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Preface
The Special Reports of research in space science were initiated with the

Smithsonian Astrophysical Observatory's research program on artificial earth
satellites in 1957, and they have provided an avenue of immediate publication
which has proved indeed critical to proper elaboration of the field. By early
1963 the 113 Special Reports listed on pages 233 to 244 had been produced and
distributed to all institutions participating in the U.S. space-research program
and to individual scientists requesting them. The Special Reports have thus
become valuable tools for the space scientist.

A number of the purely observational Special Reports are so highly spe-
cialized that only the few investigators presently using the data are likely ever
to need the information available in them. It is possible that selections from
these observational tables may be reproduced elsewhere, but many will not.
On the other hand, certain of the Reports record important scientific research
that should be available in the general literature.

Hence, the first 10 Special Reports were published as volume 2, number
10, of the Smithsonian Contributions to Astrophysics. Here we have selected
29 contributions from Special Reports 11 through 80 as meriting a permanent
record. We present them, with such minor revisions as the authors have found
necessary to bring them up to date and to clarify them, as volume 6 of the
Contributions to Astrophysics. Other Special Reports have been published else-
where in the literature.

To those members of the Observatory staff, and especially to Drs. Jacchia
and Whitney, who helped to choose the papers that appear in this volume, I
am grateful, as I am to the members of the editorial staff who saw the volume
through the press.

FRED L. WHIPPLE, Director,
Astrophysical Observatory,

Cambridge, Mass., April 2, 1963. Smithsonian Institution.
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Orbital Results for Satellite 1957 pi

By Luigi G. Jacchia

This report covers the complete lifetime of
Satellite 1957 /31. Since all the observations
have been reduced anew with improved ele-
ments, it supersedes the first set of orbital data
(Jacchia, 1958a) that covered the lifetime of the
satellite to Feb. 10, 1958.

Method of reduction

Tables 3 and 4 summarize the results of an
analysis of approximately 2,800 optical and
radio observations, reduced by means of an
improved version of the author's subsatellite
program (Jacchia, 1958d) which contains the
following new features:

Continuously varying perigee distance.—The
relation g,=g(a) between perigee distance and
major axis is determined by fitting the solution
of the differential equation dq/da=f(q,a) through
well-observed points, and then is fed into the
machine program in the form of an approximat-
ing equation with 10 numerical coefficients.

A special high-latitude program.—Observa-
tions at low and middle latitudes yield inde-
pendent determinations of the right ascension
and of the time of the ascending node. For
observations made at high latitudes, near the
orbital apex, the effect of observational errors
is greatly magnified in the independent solu-
tions. If, however, the position of the node is
accurately known for the time of observation,
an accurate time for the equatorial crossing can
still be obtained. The new feature in the sub-
satellite program provides for an optional
switch to the latter type of reduction when the
subsatellite point is within a specified number of
degrees of latitude from the apex.

For the computation of the subsatellite
points, the following orbital elements were used:

Inclination: i=65?29.

Argument of perigee: &>=58?0—0?3938(*— T)
-2?50 X 10-4(*-T)2-3?lX10-7 (t-T)*

(T=1957 Nov. 6.0 U.T.; t in days).

The major axis of the orbit was derived from
the nodal period, obtained by differentiation of
the interpolating equations that follow:

Ta=1957 Nov. 4.41000+0*072082571—1*19
X10-67i2-0*03820(e°-°°17n-l) +0*01700
sin (0?237n-128°), ( 0 < T I < 1 8 0 0 ) ; (1)

TQ=1958 March 9 .51267+0*066453(TI -1800)
—2*56X10-6(n—1800)2-0*00125927

feo.oo9«»-i8oo,_1] (l800<n<2300); (2)

TO=1958 April 10.95583+0*062547(n-2300)
—8*78X10-6(n-2300)2-8*316X10-4

[e0.097(n-2300)_1] (ft>2300). (3)

The residuals from these equations never
exceed 0*002, and the errors in the computed
period and heights are negligible in the com-
putation of subsatellite points, nodes, and
equatorial crossings.

The relation between the major axis and the
perigee distance is given in table 1. Values
of dg/da were computed from Sterne's (1958a)
equations with the Smithsonian Interim Atmos-
phere (Sterne, Folkart, and Schilling, 1957)
and integrated, starting from the normal point
2=1.03302 for or—-1.13. The integration was
performed by Jack Slowey, using a special
program on the IBM-704 Calculator.

For the reduction of the high-latitude obser-
vations, the following equations were used for
the position of the ascending node.

aQ=108?2-2?6079(*-Nov. 6.0)-l?656X10~8

(*-Nov. 6.0)2-2?08X10-6(*-Nov. 6.0)3 (4)

(for dates before 1958 Mar. 11).
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TABLE 1.—Assumed relation between semimajor
axis and "perigee distance

a
1.15
1.14
1.13
1.12
1.11
1. 10
1.09
1.08
1.07
1.06
1.05
1.04
1.03
1.02

<Z
1. 03360
1. 03333
1. 03302
1. 03268
1. 03230
1. 03187
1. 03137
1. 03079
1. 03008
1. 02920
1. 02805
1. 02639
1. 02370
1. 01869

e
0. 1012
.0936
.0858
.0780
.0700
.0619
.0538
.0456
.0373
.0291
.0209
.0131
.0061
.0013

TABLE 2.—Normal values of aa and observed nodal
precession

aa daa/dt

a; Semimajor ails of orbit In units ol the earth's equatorial radius.
q: Perigee distance.
e: Orbital eccentricity.

ao=112?l-3?175(*-Mar. 11.0)-l?5X10-4

(<-Mar. 11.0)3 (5)

(for dates after 1958 Mar. 11).

Results
Normal values of aa at 5-day intervals, to-
gether with the observed precession, are given
in table 2.

Table 3 gives normal values of To, the time
of the equatorial crossing of the satellite from
south to north, at intervals of 25 revolutions.
The numbering of the revolutions is the same
as in Jacchia U%8a); the first crossing in the

I00O ISOO
NUMBER OF REVOLUTIONS

1957
Nov.

Dec.

1958
Jan.

Feb.

Mar.

Apr.

6.0
11.0
16.0
21.0
26.0
1.0
6.0
11.0
16.0
21.0
26.0
31.0

5.0
10.0
15.0
20.0
25.0
30.0
4.0
9.0
14.0
19.0
24.0
1.0
6.0
11.0
16.0
21.0
26.0
31.0
5.0
10.0
14 0

108? 2
95.0
81. 7
68.3
54. 8
41. 5
28.0
14 4
0.7

346. 9
333. 1
319. 1

305. 1
291.0
276.7
262.3
247.9
233. 3
218.6
203.9
189.0
174 0
158. 8
143.4
127.8
112. 1
96. 3
80.2
63.8
47. 1
30. 1
12. 7
358.2

-2?64/day
-2.65
-2.66
-2.67
-2.68
-2. 70
-2.71
-2. 73
— 2. 74
-2.76
-2. 78
-2.80

-2.82
— 2. 84
-2.86
-2.88
-2.90
— 2. 92
-2.94
-2.96
-2.99
-3.02
-3.05
-3.09
-3. 13
-3. 16
-3.20
-3.25
-3.31
-3.37
-3.45
-3.57

FIGURE 1.—Rate of change of the orbital period as a function
of the number of revolutions («). For a conversion of n to
time, see table 2.

ao: Right ascension of the ascending node.
daajdU Nodal precession in degrees per day.

list (n=0) was actually the 16th crossing after
the launching of the satellite. Also given
are the nodal period, Pa, and the orbital
acceleration dPfdt, in seconds per day; these
quantities were obtained by numerical dif-
ferentiation of TQ.

The last fifty revolutions are tabulated in
greater detail (at intervals of 5 revolutions)
in table 4. A plot of dP/dt against n, covering
the first 2100 revolutions, is given in figure 1.
Due to the slow motion of the perigee for the
particular inclination of this satellite, there is
no difference, within the tabular accuracy,
between the accelerations of the nodal and of
the anomalistic period.
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n

0
25
50
75
100
125
150
175
200
225
250
275
300
325
350

375
400
425
450
475
500
525
550
575
600
625
650
675
700
725
750
775
800

825
850
875
900
925
950
975
1000
1025
1050
1075
1100

1125
1150
1175
1200
1225
1250

1957
Nov.

1Q57
•L «7U f

Dec.

1958
Jan.

T A B L E 3.—Orbital values

ta{U.T.)

4 39469
6. 19415
7. 99206
9. 78842

11. 58327
[13.37664]

[15. 16860]
[16.95918]
[18.74831]
[20.53596]
[22. 32214]

[24 10679]
25. 88993
27. 67149
29. 45146

1. 22989
3. 00673
4 78202

6. 55577
8. 32796
10. 09857
11. 86764

13. 63516
15. 40117
17. 16566
18. 92860
20. 68992
22. 44952

24 20735
25. 96338
27. 71753
29. 46977
31. 22002

1. 96825
3. 71436
5. 45850
7. 20068

8. 94090
[10.67911]
[12.41528]
[14 14928]
[15.88102]

17. 61056
19. 33801
21. 06338

22. 78666
24 50798
26. 22734
27. 94476
29. 66027
31. 37387

Pa

(0? 072009)
. 071947

. 071885

. 071824

. 071764
[. 071706]
[.071651]
[. 071594]
[. 071536]
[. 071477]
[. 071417]
[. 071356]
. 071294
. 071231
. 071168

.071105

.071042

.070981

.070919

.070856

. 070794

.070732

.070671

. 070610

. 070549

. 070486

.070419

. 070349

. 070278

. 070204

.070128

.070050

. 069970

. 069887

.069804

. 069726

. 069648

. 069569
[. 069488]
[. 069404]
[.069315]
[.069225]
. 069139
. 069056
. 068973

. 068892

. 068814

. 068735

. 068658

. 068582

. 068505

dP/dt
sec/day

-2.97
-2.92
[-2.84]
[-2.71]
[-2.66]
[-2.79]
[-2.85]
[-2.86]
[-2.93]
[-2.95]
[-3.05]
-3.07
-3.04

-3.06
-3.03
-2.99
-3.05
-3.06
-3.03
-3.00
-2.97
-2.96
-3.04
-3. 17
-3.37
-3.48
-3.57
-3.68
-3.78
-3.90
- 4 05

- 4 12
-3.96
-3.84
-3.91
-3.97
[-4 08]
[-4 33]
[-4 51]
[-4 39]
-4 20
-4 18
-4.15
— 3. 98
-3.92

-3.91
-3.84
-3.85
-3.90

n

1275
1300
1325
1350
1375
1400
1425
1450
1475
1500
1525
1550
1575
1600
1625
1650

1675
1700
1725
1750
1775
1800
1825
1850
1875
1900
1925
1950
1975
2000
2025
2050
2075
2100
2125

2150
2175
2200
2225
2250
2275
2300
2325
2350

r

1958
Feb.

1958
Mar.

1958
Apr.

FABLE 3.—Orbital values

ta(U.T.)

2. 08553
3. 79525
5. 50294

7. 20851
a 91190
10. 61300
12. 31171
14 00809
15. 70225
17. 39420
19. 08389
20. 77124
22. 45618
[24 13870] [.
[25. 81897] [.
[27. 49706] [.

[1. 17279] [.
2. 84608
4 51683
6. 18491
7. 85025
9. 51273
11. 17220
12. 82844

14 48130
16. 13073
17. 77672

19. 41925
21. 05828
22. 69375
24 32557
25. 95362
27. 57771
29. 19766
30. 81321

1. 42396
3. 02941
4 62906
6. 22238
7. 80859
9. 38686
10. 95582
12. 51318
14 05088

Pa

068428
068349
068266
068180
068091
067996
067901
067810
067722

067633
067541
067446
067349
067225]
067168]
067077]

066981]
066881
066777
066669
066557
066440
066315
066183
066046
065909
065771
065631
065490
065346
065198
065044
064882
064712

064529

064327
064106
063863
063596
063296
062957
062547
062008
06050

dP/dt
sec/day

3 94
— 4 10
-4 28
-4 42
- 4 67
- 4 85
- 4 75
- 4 54
- 4 50
-4 61
-4 80
-4 97
-4 94
[-4 62]
[-4 52]
[-4 80]

[-5.06]
-5.27
-5.50
-5.69
-5.92
-6.28
-6.72
-7.05
-7.14
-7.21
-7.28
-7.37
-7.51
-7.71
- & 00
-8.38
-8.82
-9.40
-10.28

-11.34
-12.48
-13.80
-15.3
-17.3
-20.2
-25.3
-38.2

-430. :

Values enclosed in brackets are uncertain because of scarcity of obser-

vations,
n —
ta-
Po-

dP/dt -

Numb e r of revolutions elapsed.
Time of ascending-node crossing.
Nodal period in days.
Orbital acceleration in seconds per day.
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TABLE 4.—The last 50 revolutions of Satellite 1957 01

n

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

tQ(U.T.)

1958 April

10. 95582

11. 26830

11. 58032

11. 89184

12. 20281

12. 51318

12. 82285

13. 13175

13. 43970

13. 74637

14. 05088

Pa

0? 062547

. 062543

. 062355

. 062251

. 062136

. 062008

. 061859

.061692

. 061477

.06117

. 06050

dP/dt

sec./day

-25.3

-26.8

-28. 0

-30. 4

-33. 6

-38. 2

-43.0
-52. 0

-69. 0

-120. 0

-430. 0



The Descent of Satellite 1957 jSl

By Luigi G. Jacchia

The present paper x covers the final part of
the last revolution of Satellite 1957 /31. The
observations that are at the basis of this report
can be divided into three categories—those from
the northeastern United States (table 1), those
from ships at sea (table 2), and those from the
Caribbean Islands and the northern coast of
South America (table 3).

While reliable observations, including altazi-
muth estimates of sightings, had been received
at the Smithsonian Institution Astrophysical
Observatory from ships at sea, only isolated
and mostly descriptive observations were avail-
able from land areas. Therefore, at the sugges-
tion of Dr. F. L. Whipple, Director of the
Observatory, the author undertook, at the end
of May 1958, a trip to the Caribbean area to
collect additional information. In the course
of this trip, he visited Antigua, Martinique,
Barbados, Trinidad, British Guiana, and
Surinam. The information collected is in-
cluded in table 3.

Reduction of the observations

The observations in table 1, all made at nearly
the same time from localities on both sides of
the satellite path, provided the means for the
computation of an excellent normal point in the
trajectory. Its numerical values were:

Longitude: 74?00 west
Latitude: 41?40 north
Height: 101 km above sea level
Time: lh45m258 U.T. (14 April 1958)

A set of orbital trajectories was computed by
numerical integration starting from this normal
point, with different initial radial-velocity con-
ditions and different (constant) drag param-
eters, with the ARDC model atmosphere

1 Essentially an extension of the preceding paper.

(Minzner and Ripley, 1956), to compute the
drag at these low altitudes. For simplicity,
these integrations were performed with polar
coordinates used in the orbital plane. One of
these integrations, whose results are given in
table 4, and represented graphically in figure 1,
fitted the observations in the Caribbean area
within their estimated errors and was chosen
as representing the most probable trajectory of
the satellite in its final plunge.

The initial conditions and the drag parameter
used in this integration were:

Orbital inclination=65?29
Total velocity=7.737 X105 cm/sec
Radial velocity (dr/dt) = — 1.28X103 cm/sec
CDA/m=K=0.0n (e.g.)

In the last quantity, CD is the drag coefficient;
A is the presentation area of the satellite; and
m is its mass. The atmosphere was assumed
to be rotating solidly with the earth and to
have the same density at the same height above
sea level, irrespective of latitude. The earth's
oblateness and the precessional effects on the
orbital plane were taken into account.

In the other experimental trajectories, radial
velocities up to — 2X103 cm/sec and values of K
between 0.02 and 1.0 were tried. As should be
evident, the effect of such different conditions
on the trajectory itself is to vary to a consider-
able extent the position of the end point, although
the subsatellite track is not greatly affected by
the changes. The assumption of a constant drag
parameter is, of course, a little unrealistic, since
the drag coefficient CD must have been decreas-
ing considerably in the course of the trajectory
with the formation of an air cap, while the area-
mass ratio A/m must have been increasing due
to the continuous shedding of molten metal.
Since, however, these two variations must have
compensated to a certain extent, the assumption
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TABLE 1.—Observations over northeastern United States

Station

Millbrook,
New York

New Haven,
Connecticut

Bryn Athyn,
Pennsylvania

Merrow,
Connecticut
(Mr. R. D.
House)

Pittsford,
New York
(Mr. R. E.
Jenkins)

Longitude
0

73

73

75

72

77

1 n

37 27

00 30

04

19.0

37 41

Latitude
°

+ 41

+ 41

+ 40

+ 41

+ 43

' "
51 30

12 35

08

49.4

15 03

(U.T.)
14 April

1958
h m s
1 45 08

1 45 35
1 46 04
1 45 47

1 45 21
1 45 46

Moonwatch ob-
servers at
a

b m
5 05

10 06
12 10

17 15
14 39

5

+ 45

0
+ 23 25

+ 66
+ 13 57

Isolated Observers

1 46

1 46 05:
1 46 25:

14 24
14:

+ 20
- 1 0 :

Z

180°

NW
W

s

h

40°

25°
45
15

Remarks

Magnitude+1. Tail of tiny
particles about 1° long,
seen more or less all the
time; white.

Blue-white when first seen;
magnitude + 1 ; at lh45m42*
got brighter (mag. —1)
and turned red.

Magnitude + 3 to — 1; red-
dish; tail 10' to 20' long

Magnitude 1.5 at maximum
brightness; red; faint,
transparent tail 3° to 5°
long, visible only through
binoculars.

Magnitude +3.

is perhaps justified, especially since the agree-
ment between the resulting trajectory and the
observations is quite good.

Phases of the trajectory and end point

There is general agreement among practically all
observers concerning the developments in the
appearance of the object. When seen in the
northeastern United States, the satellite already
had a faint tail in which sparklike particles
could be seen through binoculars. Its visual
magnitude, reduced to a standard distance of
100 km (absolute magnitude), was then about
+ 1.0 and the tail could be followed through
binoculars for 6 km behind the head, according
to the Merrow, Connecticut, observation.
After crossing over Long Island, the satellite
went unreported for about 5 minutes. When
sighted again by ships in the Caribbean, it was
at latitude 23° north and had become a spec-
tacular sight. Its tail was 60 km long as seen
from Antigua, 80 km long at the latitude of
Martinique, and nearly 100 km long as seen
from Barbados and Trinidad. (Of all the Carib-
bean Islands, Barbados was the closest to the

satellite's path, about 120 km from the sub-
satellite track.) When the object was at the
latitude of Barbados (13° N), its head, according
to the best estimates, had an absolute magni-
tude of about — 7 or — 8, and the total light emit-
ted by head and tail must have been close to
—9 or —10.

The color of the head was generally described
as white with tinges of blue or green, while the
tail was described as white, or white-yellowish,
near the head, and degrading to a deeper yellow
and orange—even red—toward the far end.
The "globules" described by all observers close
enough to see them were obviously drops of
molten metal shed by the object; their observed
splitting (A. H. C. Campbell, Barbados) con-
firms this explanation. Attention is called to
the small, semiperiodic light fluctuations
observed by Mr. Hart in Barbados, since they
might have some bearing on similar phenomena
observed in bright fireballs.

Several observers saw a bright flash when the
satellite reached 11° or 10° of north latitude
and spoke of a "shower of fragments" or "com-
plete disintegration" of the object, but there is
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TABLE 2.—Observations from ships

Ship

1. Volvula
2. Maron
3. California

4. Mitra

5. Duivendijk

6. Mormick Sea
7. Eirmil
8. Ells

9. Mobil Brilliant

10. S. Africa Star
11. Regent Springbok

12. Regent Hawk
13. K. G. Lohse

14. Sunkirk
15. Triton

16. Omnium Freighter
17. Rio Atuel

Position of ship
Long.(W) Lat.

o r o /

65 00 +20 34
62 12 +19 54
60 10 +17 55

64

61

53
55
65

56

62
59

60
52

58
64

61
59

10

04

04
38
34

30

50
00

10
29

03
43

33
47

•t-azimuth (from North, positive to East)

+ 17

+ 17

+ 16
+ 16
+ 15

+ 15

+ 15
+ 14

+ 12
+ 12

+ 12
+ 12

+ 10
+ 10

46

21

46
20
53

30

20
30

37
28

25
06

37
22

14 April 1958
U.T.

1 53
1 49 (a.)
1 50

1

1

1
1
1

2

1
1

1
1

1
2

1

55

48 (a.)

52 (a.)
20
55

10

50
50

53
53 (a.)

51 (a.)
00

55

: ft—altitude above horizon.

Duratio
of obs.

2 min
3-4 min

> 3 min

2 min

2 min

3 min

30 sec

3 min
2-3 min

20-30 s«

4 min.
1 min

35 sec
6 min

Appearance*

Moving in direction 328° to 148°.
Moving NNW to SSE.
Appeared at 2=330°, disappeared at

2=150°.
Appeared in North, h =10°; h max 45° in

East; disappeared at 2=140°, h=10°.
Appeared at 2=350°, disappeared at

2=160°; h max=30°.
h=10°; disappeared at 2=210°, h=10°.
Green flame moving NW to SE.
Appeared at 2=30°, A=15°; disappeared

at 2=130°, h=10°.
At 2=246°, h=17°; disappeared at

2=205°, h=2° to 4°.
Moving from NNW to SSE, A=10°.
Passed overhead; appeared to disintegrate

at h=15°.
20-30 sec At 2=34°, A=16°; disappeared at 2=94°

Appeared at 2=290°, disappeared at
2=225°, h=3° to 5°.

Passed overhead.
Appeared at 2=55°, disappeared at

2=95°, h=5°.
h max=18°.
h max=20°; disappeared in SE at A=8°.

no unanimity on this point among the Trinidad
witnesses. It seems, however, that when the
satellite was disappearing from view in Trinidad,
much of the fiery tail had faded out, and only
an isolated object (the head, or what remained
of it) was still proceeding on its course. This
object was seen from British Guiana, at closer
range than from Trinidad, as a conspicuous but
not spectacular object, which faded out while
still well above the horizon in the northeast.
This rapid fading out in midair was reported by
all observers who managed to follow the course
of the object until that point, i.e., the three
observers in British Guiana, the witnesses on the
vessels K. G. Lohse and Rio Atuel, and two
observers in Trinidad, G. R. Robson and J.
Saunders. The disappearance was seen from
various directions and corresponded to a point at
about 57° of longitude west and 9° north lati-
tude, at a height of some 40 km above sea level.

