survival and reproductive rates for deterministic models
estimated at three different densities (Fig. 7). At all

densities, the greatest sensitivity and elasticity values are
for adult survival rate, followed by pup survival and adult
breeding rate (Fig. 7). At densities corresponding to lower

k values (i.e., 1.0 or 11.4 adult foxes/km2), k is slightly less
responsive to reproductive rates than at densities where k
is high (i.e., 5.9 adult foxes/km2; Fig. 7a, b).

In contrast to the minimal effect of density on the

sensitivity of deterministic k to survival and reproduc-
tion, there are strong effects of density on sensitivity to

the underlying parameters that determine these rates
(Fig. 8). Most marked is the increasing elasticity of

population growth to the two density parameters at
higher densities. At a density corresponding to maximal

growth (5.9 adult foxes/km2), k has lowered sensitivity
to most survival parameters but a higher sensitivity to all

reproductive parameters (Fig. 8a). Nonetheless, when
assessed on the scale of elasticities, all but the density

parameters are little affected by changes in density (Fig.
8b). These results also show that the form and strength

of density dependence in survival rates is the most
important factor in understanding equilibrium numbers
for fox populations, as indicated by the sensitivity

results for k at 11.4 adult foxes/km2. At lower densities,
where current at-risk populations reside, the intercept,

which sets the mean survival rates prior to adding age
and ecological driver effects, also has relatively large

effects, as do adult breeding rates and mean litter sizes.

Stochastic results without uncertainty

Using only the best supported models for all

demographic rates, our PVA model produced realistic
population trajectories in the absence of uncertainty and

with no eagle predation (Fig. 9a). As foreshadowed by
our deterministic results, negative density dependence

interacts with stochastic variation in demography to
create substantial fluctuations in numbers for most

population trajectories. For starting population sizes
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�100, the risk of extinction over 50 years was low (;0)

for both Santa Cruz and San Miguel islands (Fig.

10a, c). At very low starting population sizes of 50,

extinction risk rose to 0.012 for Santa Cruz Island and

0.055 for San Miguel Island. Results were quite island-

specific at small population sizes, apparently due to the

higher breeding rates on Santa Cruz Island and the

greater densities with lower population numbers on the

much smaller San Miguel Island (Fig. 10, Table 6,

Model 1).

At starting population sizes of 100, 1–2 EEs had only

a slight impact on extinction risk for Santa Cruz Island

foxes, and populations initialized with 650 foxes

withstood up to 3 EEs without significant increases in

risk (Fig. 11a, c). Each additional EE, however, posed

substantial increased risk to fox populations and

extinction was a near certainty when EEs exceeded

FIG. 7. Deterministic sensitivity analysis results for basic
demographic rates, evaluated at three densities. Population
growth (a) sensitivities and (b) elasticities are shown for the
major vital rates of a deterministic fox matrix evaluated at three
adult densities: low (1.0), that resulting in the highest growth
rate (5.9), and that resulting in stable numbers (11.4). Matrices
were constructed for Santa Cruz Island and non-ENSO
conditions and with predation of a single eagle equivalent. Ri

is the age-specific annual female-only reproductive rate; Si is the
age-specific annual survival rate.

FIG. 6. Deterministic growth rate predictions for Santa
Cruz Island, in the absence of ENSO events and using the best-
supported model and parameter values: (a) population growth
rates as a function of adult population size and eagle
equivalents (EEs), with the double x-axis indicating corre-
sponding adult density; (b) a stock-recruitment curve (density at
time t vs. density at time t þ 1) with no eagle predation, with
dotted line showing points where density is identical from one
year to the next; and (c) illustration of stable oscillations in
deterministic fox dynamics for different starting population
sizes.
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seven. San Miguel Island fox populations responded

similarly to eagle predation, but showed an even

stronger influence of starting population size: starting

populations of 100 foxes tolerated no more than 2 EEs,

but at initial fox populations of 200 they withstood up to

5 EEs with minimal impact (Fig. 11e, g). Similarly,

predicted extinction risk decreased steadily as starting

population sizes increased on Santa Cruz Island in the

presence of moderate eagle predation (4 EEs, Fig. 10e),

but showed a threshold effect on San Miguel Island,

dropping from 0.472 to 0.007 when starting population

sizes increased from 100 to 200 foxes (Fig. 10g).

Accounting for uncertainty

Adding any type of uncertainty to simulations

changed extinction risk predictions, sometimes markedly

(Figs. 9–12). In the absence of eagles, uncertainty

increased predictions of risk at low population sizes.

For example, at starting population sizes of 50, the

addition of full uncertainty elevated risk predictions

from 0.012 to 0.049 on Santa Cruz Island and from

0.055 to 0.256 on San Miguel Island (Fig. 10).

