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Abstract: Hyperspectral cathodoluminescence mapping is used to examine a carbonado diamond. The
hyperspectral dataset is examined using a data clustering algorithm to interpret the range of spectral shapes
present within the dataset, which are related to defects within the structure of the diamond. The cathodolumi-
nescence response from this particular carbonado diamond can be attributed to a small number of defect types:
N-V% N,V, N3V, a 3.188 €V line, which is attributed to radiation damage, and two broad luminescence bands.
Both the N,V and 3.188 €V defects require high-temperature annealing, which has implications for interpreting
the thermal history of the diamond. In addition, bright halos observed within the diamond cathodolumines-
cence, from alpha decay radiation damage, can be attributed to the decay of 2*3U.
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INTRODUCTION

Carbonado diamonds are a variety of polycrystalline dia-
mond found in alluvial deposits in the Central African
Republic and Brazil (Trueb & Christiaan De Wys, 1969).
They are typically black and have high porosity, finding use
in industrial applications that require super-hard materials.
The polycrystalline nature of carbonado makes the propaga-
tion of cracks difficult giving them superior properties over
single crystal diamonds in applications such as cutting and
polishing hard materials. From a geological point of view,
carbonado diamonds are interesting because their genesis is
not fully understood (Heaney et al., 2005; McCall, 2009).
They differ from kimberlite diamonds in that they have
higher porosities than microcrystalline diamond aggregates
that are found in kimberlites, and mineral inclusions found
in the pores of carbonado diamonds are typical of the
Earth’s crust, not of the upper mantle. This has led to a
number of theories (Smith & Dawson, 1985; Garai et al.,
2006; McCall, 2009; Cartigny, 2010; Demeny et al., 2011;
Sautter et al., 2011) on the formation of carbonado dia-
monds including formation in the upper mantle from sub-
ducted crustal organic matter, radiogenic fission of U and
Th in a carbon-rich matrix, and conversion of organic
matter through meteorite impact.

Within the diamond structure the most common impu-
rity element is nitrogen, as it is easily accommodated owing
to its atomic radius being almost equal to that of carbon.
Nitrogen can be present in concentrations up to 0.25 wt%
(Collins, 1992). Tt is difficult to quantify nitrogen in dia-
monds by using electron-beam microanalysis to measure
the nitrogen Ka X-ray emission, as very few N X-rays
escape the carbon matrix due to the very high (25,500) mass
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absorption coefficient of nitrogen in carbon. The character-
ization of nitrogen is important, as the aggregation of
nitrogen is mainly controlled by the residence time of the
diamond in the mantle and the temperature of the mantle
(Taylor et al., 1996). To identify the defects in diamonds,
cathodoluminescence (CL) is commonly used because there
is a strong signal from nitrogen incorporation and because
the cathodoluminescence is sensitive to a number of differ-
ent nitrogen defect types. For this reason, luminescence has
been used as a means to distinguish between natural and
synthetic diamonds. Cathodoluminescence is also advanta-
geous as it offers a higher spatial resolution than Fourier
transform infrared spectroscopy, a common technique for
studying nitrogen aggregation (Garai et al., 2006). It should
be noted that cathodoluminescence cannot directly deter-
mine the defects that give rise to particular CL emissions.
Instead, the identity of defects may be inferred from ob-
served CL peaks by comparison with known electronic
structures of defects that have been characterized by other
techniques, such as micro-Raman and electron spin reso-
nance (ESR) (Baranov et al., 2009; Shames et al., 2012).
Cathodoluminescence techniques have previously been
used to study carbonado diamonds by using multispectral
(i.e., three color) flood gun images, supplemented with a
small number of spectral CL point analyses (Harte et al.,
1999; Vicenzi et al., 2006; Kagi et al., 2007; Rondeau et al.,
2008). These previous spectral analyses show that within the
analyzed volume a mixture of defects can occur. While these
spectra can be deconvoluted by fitting Gaussian or other
functions into lines from the various defects, the more
commonly used multispectral flood-gun images do not
contain sufficient spectral information to extract the spatial
distribution of all defect types. To do this, a “hyperspectral”
dataset is needed; this is obtained by mapping an area and
for each pixel of the map an entire CL spectrum is recorded.
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With such a dataset, a set of peaks corresponding to a
particular defect type can be deconvoluted from the spec-
trum at each pixel and projected across the mapped area.