It appears quite probable that fragments
originating in the burst, including the object
seen from British Guiana, fell unseen into the
Atlantic Ocean along an arc of 100 km or so
on the subsatellite track, when their velocity

became too low to sustain the light-producing
mechanism. The "impact point" recorded in
table 4 should not have much more than aca-
demic significance, although it is expected that
no major fragment succeeded in traveling
much more than 1° beyond that point.

Remarks on Table 2

(1) Volvula: Long tail.
(2) Maron: Many short flames (very bright)

behind main body, followed by a long-pointed
tail (less lighted).

(4) Mitra: Light of flame was equal to that
of full moon, brilliant white with long tail of
sparks and smoke.

(7) Eirinil: Big green flame. Its head was
very intensively lighted and its tail faintly.
Along the tail there were smaller, bright heads.

(8) Ells: Several times brighter than Venus.
(9) Mobil Brilliant: When object was ahead

(Z=246°, h=l7°), its size was larger than that
of Venus, with a tail 11° long. Parts of the
head were continually breaking off and fol-
lowing the lower part of the tail, creating a
bulge below the tail. Each part was a minia-
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TABLE 3.—Observations frovi land

Longi- Duration
tude U.T. 14 April of
(W) Latitude 1958 sighting Appearance*

St. Thomas, 1. J. H. Jouett 64 57 + 1 8 21 l^O-1 — l''45m 2 min Appeared at z=40°, disappeared at

V.I.
Antigua,

B.W.I.
2. H. Merrifield 61 48 17 10 lh45™

z = 110°.
4 min Appeared at z=20°, h=7°; h max=

21°; disappeared at z=150°,/i=10°
(obstacles).

2 min h max=30°.

When at z=90°, h=21°; disappeared
at z=133°, very low.

Disappeared at z=155°, very low.
>1 min Appeared at z=10°, A=15°; h

max =18°; disappeared at 119°
behind clouds.

h max=20°.

20 sec

2.5 min Appeared at z=345°, h=5°; at
z=50°, h=22°; atz=110°,/i=21°;
disappeared at 145°, h = 6°, behind
trees.

35 sec Appeared at z=6°; at z=67°, h=
29°; disappeared at z = 128°,
h = 13°, behind clouds.

^2 min Appeared at z=10°, /i=12°; h
max=21°; disappeared at z=100°,
/»=15° (behind house).

h max=25°-30°.

Additional observers in Barbados: 15. J. Babb; 16. A. H. C. Campbell; 17. L. Hassell; 18. T. Stoute; 19.
C. Walcott.

3. W. P. Novin-
sky.

4. H. Laing

5. Y. Carty

Martinique, 6. R. de Reynal
F.W.I.

7. R. de la
Coste

8. Pere Tneon
9. Abb6 Beau-

brun
St. Lucia, 10. Mrs. N.

B.W.I. Moffat
Barbados, 11. R. Parris

B.W.I.

12. A. Hart

13. D. Rufolo

14. F. C. God-
dard

61

61

61

•61

61

60

59

59

59

59

48

48

48

04

04

55

37

35

34

27

17

17

17

14

14

13

13

13

13

13

10

10

10

36

36

49

15

04

04

06

Trinidad, 20. G. R. Rob- 61 27 10 19
B.W.I. son

21. J. Saunders 61 27 10 19

lh55m

22. E. H. F .
Beadon

61 39 10 39

30 sec Appeared at z=70° , fc=8° + 3°.

30 sec Appeared at z=70° , A=5°30 '±30 ' ;
disappeared at z=100°, fc=l°-20.

Appeared in north; disappeared at
z=60°, h=Z°, behind mountains.

Observers in Trinidad, who gave rough estimates of h max: 23. A Hinkson (6°); 24. T. R. Ivison (18°); 25. N.
McClean (10°-15°); 26. W. Orebaugh (15°); 27. E. Skeen (10°-15°); 28. W. Scott (5°); 29. H. Sookoo (5°-7°);
30. D. St. Aubyn (10°-15°); 31. D. Taylor (5°-10°). Other observers: 32. J. Jackson, 33. R. G. Lovell; 34. M.
Tulloch.

Appeared in north, h=30° (un-
checked), disappeared in NE, h—
15° (unchecked).

Appeared in north, h=15°; disap-
peared in ENE at A=10°.

*2=azimutb (from north, positive to east); A=altitude above horizon.

British
Guiana

35.

36.

37.

H

A.

E.

. Scott

Persaud

van
Lewin.

57

58

58

46

14

36

6

6

6

34

29

36
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ture replica of the larger, but lasted only a
very short time. The maximum number at
one time must have been about 15. A flash
was observed when the object appeared;
following the flash, the object emitted a series
of four other flashes that were bright but most
probably less bright than the first. After
closest approach, the tail became foreshortened,
and all the object became fainter until it gave
one last bright flash; a second afterwards it
disappeared, at an altitude of 2 to 4 degrees.

(10) S. Africa Star: Tail 20° to 30° long,
colored bright orange, silver-blue and green.
Crossed (astern of) vessel, appeared to be losing
height, and then disintegrated.

(11) Regent Springbok: Bright comet-like
shape with an associated firepath of smaller
glowing bodies. The colorful trail, many miles
long, was described as a peacock's tail, each
particle glowing through the spectrum from
white to deep blue in magnificent display,
finally fading away. Sinking in southern sky,
spearhead was seen to disintegrate, appearing
to do so at 15° above the horizon. Deck
and sea around were bathed in pale light
as mass crossed overhead.

(12) Regent Hawk: When closest, object had
tail about 15° long (another report says 20 to 25
times the diameter of the main body) and about
1°.5 broad, in which burning particles were
erupting. The main body appeared to have a
blue-white head, then a short dark space before
the glowing orange-yellow tail. Twenty-seven
separate particles were actually counted as
they appeared in the main plume. Each
followed the main body, and on leaving it
developed its own glowing tail. These particles
were visible for about one second, starting as a
bright white and rapidly darkening to a deep
red. The main body was estimated to be about
three or four times as bright as Venus at its
brightest—while the offshoots were each twice
the brightness of Sirius. One observer who saw
it in the early stages of its approach states that
it was round on top and bright blue-white, but
the lower hah* seemed to be flattened and was
more reddish in color, and "sparks" appeared
to be coming from the lower half.

(13) Karl Guntker Lohse: (account translated
and summarized from German): When it
appeared, the object had a comet-like shape

and was brighter than Jupiter. Toward the
end of its trajectory, the body brightened up
brilliantly and disintegrated into several glowing
parts. A few seconds later all had disappeared.

(14) Sunkirk: Was at first believed to be a
powerful white searchlight as from an aircraft
flying at low altitude. A trail of blue and red
fragments could be clearly seen in its wake.
Reflection from the object covered a wide area
in the sky and a section of the sea was also
illuminated by its brilliance.

(16) Omnium Freighter (in Port of Spain
harbor; account translated and summarized
from German): At first the object appeared
like a fireball, except that the white glowing tail
persisted longer. Tail was "25 to 30 nautical
miles long"; from white it degraded into dark
red and then into a black smoke trail, where a
few isolated sparks still glowed. Through
binoculars the body was seen to brighten up
several times. The bright light was observed
for about 35 seconds, the fainter for some 5
seconds, and the black smoke trail for about
15 seconds, "without seeing the end of it.''

(17) Rio Atuel: "Satellite appeared like enor-
mous planet, white in color, very bright in head
and with reddish trail with spots of lesser in-
tensity as if detached parts from the central
nucleus ended in secondary, bluish trail.
Disappeared at some 8 degrees altitude after 6
minutes of observation." (This description was
sent to the Argentine Association "Amigos de la
Astronomia" as a further elaboration on a
telegram, in which the vessel had announced
it had observed the "total disintegration of
Sputnik II.")

Remarks on Table 3

(The numbers in parentheses refer to the
observers listed in table 3.)
St. Thomas, V.I.—(1). "Gave appearance of

airplane at an altitude of 2500 ft. about 5
miles away. Object seemed dark with cherry-
red color at body, changing to almost
white at rear end or tail. The cherry-red
body was symmetrical, but became uneven
aft of the tail."

Antigua, B.W.I.—When first noticed in the
north-northeast it looked like a diifuse object,
without tail, with diameter not greater than
one-tenth of that of the moon (2). As it ap-
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proached, a tail was perceived, which at
closest approach reached a length of 20° (2)
or 30° (3). The object was brightest in
front, where the color was yellowish (2).
Sparklike particles became detached and
were seen especially in the lower part of the
tail (2, 3). The central part of the tail
appeared of a blue-grayish color; shortly
after the main body a dead region (less
luminous) could be seen in the tail (2). The
end of the tail was mainly composed of
particles (2, 3) like flying embers (2). The
tail appeared streaked. The greatest in-
tensity was in the upper and lower part, but
the lower was brighter (2). The total
brightness of the object, including the tail,
was comparable with that of the moon at
first quarter, but the brilliance of the head
was much greater than that of the moon
(2). The "sparks" were quite bright at
start, but would quickly burn out, in 8-10
seconds; no tail was seen attached to indi-
vidual sparks (2).

Martinique, F.W.I.—Made its appearance
as a white (8, 9) or greenish (7) globe, one-
third of the moon in diameter (7); the
apparent diameter may not have been real,
but due to optical illusion (6). At closest ap-
proach the main body was brighter than Ve-
nus, some 10 times brighter than Jupiter (6,
7), probably of magnitude —6. The globe
was sharply delimited; the tail was attached,
but a little separation could be discerned be-
tween body and tail (6, 7). At closest
approach the length of the tail was 20° (8, 9)
or 30° (6, 7) and its color was reddish (6, 7,
8, 9); none of the observers noticed sparks
or detached particles, nor any light
fluctuations.

St. Lucia, B.W.I.—"Appeared as a blazing
orange-yellow ball, about one-fourth the
size (in diameter) of the full moon, in the
wake of which streamed a long, wide, bright
trail of light and sparklike fragments, these
appearing as large as an average- or medium-
sized star in the sky."

Barbados, B.W.I.—At closest approach the
object was cometlike, with a dazzlingly
brilliant head, at least as bright as Venus, and
a long tail which, as a whole, was several
magnitudes brighter than the head, although

TABLE

Latitude
41°. 40
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
9.0
8.6

4.—Most •probable trajectory of descent of
Satellite

Longitude
(W)

74°. 00
63. 20
62.23
61. 29
60.41
59.54
58.70
57.88
57. 12
56.8
56.6

1957 &1

Height
(km MSL)

101

88
86
83
80
76
71
63
50

37

Time
(U.T.)

lb45m25»

1 50 14
1 50 47
1 51 20
1 51 52
1 52 26
1 53 00
1 53 37
1 54 21

1 55 01
(Impact point)

less brilliant (12, 19). The head seemed to
have a definite diameter, a little less than
one-fifth of the diameter of the moon (12);
all witnesses asserted that it did not look
like a point source of light (16). Its color
was described as white with a bluish (12, 16,
19) or blue-greenish (13) tinge. The tail
consisted of a bright, flamelike appendage,
white (19) or yellowish (13) in color, gradually
fading into a more reddish tinge at greater
distance from the head (19). Numerous
brilliant particles or globules were observed
in the tail, especially in the lower part (all
observers); their color was white at the begin-
ning, but became reddish as they were left
behind, falling, and faded out (12, 13, 19).
Each of the globules was followed by a small
tail, simulating the shape of the main body
(all observers); there were as many as 12 to
18 such "offspring" visible at any time, and
some of them subdivided forming two little
cometlike objects (16). The length of the
flamelike tail was estimated at 10° (13) or
20° (12, 19); some dying-out offspring could
be traced as far as 40° from the head. Small
fluctuations in brightness were observed in
the head, every three seconds or so (12).
Most observers saw the object disappear low
in the southeast, behind a cloud bank, which
became illuminated at the edges. Mr. Hart
(12) noticed flashes behind the cloud; there
was at least one big flareup after the body
disappeared from sight, like a distant flash
of lightning. Mr. Walcott (19), who ob-
served the phenomenon from a point several
miles away, saw the tail fade out before
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^ G E O R G E T O W N

PARAMARIB
1 /' FRENCH

IGUIANA

68° 62° 60" 58*
WEST LONGITUDE

FIGURE 1.—End path of Satellite 1957 /Si in the Caribbean area. Times of arrival and heights above sea
level, in kilometers, are marked on the subsatellite track. The black triangles represent localities
from which quantitative positional observations were given; qualitative observations came only from
the localities marked with open triangles. (Chart reproduced through courtesy of Sky and Telescope.)

the object vanished and then saw five or six
red pieces fall toward the horizon (hidden by
a distant ridge).

Trinidad, B.W.I.—When it appeared in the
north-northeast, it was not brighter than an
average bright star (30); it rapidly increased
in brightness as it approached, and a tail
became visible. When it was in the east-

northeast it was brighter than any star or
planet (all observers agree). The head was
variously described as "metallic blue-white"
(30), "vivid intense green" (22) or "whitish
as a welding flame" (33). The tail was
definitely redder than the body (practically
all observers), speckled with starlike sparks,
at least 10° long (25); some estimated the
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maximum length of the tail at 50° (30) or
even 60° (29). Some observers (23, 24)
mention a definite "burst" at the end of the
phenomenon; in other cases it is difficult to
decide whether what was described as a
burst resulting in a shower of fragments
(27, 31) was really an explosion or simply the
coming into view of the tail with the spark-
like objects in it. Mr. T. R. Ivison (24),
who was watching the object together with
Mr. W. Orebaugh (26), American Consul
General in Trinidad, saw it give out a big
white flare, like a magnesium flash, after
which it quickly disappeared. Mr. Orebaugh
did not mention the flash. Mr. Hinkson
(23), a newspaperman who saw the phenom-
enon from the Piarco Airport, also saw an
explosion some 3 seconds before he saw the
object disappear. I t is remarkable, however,
that other observers who had an especially
good view of the phenomenon did not
mention any burst. Two observers (30, 34)
reported that toward the end the fiery tail
faded and only the "leader" of the procession
of fragments remained visible, only to
disappear shortly afterwards.

British Guiana—A. Persaud (36) saw the object
at the Atkinson Airport and describes it as
brighter than any star or planet, but not
spectacular; it had a tail 1° long and seemed
to fly parallel to the horizon, from north
(where it was first sighted) to northeast.
Before it disappeared, in the east-northeast
direction, it seemed to drop closer to the
horizon. It disappeared quite suddenly while
still high (10°, checked by the writer) above
the horizon. The color was described as that
of an electric bulb. No sparks or fragments
were visible during the entire course. H.
Scott (35), from a place 20 miles east of
Georgetown, describes the object as "white

like a white electric light and bright as a
bright star." He saw no bursts or fragments.
I t was like a plane traveling, descending very
fast, to about 15° (unchecked) above the
horizon, where it disappeared. Steady white
light all the time. Mr. E. van Lewin (37)
from a boat on the Essequibo River near
Bartica describes the color as reddish and
saw it "grow smaller until it diminished from
view."
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Orbital Acceleration of Satellite 1958 02

By Luigi G. Jacchia and R. E. Briggs

The present study is based on an analysis of
1,450 Minitrack observations of Satellite 1958
/32 made between March 17 and September 16,
1958. The observations, kindly made available
by Project Vanguard at the Naval Research
Laboratory, were reduced by use of the sub-
satellite-point program (Jacchia, 1958d, 1958f),
with the assumption of the following values of
the elements:

^=34?255
g=1.1028 earth's equatorial radii

an =158? 53—3?0126 (t—1958 March 16.0)
w=121?58+4?4027 (*-1958 March 16.0)

(t in days, U.T.).

The resulting times of perigee passage, the
anomalistic period Pr, and the orbital accelera-
tion dP/dt, are given in table 1; the last two
quantities are shown graphically in figure 1.

It appears that the acceleration varies
rhythmically, with cycles of the length of 24
to 37 days; the mean period is close to 30 days.
During each of these cycles the acceleration
varies over a range of 50 to 100 percent of its
mean value; the mean value itself seems to be
subject to slower fluctuations. Of particular
interest is the sharp rise in the acceleration dur-
ing the second half of August, when it increased
by a factor of 4 in just over two weeks.

A periodicity of approximately 25 days was
barely discernible, according to Cornford (1958),
in the acceleration of Satellite 1957 /31; he
mentioned that "this had provoked speculation
that the tide-raising force of the moon may play
some part," although several other possible
sources for the irregularities were envisaged.
The acceleration curve (Jacchia, 195Sf) does
not bear out this periodicity; it seems rather to
point to 19-day cycles or to double oscillations
with a period of 37 days.

NUMBER OF REVOLUTIONS
500 I0O0 1500

APRIL MAY JUNE JULY AUGUST SEPT.
1958

FIGURE 1.—Time variation of anomalistic period and orbital
acceleration of Satellite 1958 02.

The fluctuations in Satellite 1958 02, which
appear to be too irregular to be explained by
tidal phenomena, seem to suggest semiregular
changes in the atmospheric density such as
could be caused by variable solar radiation—
for which one would expect to find occasional
periodicities of the order of 27 days and possibly
a correlation with geomagnetic activity. A
preliminary comparison of the observed accel-
erations with geomagnetic planetary indices
appeared rather inconclusive, although the
sharp acceleration maximum near September 1

13
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TABLE 1.—Orbital elements for Satellite 1958 02

No.
revolutions

n

0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950

Times of perigee
passage

r.(U.T.)

1958
Mar. 17. 61053

22. 27335
26. 93614
31. 59889

Apr. 5. 26160
9. 92425
14. 58685
19. 24941
23. 91193
28. 57441

May 3. 23682
7. 89917
12. 56146
17. 22370
21. 88590
26. 54806
31. 21017

June 4. 87222
9. 53420
14. 19614
18. 85805
23. 51993
28. 18176

July 2. 84355
7. 50530
12. 16702
16. 82872
21. 49038
26. 15202
30. 81362

Aug. 4. 47517
9. 13666
13. 79810
18. 45950
23. 12083
27. 78208

Sept. 1. 44322
6. 10424
10. 76515
15. 42597

Anomalistic
period
Pr(days)

040932561
554
546
536
525
516
508
500
489
476
464
453
444
436
427
416
403
392
385
379
371
362
354
347
342
336
330
324
315
304
293
284
273
258
239
216
193
173

0. 0932157

Orbital
acceleration

dP/dt
(days/day)

-1. 7X10-7

-1.6
-2.7
-2. 1
-1.7
-1.7
-1.6
-3. 1
-2.6
-2.6
-2. 1
-1.7
-1.7
-2. 1
-2.6
-3. 1
-1.6
-1.3
-1.2
-2.2
-1.7
-1.7
-1.3
-0.8
-1.8
-0.8
-1.7
-2. 1
-2.6
-2. 1
-1.6
-3. 1
-3.3
-4.8
-5.3
-4.7
-3.9
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followed two weeks of strong geomagnetic
activity.

It must be emphasized that the accelerations
determined from positional observations of
artificial satellites cannot be compared, day by
day, with geomagnetic or other phenomena,
since they are the second-time derivatives of the
observed function. At best, the computed
accelerations will always be a smoothed-out
version of the true accelerations, in which each
individual value is the average of a few days.

We may add that the synodic period of
precession of the line of apsides for Satellite
1958 j82 amounts to approximately 9,000 revolu-
tions, so that any effect arising from the motion
of the perigee from night to day and vice-versa
should give origin to fluctuations with a perio-

dicity of this order. This is clearly not true in
the present case; in particular, the rapid rise of
the acceleration during the second half of Au-
gust occurred at a time when the perigee was
not far from the subsolar point. In a previous
report (Jacchia, 1958c), a value log p= —15.45
(g/cm3) was computed for the atmospheric
density at perigee height (656 km) under the
assumption of an acceleration of — 1.95X10"7

days per day. The present analysis shows that
this value was quite close to the average accel-
eration in the interval from March to August,
1958. Since, however, the acceleration has
shown variations from — 1.1X10"7 to — 5.3 X
10~7 days per day, the computed atmospheric
density must be considered to be variable
between log p= —15.0 and log p= —15.7.





A Flashing Satellite for Geodetic Studies

By Charles A. Whitney and George Veis

This paper is intended to provide basic
recommendations for an engineering study and
design of a flashing geodetic satellite. The
study assumes a weight limit of approximately
100 lbs., and a launching time within the near
future. On this assumption we have attempted
to frame our recommendations as a compromise
between what the geodesist would like as an
ideal and what the engineer can reasonably be
expected to produce within a year. For this
reason, we do not discuss the long-range aspects
of geodesy or the additional goals that might be
attained with a more generous weight limit.

In the first section we outline the aims, the
precision required, and the techniques of the
geodetic applications of a close satellite; in
the second section, we discuss how these factors
influence the choice of a satellite orbit; and in
the third, we discuss various problems of
design and operation. The last section provides
a summary of recommendations.

The geodetic aspects
According to the Merriam-Webster unabridged
dictionary, geodesy is "that branch of applied
mathematics which determines the exact posi-
tion of points and the figures and areas of large
portions of the earth's surface, or the shape
and size of the earth, and the variations of
terrestrial gravity."

A satellite provided with a mechanism pro-
ducing flashes of short duration would be
highly useful for geodesy.

Accuracy required.—The existing geodetic
nets are based on optical (or radio) triangulation
for the planimetry and leveling for the altim-
etry. They are generally accurate to one
part in 100,000, which we shall denote as an
accuracy of 10~5. The Baltic Geodetic ring is
perhaps the most accurate existing net, with
an accuracy of about 10~6.

If triangulation techniques are employed to
connect these nets, the relative accuracy of the
connections will be of the same order as that
of the typical base line employed, i.e., 10"5.
Therefore, if the absolute accuracy (in meters)
of the connections is to equal that existing
within the nets, the triangulation scheme must
not involve connections over distances signifi-
cantly greater than the sizes of the nets them-
selves. If this restriction is observed, triangu-
lation techniques should provide a worldwide
geodetic net with an absolute accuracy of about
20 to 30 meters.

In principle, this restriction to tie distances
comparable to the length of the base line might
be overcome by direct radio-ranging techniques
combined with optical triangulation. How-
ever, the advantage of such a technique is
more apparent than real since, because of the
nature of the data, the need to evaluate the
propagation velocity and its variations, for
example, would probably reduce the relative
accuracy to that of the baseline employed,
i.e., 10"5.

We adopt the following requirement for the
accuracy of measurement of a geodetic satellite:
The angles observed must be measured to an
accuracy of 10~5 radians or 2 seconds of arc.
This will generally produce an ellipsoid of
uncertainty with a radius of about 15 meters.

For strength in the geometric solutions,
observations should be made so that the differ-
ent lines of sight intersect at nearly right angles.
This will usually necessitate restricting obser-
vations to elevation angles greater than 30°
above the horizon.