Accounting for uncertainty, however, did not always

increase estimated risk. Instead, incorporating full

uncertainty narrowed the range of predicted extinction

FIG. 8. Deterministic sensitivity analysis results for underlying parameter values evaluated at three densities. Population growth
rate (a) sensitivities and (b) elasticities are shown for the low-level parameters governing survival and reproductive estimates of a
deterministic fox matrix evaluated at three adult densities: low (1.0), that resulting in the highest growth rate (5.9), and that
resulting in stable numbers (11.4). Matrices were constructed for Santa Cruz Island in non-ENSO conditions with a single eagle
present. For ease of display, the sensitivity and elasticity for the survival modifier are shown for the negative of the value b2 shown
in Eq. 5.
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risks associated with different levels of eagle predation

(Fig. 11). On Santa Cruz Island, uncertainty decreased

predicted extinction risk when EEs exceeded three and

increased predicted risk when EEs numbered three or

fewer at starting fox population sizes of 100; at starting

population sizes of 650, risk predictions behaved

similarly, but the cutoff point shifted to 5 EEs.

Uncertainty had a similar effect on San Miguel Island.

In general, when risk predictions ignoring uncertainty

exceeded a Pqx of about 0.50, accounting for full

uncertainty decreased predicted risk, and, conversely,

if uncertainty-free predictions fell short of 0.50, adding

uncertainty increased risk.

When fully accounting for uncertainty, even 1 EE

markedly elevates the extinction risk at low starting

population sizes of 100 on Santa Cruz Island (Pqx ¼
0.093), but at larger population sizes foxes tolerated the

long-term presence of two to three EEs while maintain-

ing similar predicted risk levels (Pqx¼0.041� 0.131; Fig.

11b vs. 11d). Likewise, on San Miguel Island, at low

population sizes of 100, 1 EE increased risk from 0.026

to 0.064 while at larger population sizes, extinction risk

remained below 10% (Pqx � 0.084) until more than 5

EEs were added (Fig. 11f vs. 11h). These results also

serve to illustrate the effects of numbers vs. density on

the tolerance of fox populations to eagle predation; a

starting population of 100 foxes on San Miguel Island is

equivalent in density to 650 foxes on Santa Cruz Island

(2.6 foxes/km2 in both cases), yet the larger island with

more foxes has considerably lower risk of extinction

when eagles are present (Figs. 10f vs. 10h, 11d vs. 11f ).

Conversely, for population sizes over 50 and moderate

eagle predation (�2 EEs), extinction risks are lower on

San Miguel than Santa Cruz island for the same number

of foxes present (Figs. 10f vs. 10h, 11b vs. 11f ).

The effect of different types of uncertainty varied with

the degree of eagle predation threat (Fig. 12). Full and

parameter uncertainty increased extinction risk when

eagle predation was low and decreased it in when eagle

predation was high, while model selection uncertainty

increased extinction risk only at moderate eagle preda-

tion. Cumulative extinction curves reflecting full and

parameter uncertainty were similarly shaped, and made

nearly identical quantitative predictions of risk, while

those reflecting model uncertainty corresponded closely

to curves that ignored all uncertainty, with comparable

FIG. 9. Population trajectories for island fox populations on Santa Cruz Island. Results are shown for 50 simulated futures for
starting total population sizes of n¼ 650 (density¼ 2.6 foxes/km2; at starting conditions, adults¼ 0.65 total) (a, b) in the absence of
eagle predation and (c, d) with the addition of six eagle equivalents. Contrast trajectories for these conditions with no uncertainty
(a, c) to those incorporating both model and parameter uncertainty (b, d). The quasi-extinction threshold was 30 for all runs.
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extinction risk predictions for most eagle predation rates.

In most cases, extinction risks rose more quickly and

reached an asymptote sooner for models that incorpo-

rated parameter and full uncertainty, relative to those

including model uncertainty or no uncertainty (Fig. 12).

Examining the patterns of mean and variance in

population growth rates and the distribution of risk

predictions from individual parameters sets with differ-

ent types of uncertainty helps to explain the varying

effects of uncertainty on viability results. Adding model

FIG. 11. Cumulative extinction curves showing the effects of 0–10 eagle equivalents (EEs) on the viability of fox populations on
(a–d) Santa Cruz and (e–h) San Miguel islands without uncertainty and with full uncertainty. Results are for 2000 replicate runs
with a quasi-extinction threshold of 30.