Hyperspectral datasets are now a routinely collected in
mapping microanalysis, with the great advantage of allow-
ing post hoc data examination, which can lead to the discov-
ery of unexpected phases (in X-ray data) and defects or
centers (CL data) within a sample (MacRae et al., 2005). An
important advantage for CL analysis, in which the signal
can be sensitive to beam damage, is that the spectra are
collected in a single mapping pass avoiding artifacts such as
spectra shape changes that may be present in multipass CL
band mapping.

Within a single hyperspectral dataset, a variety of spec-
tral shapes can exist across the mapped area, and each may
require quite different sets of Gaussians to obtain a good fit.
Attempting to create a “superset” of Gaussians to fit the
whole map inevitably leads to poor convergence or overfit-
ting of the data. However, by using a data clustering tech-
nique, we can partition the data into different groups with
similar spectral shapes, which can then be separately exam-
ined and fitted using appropriate Gaussian functions. The
aim of this study is to investigate what additional informa-
tion hyperspectral cathodoluminescence can yield regarding
the defect distribution within a carbonado diamond.

A common problem encountered when trying to man-
age and process large hyperspectral datasets is how to pro-
cess the data so as to maximize the information. One
common approach for analyzing hyperspectral data is the
use of principal component analysis, which reduces the
dimensionality of the dataset (Kotula et al., 2003). Another
approach is the use of data clustering, which is finding
application with hyperspectral microanalysis datasets (Wil-
son & MacRae, 2005; Wilson et al., 2008; Stork & Keenan,
2010). There are two main classes of clustering algorithms:
hierarchical and nonhierarchical (Jain et al., 1999). In hier-
archical clustering algorithms, a linkage of clusters is made
that can be pictorially represented in a dendrogram; a tree
diagram showing the connection of the clusters. This link-
age of clusters can be achieved by agglomeration, where
each measurement starts in a single cluster, and then pairs
of clusters are successively merged, with each merger re-
corded, or by division, where all measurements begin in one
cluster and then are successively split into smaller clusters.
The record of these mergers or divisions gives a hierarchical
dendrogram, a powerful tool to explore the relationships
between pixels within a map, with the most significant
spectral differences in the top branch working down to the
least significant chemical differences at the bottom. The
drawback of hierarchical methods is that they scale poorly
with an increasing number of data points, with the compu-
tation cost of agglomerative clustering rising with the cube
of the number of data points. Consequently, it is impracti-
cal to apply this approach to cluster every pixel in a typical
map of one million pixels or more.

Nonhierarchical algorithms are better suited to large
datasets; for example, they are often used in applications

such as remote sensing where spectral maps are acquired.
These algorithms partition the dataset into a set of clusters
but do not produce any linkage or association between the
clusters such as a dendrogram.

The most commonly used nonhierarchical clustering
method is the k-means algorithm (MacQueen, 1967),
which is an iterative method that searches for the best set of
k cluster centroids. The k-means algorithm requires an
arbitrary choice of k, the number of clusters to be found.
The centroids are given an initial position in the n-
dimensional dataset, and then each pixel in the map is
assigned to the closest centroid. The centroids are then
moved in n-dimensional space to the mean of the data
points assigned to them and then, with these new centroid
positions, the data points are reassigned to their closest
centroid. This process is repeated until some convergence
criterion is met, such as no further movement of the
centroids.

There are various implementations of the k-means
algorithm, using different definitions of distances between
pixel and centroid and different choices for the initial posi-
tioning of clusters. To produce a satisfactory phase map, the
most important parameter is k, which sets an upper bound
on the number of phases that can be found. The k-means
algorithm moves the centroids to phases that contain the
largest number of points, thus choosing a small number for
k can lead to phases that occupy only a small number of
pixels in the map to be missed in complex samples. To
address this, the value of k can be increased, but this leads to
an overwhelming number of clusters, which makes a spatial
projection onto a phase map difficult to interpret.

In this study, we have taken an approach (Ross, 1968)
that uses both hierarchical and nonhierarchical clustering
techniques (Wilson & MacRae, 2005; Wilson et al., 2008).
The first step is to use a k-means-like algorithm to partition
the dataset into a large number of clusters, typically many
hundreds to a few thousand. Having reduced our original
dataset from the order of one million pixels to a few
thousand cluster centroids, it is then possible to process the
centroids using a hierarchical clustering method. The result
of the hierarchical clustering is a dendrogram, with the
most similar clusters joined at the outer branches of the tree
and the most dissimilar clusters joined at the base of the
tree. This tree can then be used to interactively control the
displayed phase map. Working down a branch of the tree,
the broad top level groupings can be split to reveal subtler
classifications. Thus the user can easily visualize the subtly
different phases, which are important to them, while ignor-
ing other subtle variations down other tree branches that
are unimportant to the problem being investigated.