On the other hand, since the velocity of the
satellite will be about 8 km/sec, to obtain a
positional accuracy of 15 meters we must have
an accuracy of relative timing better than
±0.002 second.

17
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Geodetic techniques.—Although the number of
possible detailed procedures of observing a
satellite for geodetic purposes is very great,
there are, in principle, three distinct methods
of approaching the problem.

First, a purely geometric procedure can be
employed for geodetic connection if the flashes
can be observed simultaneously from both of
the nets to be connected. Triangulation from
each net will give the position of the satellite
relative to that net and thus provide the desired
three-dimensional connection.

A second method involves fitting an orbit
through observations of a set of flashes from
one net and of a second set of flashes from
another net. We call this the orbital method
since we use the orbit as an extrapolation device.
Because of uncertainties in the gravitational
(and air density) parameters, the method could
be used only for flash sets separated by about
one orbital revolution or less.

With these two methods of geodetic connec-
tion we contrast a third type of analysis, a
purely dynamical method in which the coeffi-
cients of terms describing the gravitational
field are treated as unknowns.

Available data on satellite orbits have already
substantially improved the assumed parameters
of the earth's gravitational field, through appli-
cation of what is essentially the dynamical
method in which the station positions are
treated as knowns. However, data of a rather
different nature, such as would be provided by
a flashing satellite, are requisites for an effi-
cient program of station-fixing, or geodetic
connection.

Choice of the satellite orbit.—There are several
differences between the requirements of the
geometrical method and those of the orbital
method.

Perhaps the most fundamental difference is
that the orbital method requires millisecond
timing of the flashes, while the geometrical
method requires timing just accurate enough to
locate the celestial sphere at the time of observa-
tion (±0.05 second). The problem of timing
will be discussed later.

Orbital inclination.—The two methods have
similar requirements in regard to orbital in-
clinations. Geodetic connections will be needed
primarily in the west-east direction, because the

existing nets are generally more extensive in the
north-south direction and because transpolar
geodetic connections will only rarely be allowed
by visibility restrictions. Thus a polar orbit can
be ruled out for the general purposes of a geo-
detic satellite. Polar orbits may be useful in
the future, however, for special problems.

A satellite orbit at a height of 500 miles will
have a segment more than 30° above the horizon
for at least four hours per day from all latitudes
less than i-\-6°, where i is the orbital inclination.
This would suggest that the inclination could
be as much as 6° less than the greatest latitude
of the geodetic points to be employed. How-
ever, the geometric solutions are greatly
strengthened if the satellite does, indeed, pass
occasionally to the poleward of these high-lati-
tude stations, or at least through their zeniths.

These considerations, and the geography of
northern Europe and Asia, suggest an orbital in-
clination between 50° and 60° for the first
satellites.

We do not feel it advisable (see p. 22) to aim
for the critical inclination itself, 64?3, in the
neighborhood of which the latitude of perigee
changes very slowly. Also, since the high-lati-
tude regions of primary interest to us lie in the
northern hemisphere, it would seem advisable
to launch the first satellite during the fall season
to ensure maximum nighttime visibility in the
north during the early, and therefore perhaps
more reliable, months of operation.

It is important to note that the success of the
geometric method does not require observations
to be made in both the northern and southern
hemispheres. In other words, the satellite need
be observed only from the stations that are to
be connected geodetically.

Satellite height.—The height requirements of
these two methods differ in the following ways.
Ideally, the geometrical procedure would re-
quire that the flashes be bright enough to be
observed over ground distances of 1,500 to 2,000
miles in order that nets 2,000 miles apart can be
connected. Also, the satellite height must be
great enough so that, even at this distance, the
observed elevation angles will be sufficient (30°)
to provide strong trigonometric solutions.
These idealized requirements, which demand a
satellite height of approximately 2,000 miles, are
perhaps rather severe and could be reduced so
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that a height of 1,000 to 1,500 miles would
suffice.

Height requirements for the orbital method of
geodetic connection are more modest, since the
satellite need not be observed over such large
distances. The height would be chosen so as to
keep within tolerable limits the orbital pertur-
bations that result from variations of atmos-
pheric drag and gravitational departures from
an ellipsoidal field. So little is known about the
exact origin and nature of these smaller-scale
gravitational anomalies that it is difficult to pre-
dict the rate at which their effect will decrease
with height. Through an application of the
dynamical method of analysis, determination of
this rate will, indeed, be one of the ultimate ob-
jectives of observing a geodetic satellite. Thus,
considerations of gravitational perturbations do
not place a clear-cut minimum on the allowed
orbital height.

Atmospheric drag demands a more tangible
lower limit on height. For many reasons, the
orbital method will probably not be useful in
connecting observations separated in time by
more than one or two orbital revolutions. We
therefore adopt the limiting requirement that
the mean atmospheric drag should not displace
the satellite from its "undragged" position by
more than a few meters during one revolution.
This criterion will give an absolute lower limit
on perigee height for a satellite of geodetic value.

Analyses of satellite behavior indicate that
variations of atmospheric drag, when averaged
over 100 revolutions, generally are comparable
in magnitude to the mean drag itself. For
lack of evidence we may assume that, over
intervals of one revolution, the drag variations
are of the same magnitude.

The orbit itself will probably have an eccen-
tricity slightly greater than 0.05. Apart from
launching difficulties, reasons are given below
(p. 22) for an eccentricity of this order. There-
fore, we may invert the simplified expression
developed by Sterne (1958a) for inferring perigee
density from observed changes, and estimate
the expected displacements for various orbits.
We adopt the Smithsonian Interim Atmosphere
No. 2 (Sterne, Folkhart, and Schilling, 1958)
for values of average density and employ the
drag coefficient (6rx>=2) used in deriving this
model from satellite behavior. For satellites

of mean heights between 200 and 800 miles,
the following relation is accurate to within a
factor 2, which is adequate for present purposes:

«I—§3— 1016,

where SL is the displacement, in meters, pro-
duced along the orbit by the average atmos-
pheric drag during one revolution; p is the
perigee density (gm/cm3); e is the orbital eccen-
tricity; and A/m is the ratio of effective cross-
sectional area to mass of the satellite (cm2/gm).
If we have a sateUite with e=0.05, m=50 kg,
.A=0.25 m2 and 5L<5, we find a maximum
tolerable perigee density of 2X10~15 gm/cm3.
This requires the perigee height to be greater
than 300 miles, although this figure is not
precise since the atmospheric models are rather
uncertain at these heights and the density
gradient is low because of the high temperature.

For comparison, the hypothetical satellite
considered above has a specific gravity (0.58)
about 10 percent less than that of the six-inch
Vanguard sphere (1958 /32), and an area-mass
ratio one-third as great, neglecting antennae.
Because of uncertainties and possible fluctua-
tions of atmospheric density at 300 miles, it
would seem advisable to aim at a specific
gravity somewhat greater than unity, and a
minimum perigee height of 400 miles.

We conclude, therefore, that a moderately
dense satellite with a perigee height of 400 miles
and an apogee height of 1,000 miles would be
well suited to the geodetic problems. If the
launching vehicle and batteries permit, a more
desirable orbit might have a perigee of 500 to
600 miles and an apogee of 1,000 to 1,500 miles.

Operational problems and satellite design

The required accuracy of angular measurement
suggests the use of photographic techniques in
which the satellite position is measured relative
to a star background. Cataloged stellar posi-
tions are typically accurate to ±0?5 of arc,
which is entirely adequate.

Parallactic refraction.—Measurement relative
to a star background has the advantage that,
to the first order, atmospheric refraction is
eliminated since the starlight is also refracted.
However, there is a small effect, which might be
called parallactic refraction, arising from the
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fact that the satellite is much closer than the
stars. This effect is most severe for low satel-
lites observed near the horizon; for a satellite
with .#=500 km it amounts to 1T5 of arc when
the elevation angle is 30°. Since the effect
can probably be evaluated to within 10 percent
for each observation, the restriction to elevation
angles greater than the 30° that is required
by geometrical considerations is expected to
keep the uncertainties due to parallactic re-
fraction well below timing and measuring errors.

Telescopic focal length.—The position of the
center of a circular image on a photographic
plate can, with care, be measured to one-fiftieth
of its diameter, or about one micron for most
photographic plates and telescopes of quality
adequate for providing satellite measures. In
principle, therefore, a telescopic focal length of
0.5 meter would be sufficiently great to provide
positions of the background stars to within
0?5 of arc. In practice, a one-meter focal
length will be more nearly compatible with
the required aperture.

Duration of flash.—Achieving an angular ac-
curacy of 1 second of arc for the moving satel-
lite image is not easy, for the satellite's apparent
angular motion can reach 3,000 seconds of arc
per second of time. If tbe time profile of the
light flash were square, the photographic image
would become elongated in proportion to the
duration of the flash, but it would remain
symmetric. Measurements could still attain
the required accuracy if the duration of the
flash were less than about 0.01 second.

However, a distortion of the satellite image
arises from the asymmetry of the light curve of
the flash pulses. The light curve shows a
rapid increase (a few microseconds) followed
by a sharp peak and an exponential decline.

If we represent the light curve by an instan-
taneous rise to peak intensity /„, followed by
a decline with a half-life T, in seconds, then the
instantaneous intensity I(t), at time t, following
the peak is given by the expression,

The nominal exposure time tn of a flash is
taken by convention to be that value of t for
which 7(0 / / P =l /3 , so that <n«r.

In a typical camera-plate combination the
light from a point source is diffused over an

area with a diameter of some 20 microns, and
the instantaneous spatial profile of light inten-
sity on the plate is well represented by a
Gaussian curve. If the photographic plate
responded linearly to light, the image could be
considered as the sum of a large number of
Gaussian curves, arrayed according to the satel-
lite motion, along a line on the plate; the height
of the succeeding Gaussians would decrease
exponentially. This concept will be very nearly
true for images not heavily exposed.

The resulting image will show a well-defined
peak of density that will very nearly corre-
spond to the onset of the flash. The observer
can be instructed to measure the position of
this peak. However, if the image is badly
overexposed, the image will saturate, and the
peak will become less well defined and will
move forward from the instant of onset.

Positional errors thus introduced by varying
degrees of image saturation will probably not
greatly exceed the distance moved by the light
during its nominal exposure time. Thus, these
errors can probably be eliminated by keeping
tn less than .001 second and properly diaphragm-
ing the observing instruments to avoid heavily
overexposing the image.

Atmospheric "tremble" will produce high-
frequency angular displacement of the optical
image of the satellite. Although the amplitude
and frequency spectra of these "seeing excur-
sions" are still under investigation, amplitudes
are known to exist as high as 1 second of arc
with frequencies greater than 10 to 100 per
second. For the stellar background, which will
be given exposures of several seconds, these
excursions will average to a rather small mean.
However, the image of the short flash can be
expected to show excursions as great as 1 second
of arc even at moderately high elevation angles.

The effects of "tremble," plus the fact that
the cost of measuring the photographic plates
increases essentially in proportion to the number
of plates, suggest that flashes should be arranged
in short bursts, or groups, to provide a number
of images on each exposed plate.

Brightness of flash.—The brightness of the
flash required for detectability by a given
telescope depends primarily on the aperture of
the telescope objective, the distance to the
satellite, the amount of atmospheric absorption,
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and the limiting image density considered
usable.

A telescopic aperture between 5 and 10
inches would seem optimum in view of the
light-gathering power, availability, cost, and
ease of installation. Speeds in the region of f/7
would give focal lengths adequate for the
desired accuracy of measurement.

The following specification seems to be
generally acceptable as a basis for computing
the necessary flash brightness: A one-second
exposure with a 10-inch aperture gives a work-
able image of a lOth-magnitude star of solar
color at the zenith if fast panchromatic film is
used. The xenon discharge tubes do, indeed,
have very nearly solar color, and we shall
assume the use of panchromatic plate of A.S.A.
speed 200.

A lOth-magnitude star as observed at the
zenith corresponds to a source of 2.0X10"4

candlepower at a distance of one kilometer and
with no absorption. With these quantitative
conditions, and the inverse-square law of
illumination, and the reciprocity law for photo-
graphic response, we can easily construct the
relation between R, the satellite distance in
miles; P, the output in candlepower per second
of the flash; A, the aperture of the telescope
in inches; and 5M, the atmospheric absorption
in magnitudes at the zenith distance of observa-
tion minus the absorption at the zenith. The
relation is given by the equation,

TABLE 1.—Visual atmospheric absorption

log P = 2 log R-2 log 5M-1.19.

We adopt the values given in table 1 for the
atmospheric absorption as a function of zenith
distance (Allen, 1957), noting that they apply
to a dry, clean atmosphere.

Adopting a reasonable value of 3 candle-
power per watt for the efficiency of the discharge
tubes, and letting W be the required watt per
second rating of the flash unit, we obtain the
relation,

log W=2 log R—2 log A+0A8M—1.70.

We display the photometric results in table 2,
in which satellites at heights of 500 miles and
1,000 miles are treated. For telescopic aper-
tures of 10 inches, the required value of W is
given for various values of D, the distance in

Zenith
distance

0°
20
30
40
50
60
70

Absorption
(mag.)

0.21
0.22
0.24
0.27
0.32
0.42
0.61

SM
(mag.)

0.00
0.01
0.03
0.06
0. 11
0.21
0.40

miles along the earth's surface to the sub-
satellite point. Angular elevations, h, are also
tabulated.

In examining these tables, we must keep
several points in mind. 1) Atmospheric ab-
sorption increases rapidly with decreasing
angular elevation when the elevation becomes
less than 40° to 50°. This reduces the efficiency
of the flash.

2) If, for reasons of reliability, the purely
geometric method of analysis is to be employed
for the first satellites, the project will more
nearly fulfill its geodetic purpose if stations
separated by at least 1,000 to 1,500 miles can
simultaneously observe the satellite at an
angular elevation greater than 30°. Thus, D
should be 750 miles for h—30°. This means
that the height must be 600 miles at some part
of the orbit.

3) Although table 2 is constructed for use
with a telescope of 10-inch aperture, the Baker-
Nunn satellite-tracking cameras have an
aperture of 20 inches, while a much larger
number of cameras in the range 5 to 10 inches
could be available. These smaller cameras
have the advantage of being easily transportable
from one site to another.

4) Table 2 is based on general astronomical
experience and on a reasonable, though perhaps
conservative, value for the luminous efficiency
of the flash.

Although further engineering study and
testing may show that the power requirements
given in this table are larger than necessary,
the following comments will probably remain
valid: Values of connection distances D up to
680 miles are much more economically obtained
for a 500-mile height than for a 1,000-mile
height. However, the connection distance can-
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TABLE 2a.—Required flash output
(H=600 miles)

Subsatellite
distance

(D)

0°
2
4
6
8

10

Omi
136
271
408
545
680

Angular
elevation

w
90°
72.5
57
45.5
36.5
29

Satellite
distance

(R)

500 mi
525
585
670
775
895

Energy
(watt/sec)

(W)

51
60
72
98

140
200

TABLE 2b.—Required flash output
(H=1,000 miles)

Subsatellite
distance

(D)

0°
2
4
6
8

10
12
14

Omi
136
271
408
545
680
815
950

Angular
elevation

(A)

90°
80
70
62
53
47
41
35

Satellite
distance

(«)

1000 mi
1015
1050
1105
1175
1260
1360
1475

Energy
(watt/sec)

(W)

200
210
220
260
300
350
420
510

not exceed 700 miles unless the satellite height
is greater than 500 miles. Increasing D to
1,000 miles by elevating the satellite to 1,000
miles requires an increase in the flash output
by a factor of nearly three.

On the whole, it seems probable that a flash
output of 200 to 300 watts per second would be
adequate.

The orbital eccentricity.—We have suggested
placing the satellite in an orbit with a perigee
height of at least 400 miles and an apogee
height of 1,000 miles. These are really minimal
figures and lead to a mean height of 700 miles
and an eccentricity of 0.06. If the orbital
inclination differs from 64?3 by at least 5°,
the latitude of perigee will vary between posi-
tive and negative values numerically equal to
the inclination with a total period of some three
months. At each observing station, the height
of the satellite will thus oscillate between 400
and 1,000 miles. Therefore, depending on the
equipment and specific geodetic problem at
hand, the observers may choose that observing

time at which the height is optimum. With
this configuration, the line-of-sight distance to
the satellite will vary from 400 miles (perigee
at zenith) to some 1,500 miles (apogee at
minimum allowable elevation angle). The
most "typical" line-of-sight distance will be
about 600 miles with an atmospheric attenua-
tion by a factor 0.80.

Flash programming.—The flashes should be
grouped in bursts of four to six flashes. The
maximum duration of a burst is set by the
following considerations. The flashes will be
photographed with a telescope that tracks the
background stars at the sidereal rate. Back-
ground stars are catalogued accurately only
to the 9th or 10th magnitude; above this
brightness there is an average of 5 stars per
square degree. Thus, there is no need for a
background exposure going beyond 10th magni-
tude, which corresponds to 1 second with a
10-inch aperture. In fact, if the background
exposure is much greater than this, accuracy
may be lost because overexposure and errors of
tracking may produce enlargement of the stellar
images. Also, the satellite will cross a 5-degree
telescopic field in from 15 to 5 seconds; there-
fore, the burst must last less than 5 seconds.

Flexibility of telescopic angular field and
allowable background exposure would seem to
demand that the burst duration be less than
oue second. However, there is no apparent
reason for reducing the duration much below
one second.

The mean speed of the satellite will be about
250 miles per minute; therefore, a maximum
of 1.5 minutes or 375 miles may reasonably be
set on the interval between bursts. Provision
for a variable interval between flash bursts
would be advantageous. From the observers'
point of view a 1.5-minute interval would give
about three or four usable bursts per passage.

Clearly, the flash need not operate over
ground illuminated by the sun. However, a
simple sun sensor to cut off the flash when the
satellite itself is illuminated would be too
restrictive, since for a considerable portion of
the orbit, a satellite at 1,000-mile height will
be illuminated when ground conditions are
favorable for photography. Indeed, this is
just the portion of the orbit during which inert
satellites are now photographed.
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We come finally to the intriguing question
of how to provide for timing the flashes and
what possibilities exist for ground control over
the programming.

We distinguish two types of flash-timing and
give them names, for convenience. "Geomet-
ric" timing indicates a system by which a
simple clock on the satellite activates the
bursts at times well enough determined so
that observers can photograph the flashes,
identify them for the purpose of simultaneous
photography from more than one station, and
determine the position of the celestial sphere
against which the satellite image is measured.
An accuracy of 0.05 second would be adequate.
"Orbital" timing, on the other hand, means
that the satellite carries a clock whose stability
and calibration are adequate for the determina-
tion of the difference in time between bursts,
with an error not to exceed 0.001 second. This
clock can be calibrated from the ground.

Operating the satellite.—The simplest and
hence the most reliable method for operating
the flashing satellite would equip the satellite
with a simple clock, whose sole function would
be geometric timing. The clock would operate
continually, day and night, and would weigh
only a few pounds.

In principle, the clock might be made stable
enough to allow orbital timing as well, al-
though the requirements for weight and tem-
perature control would be greater. The clock
could be calibrated by photoelectric timing
through a telescope, although not easily; the
data could be analyzed at the individual
observing sites or at a central agency, which
would publish an ephemeris of flashes. This
use of master timing stations would require
clock stability sufficient to keep clock errors
below 0.001 second per two-hour period, since
the time interval between clock checks would
be on the order of an orbital period.

The second possible method would include a
transmitter on the satellite to emit a radio
pulse at the time of the flash. If sufficiently
powerful, these pulses could be detected at
the observing sites. This technique does not
require extreme clock stability. In view of
its rewards, this use of an onboard transmitter
to provide orbital timing seems highly ad-
visable. If the transmitter failed, the geo-
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metric timing would still be available or
photoelectric timing could be attempted.

If power requirements dictate a weak pulse,
a stable clock could be put on board, and
several master timing stations with sensitive
receivers could be established to calibrate the
clock and prepare an ephemeris of flashes.

This second procedure could be elaborated
to enhance greatly the flexibility and efficiency
of power utilization. A clock stable to 0.001
or 0.002 second in two hours and operated
continually would cause a radio transmitter
to emit a pulse, or group of pulses, every 1.5
minutes. When commanded from one, or
two, or three master ground stations, a pro-
gram would be initiated within the satellite to
produce a light flash with each radio pulse.
The light flashes would be emitted for 100
bursts, or for two and one-half hours, and then
stop, although the radio would continue. It
might be safer, in view of possible failure, to
use the command to suppress the flashes
rather than to activate them. By this scheme,
the observer could wait for favorable weather
and orbital configurations at the observing
sites.

One final point concerning the flash pro-
gramming should be mentioned. If the times
of flashes are determined at master stations,
rather than at each observing site, it will be
necessary to provide a means of identifying
the flashes observed at the geodetic stations.
The identification of the burst will present no
difficulty if the bursts are separated by at
least a minute of time. Also, one or two
members of a burst might fail to register, due
to self-occultation or plate size. If the indi-
vidual members of the burst are spaced at
stable, but unequal, time intervals, they could
be identified. For example, a simple pattern
of intervals such as 0.2, 0.4 second between the
members, would allow a unique determination
of the missing member if only three flashes
were observed.

Self-occultation could be eliminated at the
expense of slightly reduced efficiency, if the
satellite had two lamps that flashed simul-
taneously to illuminate opposite hemispheres.
Edgerton's suggestion (personal communica-
tion) of employing four lamps, two in each
side of the satellite, and letting each lamp
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produce one member of the burst, would seem
an advantage.

Flash lifetime.—It is difficult to place exact
limits on the required lifetime of the flash. If
the flash operates continually, a minimum life-
time would be about three months, during which
the orbital node would have regressed suffi-
ciently to provide visibility at all stations with
latitude less than the orbital inclination. This
suggests a program lifetime of some 2,000
hours. If, on the other hand, the flash is
allowed to operate only during revolutions in a
favorable orbit, the efficiency is greatly im-
proved. A fairly complete coverage could
probably be obtained with 500 hours of program
time. These numbers should be considered
lower limits.

Summary

We may summarize our recommendations as
follows:

Launch the satellite during the fall months, for maxi-
mum visibility in the northern hemisphere. Provide
for the operation of the flash, either continuous or
intermittent, over a period of at least three months, to
allow a complete rotation of the orbit in space.

The best period of operation for the flash program is
difficult to estimate, but it should probably be on the
order of 500 hours if the command receiver is aboard.
If it is not aboard, the time will have to be at least three
months or somewhat more than 2,000 hours.

Design the satellite so that (1) a minimum number of
flashes is lost by self-occultations; (2) the area-mass
ratio is less than 1/20 (cm2/gm); and (3) the flash output
is in the range 200 to 300 watts per second.