FIG. 10. Cumulative extinction curves for two islands at varying starting population sizes with and without uncertainty. Santa
Cruz is the largest island (250 km2) with foxes, and San Miguel is the smallest island (39 km2) with foxes. Results are for 2000
replicate runs with a quasi-extinction threshold of 30. Numerical labels on lines show total starting numbers, while the key indicates
the equivalent starting densities of foxes.
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uncertainty, parameter uncertainty, or both, progres-

sively and very substantially broadens the range of mean

maximal k between simulations and also its variance

across time (Fig. 13). It similarly broadens overall risk

predictions by individual parameter sets (Fig. 12). With

low eagle predation (Figs. 12a, b and 13a) more

uncertainty results in greater numbers of simulations

with low means and high variances in k, which put

populations at greater risk of extinction. In contrast,

with substantial eagle predation (Figs. 12d and 13b),

when parameters without uncertainty result in high risks

of extinction, adding uncertainty produces some simu-

lations that are relatively safe, with high enough mean k
and low enough variance in k to persist. Dissecting the

effects of uncertainty underscores the fact that our

overall extinction risk estimates summarize a range of

possible population behaviors, especially at intermediate

risk levels (e.g., Fig. 12).

Sensitivity analysis of stochastic models

Our analysis of how variation in different low-level

coefficients influences extinction risk shows markedly

different results than does the deterministic sensitivity

analysis for population growth (Figs. 8 vs. 14). Some of

these differences are due to parameters that only

influence the stochastic models (e.g., those governing

unassigned variance), but others are evaluated by both

methods. Most importantly, extinction risk is strongly

influenced by the survival modifier parameter, which has

a very modest deterministic elasticity value. Another

striking difference is the weak influence of parameters

governing density dependence of survival for extinction

risk, which contrasts with their large influence on

deterministic k. The differences in rankings of parameter

importance when assessed via partial correlation coef-

ficients and via deterministic sensitivity analysis arises

from several sources, including the differing response

variables (extinction probability vs. k), the omission of

density dependence from deterministic sensitivity results,

and the substantial stochasticity of fox dynamics.

However, a large component likely reflects a combina-

tion of the importance of parameters to extinction risk

(as in traditional sensitivity analysis) interacting with

uncertainty in our knowledge of these parameters. Thus,

relatively large uncertainty in the survival intercept and

survival modifier is reflected here (Fig. 14), but not in

traditional sensitivity analyses, where parameters are

varied only incrementally. Resolution of this uncertainty

is thus critical for better determination of population

viability. In contrast, while litter size and density effects

were clearly important to fox dynamics by traditional

sensitivity analysis, our parameter estimates are rela-

tively precise for these variables (Tables 3 and 6), and

thus they have less influence on variation in risk

predictions.

We also performed simulations to test the importance

of including unexplained variation in demographic rates

in our extinction risk calculations. We found that

omitting this variability greatly enhances the stability

of fox numbers (Fig. 15 vs. Fig. 9a, b). These results also
show that although population behavior is more

sensitive to factors influencing adult survival rates, the
greater value of Vu for pups means that inclusion of this

factor produces similar variation in fox numbers to that
of Vu of adults (Fig. 15a, d vs. b, e). With increasing
eagle numbers, however, the influence of unexplained

variability on dynamics is reduced, with most popula-
tions suffering rapid extinction regardless of the

inclusion of this effect (results not shown).

DISCUSSION

Implications for island fox recovery

The immediate goal of our work was to yield useful

guidance for management and monitoring of island
foxes by developing a realistic characterization of their

population behavior backed by careful analyses of all
available data. Parameterizing our simulations using the
survival rates predicted by ecological drivers such as

predation, conspecific densities, and weather produces
biologically plausible population trajectories. Popula-

tion sizes oscillate around previously published esti-
mates of carrying capacity for the islands (San Miguel

Island, 577 adult foxes; Santa Cruz Island, 1540 adult
foxes [Roemer et al. 2001a]), but are highly variable and

prone to occasional crashes due to the interactions of
negative density dependence with environmentally driv-

en variance in survival and reproduction. Because the
over-compensatory density dependence that creates

these dynamics occurs at densities higher than those in
our data sets, the functions we have fit and used may not

be entirely accurate. However, numerous anecdotal
observations (Holdredge 1954, Dawson 1990, Sheldon

1990a, b), prior assessments using live-trapping (Laugh-
rin 1980, Kovach and Dow 1985), and recent genetic
modeling (Aguilar et al. 2004) all indicate that fox

population sizes have exhibited dramatic fluctuations
historically, lending credence to these model predictions.