METHOD

Experimental

The sample examined was a Brazilian carbonado diamond,
sample L-5 (Magee, 2001). Hyperspectral CL data were
collected at room temperature on a JEOL (JEOL Ltd.,



Tokyo, Japan) field emission gun electron microprobe ana-
lyzer (JXA 8500F) customized with quartz optics, and
equipped with an Ocean Optics (Dunedin, FL, USA)
QE65000 grating charge-coupled device (CCD) spectrom-
eter. This spectrometer employs a Hamamatsu (Hamamatsu
City, Japan) S7031-1006 back-thinned CCD operating at a
temperature of —15°C via Peltier cooling. A 100 wm aper-
ture optical fiber was used to connect the spectrometer to
the collection optics of the microprobe with the aperture of
the fiber forming the entrance slit of the spectrometer. This
resulted in a wavelength resolution of 3.4 nm (MacRae
et al., 2005). Spectra were collected with 1,024 equal wave-
length windows over the full spectrometer range of 199 to
993 nm. A measurement of the CCD dark-noise signal was
made prior to the mapping and subtracted from each pixel
in the dataset. This dark-noise measurement was made by
averaging together a number of measurements taken with
the beam blanked, with the measurements being performed
at the same sampling time as used during the mapping, as
CCD dark noise varies subtly with sampling time.

In preparation for mapping, the sample was sectioned
to expose a fresh surface by grinding with a series of
diamond-impregnated polishing pads to ensure flatness,
then polished with diamond paste down to 1 um and
finishing with 20 nm colloidal silica, and finally coated with
15 nm of amorphous carbon. The map was collected at
15 kV and 50 nA with a step size of 500 nm, in a stage scan
mode, with 4,000 steps in X and 3,000 steps in the Y
direction, giving a 2 X 1.5 mm scan. The advantage of the
stage scan mode is that large distances may be mapped
without affecting the collection efficiency of the wavelength
dispersive X-ray spectrometers or CL data. A dwell time of
25 ms per pixel was used, and at each pixel a full 1,024
channel CL spectrum was collected in parallel with the
collection of spectral energy dispersive spectrometer (EDS)
data, wavelength dispersive X-ray data, and the backscatter
electron signal, resulting in 24 GB of CL data and 98 GB of
X-ray data.

Clustering

A two-step clustering approach was applied to the collected
dataset. In the first pass, a nonhierarchical partitioning of
the data was performed to group the pixels into a set of
clusters, where clusters were constrained so that pixels were
no more than 3¢ (where o = V) from the cluster cen-
troid. The 30 cutoff was derived from our work on EDS
spectral analysis where the counting statistics obey Poisson
distribution. It should be noted that in the case of cathod-
oluminescence, we are not measuring the number of pho-
tons directly but are measuring the voltage of the CCD
readout. While the photons arriving at the CCD will obey a
Poisson-type distribution, the measured signal will also
contain a small component of random noise from the
voltage conversion and the CCD dark noise.

To generate the initial set of seed centroids and to
speed convergence, an analysis of the uniformity of the
dataset was made. Seed centroid positions were taken from
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pixels in uniform areas (i.e., those pixels close in value to
their surrounding pixels), thereby increasing the likelihood
that initial positions reflect true chemistry rather than sta-
tistical outliers. Then, in a similar approach to that of the
k-means algorithm, pixels were associated with their closest
centroid, measured in terms of the Euclidian distance met-
ric D(x, y) = V2, (x; — y;)2, where x; and y; are the i’th
components of two points x and y. Centroid positions were
then updated to the average of mean value of all associated
pixels. Where the algorithm differs from the k-means ap-
proach is that after the centroid positions were updated,
extra centroids were then introduced to the pixels that fell
outside an n-dimensional 3o hypersphere (for an n-channel
dataset) around the centroid. In this way, the algorithm did
not impose an arbitrary limit on the number of clusters but
rather limited the size of the clusters. The process was then
iterated until a convergence criterion was reached.

The second pass of the clustering procedure was used
to perform an agglomerative hierarchical clustering on the
cluster centroids generated from the first pass. For this
hierarchical clustering, we used Ward’s Method (Ward, 1963),
in which clusters were successively merged in order of the
pair-wise combination that gave the smallest increase in the
variance. Initial variances for the clusters were given by

j=myi=n

= 2 > (x5 —Xy)

j=1 i=1
and then the clusters with the minimum

i=gj=n;

w=> Z(xij—a‘ci)z

i=1 j=1

were successively merged.