Place the satellite in an orbit of inclination 55° ±5°
with a perigee height of 400 miles and an apogee height
of 1,000 miles.

In addition to the flash, provide the satellite with the
following equipment:

(1) A tracking beacon of Minitrack-type to allow

acquisition of the satellite and orbital prediction
immediately after launching.

(2) A clock stable enough to give millisecond ac-
curacy over periods of one orbital revolution
(nominally, two hours).

(3) A clock-pulse transmitter to emit calibration
pulses every ten seconds.

(4) A mechanism to cause a burst of four programmed
flashes with every 10th clock pulse (i.e., every 100
seconds).

(5) A command receiver to suppress the flashing for
1,000 clock pulses (3 hours), and thus allow
power conservation.

We do not regard the millisecond clock
stability as an absolutely essential part of this
device, since provision can be made for timing
the clock pulses with radio receivers at the ob-
serving stations. Such stability would, how-
ever, greatly simplify the ground operation and
the analysis^of data, since it would mean that
the timing could be done at two master stations
and that analysis of the clock would be allocated
to one central group.

The command receiver to allow suppression
of the flash is an important part of the device
if dry cells are to supply the flash power, since
it would quarter the flash power required. Of
course, if engineering studies demonstrate the
feasibility of using solar energy or a radioactive
power supply, the command receiver would be
unnecessary.
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The Earth's Gravitational Potential as Derived
From Satellites 1957 §1 and 1958 02'

By Luigi G. Jacchia

An excellent set of 68 orbit determinations of
Satellite 1957 01 (Sputnik II), covering the
interval from Nov. 9, 1957 to Apr. 13, 1958,
has been published by the Royal Aircraft
Establishment, Farnsborough, England (Corn-
ford, 1958). These data permit an accurate
interpolation of all orbital elements during the
lifetime of the satellite. Since the orbital
inclination of this satellite differs by 31° from
that of Satellite 1958 02 (Vanguard)—which,
thanks to its high perigee and continuous radio
performance, yields highly reliable values for
its secular perturbations—it was thought ad-
visable to investigate the possibility of using the
two satellites for the independent determina-
tion of the second- and fourth-order coefficients
of the earth's gravitational potential.

The secular precession tl of the right ascen-
sion of the ascending node, when all distances
are expressed in units of the earth's equatorial
radius, can be written as follows:

Q——n*a~3/2p~2 cos i J-\—5 ( 77: sin2 i—'.

~ ^ ( 7 sin2z-4)l (1)
14 p J

Here a is the major axis of the orbit; n* is the
mean motion of a satellite revolving around a
point mass equal to the mass of the earth in
an orbit with a=l; p is the orbital parameter
[p=a(l— e2)]; i is the orbital inclination; Jand
K are, respectively, the coefficients of the
second and fourth harmonics in the earth's
gravitational potential. In the above ex-
pression, all terms containing J3, K2 and higher

' Manuscript received Nov. 1, 1958.

powers of J and K, as well as their cross-
products, have been neglected. We have used
n*=6135?58/day.

For Satellite 1958 02 we have used the fol-
lowing mean elements, obtained by R. E.
Briggs from Naval Research Laboratory or-
bital data and corrected on the basis of Mini-
track observations :

Epoch: *O=1958 June 18.858
Anomalistic

period: Px=0*0932379
Eccentricity: e=0.19023
Inclination: t=34?253—0°.00010(t—to)
Right ascension

of ascending
node: Q=25?976—3?0126(«—«0)

Argument of
perigee: «=179?2+4?4027(«—<0)

(t in days, U.T.).

No departure from linearity can be observed
in the motion of the node in the interval from
1958 March 17 to October 10. The estimated
error in fi is ±0?0002. From the anomalistic
period, using first-order perturbation theory,
we can compute a= 1.361527.

For Satellite 1957 01 we have interpolated
at 10-day intervals, from the data of Royal
Aircraft Establishment, the orbital elements
in table 1. The nodal precession derived from
the data in the last column is tabulated in
table 2, together with the individual values of
J computed from them, with if=1.0X10~5.
These values of J were computed only to test
the inner consistency of the data.

To obtain mean values of J and K over the
observed interval for Satellite 1957 01, we have

25
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TABLE 1.—Orbital elements for Satellite 1957 j3i interpo-
lated from RAE data

t
(OhU.T.)

1957

Nov.

Dec.

6

16

26

6

16

26

1958

Jan.

Feb.

Mar.

Apr.

5

15

25

4

14

24

6

16

26

5

1.

1.

1.

1.
1.

1.

1.

1.

1.

1.

1.

1.

1.

1.
1.

1.

a

14601

14236

13869

13494

13106

12694

12238
11721

11193

10676

10138

09547

08877

08085

07113

05750

e

0. 0981

0. 0953

0. 0926

0. 0897

0. 0867

0. 0835

0. 0800

0. 0759

0. 0719

0. 0678

0. 0635

0. 0588

0. 0534

0. 0470

0. 0392

0. 0284

i

65? 37

.36

.34

.33

.32

.31

.30

.29

.28

.27

.26

.25

.24

.22

.21

65.20

CO

59? 3

55.2

51. 1

47.0

42.9

38.7

34.5

30.3

25. 8

21.6

17.3

12.8

8.3

3.7

358.9

353.7

(108? 3)

81.69

54.93

27.95

0.69

333. 09

305. 11

276. 72

247. 91

218. 67

188. 97

158. 76

127. 96

96. 45

64.03

30. 41

integrated equation (1) between the time limits
tx and £2, and we thus obtain:

where
(2)

-2 cos idt=

Values of Ju j 2 , and f3 are given in table 2.
Integrating from ^=1957 Nov. 26.0 to *2=1958
March 16.0, we obtain (for Satellite 1957 £1):

-318?48=-l?9624X105
t /

-4?91X104J2+6?10X104K (3)

For Satellite 1958 j82, on the other hand, we have

-3?0126 = — 1853?74J+536°<72—411°K (4)

Solving equations (3) and (4) simultaneously,
we obtain

J=0.0016244; (5)

In the interval from ti to U, the inclination of
Satellite 1957 /31 changed by — 0?12. As-

suming that the perturbing force which caused
this change had an exactly equal effect on the
node, i.e., caused an extra precession of the node
AQ=— 0?12, we find for the result:

J=.OO16241; (6)

The values of K that have been derived from
gravity measurements and from different hy-
potheses concerning the departures of the geoid
from a rotational ellipsoid vary between
9.0 X10"6 and 11.4X10"6. If we wish to adopt
the higher of these two values, then we must
postulate an extra precession Afi=—0?47 in
the node of satellite 1957 /31; we then obtain

J=0.0016234; K= 11.4X10-°. (7)

The fact that the rate of change of the orbital
inclinations is negative shows that the force
responsible for it must be acting in a transverse
direction along the general eastward motion of
the satellite. Such a force would, if anything,
have caused a westward (negative) motion of
the nodes; it would seem then that the possi-
bility of a positive excess in the nodal precession
due to this cause can be excluded. We can
thus consider the value of 6.9X10"6, obtained
under the assumption of AQ=0, as a lower limit
for K. It is reasonable to assume that the
actual value of K is somewhat smaller than
10X10""6. As to J, it is clear that, no matter
what final value is adopted for K, it must be
not far from 0.0016240, with an estimated error
of ±10X10~7.

The coefficients J and K are related to the
"flattening," a, of the spheroid, by the equations

=*~ P~\ «2+^ (8)

(9)

In these equations p=i?a>2/&e
2, where R is the

equatorial radius of the earth, « is the earth's
angular velocity of rotation, and ke is the
"geocentric" gravitational constant; we have
adopted p= 0.00346149. The parameter K is
associated with the depression of the spheroid.
If we assume that the equipotential surface of
the earth is an exact spheroid, we have K = 0 ;
estimates of K vary from zero to 6.8X10"7.
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TABLE 2.—Observed values of nodal precession (from RAE data) and indi-
vidual values of J for Satellite 1957 fil

t

(OhU.T.)

1957

Nov. 26
Dec. 6

16
26

1958

Jan. 5
15
25

Feb. 4
14
24

Mar. 6
16

h
(degrees per

day)

-2. 686
-2. 711
-2. 742
-2. 778

-2. 818
— 2. 860
-2 . 902
-2 . 946
— 2. 994
-3. 049
-3. 113
-3. 191

U

(degrees)

-1652. 8
-1670. 9
—1690. 0
-1710. 5

-1733.7
-1760. 5
-1788. 5
-1816.6
-1846.6
-1880.3
-1919.6
-1967.6

u
(degrees)

-399
-405
-412
-420

-428
—438
—448
-458
-469
—482
-497
-516

U

(degrees)

+495
503
512
521

531
544
556
569
583
599
618
641

103 J

(K= 1.0X10-*)

1. 6275
1. 6248
1. 6249
1. 6265

1. 6278
1. 6270
1. 6250
1. 6242
1. 6238
1. 6240
1. 6242
1. 6243

For J=0.0016240 we obtain a= 1/298.26
under the assumption of /c=0, and a = 1/298.30
assuming K = 6 . 8 X 1 0 ~ 7 . The corresponding
values of K are 8.8X10"6 when K=0, and
.EL=11 .2X10- 6 when K = 6 . 8 X 1 0 ~ 7 . Since, to

first-order, d(-)= 5 dJ and dK=6adJ, we

find that a change of +10X10"7 in J will

result in a change of —.09 in -> but of only

—2X10~8 in K; (that is, K as derived from
equation (9) is unaffected by any reasonable
error in J). We are thus led to the following
most probable values with their estimated
errors:

J=0.001624±. 000001
2£=9(±2)X10-6

l /a=298.28±.ll
K = 3 ( ± 3 ) X 1 0 - 7 .

The value of I/a given above is in essential
agreement with the values of 1/298.0 ±0.3 and
1/298.38±.07 derived by the U.S. Army Map
Service (O'Keefe, Hertz, and Marchant, 1958)
from Satellites 1958 Alpha and 1958 /32. It
should be noted, however, that this flattening
derived from dynamic data does not necessarily
have the same meaning as the flattening deter-
mined from geodetic measurements on the
earth's surface. As pointed out by G. Veis
(private communication), the "dynamic" flat-
tening is the flattening of a fictitious, equipo-
tential spheroid containing all the earth's
mass, which will give rise to the observed
gravitational potential. This fictitious sphe-
roid does not necessarily coincide with the
spheroids obtained from geodetic observations,
which need special assumptions to correct for
the effect of masses left outside the geoid.





The Diurnal Effect in the Orbital
Acceleration of Satellite 1957

By Luigi G. Jacchia

A tabulation of the orbital acceleration of
Satellite 1957 /SI has been given in Jacchia
(1958c). At the time the report was written
there was still some uncertainty—at least in
the writer's mind—about the origin of the
fluctuations in the observed accelerations.
Since then observations (Jacchia and Briggs,
1958) of Satellite 1958 02 (Vanguard) have
made it clear that the fluctuations are not
caused by a change in the effective presentation
area of the satellite, but are of atmospheric
origin. I t seems appropriate, therefore, to re-
appraise the results for Satellite 1957 /31 in
this light. In particular, it may be of some
interest to check the acceleration curve for the
presence of a diurnal effect, which should mani-
fest itself as the perigee changes its position with
respect to the sun.

Table 1 gives, at 10-day intervals, the geo-
centric angular distance \p between the perigee
and the sun, together with other basic quanti-
ties : the argument of perigee a>; the right ascen-
sion of the ascending node aa] the right ascen-
sion a,; and the declination 5T of the perigee.
The number of revolutions n corresponding to
each date has the same origin as in Jacchia
(1958c). The observed accelerations are plotted
in figure 1, at the bottom of which the angle \p
is graphed for comparison.

There seems to be little doubt about the
presence of the diurnal effect. Apart from
shorter, superimposed fluctuations, the depar-
tures of the observed acceleration from a smooth
curve are very closely in phase with the \p curve.
The effect is gradual, and there is no evidence of
a discontinuity at the time when the perigee
crosses from light into shadow, or from shadow

into light. The observed semiamplitude of
the diurnal effect is roughly 10 percent of the
acceleration. Since the corresponding semi-
amplitude in ^ was 60°, we can say that the
magnitude d of the diurnal effect can be ex-
pressed as

where A is the undisturbed acceleration and
\p—\f/0 is expressed in degrees; ŷ  is a reference
angle comprised between 90° and the zenith
distance of the horizon at perigee height—de-
pending on the assumption concerning the effec-
tive height at which the diurnal effect operates.
During the time interval covered by table 1,
the height of the geometric horizon at perigee
height decreased from 104?6 to 103?3.

Number of revolution*
500 1000 1500 2000

MAR.
1958

APR.
1958

1 Manuscript received Dec. 15.1958.

FIGURE 1.—Orbital acceleration of Satellite 1957/51, compared
with the geocentric angular distance $ between the sun and
perigee. A smooth curve has been drawn for reference
through the jagged acceleration curve (top). When ^ is
approximately 104° (bottom), perigee is at the divide
between light and shadow.
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TABLE 1.—Position of perigee with respect to sun for Satellite 1957 f}l

*(U.T.)

1957

Nov. 6. 0
16.0
26.0

Dec. 6. 0
16.0
26.0

1958

Jan. 5. 0
15. 0
25.0

Feb. 4 0
14.0
24.0

Mar. 6. 0
16.0
26.0

Apr. 5. 0

n

22
162
302
442
583
725

867
1012
1157
1303
1450
1598
1747
1898
2051
2206

01

59? 3
55.2
51. 1
47.0
42. 9
38.7

34 5
30. 3
25.8
21.6
17.3
12.8
8.3
3.7

358.9
353.7

108? 3
81.7
54. 9
28.0
0. 7

333. 1

305. 1
276.7
247.9
218. 7
189.0
158. 8
128.0
96.5
64. 0
30.4

143? 6
112.8
82.4
52. 2
22.0

351. 7

321.2
290. 5
259.4
228. 1
196.5
164. 3
131. 5
98. 1
63.5
27. 7

5,

+ 51? 4
48. 2
45.0
41. 6
38.2
34,6

31.0
27.3
23.3
19.5
15.7
11.6
7. 5

+ 3.4
-1.0
-5. 7

94? 6
122. 4
150. 2
154 5
126. 5
93. 6

63. 7
48. 8
62.8
94 5
132. 2
172. 3
145. 6
102. 9
59. 2
18. 3



An Empirical Formula for Ephemerides of
Satellites Near the End of Their Lifetime1

By Luigi G. Jacchia

In a post-mortem analysis of Satellite 1957
01, searching for a simple function that would
represent the period variation of the satellite
during its last few hundred revolutions, the
author found a relation between the period and
the number of remaining revolutions. This
turned out to be extremely useful in making
predictions during the last week of the lifetime
of Satellite 1958 SI. Since some interest has
been expressed concerning prediction techniques
at the end of a satellite's lifetime, we think we
are justified in presenting a brief discussion of
this formula, in spite of its purely empirical
character.

Let n be the number of revolutions of a satel-
lite, counted from an arbitrary origin, and n*
be the number of the last revolution in such
count. Moreover, let P be the orbital period of
the satellite at the nth revolution, and P* be a
critical period, constant for each satellite.

For Satellite 1957 01, the author found that
during the last 100 revolutions the relation

dlog (P-P*)
d log (n*— n) (1)

was almost rigorously satisfied when P* was
put equal to 0*06030.

For Satellite 1958 51 the same relation held
equally true, with P* again 0*06030. Since the
area/mass ratio was very similar for the two
satellites, k itself was nearly identical in the two
cases (0.406 for 1957 01, and 0.403 for 1958 51).
A plot of log (P—P*) against log (n*—n) for
both satellites is shown in figure 1.

It will be noticed that the critical period P*=
0*0603=86.8 minutes is just about the value of

i Manuscript received Dec. 15,1958.
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the period that a satellite reaches in the course
of the last revolution, when it starts in its final
descent arc; the corresponding height in a circu-
lar orbit is 120 km above the equator. This
critical height should not be too different from
one satellite to the other, so it stands to reason
that P* can always be taken equal to 0*0603,
thus eliminating one unknown parameter in
equation (1).

From equation (1) we have, by integration

log (P-P*)=log b+k log(n*-n), (2)

or
P=P*+b(n-n*)k, (3)

where 6 is a constant.
obtain

Integrating again, we

-n)-j^-T (n*-n)*+1, (4)

where T is the time of ascending-node crossing
(or any other crossing from which the period
P is determined), and a is another constant.

A comparison of the observed instants of
ascending-node crossings with instants com-
puted by equation (4) with suitable parameters
is given in tables 1 and 2, for both Satellites 1957
/31 and 1958 51. It will be seen that the resid-
uals in both cases amount to only a moderate
number of seconds. The equations used are:

For Satellite 1957 01:

T=1958 Apr. 8.02102+0.0603(nfl-2250)
-0.0003275(2350—nB)um.

For Satellite 1958 51:

(5)

T=1958 Nov. 27.163164-0.0603(nD-2790)
—0.00032894 (2897-ft*,)1-403. (6)
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FIGURE 1.—Plot of log (P—P*) against log (n — «*) for Satel-
lites 1957 01 (open circles) and 1958 51 (dots).

Counted from an arbitrary origin, nB and nD

represent the number of revolutions for each
of the two satellites. The quantity An tabu-
lated for 1958 61 is the difference between nD

and the value of nB for which the first satellite
had the same period. As can be seen, the two
satellites were out of phase by 544 revolutions
at the start of the tabulation, but the difference
increased slowly, at a nearly constant rate.
This circumstance made it possible to have an
independent estimate of n*—i.e., of the time
of demise—for 1958 81. A similar procedure
could have been used, presumably, even if the
area/mass ratio of the second satellite had been

widely different; in that case, however, a
scaling factor in n would have been advisable
before computing An.

I t should be clear that for a determination
of the parameters k and n* it is simpler to use
the observed periods P, rather than the crossing
times T. If we write log (n*—n)~z, and log
(P—P*)=y, and select three corresponding sets
of x and y (subscripts 1, 2, 3), the procedure is
to find by trial and error a value of n* that will
satisfy the relation,

(7)x3—x2 y3—y2'

which derives from equation (1). Once n* is
found, we have

x3—xi
k=- (8)

after which a and b can be determined from
two observed values of T.

It should be obvious that equation (1)
cannot be expected to hold throughout the
lifetime of a satellite, especially in the case of
those with highly eccentric orbits, so that the
formula does not appear suitable for the
computation of long-range life expectancies of
satellites. It does appear, however, that to-
ward the end of a satellite's lifetime, when
formulas based on the orbital eccentricity are
bound to fail, this empirical formula may offer
a distinct advantage.

TABLE 1.—Comparison of the last revolutions of Satellite pi with ephemerides

2250

2275

2300

2310

2320

2330

2340

2345

2347

2348

2349

2350

ta obs.

Apr. 7. 80859

9. 38686

10. 95582

11. 58032

12. 20281

12. 82285

13. 43970

13. 74637

13. 86853

13. 92947

13. 99028

14 05088

O-C

. 00000

+. 00010

-. 00004

-. 00013

-. 00012

—. 00007

+.00002

. 00000

—. 00006

—. 00008

-. 00011

-. 00014

P

4063296

. 062957

.062547

. 062355

. 062136

. 061859

.061477

.06117

. 06099

. 06088

. 06072

(. 06050)

log (n*-nB)

(n* = 2350)

2. 0000

1. 8751

1. 6989

1. 6021

1. 4771

1. 3010

1. 0000

0. 6990

0. 4771

0. 3010

0. 0000

log (P-P*)
(P* = .O6O3)
7. 4765-10

7. 4244

7. 3516

7. 3128

7. 2639

7. 1928

7. 0708

6. 940

6.839

6. 763

6.623

[last revolution]
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TABLE 2.—Comparison of the last revolutions of Satellite SI with ephemerides

nD

2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2895
2896
2897

ta obs.

Nov. 26. 93177
27. 56463
28. 19623
28. 82651
29. 45533
30. 08256
30. 70811

Dec. 1. 33186
1. 95348
2. 57255
3. 18814
3. 49371
3. 55456
3. 61530

O-C

. 00000
+. 00010
+ . 00016
+. 00019
+. 00015
+ . 00003
-.00009
-.00013
-.00016
-.00009
+.00003
-.00007
-.00007
+•00005

P

4063347
. 063224
. 063096
. 062957
. 062804
. 062641
. 062472
. 062272
. 062046
. 061756
. 061304
. 06090
. 06080
(. 06067)

log (n*-nD)
(n* = 2897)
2. 0294
1. 9868
1. 9395
1. 8865
1. 8261
1. 7559
1. 6721
1. 5682
1. 4314
1. 2304
0. 8451
0. 3010
0. 0000

log (P-P*)
(P*=.O6O3)
7. 4839-10
7. 4660
7. 4465
7. 4244
7. 3986
7. 3694
7. 3369
7. 2949
7. 2420
7. 1632
7.0017
6.778
6.690

[last revolution]

An

544
545
545
545
546
546
546
546.0
546.4
546.8
547.0
547.2
547.4





The Structure of the High Atmosphere:
I. Linear Models

By Charles A. Whitney

This paper is the first of two on the structure
of the terrestrial atmosphere above 100 km as
inferred from data on artificial satellites.
Orbital accelerations derived by analyses per-
formed at the Smithsonian Astrophysical Ob-
servatory will be employed to infer atmospheric
densities near the perigee heights of the
satellites.

Despite remaining uncertainties in charge-
accumulation effects on the drag parameters
(Schilling and Whitney, 1958), computations
neglecting these effects give the most reliable
data available on densities above 100 km.

The principal aim of this first paper is the
presentation of a homogeneous set of mean
satellite data and the fitting of three simple
models to the inferred densities. These models,
being based on sectionally linear distributions
of molecular temperature, must not be con-
sidered as more than smoothing operators for
the satellite data. On the other hand, these
models provide an excellent basis for a study of
the range of models that will fit the satellite
data. They allow a demonstration of the
uncertainties inherent in the derivation of a
temperature distribution from data on the
density distribution.

The nature of the high atmosphere

Although I shall defer detailed discussions of
the physical nature of the high atmosphere to
later papers, several outstanding features must
be mentioned at the outset. The reader is
referred to the literature (Kuiper, 1952; 1954)
for more detailed discussions and further
references.

First, the chemical composition of the atmos-
phere above 80 km is not well known. Molec-

ular oxygen undergoes dissociation somewhere
between 90 and 200 km; the details of the
transition evidently undergo significant tem-
poral and geographic variations. Auroral spec-
tra indicate the presence of molecular nitrogen
to 500 km at least; and although it must be
partially dissociated at such heights, the
working approximation that nitrogen is molec-
ular is sufficient for discussions of mean
molecular weight.