In spite of the predicted instability in fox numbers,
our simulations also suggest that these populations are

relatively safe from extinction risk once moderate
population sizes are reached and if Golden Eagle

predation is minimized. While we modeled numbers of
eagles present on the northern islands, we have taken

pains to refer to these as eagle equivalents or EEs to
emphasize that we are simulating the estimated per

capita impacts of eagles during the 1990s. We use EEs
rather than eagle numbers, despite the intuitive appeal

of the latter, because predator-prey dynamics have
almost certainly changed with alterations of this

ecological community, including the potential for
increased per capita eagle predation rates with the

decrease in the ungulate prey base across the northern
islands (Courchamp et al. 2003) or for decreased
predation efficacy with the acquisition of anti-predator

behaviors by foxes (Roemer et al. 2002). Use of EEs also
helps to emphasize the reliance of our model outputs on
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the past space use patterns of eagles. For example, when

our simulations suggest that populations of 200 adult

foxes on San Miguel Island could withstand the presence

of up to three eagles without significant increases in

extinction risk, this eagle number refers to the historical

impact of three eagles ranging throughout the entire

northern islands, not three eagles living and preying

continuously on San Miguel Island.

Our simulations suggest that fox populations exhibit

resilience to eagle predation on the order of a few EEs.

This does not offer island fox managers a reason to be

complacent, given both the historical difficulties in

finding and capturing Golden Eagles on the Channel

Islands and the rapid rise in predicted extinction risks if

eagle predation increases. However, it should provide

some comfort that once fox populations are of sufficient

size (which will differ by island), these avian predators

are unlikely to decimate fox populations if managers

maintain effective ongoing monitoring and control

measures for eagles. Currently, Golden Eagles are

thought to be present at very low levels in the northern

Channel Islands (;1 eagle), and a small reintroduced

population of 50 foxes on San Miguel Island had

increased to approximately 180 by 2008 (T. Coonan,

unpublished data), a size that represents relatively low

risk. On Santa Cruz Island, fox populations were

estimated at 207 adults in 2005 and 264 adults in 2006

(0.8 and 1.1 adult foxes/km2, respectively [Schmidt et al.

2007a]), approaching conditions of relative safety from

low rates of eagle predation. Interestingly, during 2005,

three eagles were known to be present and preying upon

a now intensively monitored fox population on Santa

Cruz Island, taking at least 14 and possibly as many as

19 adults based on recovered carcasses of radio-collared

and unmonitored foxes, resulting in a simple eagle

mortality rate on adults of at least 0.022–0.031,

consistent with the estimated rate of 0.027 for these

conditions based on our ecological covariate models.

Our compilation of a species-wide data set and our

approach to model building gave results that contrast

with some findings of previous PVAs for the island fox

(Roemer et al. 2001b, Kohlmann et al. 2005), but our

work also confirms some basic conclusions of these

analyses. Both previous analyses were applications of

the program Vortex (Lacy et al. 1995), which limited the

treatment of density dependence, ecological drivers, and

unexplained stochasticity in fox demography, and

prevented any systematic treatment of parameter and

model uncertainty. Perhaps the most substantial differ-

ence between these past analyses and our current model

is the greater flexibility to realistically assess population

risk in a wide range of environmental conditions, which

allows more refined management advice (Bakker and

Doak, in press). We also predict somewhat greater

extinction risk at low population sizes, suggesting a

more cautious criterion for population safety, especially

for small islands. For example, in their models for foxes

on Santa Catalina Island, Kohlmann et al. (2005)

predicted that a starting population size of 80 ensured

a 30-year extinction risk of 1% for the western end of the

island, while our results for the similarly sized San

Miguel Island predict a risk of quasi-extinction of 6% at

30 years for populations of 80. This difference likely

results from our modeling of substantial random and

also density-dependent variation in survival rates, which

were not included in the simulations of Kohlmann et al.

(2005). The simulations of Roemer et al. (2001b) are in

general more comparable to ours, and they emphasize

the importance of random variation in survival rates in

governing population viability, as do we. However, our

simulations generally show more safety at moderate

population sizes in the absence of eagles, even with the

inclusion in our models of parameter and model

uncertainties. These differences arise mostly due to the

flexibility we acquired to predict survival rates in the

absence of eagle predation using our ecological driver

models and to the importance of density-dependent

survival changes in shaping population dynamics and

hence extinction risk.

Taken together, integration of both ecological drivers

and uncertainty into this island fox PVA has increased

not only the realism of the models, but also their

practical utility for management. Quantifying and

incorporating the impact and uncertainty of the fox’s

current primary threat, Golden Eagles, has facilitated

the comparison of relative extinction risks under a

variety of eagle management scenarios (Bakker and

Doak, in press). It has also aided in setting trigger points

for alternative fox management based on observed

eagle-driven mortality (Island Fox Recovery Coordina-

tion Group 2007). Finally, our approach has helped

focus monitoring plans (Rubin et al. 2007). Biologists

frequently recommend the collection of monitoring data

to update PVAs for rare species (Morris et al. 2002),

typically suggesting efforts targeted at the demographic

rates most consequential to population growth rate.

