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In classical Greek, the word "symposium" signifies 
a drinking party held for the purposes of intellectual 
discussion. This symposium introduces a new evolu- 
tionary perspective on an ancient question: why are 
many animals, including humans, attracted to ethanol? 
Recent research has shown that behavioral responses 
to ethanol and molecular pathways of inebriation are 
shared among many taxa (Wolf and Heberlein, 2003), 
and that the preferences of modern humans for alcohol 
consumption may derive from the diets of our fruit- 
eating ancestors (i.e., alcoholism as evolutionary hang- 
over; Dudley, 2000, 2002). Placement of ethanol con- 
sumption within historical and comparative contexts 
may thus yield insight into contemporary patterns of 
human consumption and excessive use. 

Ethanol and other alcohols originate naturally from 
the fermentation by yeasts of plant sugars. Yeasts can 
be found throughout the biosphere, and are common 
both on and within plant reproductive structures, in- 
cluding fruit (Spencer and Spencer, 1997). Competi- 
tion among microbes for access to fruit sugars is in- 
tense, and may have elicited the initial evolution of 
ethanolic fermentation by yeast as a means of killing 
bacterial competitors (Ingram and Buttke, 1984). Sug- 
gestively, high glucose levels stimulate anaerobic fer- 
mentation by yeasts even in the presence of oxygen, a 
phenomenon known as the Crabtree effect (De Deken, 
1966; M0ller et al, 2002). Well-studied at the molec- 
ular level, the Crabtree effect may also reflect an evo- 
lutionary outcome of intense competition among mi- 
crobes within sugar-rich fruit substrates. Similar ar- 
guments pertain to the existence of killer yeast strains 
(Starmer et al., 1987; Moráis et al., 1995). Frugivory 
by and competition among microbes likely arose con- 
temporaneously with the Cretaceous origins of fleshy 
fruits. Consequently, plants express antimicrobial com- 
pounds within fruit to deter decomposition which 
might impede the desirable consumption and dispersal 
of fruits by vertebrates (Cipollini and Levey, 1997). 

The natural occurrence of ethanol within ripe and 
fermenting fruit suggests that low-level ethanol expo- 
sure via dietary ingestion is characteristic of all fru- 
givorous metazoans. Fruitflies live within ethanol-con- 
taining substrate as larvae, and moreover consume 
yeast spores as adults. It is therefore not surprising that 
Drosophila serves as a model system with which to 
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evaluate both proximate behavioral responses (Frye et 
al., 2003) and evolved metabolic and genomic out- 
comes (Fry, 2001) relative to ethanol exposure. 
Among the vertebrates, many birds and mammals are 
strongly frugivorous, although the relative importance 
of olfactory cues (including ethanol) to fruit selection 
and consumption is unclear (Korine et al., 2000; Levey 
and Martinez del Rio, 2001; Dominy et al, 2003). 
Primates in particular are a predominantly frugivorous 
lineage, and study of the diet of frugivorous human 
ancestors is accordingly of relevance to understanding 
the nutritional requirements of modern humans (Mil- 
ton, 1993, 1999). The beneficial effects of low-level 
but chronic ethanol consumption by humans (Klatsky, 
2003) mirror those in fruitflies (Parsons, 1980), and 
may indicate a common evolutionary outcome. 

From fruitflies to barflies, diverse animal taxa ex- 
hibit profound behavioral responses to the alcohols 
produced within fermenting fruit. A common theme of 
historical ethanol exposure unites the otherwise dis- 
parate phenomena of microbial fermentation, fruit, fru- 
givores, and the drinking behavior of modern humans. 
True to etymological origins, this symposium in New 
Orleans has provoked considerable questioning and 
comparative analyses of ethanol-related behaviors. Pa- 
pers deriving from this symposium clearly demonstrate 
the potential for emergence of a comparative biology 
of ethanol ingestion, as well as for novel interpreta- 
tions of modern-day alcohol consumption and its im- 
pact on human society. 
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