Also, diffusional separation of molecules of
differing weights is significant above 120 to 150
km.

The variation of molecular weight resulting
from these effects makes it convenient to
employ a molecular temperature rather than
true temperature in establishing preliminary
models. A molecular temperature, Tm, may be
defined as

M (1)

where M and T are the true molecular weight
and temperature, and Mo is a reference mo-
lecular weight, conveniently taken as the
molecular weight at the ground or at the
greatest height for which it is well known.

Although radiative effects are important at
lower levels, it seems fairly certain that con-
duction plays the major role in heat balance
above 300 km (Spitzer, 1952). This statement
may not be valid during times of large ultra-
violet excess in solar radiation. Chapman's
(1957) suggestion that the high atmosphere is
heated by conduction from the solar corona is
clearly of basic importance in this regard.

The concept of an exosphere has been
rediscussed by Spitzer (1952). The base of the
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exosphere, or the critical level, is defined as that
level at which "a fraction 1/e of a group of very
fast particles moving upward . . . will experi-
ence no collision as they go to infinitely greater
heights." The atmosphere above the critical
level is essentially isothermal, and diffusional
separation must take place.

For neutral particles the number density at
the critical level is given by

ne= (2)

where <r is the typical atomic cross section
(6.8X10~16 cm2) and J f is the scale height.

Nature of the data

Orbital accelerations employed in this paper
for deriving densities have been obtained from
second differences of the times of perigee passage.
In practice it has been found necessary to
employ intervals of at least 30 to 50 orbital
revolutions in deriving accelerations, so the
data are averaged over several days.

The accelerations thus derived have shown,
for all satellites, semiperiodic fluctuation with
mean periods around 28 to 30 days. Although
I suggested (Whitney, 1958) that for 1958
Alpha this could be explained by systematic
variations in geometric effective cross section,
this interpretation is no longer valid. Jacchia
(1959e) has shown a remarkable correlation
between the variations experienced by Satellites
1958 02 (Vanguard) and 1958 51 (the rocket of
Sputnik III). Further examination removes
all doubt that this correlation is ubiquitous, all
satellites showing virtually simultaneous max-
ima and minima of acceleration. Although
these variations are only semiregular, they show
mean semiamplitudes of 15 percent to 50 per-
cent; Satellite 1958 /S2, the highest satellite,
shows the greatest amplitude.

Priester (1958) has recently discovered a
surprisingly close positive correlation between
the daily averages of 20-cm radiation and the
variable acceleration of 1957 /32 as derived by
Jacchia for the interval Nov. 1,1957, to Feb. 10,
1958. Priester notes that Elwert's work (1956)
indicates that these atmospheric fluctuations
may be produced by 6 A to 30 A radiation from
coronal condensations.

The satellite data show an increase with
perigee height of the amplitude of the accelera-
tion variations. In discussion, Jacchia and I
noted that this indicates a change of density
gradient over a rather large depth interval in
the atmosphere, since the mean density gradient
probably decreases with increasing height.

The discoveries of Jacchia and Priester will
be of tremendous importance in studying the
high atmosphere, since they imply the existence
of worldwide, synchronous variations of den-
sity. Jacchia has also shown that there is a
term in the acceleration of Satellite 1958 51
that can be correlated with the zenith distance
of the sun at the subperigee point.

At this time it seems best to proceed by
averaging out these periodic fluctuations and
deriving densities from mean accelerations over
several months. I have taken the data, insofar
as possible, from the spring and early summer
months of 1958 in order to eliminate possible
difficulties from longer-period terms.

Also, rocket data provide evidence for rather
considerable latitudinal, short-period or irregu-
lar fluctuations of atmospheric density at high
elevations. However, an earlier analysis has
shown that there is no evidence in the data for
Satellite 1958 Epsilon of any severe latitudinal
changes of mean density at Z=260 km. There-
fore, I have combined data from different lati-
tudes in the present study.

It is hoped that the mean models thus ob-
tained will provide a basis for a "differential
corrections" study of the fluctuations observed.

The satellite data
Using Sterne's formula (1958c) and applying
also the major portion of his correction for the
assumed solid-body rotation of the atmosphere,
I have derived atmosphere densities from
accelerations. (I am indebted to Dr. Sterne
for providing me with this correction prior to
publication.) The data pertinent to the use of
these formulas are assembled in table 1.

For two reasons, I have taken all geometric
perigee heights, Zp, in km as measured from a
sphere of radius 6378 km. First, the motions
of the lines of apsides were, in most cases,
rather large in the intervals covered; and second,
the mean accelerations could not be defined so
well that a few kilometers would be significant.
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TABLE 1.—Satellite data

37

Satellite

1957 a.1
1958 Alpha
1958 02
1958 Gamma
1958 Epsilon

Height of perigee

Geo-
centric

(km)

220
360
656
185
257

Geopo-
tential

(km)

213
341
594
180
247

Semimajor
axis

a

1.086
1. 2276
1. 3619
1.211
1. 1883

Eccen-
tricity

e

.0482

. 139

. 190

.153

. 125

Acceleration
P

(sec/day)

- 2 . 4
- 0 . 455
-0.017

-12 .6*
- 1 . 7 2

Mass-area
ratio
m/A

(gm/cm *)

24. 1
5.5
3.97
5.6
6.4

Length
(cm)

58
200

15
200
200

•Derived from curve communicated by J. Siry.

The quantity HP is the geopotential height of
perigee derived from the relation

(3)

Geopotential height, like molecular tempera-
ture, is an artifice used to facilitate the integra-
tion of the equation of hydrostatic equilibrium.

Since Sterne's formula for the density at
perigee actually gives pv^~in where 3^ is
the scale height just above perigee, it is neces-
sary to have an approximate model before
densities can be derived. I have, therefore,
proceeded by successive approximations. In
table 2 are given the densities as derived from
scale heights given by models 4 and 5 described
below. The densities derived from the scale
heights of model 4 are the values used in con-
structing models 4 and 5, and represent the
results of iteration. Actually, the process had
converged after only one adjustment, since the
densities are insensitive to the model employed.
Thus, although model 5 is not rigorously self-
consistent, further adjustment would produce
only a trivial change. Table 2 also includes
the drag coefficient, CD, used in deriving the
densities. These values are consistent with
the densities of model 4 and their derivation is
discussed later (see p. 41).

The convergence of such an iteration process
can be speeded through a technique which was
apparently first employed at the Vanguard
Computing Center and reported by J. W. Siry
(1960; see also King-Hele, 1959).

TABLE 2.—Atmospheric densities from satellite
accelerations

Satellite

1958 Gamma
1957 a2
1958 Epsilon
1958 Alpha
1958 j82

180
213
247
341
594

CD

1. 2
1.9
1.9
2.0
2.0

logio p

Model 4

-11.86
-12.37
-13.00
-13.74
-15.47

(gm/cm*)

Model 5

-11.91
-12.40
-13.02
-13.75
-15.45

Sterne's formula for the satellite acceleration
may be written

In this form, f(e) is a known function of the
orbital elements whose relative error is much
less than the relative error of P, the observed
acceleration. The quantity p* is the true
value of density at perigee, and ^ f * is the true
value of scale height at perigee.

If Sterne's formula is employed with an
assumed scale height, ^ which is not the true
value, then the derived density pv will differ
from the true density. In fact, the relative
error of the derived perigee density is one-half
the relative error of the assumed scale height.

Suppose, however, we modify Sterne's for-
mula and use it to derive the density at some
height above the perigee. Denote this height
by htf, where h is dimensionless. The essence
of the present technique is to choose k so that
the derived density falls nearly on the true
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density curve regardless of moderate errors in
•5̂ f Siry has called h the isopycnotic height.

Explicitly, we first write Sterne's formula in
terms of the assumed scale height and the
derived density at perigee,

TABLE 3.—Percent errors of derived densities

Denote as p(HP-\-h3f) the derived density at
a height h^f above the perigee, whose height is
Hp. Then

Therefore, the density derived for the
height HP+hj>t may be written

On the other hand, the true density at the
assumed height HP-\-h^f is

The isopycnotic height, hP, is that value of h
for which

It may be found by equating the expressions
above, i.e., from

e ~hp_

Clearly h depends on Jf/jf*, the error in the
assumed value of , but fortunately the de-
pendence is not strong.

For small errors, i.e.,

Jt : - l

we find

When the error of M" cannot be assumed small
we must proceed numerically and choose that
isopycnotic height that is appropriate to the
estimated uncertainty of ^?.

1.0
1.1
1.2
1. 3
1. 4
1. 5

h

0

0.0
- 4 . 6
- 8 . 7

-12 . 3
-15 . 5
-18 . 3

0.43

0.0
- 0 . 5
- 0 . 5
- 0 . 2
+ 0. 4
+ 1.2

0.5

0.0
+ 0. 2

0.9
1.9
3.2

+ 4.8

1.0

0.0
+ 5.4
11.5
18.4
26. 1

+ 34.6

In a qualitative way the basis of the technique
is the following. If the assumed scale height is
too large, the derived density will be too small.
However, this density will be applied at too
great a height. When h—hp, these errors cancel.

In table 3 we illustrate the power of this tech-
nique by listing the percent error in derived den-
sity as a function of c^f/Jf * and the adopted
value of h.

On the basis of this table, it appears that the
appropriate choice, if the atmosphere were truly
exponential, would lie in the range

0.5>h>0A3,

the upper limit being favored when the uncer-
tainty of $P is small.

Therefore, we conclude that when Sterne's
formula is written in the form

the derived densities will be virtually unaffected
by errors of up to 50 percent in the assumed
value of Jf?

An earlier linear model

Sterne, Folkart, and Schilling (1957) derived
three tentative model atmospheres from a
density at Z=200 km evaluated from the
acceleration of Satellite 1957 e*2. They adopted
the formula,

p(220)=4.5X10"13 gm cm"5,

and forced the temperatures and densities of
these models to fit the ARDC model (Minzner
and Ripley, 1956) at Z' = 80, 90, and 100 km,
by adjustment of the constant temperature
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gradient above Z'. These models were desig-
nated Interim Atmospheres Nos. 1, 2, and 3,
respectively. The defining relations are:

Model 2.

^ = - 6 0 3 . 3 + 9 . 0 1 6 7 ^ ,

log p=2.588-4.79 log Tn.

In these relations, and in those to follow,
logarithms are to the base 10, densities are in
gm/cm3, and heights are in kilometers. The
molecular temperature for this model is defined
by equation (1), and Mo=28.966.

The densities given by this model are plotted
against geometric height in figure 1. Consider-
ing that this model, which the authors pre-
ferred over models 1 and 3, was based on
data from a single satellite, it is remarkably
good even at 500 km. However, since the later
data seem to deviate systematically, I have
considered it worth while to construct further
models.

Models 4 and 5

I have extended the calculations of Sterne et al.
(1957) by adjusting the height Z'', at which the

-11.00

-12.00

7* -13.00
£

i u
iB

Sf-14.00

-15.00

- icnn

1 1 1 1 1

- \ \
VI 1958 GAMMA 2

V. 1957 a 2

- Vyl958 EPSILON

\S^I958 ALPHA

- \ \ ^ - M o d e l

Model 4 — - * V \ V -
W\

1958

1 i l i i

l i

-

2 —

Model 6

\ -
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Geometric Height (km)

FIGURE 1.—Atmospheric densities given by models 2, 4, and
6, plotted against geometric height.

ARDC model is fitted, and L the temperature
gradient above Z', to produce a fit to the satellite
data of table 2 at heights of 260 and 656 km.
Explicitly the model fits, by construction, the
data at

Z'=88.4, log P=—8.29, Tm= 196.9.

The defining relations are:

Model 4-

Tn= -465.6+7.6410

log p=4.311—5.4712 log Tm.

The densities given by this model are plotted
in figure 1; they seem to be a significant im-
provement over those of model 2. Further-
more, the excellence of the over-all fit of model
4 to the data indicates that the assumption of a
constant temperature gradient above 100 km
is adequate.

In order to estimate the range in models
permitted by satellite data, I have constructed
a fifth linear model based on rather different
assumptions. Models 4 and 5 are in no way
limiting cases on acceptable models. However,
being based on independent boundary con-
ditions at the bottom and on rather different
temperature assumptions, they might be con-
sidered as independent samples of acceptable
models. In this sense, the differences between
them give a reasonable, rather than an extreme,
estimate of the remaining uncertainties.

I have constructed this fifth model by forcing
the density through three points and the
temperature through one. For the lowest
point I took r=150°K, M= 28.57, log p=
—8.66 at # = 9 0 km. These values are nearly
those given by Nicolet's tabulation (1958a).
The height of 90 km was chosen as the maxi-
mum height at which uncertainties in the dis-
sociation and diffusion are insignificant.

The atmosphere was assumed to have con-
stant, but different, temperature gradients
above and below 150 km. The dividing height
of 150 km was chosen arbitrarily as represent-
ing, roughly, an elevation at which the nature
of the atmosphere changes significantly (in
relation to diffusion and O2 dissociation). Also,
it is a convenient round number near the
lowest satellite perigee.
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The model is described by the following
formulas, whose derivation is standard (see
Sterne et al., 1957):

90<#<150.

Tm=150+60i7+L"(fl-150),

log p=log
»(150),

fl>150.

In these relations Lf and L" are the tempera-
ture gradients (°K/km) below and above 150
km, and Tm is related to the true temperature
through equation (1), with MO=28.57.

After several trials, a pair of L' and L" was
found that fit the required densities. These
lead to the defining relations:

Model 5.

log p= -0.56-3.723 log Tn J

log P=6.275-6.039log Tn

-H>150.

As a measure of the uncertainties within the
framework of this particular model, I have
evaluated the following partial derivatives for
heights of 260 and 656 km:

Taking A log p= ±0.1 as a reasonable upper
limit on the uncertainty in the basic data,
we see that the temperature gradients for this
particular model are reliable only to approxi-
mately ±0.5° K/km.

The actual uncertainties, however (see below),
are considerably greater.

Model 6

Considerable interest is attached to the
temperature gradient above 300 to 400 km.

Bates (1951) has shown that absorption of
ultraviolet solar radiation appears insufficient
to maintain a significant positive temperature
gradient above the F layer. If such a gradient
indeed exists, it will probably be explained by
conduction from above, as outlined by Chapman
(1957).

Unfortunately, the satellite data give only
two mean-density values above 300 km, so this
question probably remains an open one. As an
experiment I have constructed model 6 in the
following manner. From model 4, I derived
densities at Z=300 km leads to Tm=2527° K
(Mo=28.966) above this height. To fit the
model to lower levels I assumed a constant
temperature gradient and forced the tempera-
ture to T=150°K at H=90 km (Nicolet,
1958a). It was not necessary to assume a
density at heights other than Z=300 and
600 km.

The resulting model is described by the
following equations:

Model 6.

r90<#<287.
log p=1.274-4.411 log TmJ

Tm=2Y&K \n^2R7

logp=11.404-.0069591flj ^

The densities given by this model are graphed
in figure 1 and they seem to fit the data quite
well. Also, at H— 90 km, this model gives
log p=—8.32, in excellent accord with log
P= —8.31, given by the ARDC model.

Table 4 compares the densities and molecular-
scale temperatures given by models 4 and 6.

The results of this comparison are neither
surprising nor encouraging. Although the tem-

TABLB 4.—Densities (log p) and temperatures (Tm)
given by linear models

Height
Z(km)

200
300
400
500
600

Model 4

Tm

1017
1727
2407
3080
3722

logp

-12. 14
-13. 40
-14. 19
-14.78
-15.22

Model 6

Tm

1192

2123

2123

2123

2123

logp

-12.30

-13.40

-14.02

-14.63

-15.22
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peratures agree well at low heights and near
350 km, as they must, they differ considerably
at heights greater than 400 km. I would not
say that it is possible at present to choose
between these two nonphysical models.

The base of the exosphere

Equation (2) has been used to evaluate Ze, the
geometric height of the critical level, or base of
the exosphere. For model 2, Zc=630 km; for
model 4, Zc=500 km. If the numerical
coefficients of equation (2) are correct, the
value of Zc as given by model 4 is probably
accurate to 20 km for the mean atmosphere
during the early summer of 1958.

At Z=500 km, model 4 gives 7^=3080° K,
and model 6 gives TOT=2123° K. If, as seems
likely from Nicolet's (1958a) discussion and
further results to be presented in Paper II
(p. 43), we may assume the gas at this level
to be pure oxygen, then these molecular tem-
peratures lead to true temperatures of 1700° K
and 1200° K, respectively.

These values are lower than 2250° K, the
lower limit derived by Nicolet for the required
escape of helium, but the discrepancy may not
be serious. Further, the present data do not
exclude the possibility of a rise to 2000° K
somewhat below 500 km, since these data
determine only the mean temperature and not
its detailed distribution.

The drag coefficient

Dr. R. M. L. Baker, Jr., of Aeronutronic
Systems, Inc., Glendale, Calif., kindly made
available, prior to publication, his formula for
the drag coefficient CD in the transition region.
The expression is of the form,

TABLB 5.—Transitional drag coefficient (Co)

— l ) exp (-<

where a is a dhnensionless atmospheric density;
CD(j=CD(<r=l); and C is related to the ratio
of mean free path to body size.

Employing Baker's formula and the atmos-

Height
Z(km)

160
180
200
220
240
260
280
300
320
340

Drag coefficient for satellite of linear
dimension d (meters)

lm

0.99
1.30
1.60
1. 79
1.89
1.93
1.96
1.98
1.99
2.0

3m

0.92
.96

1.21
1.48
1.68
1.81
1.88
1.92
1.95
1.97

10m

0.92
.92
.92

1.04
1.26
1.48
1.65
1.77
1.75
1.90

30m

0.92
.92
.92
.92
.95

1.06
1.24
1.43
1.59
1.69

pheric densities of model 4, I have computed
CD for the transition region. I have adopted
the velocity v=8 km/sec for the satellites, and
MCT,=8000° K, where Mc is the dimensionless
molecular weight of the particles "emitted"
from the satellite and T, is the surface tempera-
ture of the satellite. Table 5 gives representa-
tive values of CD; Z is the geometric height of
the satellite, and d is its "typical" linear dimen-
sion.

Since the algebraic representation of CD is
rather arbitrary, the details of the transitional
CD are not too reliable. However, the heights
of the transition regions of various satellite
sizes are probably fairly accurate.

Baker's formula leaves little doubt that varia-
tions of CD from the conventional value of two,
employed heretofore in deriving satellite densi-
ties, are significant. There may, of course, be
an increase of CD due to plasma effects.

The possible implications of Baker's results
for analyses of satellite data are manifest. I
shall defer a discussion of some of these possi-
bilities to later papers, and merely state that I
have used these values in computing the
densities for table 4. The changes introduced
by values of CD<i2 are important only for the
two lowest satellites considered in the present
analysis.





The Structure of the High Atmosphere:
II. A Conduction Model

By Charles A. Whitney

In the first paper of this series (Whitney,
1959), I summarized the values of atmospheric
densities as derived from satellite accelerations.
In an attempt to smooth the data, I constructed
three models with sectionally constant temper-
ature gradients. Such models, although fitting
the data quite well and providing a useful
basis for discussion, are admittedly nonphysical.

Nicolet (1958b) has outlined several aspects
of physical models for the high atmosphere.
In this paper I shall construct a conduction
model based on his discussion.

Algebraic description of the conduction
model
The total heat flux F carried downward by
conduction across a geocentric sphere of radius
r is given by the equation

dr (1)

where BT1'2 is the coefficient of conduction.
On the assumption that radiative losses

may be neglected, i^is a constant, and equation
(1) may be integrated directly. It is convenient
to measure heights from a reference level whose
geocentric distance is r0. Let z be the geomet-
ric height measured from this level and To be
the temperature at 2=0. If Th is the temper-
ature at z=h, then the temperature T at the
general level is given by the equation

7^3/2 f 3/2 ,,
(2)

Also, if r=ro-\-z, the flux per unit area, E,
follows from the relation

r0rh2 (3)

If diffusive equilibrium holds above 2=0,
and NQ(M) and N(M) are the number densities
of particles of molecular weight M(gm) at
height 2=0 and at the general level, respec-
tively, we find the following approximate rela-
tion, valid to within several percent in N(M):

, N(M) , T
losWM)=~lOST

-1.3029^0 ( g

where
_QM

Also <7o=980.7 cm sec-2, R is the radius of the
earth, and all distances are measured in centi-
meters. Logarithms are to the base 10.

The density p at any level is then derived
from the sum of the partial densities,

P=2MN(M), (5)

and the mean molecular weight M follows from
the relation

M= p
(6)

Construction of the model
I have assumed, following Nicolet's sugges-

tion, that the important atmospheric constitu-
ents are N2 and O. Also, I have adopted
the value T0—5Q0° at 2=0, where z is measured
from a geometric height of 140 km, and

n =
A^(O)^5.60X10 1 0^ 1

AT(N2) 4.15X1010 at 2=0.

43
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TABLE 1.—Atmospheric properties (model no. 7)

Geometric
height z

(km)

140
175
200
250
300
350
400
450
500
600

T(°K)

560
677
754
898

1026
1146
1258
1364
1465
1653

2V(O) (cm-')

1. 39X10"
4. 01X1010

1. 94X1010

5. 58X109

1. 94X10°
7. 80X108

3. 44X108

1. 85X108

8. 30X107

2. 47X107

2V(N2) (cm-3)

1. 03X1011

1. 40X1010

4. 26X109

5. 47X108

9. 54X10'
2. 10X107

5. 36X109

1. 92X109

5. 00X105

6. 55X10*

log p
(gm cm"3)

-11.07
- 1 1 . 76
-12. 15
-12. 76
-13 . 25
-13 . 66
-14. 03
-14 . 30
-14. 65
-15 . 18

21. 10
19. 11
18. 16
17.07
16. 56
16.31
16. 18
16. 12
16.07
16.03

(erg cm"1 sec"1)

2. 29X10"7

6. 62X10-8

3. 20X10-8

9. 21X10-*
3. 21X 10-9

1. 29X10-»
5. 67X10-10

2. 71X10"10

1. 37X10-10

4. 08X10"11

The value of TA(A=360 km) and iV0(O)
were adjusted to fit the satellite data, and the
results were the following: At 2=0,

iVo(O)=1.39X10", iV0(N2) = 1.03X10".

These concentrations are 2.48 times those sug-
gested by Nicolet. At ^=360 km (a real
height of 500 km above the earth),

#=0.27 erg cm-3,

F= 1.609 X1018 erg/sec.

Table 1 lists some physical properties of this
atmosphere as functions of height Z from the
earth's surface.