Deconvolution of CL Spectra

Deconvolution of spectra was achieved by fitting, in energy
space, a set of Gaussian functions of the form G(x) =
ae((x — b)*/2¢?), where a gives the height, b position, and
¢ the full-width at half-maximum. The fitting was per-
formed by applying a nonlinear least-squares minimization
algorithm.

RESULTS AND DiScusSION

Calculations were performed on a standard 3.0 GHz Intel
Core™?2 Duo PC with 2GB of RAM. Clustering of the
24 GB of CL data took approximately 20 h, and subsequent
peak fitting to extract peak intensity maps took a further
15 h.

The luminescence of diamonds is a well-studied area,
with over 100 centers reported, giving rise to over 1,000
spectral lines (Walker, 1979; Zaitsev, 2001). In terms of this
study, only a small subset of these were observed. The N-V°
defect (Fig. 1a) consists of a nearest-neighbor pair of nitro-
gen substituting for carbon and a neutral vacancy that gives
rise to a zero phonon line (ZPL) at 2.15 €V. A vacancy
trapped at a double nitrogen site (Fig. 1b), the N,V defect
(sometimes referred to as a H3 center) produces a ZPL at
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(a) &,

Figure 1. Structural diagrams of diamond defects. (a) N-V?,
(b) N,V, and (c) N5V. Carbon atoms in gray and nitrogen in blue.

2.46 eV, and three nitrogen atoms in a plane with a common
vacancy (Fig. 1c), the N,V defect (also referred to as a N3
center) gives rise to a ZPL at 2.99 eV. In addition to these
nitrogen defects, we observed a ZPL at 3.188 eV, which is
attributed to beta decay radiation damage in natural dia-
monds and has been experimentally induced in synthetic
diamonds post radiation damage by 2 MeV electrons fol-
lowed by annealing (Collins & Lawson, 1989). Finally, we
observe broad bands centered around 2.3 and 2.88 eV.

In addition to the purely electronic transition of the
ZPLs of these defects, we also observed the phonon replicas
for these lines. Vibronic emission fine structure arises from
highly localized defects, generating a set of equally spaced
phonon replicas relating to fundamental lattice vibration
frequencies (mhiw, m = 1,2,3...). In the case of emission,
these exist on the low energy side of the ZPL, broadening as
they decrease in energy, forming a side band.

Before applying any data cluster analysis, a simple pro-
cess to apply to the spectral dataset is to integrate all CL
channels at each pixel, forming a pan-chromatic image
(Fig. 2). One feature observable in this image is a number of
alpha particle damage halos from radionuclide decay. These
are present as a series of concentric rings at regularly spaced
intervals around a central bright source. Twenty-five halos
were identified within the mapped area, with the radii then

I 100 pm

(b)

Figure 2. (a) Net intensity map of the sample generated from the
spectral dataset. (b) Close up view of radiation halos.

being measured by manually selecting several control points
around each ring (typically 10-20 points/ring), and then
using a “gradient descent” algorithm to find the ring cen-
troid by minimizing the square of the differences between
the radius to each point. The results of this fitting are given
in Table 1, along with stopping distances within diamond
calculated using the Bragg-Kleeman rule (Bragg & Kleeman,
1905). The two largest measured rings had mean radii of
23.2 pm and 15.8 wm, respectively, which are in good
agreement with the calculated stopping distance of the two
most energetic transitions in the ***U decay chain, 2!*Po
and *'®Po decays (at 23.1 and 15.6 wm, respectively). The
third measured ring at 12.09 um does not directly match
any of the other decays in the *U chain; however, the third
ring is broad and is a good match for the overlap of the
22Rn (13.2 um), 2'°Po (12.5 wm), **°Ra (10.7 um), and



Table 1.  Alpha Particle Decay Energies for Various Isotopes, Their
Range in Air and Calculated Range in Diamond, and Radii Mea-
surements of Halos from the Net Intensity Map (Fig. 2).*

Range
E Air Diamond
Deca (MeV) (cm) (um) Measurement
y 1%

238U Decay Chain
214pg 7.68 6.91 23.1 R1 23.22
218pg 6.00 4.66 15.6 R2 15.79
222Rn 5.48 4.05 13.5 R3
210pg 5.30 3.84 12.8 R3 12.09
225Ra 4.78 3.28 10.9 R3
234y 4.77 3.21 10.7 R3
230Th 4.68 3.11 10.4
287 4.20 2.65 8.8

232Th Decay Chain
212pg 8.79 8.57 27.9
216pg 6.77 5.64 18.3
220Rn 6.28 5.00 16.3

*Decay energies taken from Owen (1988).