Here we show that to strengthen predictions of future

iterations of this PVA, monitoring and research should

also focus on parameters that exert a strong influence on

population dynamics and extinction probability through

a combination of high sensitivity value and large

estimation uncertainty. Notably, we find, as have others

(Ehrlén and Groenendael 1998, Benton and Grant 2000,

Wisdom et al. 2000), that deterministic sensitivity values

give very imperfect estimates of these overall importance

values. This poor performance of deterministic sensitiv-

ity results arises from at least three differences between

these analyses and the stochastic simulation analyses we

report (Fig. 14): density dependence, environmental

stochasticity, and parameter uncertainty. While the two

differences in model structure assumptions certainly are

important, our other results make clear that estimation

uncertainty is also a critical issue when analyzing the

importance of parameters for future dynamics. Not

coincidentally, the issue of how parameter uncertainty
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influences viability assessments is also a key concern in

prioritization of future research efforts.

Specific processes and parameters requiring further

investigation to reduce uncertainty and thereby refine

our understanding of risk for this species include density

dependence in both survival and reproduction. For

example, our PVA is built upon initial estimates of

apparent survival that show strong and apparently

unrealistic positive density dependence. While we

develop a method to correct these estimates, there are

still too few data for very low density populations in our

data set to make reliable predictions of survival under

these conditions, a problem that results in high

uncertainty in the control parameter for this survival

modification and consequently high sensitivity of model

results (Fig. 14). A recent study (Angulo et al. 2007)

reached different conclusions about density-dependent

processes in island fox populations, highlighting the

uncertainty and importance of this issue. Angulo et al.

(2007) found positive density dependence in survival,

but only when eagles were present (thus they attribute

this Allee effect to eagle predation) with no correspond-

ing negative density dependence at higher densities. Our

study used a larger data base and a comprehensive

survival analysis technique to separate effects of eagle

numbers (which historically increased as fox mortality

rose and densities declined) from the effects of density

on survival. We infer that positive density dependence in

apparent survival is most likely due to emigration, based

not only on this analysis, but also data indicating that

emigration is not uncommon and exhibits negative

density dependence, as well as mismatches at low

densities between annual changes in grid densities and

apparent survival estimates. Continued monitoring of

and research on now-recovering fox populations should

provide more information with which to address this

problem.

FIG. 12. The effects of incorporating different types of uncertainty into simulations of island fox population dynamics.
Horizontal bars are histograms of predicted quasi-extinction risk at 50 years from 1000 trajectories run for each of 1000 parameter
sets incorporating model uncertainty, parameter uncertainty, both (full), or neither (none). Histograms are binned by intervals of
0.1 on the y-axis and tallied on the upper x-axis. Lines show cumulative extinction curves (CEC) for 2000 50-year trajectories, each
consisting of a random draw from a parameter set that incorporates model uncertainty, parameter uncertainty, both, or neither
(i.e., identical to the approach used to generate Figs. 10 and 11). For CECs, corresponding time is on the lower x-axis, and
extinction risk is on the y-axis. All simulations were for Santa Cruz Island with starting population sizes of 100 and four levels of
eagle predation: (a) 1 EE, (b) 2 EEs, (c) 3 EEs, and (d) 4 EEs, all with a quasi-extinction threshold of 30.
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Identifying relationships between habitat and fox

densities or, minimally, understanding variation in

densities across islands, may also refine our estimates

of fox viability. Historical grids may have been sited in

areas of higher fox densities and yet our models assume

uniform densities and processes across each island. For

some islands, especially those with considerable habitat

variation such as Santa Cruz, our models are likely to

overestimate equilibrium population sizes. Nonetheless,

considering the general similarity in predicted tolerances

of EEs between populations on large and small islands

and the lower risk for populations on smaller islands for

any given population size, we do not expect any

overestimate of equilibrium numbers to substantially

bias risk predictions downward. Finally, our analyses

highlight adult breeding rates as a demographic

parameter that is both relevant to population dynamics

and imprecisely understood. Ideally, researchers would

identify important ecological drivers of breeding rates,

including the form and strength of any density

dependence (Angulo et al. 2007). While random

environmental drivers such as weather are unlikely to

alter risk predictions, differing strength or forms of

density dependence could increase or decrease extinction

risk, and in particular, an Allee effect in reproduction

could increase risk.