The mean molecular weight ju is defined by
M=M/1.673X10~24. The column headed 0t
gives the rate of radiation (erg cm"3 sec"1)
from atomic oxygen according to Nicolet
(1958):

'=1.65X10-18iV(O). (7)

The densities of model 7 are plotted against
geometric height in figure 1 for comparison
with the satellite data. The over-all fit to the
data is quite adequate, and I conclude that the
form of the density profile predicted by the
conductive atmosphere is not inconsistent with
present data.

The temperature of model 7 is plotted as the
solid smooth curve in figure 2. The tempera-
ture curves given by models 4 and 6 (Whitney,
1959), included for comparison, were derived
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FIGURE 1.—Densities of model 7 plotted against geometric
height.

from the molecular-scale temperature by use
of the mean molecular weights of model 7
(table 1). The spread of temperature above
250 km is rather large, considering how well
these models fit the satellite data; this spread
results from the coarseness of the data and
the nature of the equation of hydrostatic
equilibrium.

Domain of failure of the conductive
atmosphere

The temperature equation (2) is based on
the assumption that the global conductive flux
F is independent of height. If there are radia-
tive sources and sinks of energy, the transfer
equation may be written:
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where £% and A are the rates of emission and
absorption per unit volume per second. In
general, the forms of A and & will require
numerical integration of equation (8).

Introducing the explicit form for F and per-
forming the indicated differentiation, we see
that equation (8) becomes

?. ±_dT /dT\-ld?T
r^2T dr^Kdr) dr2

F(r)

It is convenient to put this equation into
dimensionless form by expressing the tempera-
ture in terms of the temperature, To, at a
reference level of geocentric distance r0.
Writing

r=xr0,

and introducing
T=rTOt

r0 dT dr
y~¥0 Wdx

Z =

(10a)

(10b)

(Ha)

(lib)

I find the following pair of first-order equations
in y, z and x:

. ^ .4 . dy 4*ro*(&-A)
~2z~r dx 47 '

y=2z dz
dx

(12)

(13)

This pair can be integrated downward from
the following boundary conditions:

At x=l(r=r0): Z2=T=1, y=y0.

The value of y0 follows from the physical
conditions at r0 through the following relation,

Jj1 faj. JJ27 3/2y (14)

where Fo is the assumed global flux at the
reference level. Alternatively, y0 may be
evaluated from the value To and an assumed
temperature gradient, with the use of equation
(lla).

If the value of 01—A is known from an initial
model as a function of height, equations (10)
through (14) suffice to determine T(r) in the
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FIGURE 2.—Temperatures of models 7,6, and 4, plotted against
geometric height.

presence of conductive and radiative heat
transfer.

As a simple test of the region of failure of
the conductive model, I have performed a
numerical integration of these equations, set-
ting A=0 and adopting equation (7) for the
radiative loss due to oxygen. Of course, in
reality the radiative absorption A is finite, and
will to a large extent compensate the radiative
loss. For this reason, the present test should
give a sure indication of the level below which
the conductive model fails.

The results of this test are shown in table 2,
which compares the temperatures and global
fluxes obtained with and without the radiative-
loss term. The tabulation indicated quite
clearly that, within the framework of model 7,
radiative-emission terms are not significant
above 200 km. It should be borne in mind,
however, that radiative-absorption terms may
significantly perturb the temperature distribu-

TABLE 2.—Effect of radiative loss

Height
(km)

500
400
300
200
150

T(°K)

1465
1258
1026
754
595

T(°K)

1465
1259
1046
851
859

F/Fo

1.000
0.982
0.880

.446

.400



46 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

tion below 300 km. The temperatures com-
puted with radiative losses are plotted in figure
2 as the dashed branch of model 7.

Conclusions
In summary, it appears that through adjust-
ment of parameters, the conductive model can
be made consistent with present satellite data.
The total flux required, F= 1.61 X1018 erg sec"1,
or E=0.27 erg cm"2 sec"1, is comfortably below
2.4 XlO19 erg sec"1, the amount of solar coronal
heat estimated by Chapman (1957) to be avail-
able for such conduction in the earth's upper
atmosphere.

As indicated by figure 2, the temperature
distribution above 250 km is still open to con-
siderable uncertainty insofar as direct evidence
from satellite data is concerned. However, the
data are of such a quality that within the
framework of a particular theoretical or semi-
theoretical model the temperature distribution

can be determined with a fairly small un-
certainty.

I shall repeat two comments made in the first
paper. First, the satellite data show a definite
correlation with solar activity. For this reason
considerable care must be exercised in combin-
ing data from different epochs. The present
data represent an average over several months
during 1958, with the exception of the data
from Satellite 1957 a2. Second, although satel-
lite data give no evidence for a considerable
latitude-dependence of density, the nature of
the data tends to obscure such a dependence.

Evidently the present type of data derived
from the acceleration of dense satellites is of
principal value in deriving a global picture of
the density structure, and not for fine structure
of either a temporal or a spatial nature. It is
to be anticipated that balloon satellites of small
mass-area ratio will offer an improved picture
of the more rapid variations.



On the Effects of the Sun and the Moon upon
the Motion of a Close-Earth Satellite

By Yoshihide Kozai

In the present paper I shall treat the lunar
and solar perturbations of a close-earth satellite
whose radius is very small compared with that
of the moon.

Since the disturbing functions of both the sun
and the moon have similar forms, only the
method of deriving the perturbation for the
moon will be described here.

If we denote the geocentric radius vector of
the satellite and of the moon by r and r',
respectively, and expand the disturbing function
R into a power series of r/r', a small quantity,
we obtain the expression,

Gm' (\ r2

(1)

where Q is the constant of gravity; m' is the
mass ratio of the moon with respect to the earth ;
and St is the Legendre polynomial of the ith

order; that is,

s=rr'/rr'

(2)

We can omit the first term, which does not
depend on the orbital elements of the satellite.
Since we cannot expect any secular contri-
butions from the odd-order terms, I will derive
the perturbation produced from the second-
order term.

Adopting geocentric coordinates, with z-axis
directed towards the equinox and 2-axis towards
the north pole, we have the following three
conponents of r (by using the conventional
orbital elements):

or 7

-=cos (Z-f- 12) -J-2 sin2 „ sin Z sin 12,

-=sin (Z+12)—2 sin2 ~ sin Z cos 12,

Z . . . T- = s i n % sin Lr

(3)

where L is the argument of latitude. We derive
similar expressions for the moon, using primed
letters to represent elements referred to the
equator. Then s is expressed as follows:

n_xx'+yyf +zzr

rr
=cos (Z+Q—Z'—0')

- 2 sin21 sin L sin (Z' + Q'—Q)

—2 sin2 \ sin U sin (Z+Q— Q')

i i'+4 sin2 jr sin2 -^ sin L sin L' cos (12—12')

+sin i sin i' sin L sin L'. (4)

It is convenient to express the disturbing
function by mean longitudes X and X' and by
other orbital elements. Dropping all terms de-
pending on the mean longitude of the satellite,
which have little effect on the satellite's motion,
we have as the principal terms of the disturbing
function:

cos (X'-«'—

-4e'sin(X'-a/-i2')

(5)
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where
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-^ sin 2i sin 2i'cos (12—12')
ID

16
sin2 i sin2 i ' cos 2(12-12')

| s i n 2 i ' ( l - | s i n 2 i \ cos 2(X'-12')

+ | sin2 i cos4 ^ cos 2(X'-Q)

- § sin 2i sin *' cos2 \r cos (2X' —Q-Q')

| sin2 i sin4 ~ cos 2(X'-212' + 12)

-f sin 2i sin i ' sin2 -^ cos (2X' + Q—30'),

#=cos 4 1 cos4 ̂ - cos 2(X'—a)—12)

+« sin2 i (1 — 5 sin2 i ' j cos 2u

+ 5 cos41 sin2 i' cos 2 (w+Q- Q')

si1 sin4 ^ sin2 i ' cos 2(w—Q+0')
Z 2

K sin i sin2 ^ sin 2i' cos (2co— Q+Q')

+sin i sin2 ̂ sin i' cos2—cos (2X' +2w— Q—Q')

—312')

i i
intsin2^sini'sin2—cos(2X'—3Q'—

By selecting all terms depending on X' and
by replacing cos by sin, we can also derive
expressions for A' and B', from A and B.

The variations of e and i are obtained from
the equations:

[-e2 di2d e _
eft na2e do>'

di cos i di2
—e2sin i dw

• (6)

By using the variations de and 5z, we can
derive 8ca and 5fi from the formulas

+sin4 i cos4 j cos 2(o>-Q+X/)

+cos4 ^ sin4 ^- cos 2(co+a+X'—2J2')

i+sin4 5 sin4 ^- cos 2(X'—2Q'-«+0)

+ o sin2 i sin2 i" cos 2(X'—0'—«)
o

+ | sin21 sin2 i ' cos 2(X'+w—0')

X X
+s in i cos2^sin i' cos2 -5- cos (2X'—Q'—2CJ— Q)

1 z
—K sin i cos2 5 sin 2i ' cos (2w+Q— Q')

cost
dt — e2 sin

dR -\/l — e2dR
i i ^ 2 ?>ena2e

. doi. . rfw .
+Tede+diH>

—e2 sin

(7)

where

4—5 sin2

12= In cos i-

I t is remarkable that these disturbing
functions do not affect the semimajor axis.
In the righthand sides of the equations, i',
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the inclination of the lunar path to the equator,
is changing gradually, but we may regard it
as constant during one year or so.

As for the secular terms of £2 and o>, we have

dQ. 3n'2 . cos ^
—— m
dt 4 n yl — e*

do) Zn'2 , 1
dt 4 n VI — <

x( 2 - | sin2 i+l - | sin2

• (8)

where

isin2 i/=zn sin2 J{\ +cos2 e)+sin2 6 cos2 J

+o sin 2e sin 2J cos Â

—~ sin2 J sin2 e cos 2iV.

Here «7 and N are the lunar inclination and the
longitude of the ascending node referred to the
ecliptic; and e is the obliquity. We can find
the values of J, N and X' in the American
Ephemeris.

If we set m / = l , and J = 0 , we can derive the
solar perturbations from the same equations.





The Earth's Gravitational Potential Derived from
the Motion of Satellite 1958

By Yoshihide Kozai

O'Keefe and Eckles (1958) recently reported
that the long-period (80-day) variations in the
eccentricity of the orbit of Satellite 1958 /82
(Vanguard) can be explained by a north-south
asymmetry in the gravitational potential of
the earth. That is, the axial symmetry of the
field is retained, but the third harmonic in
latitude is added. Explicitly, it is assumed
that the potential of the earth is

A2(\ As/5GM

at a point whose declination is S and whose
geocentric distance is r. In this expression,
A2, A3, and AA are constant, G is the con-
stant of gravitation, and M is the mass of
the earth.

Expressing U3, the part of the third har-
monic, in terms of the conventional orbital
elements, rather than declination and radius
vector, and eliminating terms depending on
mean longitude, I find the long-period part of
U3 to be as follows:

X«( l -e 2 ) -2s in« , (2)

where i is the inclination of the orbital plane
to the equator, a is the semimajor axis, and
w is the argument of perigee.

We note that no secular variations of the
orbital elements are produced by this odd har-
monic in the potential and that the coefficient
of cos 3o> is zero.

The equations for the variation of the ele-

ments produced by the third harmonic are the
following:

dSa

dSe
na2e

cos idhi_

dt na2*sj\—e2 sin i
bU3

?+%*+£**,— e2 sin i dt di de

cos idSo)=_
dt na?ijl—e2smi di na2e de

. da . . . do)

where n is the mean motion, Q is the longitude
of the ascending node, and

il= | n cos i,

A2 4—5 sin2 i
n

p=a(l-e2). (4)

Integrating these equations we have the
following results:

. 3 A3 . . .
8e=-r -T-2- sm i sin o>,4 A&

3 A3di=—- -r-1 e cos i sin w,4Ap

3 A3 sin2 i—e2 cos2 % 1bu=- -r1 :—: cos4 A2p sin % e

rn 3 A3 cos i
5 Q = - — - i - r « COS O>.

4 A2p sin t
(5)
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To confirm the suggestion of O'Keefe and
Eckles, I analyzed the orbital elements of
Satellite 1958 02 from June 19, 1958, to Jan. 29,
1959; they were furnished by the Vanguard
Computing Center.

At first I subtracted the effect of air-drag as
given by the following formulas,1 under the
assumption that the perigee height is not
changed through this period:

Ae= Aa,

TABLE 1.— Variations in orbital elements

4—5 sin2 i F7—L
AM= An dt (6)

where Aa, An and Ae are deviations from the
values for Oct. 16 12»> 27m (U.T.) 1958.

Then I also subtracted solar and lunar
perturbations (Kozai, 1959c) as follows:

«eX10*= —1.7 cos 2(a>+Q-Xo)

+0.5 cos (2«+2Q—3\©+T©)

+0.1 cos 2(w+£2—Xc),

5i=0?003 cos fi,

5OJ=0?011 sin 2(co+fl—Xo)

—0?062 sin (2co+2ft—3Xo+iro)

+0?003 sin (2cj+fi-2Xo)

+0?005 sin Q+0?055 sin iVc,

5Q=— 0?001sin2Xo+0?028sin2(aj+fi—Xo)

+0?001sin2(Xo-fi)

+0?032sin (2w+2fi—3Xo+7ro)

-0?005 sin J2-O?O39 sin AT
C, (7)

where Xo is the mean longitude; TTO is the longitude
of perigee of the sun; X̂  is the mean longitude of
the moon; and A7^ is the longitude of the ascend-
ing node of the lunar path referred to the ecliptic.

Then assuming that the periodic inequalities
are due to the third harmonics we obtain the
variations given in table 1.

1 K. Squires, private communication to Dr. C. A. Whitney.

Inequality

8e
hi
3o>
50

Observed

(0.43±0.02)X 10-'sin w
-(0?007±0°001) sinw

(0?106±0?010) cosw
(0°018±0°003) cos w

Computed

0.42 X10-8

-0?007
0?122
0?012

Figure 1 shows the observed values plotted
against theoretical values for this same period,
June 19, 1958, to Jan. 29, 1959.

Assigning to each observed amplitude the
weight that is reciprocally proportional to the
square of the probable error, we have as the
coefficient of the third harmonic,

4r=(2.20±0.08)X10-6.

The predicted amplitudes from this value are
also shown in figure 1.

The values of the secular motions of the node
and the perigee, given in table 2, correspond to
the following quantities:

7i=3862?640, anomalistic mean motion per day,
e=0.190 00,
i=34?250.

To compare with my results,

A2 f A2n 4 .
1 (

A* /6 3 . . A/, . 11 A
——t n U—2 s l n %) ( ! + y e ) c o s *»

= f n (4-5

/ 4 ( 1 6 - 6 2 sin2 i+49 sin4 i)

+ e2(328-1244sin2i+973sin4i) V, (8)

TABLE 2.—Secular motions of node (£2) and perigee (w)

Motions

Observed (per
day)

Solar part
Lunar part

Corrected

Node il

-3?015 07±4

-0.000 13
-0.000 28

-3.014 66

Perigee w

4? 404 62 ±10

0.000 18
0.000 39

4. 404 05
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FIGURE 1.—Observed values (dots) and theoretical values
(solid lines) of variations in orbital elements due to the
third harmonic. Each point represents 7 days.

we must subtract solar and lunar perturbations
from the observed values. The solar and lunar
parts have been derived from the following
equations:

Here m<̂  is the mass ratio of the moon to the
earth; J is the inclination of lunar path to the
ecliptic; and e is the obliquity. If we set
w<£=n©, m<£=l and J=0, we can also derive
the solar secular perturbation from these
equations.

Then from fi and « I derived the following:

42=1.6208X10-3,

X -j=L= ( 2 - | sin* i+5 A (9)

where
1 .=pr sin2 «7(l+cos2 e)+sin2 e cos2 J.
2

I am grateful to Drs. C. A. Whitney, L. G.
Jacchia and G. Veis for their valuable dis-
cussions.





Solar Effects on the Acceleration
of Artificial Satellites

By Luigi G. Jacchia

Slow fluctuations connected with variable
solar radiation

The atmospheric drag that artificial satellites
experience around perigee causes them to lose
energy and to fall into orbits with smaller
major axes and shorter periods of revolution.
The change in period that the satellite under-
goes from one revolution to the next is called
the "secular acceleration"; in this discussion
the term "acceleration" will refer to the non-
dimensional quantity dP/dt, when P is the
period of revolution, and t is the time.

Erratic changes in the acceleration of a
satellite were first detected by this writer in
an analysis of the observations of Satellite 1957
Beta (Jacchia, 1958e; 1958a). At first it was
not clear whether these changes were owing to
variations in the presentation area of the
satellite or to density variations in the atmos-
phere, but when their presence was detected also
in Satellite 1958 j32 (the spherical Vanguard) no
doubt was left about their atmospheric origin.
The presence of a 27-day periodicity pointed to
variable solar radiation as the cause of the
atmospheric fluctuations (Jacchia and Briggs,
1958). The discovery that the accelerations of
Satellites 1958 02 and 1958 51 varied more or
less in unison (Jacchia, 1959a; 1959e) and that
those of the other satellites followed the same
rhythm proved that the atmospheric fluctua-
tions at their origin are truly global.

In a communication dated December 18,
1958, Dr. W. Priester of Bonn, Germany,
pointed out a remarkable similarity between
my acceleration curve of Satellite 1957 /SI
(Jacchia, 1958b) and the 20-cm solar-flux curve
in the interval from November 11, 1957, to
February 10, 1958. I had no 20-cm solar data

63G-014—03 H

at hand, but had 10.7-cm data from the Na-
tional Research Council in Ottawa; a compari-
son of the satellite curves with these data,
extended over a whole year, showed a correla-
tion that could be classified as little short of
perfect. The amplitude of the fluctuations
increased with the perigee height of the satel-
lite. They amounted to about 20 percent in
typical, well-defined 27-day cycles in the ac-
celeration of Satellite 1958 51 (perigee height
200 km), but to about 70 percent in corre-
sponding cycles of Satellite 1958 /32 (perigee
height 650 km).

Transient fluctuations connected with mag-
netic storms

The 10.7-cm radiation is closely correlated with
the sunspot numbers, so an excellent correlation
also exists between satellite accelerations and
sunspot numbers. Searching for further clues
about the nature of the radiation that inter-
acts with the upper atmosphere, I reduced
anew all the available observations of Satellites
1958 /32 (about 2500) and 1958 51 (about 9000)
with the best elements at hand and obtained
more accurate accelerations at twice the original
resolution. The results are plotted in figure 1,
together with the 10.7-cm solar-radiation curve
(Jacchia, 1959b). As can be seen, the correla-
tion with the solar radiation is remarkably good,
even in details, for the high-flying, spherical
Satellite 1958 02 (Vanguard), for which ac-
curate, well-distributed Minitrack observa-
tions were available throughout. For Satel-
lite 1958 51 the observations are mostly optical,
less accurate, and more irregularly distributed,
with occasional periods of near-invisibility;
these facts, together with the elongated shape,

05
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may have contributed somewhat to the poor
correlation for 1958 51.

The procedure for computing the accelera-
tions was the following. Residuals of individual
nodal (for 1958 51) or perigee (for 1958 02)
passages from empirical equations were plotted
and ordinates on the residual curves were read
off at intervals of 25 revolutions; the resulting

table was then differenced and accelerations
were computed from the differences. The
residual curve for 1958 51 is a succession of long,
smooth waves of great amplitude that are
mainly due to the 27-day fluctuations. At only
two spots in the whole curve is the smooth
succession of long waves interrupted by a tran-
sient, short-lived but unmistakable secondary
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FIGURE 1.—Secular accelerations of Satellites 1958 51 and 1958 02 compared with the 10.7-cm solar flux. The dates of the two
great geomagnetic disturbances, July 8-9 and September 4, 1958, are marked (1) and (2), respectively. Accelerations were
computed at intervals of 25 revolutions.
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oscillation. The dates of these disturbances
are July 8 to 9 and September 4, 1958; they are
exactly coincident with the only two great
geomagnetic disturbances that occurred during
the satellite's lifetime. Both magnetic storms
followed, at the usual one-day interval, the
appearance of a flare of importance 3 + on the
sun.

Although the original accelerations had a
resolution of 25 revolutions, it appeared pos-

sible to obtain accelerations with a resolution of
10 revolutions around the critical dates, and
these—computed at intervals of 5 revolutions—
are plotted in figure 2 together with the three-
hourly geomagnetic planetary indices Kp (Jac-
chia, 1959b). It is quite evident that in both
the July and the September events, there was no
immediate response at the time when the flare
appeared, and that the atmospheric disturb-
ance—an increase in density—proceeded nearly
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FIGURE 2.—Secular accelerations of Satellite 19S8 51 computed with a resolution of 10 revolutions around the dates of two great

geomagnetic disturbances and compared with the three-hour geomagnetic planetary indices Kv. The instants of the flares
that preceded the magnetic storms are marked on the diagram.
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synchronously with the magnetic disturbance.
The increase in the acceleration amounted to
40 percent in the July 8 event and to a little
more than 30 percent in the event of September
4. These are actually lower limits, inasmuch
as the limited resolution may have smoothed
out the peaks (with a resolution of 25 revolu-
tions the peaks are highly reduced, as can be
seen in figure 1, where the two disturbances are
marked (1) and (2) respectively.) Since the
amplitude of the 27-day oscillations did not
exceed 20 percent for this satellite (1958 51),
it appears that the corpuscular radiation
capable of causing a first-rate geomagnetic dis-
turbance has a greater, although more transient,
effect on the atmospheric density at the 200-km
level, than the ordinary fluctuation in solar
radiation associated with the 27-day period.
That this latter radiation might also be cor-
puscular in nature appeared possible, in view of
the failure of the atmospheric density to react
promptly to the stream of electromagnetic
radiation that accompanies the appearance of a
flare. Wave radiation could not be ruled out,
however, since the duration of a flare is much
shorter than that of a magnetic storm, and the
effect of a transient drag perturbation on the
satellite position is proportional to the square
of the duration.

No disturbance could be detected in the resid-
ual curves for Satellite 1958 /32 around the two
critical dates in July and September. This
could be due to the much smaller value of the
acceleration for this satellite, which would make
a short-lived perturbation difficult to detect.
Otherwise, we should conclude that during a
violent magnetic storm the atmospheric layers
in the 200-km zone are more strongly affected
than those at a height of 600 to 700 km. Judg-
ing by the increase of the 27-day fluctuations
with height, it appears that in ordinary condi-
tions the opposite situation prevails, with the
higher levels affected more than the lower. It
might be of interest to remark that at the time
of the July disturbance the latitude of perigee
of Satellite 1958 51 was +35°; at the time of the
September disturbance it was +15°; the cor-
responding geocentric angular distances be-
tween sun and perigee were 110° and 77°,
respectively.