234U (10.7 wm) decays. The other alpha particles in the #**U
decay chain (namely those from #°Th and **U) have
calculated ranges in diamond of 10.4 um and 8.8 um but
could not be resolved from the CL dataset. It may also be
seen from Figure 2 that the area within ~10 um from the
halo center is quite uniform in CL intensity, and no distinct
rings can be resolved within this area. The measured rings
do not match well with the calculated distances for the
22Th decay chain, indicating that the phase that produced
the halo was thorium poor.

An RGB image was extracted from the hyperspectral
dataset to approximate the luminescence that would be
observed by the human eye or an RGB camera on a flood-
gun CL system (Fig. 3). The component color intensities in
this image correspond to energy ranges of 2.0-2.3 €V (red),
2.3-2.5 €V (green), and 2.5-3.1 €V (blue). Such three color
images may be useful for qualitative investigation of lumi-
nescence, but three color maps may convolute the lumines-
cence of different emission lines and conceal the distribution
of individual defects. To study the component defects the
spectral dataset must be analyzed in full. The top level
branches of the dendrogram and spectral shapes calculated
via the clustering algorithm outlined in the Method section
are shown in Figure 4. The root node of the dendrogram is
in the center, with branches emanating above and below. To
understand the map, an examination of the spectral shapes
in the dendrogram is required. Figure 5 shows a detailed
view of the spectral shape labeled (i) in Figure 4. It is
generated from the sum of all pixels that fall into subclus-
ters of this branch of the dendrogram and can be explained
by decomposing into components from three different de-
fect types. The most intense spectral feature arises from the
N-V° defect, with the ZPL at 2.15 eV and a set of lower
energy phonon replicas. The next most intense feature in
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I 1 mm

Figure 3. A three color RGB map taken from the sample, using
ROI bands of 2.0-2.3 eV for red, 2.3-2.5 €V for green, and 2.5 to
3.1 eV for blue.
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Figure 4. Dendrogram output from the hierarchal clustering algo-
rithm. Representative spectra are plotted on an energy scale rang-
ing from 1.3 to 3.5 V.

Figure 5 is generated by a N,V defect and the associated set
of phonon replicas, and third feature in the spectrum can
be fitted with a 3.188 eV ZPL and set of phonon replicas. In
addition to the phonon replicas, a broad peak is observed
that is not seen in room temperature measurements on
synthetic diamonds with the 3.188 eV defect induced (Zait-
sev, 2001). This broad band is most likely that known in the
literature as the “Blue Band.”
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At room temperature the phonon replicas are more
difficult to resolve than when measured at liquid nitrogen
(LN) temperature; nevertheless, it was still possible to fit the
phonon replicas and calculate #iw for the various defects.
For the N-V? it is approximately 50 meV, which compares
well to LN measured values of 45 meV (Iancu et al., 2008)
and 50 meV (Rondeau et al., 2008). For the N,V defect we
measure fiw = 35 meV [LN 40 meV (Davies, 1981; Rondeau
et al., 2008) and 39 meV (Iancu et al., 2008)]. This allows us
to establish that the defect is the N,V defect, and not a 3H
center, which has a ZPL at a similar energy to the N,V
defect, but a different energy for the phonon assisted peak

Figure 5. Detailed view showing
(a) fitted peaks to spectrum (i)
given in Figure 4, and (b) zoomed
region to show detail in the 2.1 to
3.3 eV region.

(hw = 70 meV). Identifying the 2.46 €V line with the N,V
defect, as opposed to the 3H center, gives important infor-
mation about the thermal history of the diamond. The 3H
center is destroyed by heating at 400-500°C for 1 h (Kagi
et al., 1994), while high temperatures form the N,V defect.
Care should be taken in interpreting the absence of the 3H
center, as it has been shown the sample preparation can
anneal this defect (Kagi et al., 2007). For the 3.188 eV ZPL
we measure fiw = 80 meV.