General implications for the construction

and analysis of PVAs

The broader goal of our work was to develop and

present effective methods for integrating advanced

demographic analysis techniques into population mod-

els, and in particular to aid others seeking to provide

guidance to managers that properly reflects variation

and uncertainty but that can also be presented clearly

enough to allow useful biological interpretation. One

major component of our analysis approach was to

identify important ecological drivers of fox demography

and then use these drivers to simulate more realistic

population dynamics. After eagle predation, density

dependence is the most important of these drivers of

demographic variation in foxes, and it is clearly critical

in understanding plausible population growth rates and

extinction risks for potentially fast-growing populations

such as these. Many PVA models, even for species with

similar life histories, do not include density dependence

(or feature only a ceiling on numbers), usually due to a

simple lack of data with which to estimate density-

dependent effects. We do not advocate including density

dependence in PVAs when there is no information with

which to parameterize these effects (Caswell 2001,

Morris and Doak 2002, Henle et al. 2004, Sabo et al.

2004). However, for species such as the fox, which over

even the short time horizons we modeled can grow from

small numbers to densities at which demographic rates

are substantially influenced by negative density effects,

at least some exploratory consideration of density

dependence is probably warranted in almost any PVA.

Certainly the dynamics we simulate here, including

extinction risk estimates under different eagle predation

rates and on different islands, could not be adequately

captured by models that ignored the strong density

dependence that appears to operate within island fox

populations.

ENSO events are the other major driver of temporal

variability in fox numbers. Here too, we found

significant effects, and an added complexity in the

negative effects of ENSO on survival specific to pups in

the wetter northern islands and variable effects of

previous year’s ENSO, being positive in the drier south

and negative in the wetter north. One key complication

that we anticipated but did not find was strong

autocorrelation in these weather events, a result which

should be of general interest to ecologists. We usually

FIG. 13. Mean and variance in peak annual k values by
uncertainty type. For each of 500 parameter sets incorporating
model uncertainty, parameter uncertainty, both (full), or
neither (none), 500 random annual population growth rates
were generated, all assuming an adult density of 5.9 foxes/km2,
and the means and variances of these k values are plotted.
Results are for (a) no eagle predation and (b) eight eagle
equivalents.
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assume that weather patterns discussed by climatologists

are directly relevant to the biological processes in which

we are interested, and thus that climate is essentially

always autocorrelated. In the case of the southern

California region, climate does indeed show substantial

evidence of long- and short-term correlations in rainfall

patterns (Ropelewski and Halpert 1986, Latif and

Barnett 1996, Dettinger et al. 1998). However, these

climate analyses typically describe temporally smoothed

data aggregated from weather stations arrayed over

large areas; the broad cyclicity seen in such data sets

may be exceptionally weak for a population living in any

particular locale. While many regional weather data sets

clearly show strong temporal patterning, our findings

suggest that ecologists should not assume that this

super-annual structuring of weather is a strong driver of

local population dynamics. This same reasoning also

suggests caution in our own use of rainfall data from

only a single island to characterize conditions for

multiple populations separated in space, based on

imperfect correlations. Island-specific, or even intra-

island-specific data, if available, might have revealed

clearer weather-driven patterns, including relationships

between demographic rates and continuous rainfall

rather than only extreme events.

While identifiable drivers of survival parameters are

crucial determinants of fox dynamics, an equally

important force is unexplained variability in demogra-

phy that cannot be tied to any of the measured

ecological drivers. This unaccounted-for process varia-

tion comprised 48% of the total estimated process

variance for adult survival and 66% for pup survival.

This unexplained variation can also be considered

another form of uncertainty, and as such, indicates our

lack of understanding of key ecological drivers control-

ling survival rates, especially for pups. Simulations that

ignored this variability resulted in far more stable

numbers (Fig. 15). Thus, while incorporation of

environmental drivers of demographic rates into PVAs

may improve their realism, this approach should not

supplant the simulation of stochasticity per se: random

variation in rates that we can estimate but can’t assign to

a cause. In this work, we have far more data with which

to isolate and estimate drivers of demographic variation

than are typical in PVA studies, so we would expect the

FIG. 14. Stochastic sensitivity analyses at two starting population sizes (100 vs. 650 foxes) and two eagle predation levels.
Shown are squared semi-partial correlation coefficients for regressing parameter values reflecting parameter uncertainty for the best
survival and reproductive models against probability of quasi-extinction Pqx based on 500 replicate runs for each random
parameter set. Results reflect a combination of the influence of each low-level parameter as well as its degree of uncertainty. Vu is
unassigned process variance as a proportion of the maximum possible variance.
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percentage of unexplained variation to be higher in

many other analyses for rare species.

The other broad class of complications we sought to

address is uncertainty in model form and parameter

values. Here too, we tried to build results of survival and

reproductive analyses directly into our PVA models.