Diurnal effects

The existence of a "diurnal" effect, i.e., a
variation of the acceleration with the geo-
centric angular distance between the sun and
the satellite's perigee, was announced by
this writer for Satellite 1957 /31 (Jacchia,
1959c). The published amplitude of the ef-
fect—about 20 percent—is almost certainly too
large, much of the fluctuation being probably
due to a slow variation of solar radiation
superimposed on the shorter, erratic fluctua-
tions. This slow variation is quite evident in
the 10.7-cm flux curve (fig. 3), but was un-
known to the author when the paper was
written. Only a bare suggestion of a diurnal
effect is discernible in the acceleration curve
of Satellite 1958 51.

A much larger diurnal effect is suggested by
the acceleration curves of the higher-perigee
Satellites 1958 Alpha and 1958 02 (fig. 4),
but the picture here seems to be complicated
by a major perturbation of the atmosphere that
started in the second half of August 1958, and
continued for two or three months, and possibly
longer. This perturbation occurred when the
perigee of Satellite 1958 Alpha was in daylight
and raised the acceleration level to extremely
high values, which were never reached again
when the perigee returned to the same position
with respect to the sun the following year
(April to August, 1959). The global nature
of the perturbation is evidenced by the ex-
tremely rapid and perfectly synchronous rise
in the accelerations of both satellites between
August 17 and August 27, 1958. The curve
of the 10.7-cm solar flux does not offer any
clear-cut clue to the cause of this perturbation.
For some time the writer was tempted to
speculate about the effect of stored corpuscular
radiation following major magnetic storms,
but it must be admitted that the evidence for
such a mechanism is not very convincing.

Due to the presence of the large atmospheric
perturbation, it is difficult to draw definite
conclusions regarding the amplitude and the
phase of the diurnal effect in Satellite 1958
Alpha and 1958 j82. Although the 1958 parts
of both curves suggest a phase lag of some
30° to 50° in air—ao (ax=R.A. of perigee, a o =
R.A. of sun), the 1959 portion of the 1958 Alpha
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FIGURE 3.—The diurnal effect in Satellite 1957 /3l. Accelerations (top) are compared with angular distances sun-perigee and with
the solar flux at 10.7 cm. The smooth line in the acceleration diagram was drawn as a visual aid.
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FIGURE 4.—Acceleration of Satellites 1958 j32 and 1958 Alpha, compared with angular distances sun-perigee ^ and with the solar
flux at 10.7 cm. Values of the difference in right ascension between the satellite's perigee and the sun ( a , - a o ) are marked on
the horizontal line corresponding to ^=90° .

curve seems to be reasonably well in phase.
The ratio of mean maximum to mean minimum
acceleration due to purely diurnal effect should
be about 1.4 or 1.5 for 1958 Alpha (perigee
height 350 km) and 7 or more for 1958 02
(perigee height 650 km). The mean maximum
and minimum values are those obtained by
passing a mean curve through the monthly
oscillations connected with the solar flux.
Such a large variation of the effect with height
indicates that the density profile and the scale
height of the atmosphere above 300 km differ
markedly in the bright and in the dark hemis-
pheres. Preliminary computations show that

to account for the effect, the scale height must
vary by a factor of about two at the 650-km
level.

A remarkable feature that emerges from
figure 4 is the disappearance of the monthly
oscillations when the perigee comes from day-
light into night. The phenomenon is present
in both satellites (1958 Alpha and 1958 /82).
Since atmospheric variations with constant
amplitude are reflected in the acceleration
curves with amplitudes proportional to the
mean acceleration itself, part of the variation
in the amplitude of the fluctuation observed in
1958 /82 is only apparent. If, however, we
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compare the curves of 1958 /32 in the period
April to July, 1958, and in May, 1959, when
the mean acceleration was about the same
(dP/dt~—2X10-7), we can notice the differ-
ence in behavior between the first interval,
when the perigee was in daylight, and the
second interval, during which the perigee
was crossing into the dark hemisphere. The
10.7-cm solar flux was actively oscillating dur-
ing both intervals, and the oscillations are
clearly visible in 1958 Alpha also during the
second interval, at which time this satellite
had its perigee in daylight.

The disappearance of the oscillations in the
dark hemisphere would be expected if the
variable radiation responsible for them was
wave radiation. In view of the association of
the 10.7-cm flux with sunspots and with ion
density in the F layer, the association of this
type of atmospheric oscillation with wave
radiation would seem to make good sense.
We should not forget that for the low-perigee
Satellites 1957 Beta and 1958 51, the monthly
oscillations persisted also when the perigee
was in the dark hemisphere. A look at the
acceleration curves for these two satellites
shows, however, that during such periods the
amplitude of the oscillations was definitely
smaller.

Summary and conclusions
Summarizing, we find that four distinct types
of fluctuations can be distinguished in the
acceleration of satellites.

(1) Fluctuations that follow the rhythm of
the solar flux at 2800 me (10.7-cm wavelength).
These fluctuations increase in amplitude with
height and become smaller or disappear when
the perigee is in darkness. Very probably
these fluctuations reflect variations in atmos-
pheric density caused by variable short-wave
solar radiation (extreme ultraviolet).

(2) A slow fluctuation connected with the
position of the perigee with respect to the sub-
solar point ("diurnal effect"). This effect is
small at the 200-km level, but becomes very
large at heights above 350 km. This effect is

intimately connected with (1) and should have
the same primary agent (ultraviolet absorption)
as its origin. I t reflects a difference in the
density profiles of the bright and the dark
hemispheres of the earth.

(3) Transient fluctuations accompanying
magnetic storms. These perturbations are
seemingly of corpuscular origin and should
reflect a heating of the atmosphere through
some interaction with corpuscular radiation.

(4) Erratic fluctuations of unexplained origin,
such as the perturbation of August and Septem-
ber, 1958. A comparison with conditions in the
radiation belts may provide a clue to this effect.

Explanation of tables

For Satellite 1958 Alpha the accelerations are
given at equal time intervals, at 0h U.T. For
1958 /32 and 1958 51 the accelerations are
tabulated at equal intervals of revolutions (N).
Uncertain values are in parentheses.

In Tables 2a, 2b and 2c, the tabulated angle
^ is the geocentric angular distance between
sun and perigee; aT is the right ascension of
perigee; and aQ is the right ascension of the sun.
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TABLE la.—Secular accelerations of Satellite 1958 Alpha

Date WdP/dt Date 10s dP/dt Date 10« dP/dt Date 105 dPjdt
1958 1958 1958 1958

Feb. 16 - 4 . 9 Aug. 5 - 6 . 6 Jan. 17 - 4 . 9 May 12 -6 .36
21 - 4 . 2 10 - 6 . 3 22 - 4 . 9 14.5 -6 .74
26 —4.1 15 - 6 . 2 27 ( - 5 . 0 ) 17 -7 .26

Mar. 3 - 4 . 7 20 - 7 . 3 Feb. 1 ( -5 .0 ) 19.5 -7 .22
8 - 5 . 3 25 - 9 . 0 6 ( -5 .0 ) 22 -7 .10

13 - 5 . 7 30 - 9 . 7 11 - 4 . 9 24.5 - 6 . 78
18 - 5 . 9 Sept. 4 - 9 . 7 16 - 4 . 8 27 -6 .32
23 (-6.0) 9 -9.6 21 (-4.7) 29.5 -5.96
28 (-6.1) 14 -9.6 26 (-4.6) June 1 -5.76

Apr. 2 (-6.2) 19 -9.6 Mar. 3 -4 .5 3.5 -5.70
7 (—6.2) 2 4 - 9 . 3 8 -4 .4 6 -5.86

12 (-5.8) 29 -9.0 13 -4 .3 8.5 -6.14
17 -5.4 Oct. 4 -8.7 18 -4 .7 11 -6.48
22 -5.4 9 -8.4 20. 5 -5.06 13.5 —6.78
27 - 5 . 7 14 - 8 . 4 23 -5.48 16 —6. 94

May 2 -6.1 19 -8.6 25.5 -5.76 18.5 -6.98
7 -5.9 24 (-8.7) 28 -5.82 21 -6.76

12 -5 .3 29 (-8.7) 30.5 (-5.70) 23.5 -6.46
17 -4.7 Nov. 3 -8.6 Apr. 2 (-5.48) 26 -6.16
22 - 4 . 5 8 - 7 . 5 4. 5 - 5 .36 28.5 —5. 94
27 (-4.9) 13 -6 .3 7 -5.46 July 1 -5.76

June 1 (-5.0) 18 -6.0 9.5 -5.78 3.5 —5.56
6 (-4.7) 23 -6.0 12 -6.26 6 -5.42

11 (-4.4) 28 -5.9 14.5 -6.52 8.5 -5.46
16 (-4.3) Dec. 3 -5.9 17 -6.60 11 -5.80
21 -4 . 6 8 - 5 . 9 19. 5 -6 . 72 13.5 —6.34
26 - 5 . 1 13 ( -5 .6 ) 22 -6 .94 16 —6.80

July 1 - 5 . 7 18 ( -5 .5 ) 24.5 -7 .20 18.5 -6 .70
6 - 6 . 1 23 ( -5 .4 ) 27 -7 .32 21 -6 .18

11 - 5 . 6 28 ( -5 .2 ) 29.5 -7 .00 23.5 -5 .74
16 - 5 . 0 1959 May 2 -6 .36 26 —5.50
21 - 5 . 4 Jan. 2 ( -5 .0 ) 4.5 -6 .08 28.5 —5.26
26 - 6 . 2 7 - 4 . 9 7 -6 .06 31 —5. 14
31 - 6 . 6 12 - 4 . 9 9. 5 - 6 . 10

TABLE 1&.—Secular accelerations of Satellite 1958 02

N Date 107 dP/dt N Date 107 dP/dt N
1958 1958

0 Mar. 17. 61 500 May 3. 24 —3. 1 1000 June
25 19.94 —2.4 525 5.57 —2.8 1025
50 22.27 —2.1 550 7.90 —2.4 1050
75 24.60 —0.9 575 10.23 —2.4 1075

100 26. 94 —1.0 600 12.56 —2.2 1100
125 29.97 —1.5 625 14.89 —1.9 1125
150 31.60 - 2 . 4 650 17.22 —1.4 1150 July
175 Apr. 2.93 —2.7 675 19.55 —1.5 1175
200 5.26 - 3 . 1 700 21.89 —1.7 1200
225 7.59 - 2 . 2 725 24.22 - 2 . 2 1225
250 9.92 —1.2 750 26.55 —2.2 1250
275 12.26 —1.4 775 28.88 - 2 . 4 1275
300 14.59 —1.2 800 31.21 - 2 . 7 1300
325 16.92 - 1 . 7 825 June 8.54 - 2 . 7 1325
350 19.25 —1.7 850 4.87 —2.2 1350
375 21.58 - 1 . 9 875 7.20 - 2 . 1 1375
400 23.91 —2.1 900 9.53 —2.1 1400
425 26.24 - 2 . 6 925 11.87 - 2 . 1 1425
450 28.57 - 3 . 4 950 14.20 —1.4 1450
475 30.91 - 3 . 3 975 16.53 - 1 . 2 1475 Aug.

Date
1958
18.86
21. 19
23.52
25.85
28.18
30.51
2.84
5.17
7.51
9.84

12. 17
14.50
16.83
19. 16
21.49
23.82
26. 15
28.48
30.81

2. 14

107 dP/dt

- 1 . 2
- 1 . 5
- 1 . 0
- 1 . 0
- 2 . 2
- 1 . 9
- 1 . 2
- 1 . 9
- 1 . 4
- 1 . 5
- 1 . 5
- 1 . 0
- 0 . 5
- 0 . 9
- 1 . 0
- 1 . 9
- 1 . 9
- 1 . 9
- 2 . 6
- 3 . 4
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N

1500
1525
1550
1575
1600
1625
1650
1675
1700
1725
1750
1775
1800
1825
1850
1875
1900
1925
1950
1975
2000
2025
2050
2075
2100
2125
2150
2175
2200
2225
2250
2275
2300
2325
2350
2375
2400
2425
2450
2475
2500
2525
2550
2575
2600
2625
2650
2675
2700
2725
2750
2775
2800
2825

Aug.

Sept.

Oct.

Nov.

Dec.

Date
1959

4 48
6. 81
9. 14

11.47
13.80
16. 13
18.46
20.79
23. 12
25.45
27.78
30. 11

1.44
3.77
6. 10
8.43

10.77
13. 10
15.43
17.76
20.09
22.42
24.75
27.08
29.41
1.74
4 07
6.40
8.73

11.06
13.39
15.72
18.05
20.38
22.71
25.04
27.37
29.70

1.03
3.36
5.69
8.02

10.35
12.68
15.01
17.34
19.66
21.99
24.32
26.65
28.98

1.31
3.64
5.97

TABLE 16.—Secular accelerations of Satellite 1968 02-

107 dP/dt

- 2 . 7
- 2 . 4
- 2 . 1
- 2 . 2
- 1 . 9
- 2 . 4
- 2 . 4
- 2 . 4
- 3 . 6
- 4 1
- 4 8
- 4 5
— 4 3
— 5. 3
- 4 8
- 4 1
— 4 1
- 5 . 0
- 5 . 0
— 5.0
- 3 . 8
- 3 . 6
- 4 . 5
- 3 . 6
- 4 1
- 4 3
- 4 5
- 5 . 5
- 4 6
- 4 8
- 6 . 0
- 5 . 8
- 7 . 4
- 7 . 4
- 8 . 9
- 7 . 0
- 5 . 5
- 5 . 5
- 6 . 3
- 5 . 7
- 5 . 2
— 5.0
- 4 8
- 3 . 8
— 3. 8
- 4 . 3
- 3 . 9
- 5 . 0
- 4 8
- 6 . 0
- 6 . 3
- 6 . 9
- 6 . 9
- 5 . 5

N

2850
2875
2900
2925
2950
2975
3000
3025
3050
3075
3100

3125
3150
3175
3200
3225
3250
3275
3300
3325
3350
3375
3400
3425
3450
3475
3500
3525
3550
3575
3600
3625
3650
3675
3700
3725
3750
3775
3800
3825
3850
3875
3900
3925
3950
3975
4000
4025
4050
4075
4100
4125
4150

Date
1958

Dec. 8.30
10.63
12.96
15.29
17. 62
19.95
22.27
24 60
26.93
29.26
31.59

1959
Jan. 2. 92

5.25
7.58
9.91

12.24
14 56
16.89
19.22
21.55
23.88
26.21
28.54
30.87

Feb. 2. 19
4 52
6.85
9.18

11.51
13.84
16. 16
18.49
20.82
23.15
25.48
27.81

Mar. 2. 14
4.46
6.79
9.12

11.45
13.78
16. 10
18.43
20.76
23.09
25.42
27.75
30.07

Apr. 1.40
3.73
6.06
8.39

107 dP/dt

- 5 . 2
- 4 8
- 5 . 0
- 5 . 3
- 4 5
- 3 . 9
- 3 . 4
- 4 3
- 4 6
- 4 5
- 5 . 2

- 5 . 2
- 5 . 3
- 5 . 7

- 5 . 2
- 4 3
- 3 . 6
- 3 . 9
- 4 8
- 4 8
- 5 . 0
- 4 8
- 5 . 2
- 4 5
- 4 3
- 3 . 9
- 3 . 6
- 3 . 6
- 2 . 9
- 3 . 4
- 3 . 5
- 3 . 5
- 3 . 3
- 4 5
- 4 1
—4.0
- 3 . 4
- 3 . 6
- 3 . 6
- 3 . 8
- 3 . 4
- 4 0
- 3 . 8
- 4 . 3
- 4 . 3
- 4 5
- 4 3
- 4 1
- 3 . 8
—3.6
- 3 . 8
- 3 . 6

-Continued
N

4175
4200
4225
4250
4275
4300
432?
43'5t
4375
4400
4425
4450
4475
4500
4525
4550
4575
4600
4625
4650
4675
4700
4725
4750
4775
4800
4825
4850
4875
4900
4925
4950
4975
5000
5025
5050
5075
5100
5125
5150
5175
5200
5225
5250
5275
5300
5325
5350
5375
5400
5425
5450

Apr.

May

June

July

Aug.

Date
1959
10.71
13.04
15.37
17. 70
20.02
22.35
24.68
27.01
29.34
1.66
3.99
6.32
8.65

10.97
13.30
15.63
17.96
20.29
22.61
24 94
27.27
29.60
31.92
3.25
5.58
7.91

10.23
12.56
14 89
17.22
19.54
21. 87
24 20
26.53
28.85

1. 18
3.51
5.84
8. 16

10.49
12.82
15. 15
17.47
19.80
22. 13
24.46
26.78
29. 11
31.44
2.77
5.09
7.42

107 dP/dt

- 4 1
- 4 0
- 3 . 8
- 3 . 8
- 3 . 3
- 3 . 6
- 3 . 4
- 3 . 4
- 3 . 4
- 2 . 9
- 2 . 2
- 2 . 4
- 2 . 6
- 2 . 2
- 2 . 8
- 2 . 4
- 2 . 1
- 1 . 9
- 1 . 9
- 1 . 4
- 1 . 2
- 0 . 9
- 1 . 0
- 0 . 9
- 1 . 0
- 1 . 0
- 0 . 9
- 1 . 4
- 1 . 0
- 1 . 2
- 1 . 5
- 1 . 2
- 1 . 2
- 1 . 7
- 1 . 4
- 1 . 9
- 1 . 2
- 1 . 2
- 1 . 4
- 1 . 4
- 1 . 5
- 2 . 1
- 1 . 7
- 1 . 4
- 1 . 2
- 0 . 5
- 0 . 7
- 0 . 9
- 0 . 7
- 0 . 7
- 0 . 7
- 0 . 7

636-014—63-
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TABLE lc.—Secular accelerations of Satellite 1968 S2

N Date 1O5 dP/dt
1958

0 May 16. 02
25 17. 86 —3. 13
50 19. 69 - 2 . 98
75 21.52 —2.87

100 23. 36 - 2 . 73
125 25. 19 - 2 . 70
150 27.02 - 2 . 7 3
175 28. 85 - 2 . 76
200 30. 67 - 2 . 63
225 June 1.50 —2.56
250 3. 32 —2. 44
275 5.15 - 2 . 4 1
300 6.97 - 2 . 5 0
325 8. 79 —2. 46
350 10.61 - 2 . 4 2
375 12.43 - 2 . 3 8
400 14.25 - 2 . 3 8
425 16.06 - 2 . 3 9
450 17.88 - 2 . 3 5
475 19.69 - 2 . 4 5
500 21. 51 - 2 . 65
525 23.32 - 2 . 7 3
550 25. 13 - 2 . 87
575 26.94 - 2 . 9 0
600 28.75 - 2 . 9 9
625 30.56 - 2 . 8 5
650 July 2.36 - 2 . 5 9
675 4.17 - 2 . 5 9
700 5. 97 - 2 . 70
725 7. 77 - 2 . 84
750 9. 58 - 3 . 11
775 11.37 - 2 . 5 6
800 13.17 - 2 . 5 9
825 14.97 - 2 . 5 6
850 16.77 - 2 . 5 4
875 18. 56 - 2 . 74
900 20.36 - 2 . 8 6
925 22.15 - 3 . 0 8
950 23.94 - 3 . 0 9
975 25.73 - 3 . 4 7

1000 27.52 - 3 . 6 6
1025 29.30 - 3 . 5 8

N 10s dP/dtDate
1958

1050 July 31.09 —3.63
1075 Aug. 1.87 - 3 . 5 9
1100 3.66 - 3 . 5 1
1125 5. 44 - 3 . 37
1150 7.21 - 3 . 4 4
1175 8. 99 - 3 . 53
1200 10.77 - 3 . 6 3
1225 12.54 - 3 . 5 6
1250 14. 31 —3. 57
1275 16.08 - 3 . 71
1300 17.85 - 3 . 9 6
1325 19.62 - 4 . 0 3
1350 21.39 - 4 . 3 1
1375 23.15 - 4 . 6 8
1400 24.91 - 4 . 9 6
1425 26.67 —5.01
1450 28.43 - 4 . 8 7
1475 30.18 - 4 . 6 0
1500 31.94 - 4 . 2 5
1525 Sept. 2.69 - 4 . 1 1
1550 4.44 - 4 . 8 5
1575 6.19 - 4 . 2 7
1600 7.93 - 4 . 3 1
1625 9.68 - 4 . 2 5
1650 11. 42 —4. 14
1675 13. 16 - 4 . 33
1700 14.90 —4. 58
1725 16. 63 - 5 . 12
1750 18. 37 - 5 . 34
1775 20. 10 - 5 . 13
1800 21. 83 - 5 . 37
1825 23.55 - 5 . 5 4
1850 25.58 - 6 . 1 9
1875 27.00 - 6 . 3 5
1900 28. 72 - 5 . 56
1925 30.44 - 5 . 3 4
1950 Oct. 2. 15 - 5 . 22
1975 3.86 - 5 . 3 0
2000 5. 57 - 5 . 34
2025 7. 28 - 5 . 39
2050 8.99 - 5 . 4 7
2075 10. 69 - 5 . 68

N Date 105 dP/dt
1958

2100 Oct. 12.39 -5.57
2125 14.09 -6.17
2150 15.79 -6.82
2175 17.48 -7.66
2200 19. 17 —8.20
2225 20.86 —8.59
2250 22. 54 - 9 . 38
2275 24. 22 -9. 71
2300 25. 89 —8. 61
2325 27. 56 - 8 . 58
2350 29.23 —8.40
2375 30. 89 -8.06
2400 Nov. 1.55 —7.99
2425 3.21 -8.46
2450 4. 86 —8. 60
2475 6. 52 —8. 61
2500 8. 16 -8. 85
2525 9. 80 -9. 12
2550 11. 44 - 9 . 55
2575 13.08 -10. 26
2600 14 71 —10. 88
2625 16.34 -12.31
2650 17. 96 —13. 36
2675 19.58 —14.42
2700 21.19 -15.28
2725 22. 79 -15. 49
2750 24. 39 -16. 58
2775 25.98 -18.01
2800 27.56 -20.15
2810 28. 20 -21.4
2820 28. 83 —23.0
2830 29. 46 -25.0
2840 30.08 -27.0
2850 30. 71 -29. 1
2860 Dec. 1.33 -32.
2865 1. 64 -37.
2870 1. 95 -41.
2875 2. 26 -46.
2880 2.57 —52.
2885 2.88 -70.
2890 3.19 -101.
2895 3.49 -160.
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Date
1958

Feb. 6
16
26

Mar. 8
18
28

Apr. 7
17
27

May 7
17
27

June 6
16
26

July 6
16
26

Aug. 5

TABLE 2a.—Relative positions of sun and perigee for Satellite

CtT—CtQ if/

159.0
161. 4
178.7
191.6
195. 6
215. 7
225.7
231. 3
252.6
259.0
267. 1
287.2
290.4
302. 1
319. 1
321.4
337.4
351.2
354.5

159. 8
144.2
138. 1
160.8
153.7
132.0
133. 1
129.0
111.6
99.9
82.8
66.5
75.0
78.7
57.6
37.0
23. 1
11.7
39.6

Date
Aug. 15

25
Sept. 4

14
24

Oct. 4
14
24

Nov. 3
13
23

Dec. 3
13
23

1959
Jan.

Feb.