The spectral shape labeled (ii) in Figure 4 has a sharp
cutoff on the low-energy side, which is attributed to the
infrared cutoff of the spectrometer. This cluster is com-
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prised of 60 pixels (0.0005% of the mapped pixels), having a
broad peak centered around 1.8 eV and is from a small
particle trapped within an iron silicate mineral inclusion
and can most likely be attributed to a piece of embedded
polishing material. This spectrum from these 60 pixels is

Figure 6. (a) Spectrum (iii) from
Figure 4 fitted using peak
positions and widths used for
spectrum (i) in Figure 5, showing
that these peaks cannot reproduce
the spectrum. (b) Fit of spectrum
(iii) with the addition of another
Gaussian centered at 2.3 eV.

quite different from the rest of the collected pixels and is
therefore placed toward the top of the dendrogram, as the
greatest differences are the last to be merged. The remaining
spectral shape on the bottom half of the dendrogram
[Fig. 4(iii)] is shown in detail in Figure 6. Figure 6a shows
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this spectrum fitted using Gaussians of the same width and
position used to fit the spectrum in Figure 5. However, these
peaks cannot completely describe the peak shape, and an
additional broad peak at 2.3 €V is required (Fig. 6b).

In the top half of the dendrogram, spectrum (iv) is
composed of major peaks of N,V, N-V°, and the band at
2.3 €V, with a minor contribution from a N3V defect. The
difference between spectrum (v) and spectrum (iv) is that
the N-V° component is reduced. Spectra (vi)—(viii) are all
differentiated by containing a significant contribution from
a N3V defect. All three of these peaks contain smaller
contributions from the N,V defect and the 2.3 €V band, and
a N-V° peak that decreases in intensity from spectrum (vi)
to (viii). For the N;V defect, w is measured to be 80 meV
compared with other measurements of 78 meV (Rondeau
et al., 2008) and 80 meV (Zaitsev, 2001).

N;V, N-V° (2.3 eV band N,V)
N5V, 2.3 eV band, NV, N-v® [ 2.3 eV band, N,V, N-V° (N,V)

Figure 7. Pixel classification map for the
hyperspectral dataset.

Figure 8. N-V° defect CL intensity map.

From this examination of the spectral shapes, qualita-
tive names can be given to the clusters in terms of the
contributing defects and these are given in the classification
map (Fig. 7). It shows a number of black regions within the
diamond, which are mineral inclusions filling voids within
the carbonado diamond. The left-hand side of the map is
dominated by spectra whose major contributor is from the
N-V° defect, interspersed with patches where the 2.3 eV
band becomes a contributor, with some patches surround-
ing pore-filling inclusions. The right-hand side of the image
is dominated by phases where the N3V defect is the major
contributor to the spectra. The 2.3 eV band shows a corre-
lation with radiation damage in this sample. However, the
source of the band could not be uniquely determined by
this CL study and may require further investigation by a
complementary technique such as ESR.



While the sample may contain up to five defect types,
the spectral shapes of all but the 2.3 eV band are complex,
containing not just a ZPL but a set of phonon replicas,
requiring a number of Gaussian functions to reproduce.
This leads to a large number of Gaussian functions being
needed to fit all possible defect shapes. The partitioning of
the pixels using data clustering has eased this task reducing
problems with overfitting. Deconvolution of the spectra
then allows the projections of the CL intensity of individual
defects. Figure 8 shows the projection of the CL intensity of
the N-V° defect and Figure 9 that of the 2.3 eV band.
Within this sample, the 2.3 eV band signal is always over-
lapped with peaks from other defects; this illustrates one of
the great advantages of the hyperspectral data collection, as
maps like these require that spectral deconvolution be
performed.

CONCLUSIONS

Hyperspectral CL mapping was performed on a carbonado
diamond, and the acquired dataset was subsequently inves-
tigated using cluster analysis. The CL response from this
particular carbonado diamond can be attributed to a small
number of defect types: N-V° N,V, N3V, a 3.188 €V line that
is seen in diamonds after radiation damage by 2 MeV
electrons followed by annealing, and a broad luminescence
band. Both the N,V and 3.188 eV defects require high-
temperature annealing, which has implications regarding
the thermal history of the diamond. Examination of the size
of the radiation damage halos correlates well with those
calculated for the #**U chain decay series.

The collection of a hyperspectral dataset makes possi-
ble the extraction of individual defect maps because there is
a spectrum collected for each pixel that can be deconvo-
luted. However, the spectral structure for each defect type is
not simple. Along with the purely electronic ZPL, a set of
phonon replicas makes for a complex spectral structure for
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Figure 9. 2.3 ¢V band CL intensity map.

each of the defects, and therefore the use of data clustering
makes this deconvolution task manageable.
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