Even for this well-studied species, uncertainty in

parameter values was substantial, resulting in strong

variation in extinction risk estimates between parameter

sets. In general, adding uncertainty into the structure

and parameters of population models tended to

moderate overall predictions of extinction risk, increas-

ing risks assigned to seemingly safe conditions (i.e., high

starting numbers and low Golden Eagle numbers) and

decreasing risks for apparently dangerous conditions.

For example, absent uncertainty, all simulated Santa

Cruz Island fox populations at moderate densities

quickly go extinct in the presence of eight EEs, but

with the addition of uncertainty, a small number of

populations persist. Similarly, without uncertainty, all

populations persist with three EEs, but with uncertainty,

a small number go extinct (Fig. 11c vs. 11d). While

adding full uncertainty interjects approximately sym-

metrical variability into estimates of mean k and its

variance (Fig. 13), the consequences of this variation for

viability estimates are usually asymmetrical. Despite a

decrease in mean k when accounting for full uncertainty

under an eight EE threat level, overall extinction risk is

reduced due to the increase in variance of k (Fig. 13):

some random parameter sets now produce more

pessimistic behavior, with no net effect on risk

predictions in these already pessimistic scenarios, but

some sets yield more optimistic behavior to reduce net

extinction risk. Conversely, without uncertainty, most

populations at larger starting sizes and low eagle

numbers persist. In this case, adding uncertainty creates

some simulations with even more optimistic parameters,

which don’t influence viability estimates, but others with

more pessimistic parameter sets that inject extra

extinctions into the estimates of overall viability (Figs.

9–11). This increased variance results in cumulative

extinction curves that asymptote more quickly for

simulations incorporating full or parameter uncertainty

in high risk conditions (Figs. 10–12).

Despite its moderating influence, by increasing the

risks estimated under safer conditions, uncertainty has

the practical effect of favoring more conservative

management for the endangered fox. Because even the

dampened risks of extinction posed by high EEs are

unacceptably high, only the increase in risks at low eagle

levels will meaningfully alter management options.

Thus, the net result of adding uncertainty is to increase

caution toward eagle presence, relative to PVA predic-

tions ignoring uncertainty. While this conclusion is not

unexpected, it is surprising how modest the effects of the

substantial uncertainty are for overall viability predic-

tions; careful inclusion of uncertainty did not doom the

PVA to make ridiculously dire predictions or otherwise

to lose its relevance for the guidance of management.

An even broader lesson from our work is that

uncertainty can be incorporated into the structure and

results of PVA models without making them substan-

tially more complex or confusing. While we have

presented many additional results and analyses here in

FIG. 15. Sample population trajectories to show the importance of including unexplained variation, Vu, in survival rates. Each
panel shows 50 simulated futures for starting total population sizes of n ¼ 650 (density ¼ 2.6 foxes/km2; at starting conditions,
adults¼ 0.65 total) on Santa Cruz Island in the absence of eagle predation, with panels differing in the inclusion of unexplained
variance and of uncertainty. The top row shows trajectories with no uncertainty while the bottom row includes full uncertainty.
Panels (a) and (d) show trajectories that exclude adult Vu, (b) and (e) exclude pup Vu, and (c) and (f ) exclude all Vu. Compare to
Fig. 9a, c for trajectories with unexplained variation in both adult and pup survival rates.
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order to illustrate the effects of parameter and model

uncertainty, simply presenting the results for models

with full uncertainty would suffice for a basic PVA to

more accurately reflect our understanding of population

behavior for species of concern. Thus, PVAs can

account for uncertainty without becoming hopelessly

difficult to understand or to present and in doing so can

address a key long-running criticism of the PVA

approach (Taylor 1995, Ludwig 1996, 1999, Beissinger

and Westphal 1998, White 2000, Coulson et al. 2001b,

Brook et al. 2002, Ellner et al. 2002, Ellner and Fieberg

2003, Harwood and Stokes 2003, McCarthy et al. 2003).

The comparison of extinction risk predictions from

simulations with different types of uncertainty suggests

that, at least for our system, parameter uncertainty is of

far greater importance than model uncertainty. While

we do not expect that model uncertainty will always

have such a minimal effect, we suggest that in most

circumstances its influence will tend to be smaller than

that of parameter uncertainty. When data are sufficient

to give strong support only to models with quite similar

structures and predictions, as in this study, then the

minimal effects of model uncertainty seem predictable.

With less informative data, models with very different

structures and predictions may have substantial support,

giving model uncertainty more influence over PVA

predictions. However, in these cases, parameter uncer-

tainty within each model is also likely to be high, again

reflecting the poor power of the data to resolve different

causal factors and their strengths. Overall, then, we

expect that parameter uncertainty will nearly always be

critical in shaping PVA results, even in cases where it is

unclear whether alternative model structures must be

investigated. For island foxes, model selection uncer-

tainty increased risk predictions because the best

supported models tended to be somewhat more opti-

mistic than less supported models, although this will not

always be the case.

A key part of our strategy to incorporate parameter

uncertainty into our PVA was to ‘‘screen’’ the resulting

models for a minimal level of biological realism. This

step is really an application of the general model testing

and building philosophies of information theory: we try

to limit the model forms we consider to ones that seem

at least somewhat plausible, based on our general

understanding of the study system (Van Winkle et al.

1997, Burnham and Anderson 2002). Thus, our screen-

ing criterion enforced a boundary on parameter

uncertainty in a manner analogous to truncating the

lower confidence limit on population size at the

minimum number known alive; one could also argue

that this approach follows directly from a Bayesian

philosophy of using prior data to inform parameter and

model estimation. Here, we apply this approach to

generating sets of parameter values to reflect uncertain-

ty. Ideally, our model forms and estimated parameter

uncertainties would constrain all resulting simulations to

have at least plausible behavior, but this ideal will not

generally be met in any demographic study. Thus, the

best solution appears to be the application of a relatively

simple criterion that ensures plausible population

behavior, such as the one we adopted here (positive

population growth from low densities in average years

when no eagle threat is present). Given the importance

of including parameter and model uncertainty into

future PVAs, this type of screening procedure is also

likely to become a necessary and common aspect of

PVA methods.

While the population model we developed incorpo-

rates the lion’s share of estimable model and parameter

uncertainty into the PVA simulations, it is also worth

noting the sources of uncertainty not included. For

example, we only have data from one eagle colonization

event and thus have no information on process variance

in predation rates by colonization. It is unknown how

fox populations would be affected if the size of the

colonizing population varied or if the starting fox

populations were small. Similarly, as noted above, we

do no yet know how the removal of feral pigs from the

island might change predation behavior (Courchamp et

al. 2003, Dratch et al. 2004) or if the foxes have

decreased susceptibility to eagles through evolved or

learned antipredator responses such as increased noc-

turnality (Roemer et al. 2002). Disease outbreaks have

afflicted island fox populations in the past (Timm et al.

2000, Clifford et al. 2006) and pose a serious threat for

the future, but the frequency of recorded epizootics has

been so low that any inclusion of them in our models

would require undue guesswork. However, we do

recognize disease as significant threat for the fox and

elsewhere investigate alternative monitoring and man-

agement methods to reduce this threat. Habitat differ-

ences are also almost certain to influence fox

demography, but we currently have too little informa-

tion to see evidence of such effects. This laundry list of

possible complications—typical of any predictive anal-

ysis—should not suggest that this or other PVAs are

useless, but rather serve as a reminder that while we can

account for many complexities, and in particular,

uncertainties, in a formal way, we will never be able to

fully quantify all the ecological forces that may impinge

on our study systems, and should thus advance the

viability and management recommendations that come

from these analyses cautiously (Doak et al. 2008).

Conclusions

Altogether, these models give us better insight into the

future viability of fox populations, and especially the

forces that will interact with ongoing threats and

continuing management to jointly influence their dy-

namics. Fox populations appear able to withstand very

low levels of eagle predation in perpetuity, suggesting

that ongoing monitoring for and removal of Golden

Eagles is both necessary and sufficient to ameliorate the

eagle threat. Our analyses have also highlighted

important weaknesses in our knowledge, revealing that
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increasing the utility of this PVA as a management tool

will require greater understanding of density dependent

processes in survival and reproduction.

More broadly, we believe that the set of modeling

structures we present, starting with data analyses and

ending with extinction risk predictions, show a general

strategy by which ecological complexities and limita-

tions of knowledge can be folded together into a PVA

that is scientifically defensible and useful to managers. In

many cases, PVAs can only be built with pre-digested

data or information borrowed from other species,

making some of the ways we analyze and treat ecological

drivers and uncertainty difficult or impossible to

perform. But often there is an opportunity to conduct

or adapt data analyses to directly shape the structure of

a PVA. As we hope to have illustrated here, careful

integration of more complex demographic analyses can

improve both the rigor of PVA results and also our

understanding of populations of concern.
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APPENDIX

Model selection for estimation of survival rates for island foxes (Urocyon littoralis) based on annual capture–recapture data from
11 grids on four islands using Program MARK (Ecological Archives M079-003-A1).

VICTORIA J. BAKKER ET AL.108 Ecological Monographs
Vol. 79, No. 1