2
12
22
1
11

14.3
24.9
31.5
53.5
59.8
70.8
91. 1
94.7
110. 9
125.5
128.5
142.4
155.6
162. 4

182.8
186.2
199.3
216.3
219.4

47.8
28.8
36.0
56. 1
59.9
71.6
88.3
97.2
115.6
127.2
114 1
116.0
124.7
163.2

176.9
148.3
123.9
138.4
142.0

1958 Alpha

Date
Feb. 21
Mar. 3

13
23
2

12
22
2

12
22

1
11
21

1
11
21
31
10
20

Apr.

May

June

July

Aug.

239.7
250.7
257.9
280.6
286.4
300.6
319.2
323. 1
343.5
354. 1

1. 1
22.8
27.0
41.6
58.0
62.0
84 1
92.8

103.6

121.4
109.6
99.0
80.7
73. 1
59.9
39.7
50.3
52.1
24 2
7. 1

20.9
42.7
68.9
66.8
57.2
75.9
93. 1

ioa i

TABLE 26.—Relative positions of sun and perigee for Satellite 1968 02

Date
1958

Mar. 21
31

Apr. 10
20
30

May 10
20
30

June 9
19
29

July 9
19
29

Aug. 8
18
28

Sept. 7
17

292.7
290.6
291.4
302.7
311.5
309.7
309. 1
318.6
327.0
325. 1
323.3
332.0
341.5
340.7
339.0
347.3
358.7
359.4
358.0

68.9
69.2
74 6
70.8
59.5
51.6
47. 1
38.3
30.3
41. 1
58.4
62.6
49.2
28.5
20.3
23.7
16.5
1.9

21.9

Date
Sept. 27
Oct. 7

17
27

Nov. 6
16
26

Dec. 6
16
26

1959
Jan. 5

15
25

Feb. 4
14
24

Mar. 6
16
26

5.9
18. 1
19.4
17.4
23.3
34.6
35.8
36.0
36.0
47.0

48.2
44 3
47.7
59.4
62.9
60. 1
63.3
76. 1
81.3

32.9
28.5
19.4
34 6
53.7
58.2
46.0
34 7
33.0
42.2

47.5
55.8
68.4
74 3
67.5
59.0
64 1
77. 1
82.0

Date
Apr.

May

June

July

Aug.

Sept.

Oct.

5
15
25

5
15
25

4
14
24

4
14
24

3
13
23

2
12
22

2
12

etv—cto

79. 1
82.0
94.5

100.3
97.6
9& 9

110.1
116.0
113.0
113.0
123.8
130.9
128.6
130.0
140.0
149.0
14a 0
14a 2
153.2
16a 6

*
7a 3
7a 4
86.8
95.0
99.7

107.3
118.6
120.3
108.4
98.0

102.9
117.6
127.9
132.2
137.4
147.4
147.3
140.0
140.2
160.8

TABLE 2C.—Relative positions of sun and perigee for Satellite 1958 61

Date
1958

May

June

July

15
25

4
14
24

4
14

««-«©

0.6
320.8
281.2
242.0
202.3
162.9
123.6

34.1
42.4
66.0
92.3

112.9
117.9
102.8

Date
July
Aug.

Sept.

24
3

13
23

2
12
22

84 5
45.6

6.8
328.5
289.8
250.9
211. 6

75.6
42.9
10.2
31.3
68. 8

107.4
146.9

Date
Oct.

Nov.

Dec.

2
12
22

1
11
21

1

av-ao
171.7
131. 1
89.7
47.3
3.7

318.2
270.6

+
171.2
131. 1
89.6
47.5
9.6

40.8
83.5





Note on the Secular Motions of the Node and
Perigee of an Artificial Satellite

By Yoshihide Kozai

i) | ^ (l—

The values of the coefficients of the second
and the fourth harmonics of the earth's gravita-
tional potential, which I derived (Kozai, 1959a)
from the motion of the node and perigee of
Satellite 1958 /32, the first Vanguard, are quite
different from those obtained by other authors.
Recently I discovered an error in my formula
for the secular motion of the perigee as it
appeared in the previous paper. Instead of

we must read

This change should give more reasonable
values for the coefficients. In the meantime,
however, I have derived more complete for-
mulas for the secular motions of the node and
perigee, which are applicable to any satellite
even if its eccentricity is not small. They are
of closed form as far as the terms of order
of Alfa*.

The new formulas are:

Here n is the anomalistic mean motion; and
p=a(l—e2); i and e are their mean values
over an entire orbital period; and a is deter-
mined from the equation

rra*= (

I used the following data of Satellite 1958 £2
for Oct. 16, 12h 27m (U.T.), 1958, as given in
Special Report No. 22 (Kozai, 1959):

fi=—3?014 66 per day,
ci=4?404 05 per day,
n=3862?640 per day,
g=0.190 00,
t=34?250,

and derived the following values:

t Y 2
-prn c o s l (j~2sm V V+2

—[=0.94X10~s.

These values are reasonable and are not very
much different from those obtained by other
authors.
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Anticipated Orbital Perturbations of Satellite
1959 62

By Yoshihide Kozai and Charles A. Whitney

The orbit of Satellite 1959 82, the "Paddle-
Wheel," is significantly affected by lunar and
solar perturbations. Thus, Satellite 1959 82 is
unique among satellites launched to date, and
we believe it worthwhile to publish the present
analysis to provide a basis for anticipating its
orbital behavior.

Starting from the orbital elements provided
by the National Aeronautics and Space Ad-
ministration for September 3, 1959, we have
carried out numerical integration to predict the
future behavior of this satellite. These inte-
grations, based on a variation of parameters,
are preliminary in nature. Techniques for
a more precise analysis of the orbit are in
preparation.

The equations employed are outlined below.
The technique of integration was a simple one,
taking the semimajor axis as independent
variable.

The perturbation equations

Solar and lunar perturbations.—Variations of
the orbital eccentricity due to the moon and the
sun are expressed by the equation (Kozai,
1959c),

de_ Vl—e2bR , .
dt na?e do/

where the principal terms of R are:

R=— e2a2 n% cos4 \ cos4 ̂  cos 2 (Xo—a>—fi)

1 / 3 \2)) sin2il 1—^sin2«Jcos 2«

1 2 / •

2 "'C ' c \
isin2e cos4Kcos2 (co+fl—^

—sin i cos2 ̂  sin 2e cos (2w+Q—S
2

5in2ecos4jr cos 2 (w+0)z

sin icos2^sin2«cos (2a)+fi) V

sin i cos2 - sin e cos2 ̂

COS ( 2 A ^ — 2 w — ! (2)

Here, no is the mean motion of the sun; n^, that
of the moon; e, the obliquity; XG, the mean
longitude of the sun; m^, the mass of the moon
(the unit is the mass of the earth); and fl<£, the
longitude of the ascending node of the moon
with respect to the earth's equator. On the
right side of equation (2), i, Q, and o> may be
considered unaffected by the moon and the
sun.

As the semimajor axis does not change
rapidly due to the moon and the sun, the varia-
tion of the perigee distance q is given by the
equation

dq
Jt

de
adi' (3)

Oblateness.—The rates of change of the argu-
ment of perigee and the right ascension of the
ascending node were computed from the usual
first-order equations,

do} J ,n o c * S «\

M=-2 (2-2.5 arft),

dQ J
7 \ 7 = 2 c o s

dN p2
(4)

where N is tbe revolution number, and p—
G9
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a(l—e2). The value J= .0016230 was em-
ployed, as well as the equation,

P=.0586745a3/2, (5)

relating the orbital period in days to the semi-
major axis in units of 6378.388 km.

Atmospheric Drag.—The effects of atmos-
pheric drag on the orbital energy and the peri-
gee height were introduced in the following
manner.

The effect on perigee height was computed
from the approximation

dq=H
dQ ae (6)

where H is the atmospheric scale height. This
relation can be transformed to the equation

da Kae+l' (7)

where K=H~1. This approximation is valid
for orbits of high eccentricity, but clearly it is
very poor for low eccentricities. We do not
feel that the present calculations would be
significantly affected by a more precise compu-
tation of dqjda.

The drag effect on orbital period was evalu-
ated with a formula derived to be valid for
a wide range of eccentricities.

The loss of energy due to drag may be written

as
=-^ ApuPds, (8)

where CD is the drag coefficient; A is the satel-
lite's effective cross-sectional area; p is the
atmospheric density; w is the orbital velocity;
and ds is the differential of distance along the
orbit.

For the orbital velocity we substituted the
value at perigee,

\AJ It. , -

a{l — e)

For ds we used the equations,

ds

dr sin v
dv l-\-e cos v

On the assumption that v, the true anomaly, is
much less than one radian in the region of
significant drag, we derived the equation,

ds=a(l-e) (10)

We further assumed that the atmospheric
density above perigee can be represented by
an exponential function of height, writing
p(»)=p(g) exp (-K(q){r(v)—q)).

We then found that

Integrating over true anomaly and employing
the relation

da=—fa du,
mk2 '

where m is the satellite mass, led to the follow-
ing expression for Aa, the change of semimajor
axis per revolution:

A

m
(12)

We note that the integration around an orbit
is performed with an exponential atmosphere.
However, because of the wide range of perigee
heights produced by the lunar and solar
perturbations, it was not sufficiently accurate
to assume that the entire atmosphere was
isothermal.

We employed the following formulas for
p(g) &nd K(g):

p(q) =7.94X10-" exp [—161.55(g—1)

+2.3029 exp (—138.46(2-1)+2.8)],

X(2) = 161.55+318.86

exp (-138.46(2-l)+2.8), (13)

where p is in gm/cin3; g is in units of 6378.388
km; and K is in km""1.

Table 1 lists the values of log10 p derived
from this model and from the Smithsonian
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TABLE 1.—Atmospheric densities

Height
(km)

150
180
210
240
270

logio p(gm/cm3)

Approximation

— 11. 12
- 1 1 . 7 5
—12. 24
- 1 2 . 65
—13. 02

Model 4

- 1 1 . 0 8
- 1 1 . 7 7
— 12.29
- 1 2 . 7 3
—13. 09

Astrophysical Observatory Interim Model At-
mosphere No. 4 (Whitney, 1959).
Numerical results
The perturbed orbit has been calculated from
the following initial orbit:

Epoch 1959 September 3.150 GMT
a=4.3446
e=.76O4
i=47?10
w=41?66
fi=55?62

The results are summarized in figures 1, 2,
and 3. The arrows indicate the date of
satellite launching. These figures show inte-
grations for two values of Ajm, in order to
indicate the sensitivity of the orbit to variations
of atmospheric density and effective area of the
satellite.

The semiannual variation of perigee distance
is produced by the solar perturbation and does
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FIGURE 1.—Expected perigee distance of 1959 52 measured in
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not drastically affect the satellite lifetime.
The lunar perturbation produces the rapid
drop of perigee around 600 days after September
3, 1959 and ends the life of the satellite.

The two "acceleration" curves of da/dN,
plotted logarithmically, are essentially mirror
images of the curve of perigee height.

From observations of this satellite during the
first month of flight, Dr. Don Lautman has
derived an acceleration of

w=-1 .5X10- 4 earth radii.dN

This value falls between the plotted curves.





On the Effects of Image Motion on the Accuracy
of Measurement of a Flashing Satellite

By J. Allen Hynek

Artificial satellites carrying flashing lights
that can be triggered by internal programming
or by command from earth have frequently
been proposed as a means of increasing the
geodetic usefulness of the satellites. Individual
flash durations of less than a millisecond, or a
pattern of such bursts, have been suggested.
According to this proposal, such flashes would
allow us to fix the linear position of a typical
close satellite to within 25 feet, and simul-
taneous observations of a given flash from two
or, preferably, more stations would not only
permit us to fix the position with a high degree
of accuracy, but would also obviate the necessity
for precision timing of the observations.

These suggestions, insofar as they concern
positional accuracy, overlook salient astro-
metric facts relating to atmospheric unsteadi-
ness and image motion, which can cause the
instantaneous photographic position of the
satellite image to differ from its "true" position
by easily as much as 2 or 3 seconds of arc.

Observers have long known, for example,
that if exposures are too short—under a minute
of time—the accuracy of measures of stellar
parallax is apt to suffer. The mean position
of the wandering image will not be the same as
the centroid of an image formed by a longer
exposure. Instantaneous visual measures will
likewise suffer. It has also been recognized
that asteroid positions obtained from relatively
long exposures are more accurate than those
made visually by filar micrometer, since the
photographic method integrates the random 1

motion of the image, while the visual observa-
tion does not.

The motion of a stellar image, apart from
its scintillation (defined solely as changes of

brightness with time, independent of image
size or motion), can be measured in a number
of ways. For measurements in the focal plane,
motion pictures of an image and the associated
focal-plane reticle can be made, or the images
can be allowed to trail on the film by diurnal
motion or by motion of the film itself. The
stellar image can also be photographed extra-
focally, preferably by rapid-sequence photo-
graphs. The successive frames then show the
motion of the motley array of bright-image
elements, each arising from a separate portion
of the incoming wavefront, warped by atmos-
pheric irregularity in the neighborhood of the
telescope. From the motion of the elements
of the extra-focal image, the motion of the
centroid of the focal image can be derived.

Observations of the "dance" of stellar images
have been made by many astronomers. As
part of a research program on fluctuations of
starlight, carried out several years ago by a
group associated with the writer at the McMillin
Observatory,2 R. Hosfeld (1954) made quan-
titative measures that apply directly to the
problem of flashing satellites. It should be
pointed out that the numbers obtained are
characteristic of seeing conditions in the Ohio
Valley region but may not be representative for
the entire country.

It is particularly instructive to study the mo-
tion of the two small, extra-focal image elements
formed by admitting starlight to the telescope
through two relatively small, equal apertures;
Hosfeld used two circular apertures of 3-inch
diameter whose centers were separated by 9

i Private communication from J. Ashbrook.
> Work sponsored by Geophysics Research Directorate, Air Force

Cambridge Research Center (Contract No. 19(604)-*l).
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inches. The separation of these two elements is
related to the motion of the focal image, in that
the latter motion is one-half the motion of the
two extra-focal images as measured by the dif-
ference between their maximum and minimum
separations.

I t is also instructive to observe focal-plane
images directly. Motion pictures of the move-
ment of focal images of stars reveal a surprising
amount of change of image structure, and of the
motion of the "centroid" of the image. Devia-
tions of an image from a mean position can also
be recorded by allowing an image to trail on a
photographic plate, or by having a film or plate
move Linearly while being exposed. These and
successive-frame photography of extra-focal im-

3"

ages showed that the average image motion is
2.2 seconds of arc during night hours, and 3.1
during the daytime. The random motion of
Capella during the daytime is shown in figure 1.
The consecutive points are separated in time by
%2 second; points can be as far apart in
distance as 5 seconds of arc.

The image of a satellite flash, therefore, may
appear at a position several seconds of arc away
from the "true" position of the satellite. Simul-
taneous observations from two or more stations
will not necessarily tend to cancel the effect; if
the errors are of opposite sign, they can yield a
position error as great as 10 seconds of arc.

A pattern of bursts of individual short flashes
would, in the mean, tend to produce a reliable
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position, although the position of each individ-
ual flash would be subject to large error. It
would appear unfortunately, therefore, that as
long as satellites must be observed through an
appreciable atmosphere, the use of very short
flashes for geodetic purposes will tend to in-
crease rather than to decrease the positional
error, if accuracies of a second of arc are re-
quired.

The study of image structure and motion
carried out by the Ohio State group and others
shows that such motions are to be ascribed to
atmospheric disturbances in the general neigh-
borhood of the telescope, and not to the disturb-
ances at the heights of the order of the height of
the tropopause that cause scintillation. That
is, the positional errors under discussion are not
introduced by stellar twinkling, as might at
first be thought, but by local wavefront changes.
Since these atmospheric disturbances are local,
a proper location of the observing sites would
help to minimize the effects of the disturbances.

Several independent lines of evidence indicate
that stellar scintillation does not cause shifts in
image position. The immediate cause of scin-
tillation is the play upon the telescope objective
of the interference pattern induced by the at-
mosphere. One can easily observe this by plac-
ing his unaided eye at the focal plane of a tele-
scope of moderate size that is trained on a
bright star. The entire telescope objective is
then seen to be illuminated. If the observer
uses his eye as a field lens, he discerns the
rapidly moving and changing pattern of star-
light.

A more slowly moving pattern of light, sug-
gestive of a viscous flow, is apparent if the
image is examined at a point slightly beyond the
focal plane of the telescope. These relatively
slow-moving light patterns represent deforma-
tions of the wavefront responsible for image
motions and explain the fact that elements in an

extra-focal image tend to persist in form and
position for large fractions of a second, quite
unlike the kaleidoscopic changes seen on the
objective itself which even successive photo-
graphic exposures of 0.01 second are generally
unable to "stop."

The distinction between image motion and
stellar scintillation can be illustrated in many
ways (Hosfeld, 1954). For example, the images
of double stars show random scintillation but
coordinated motion; with increasing zenith dis-
tance, scintillation increases more rapidly than
does image motion; we can induce image motion
artificially, but not scintillation except by inter-
fering with the beam at relatively large dis-
tances.

One might suppose that since the images of
components of a double star move coordinately,
as do indeed the images of stars in a field nearly
a degree across, the flashing satellite and the
stars would exhibit the same image motion.
This supposition, of course, does not hold, since
the stellar exposure would obviously be many
times as long as that for the satellite flash, and
the image of each star would therefore represent
the integral of many excursions from the mean
position.

In long exposures of faint stars, a larger
number of developable emulsion grains accu-
mulate near the mean stellar position than
elsewhere. The rapid motion of images to
points away from the mean position contribute,
at most, to the slight halo around the stellar
image. For the average stellar image, 30 to
40 microns in diameter and corresponding to
many seconds of arc, the position can be
measured within an accuracy of about 2
microns. Because the centroid of a stellar
image corresponds to the true position of the
star, such accuracy is meaningful; in the case
of the image of a short flash from a satellite,
it is apt to be misleading.





The Effect of a Variable Scale Height on
Determinations of Atmospheric Density

from Satellite Accelerations

By Luigi G. Jacchia

The anomalistic period P of an artificial
satellite changes under the action of atmos-
pheric drag. The rate of change can be
expressed very approximately (Sterne, 1958 a;
King-Hele, Cook, and Walker, 1959) by the
equation

dP cos

The symbols are defined as follows:

C.D=drag coefficient,
A=effective cross section of satellite,
m=mass of satellite,
a=semimajor axis of satellite's orbit,
e=orbital eccentricity of satellite,

E= eccentric anomaly,
p=atmospheric density.

Equation (1) assumes a stationary atmos-
phere; the effect of atmospheric rotation
has been evaluated by Sterne (1959). The
only approximation made in equation (1) is
that the orbit can be defined by a set of Kep-
lerian elements in the course of one revolution;
in the general case, therefore, the error arising
from this approximation is entirely negligible.

Useful formulas for computing atmospheric
densities from satellite accelerations can be
derived from equation (1) on the assumption
of a spherically symmetrical atmosphere in
which the density varies exponentially with
height (Sterne, 1958b; Groves, 1958; King-
Hele, Cook and Walker, 1959). The pro-
cedure consists in replacing p by the expression

=pp exp (2)

(where pP is the atmospheric density at perigee;
r the geocentric distance; q the perigee distance;
and H a constant, the density scale height), and
in expanding the integrand as a power series of
e. The integral can then be evaluated in terms
of Bessel functions of the first kind of imaginary
argument In(x), with z=ae/H. For small eccen-
tricities, the Bessel functions can be replaced
by their expansion at the origin; for larger
eccentricities, use is made of their asymptotic
expansions (King-Hele, Cook and Walker,
1959).

Formulas of the type just described have been
used by all investigators in deriving atmos-
pheric densities from satellite accelerations.
If the density scale height H varies with height,
instead of being a constant, the use of such
formulas causes a systematic error. I t is the
purpose of this note to evaluate the size of this
error.

Let us assume, for simplicity, that H varies
linearly with height, and that Hp is the value
of H at perigee; we shall then have

(3)

and, since by definition

H
1 dp
p"d?

we obtain, by integration,

(4)

The gradient /3 of the density scale height is
nondimensional quantity. Recent atmo s-
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pheric results (Jacchia, 1960a) have shown that
at the height of 400 km /3«+0.1 in the dark
hemisphere and |8«+0.2 in the center of the
diurnal bulge. The density scale height it-
self is of the order of 55 km at night and 72
km in the diurnal bulge, for the same height
of 400 km above the geoid.

Replacing p in equation (1) by the expres-
sions of equations (2) and (4) respectively, and
using the same values for pP and HP in both

cases, we obtain two values of -p, whose ratio

R is 1 for j8=0 and > 1 for positive values of 0.
The explicit value of R is

R=

where

(l-ecosE)1

It should be apparent that R— 1 is the relative
error that is committed when pp is determined
from equation (1) under the assumption that
0=0.

The values of R to be found in table 1 were
computed by numerical evaluation of the
integrals of equation (5), with the value,
Hp=0.01 earth's radii=63.78 km. Extensive
use was made of the "logarithmic" finite-
difference method of integration introduced by
the author (Jacchia, 1955), which is highly
advantageous when the integrand is a near-
exponential function.

It has been assumed at the outset that for
values of Hp different from 63.78 km, R must
differ from the values given in table 1. Sample
integrations with #,,=31.89 km seem, however,
to reproduce table 1 to the last digit. The
reason for this fact is not obvious to this writer.
No serious attempt has been made to prove that
di?/d#p=0; the problem is hereby left to an
investigator endowed with greater persistence
or deeper mathematical insight.

It will be noticed that, while 5—1 is nearly
proportional to 0 for any given value of «, its
behavior is quite different when its variation in
function of e is considered for a given 0 (figures

1 and 2). For e=0, we must obviously have
R=l, irrespective of 0; even an extremely
small eccentricity, however, will make R
considerably different from unity when 0?^O,
and for any given value of 0, R reaches a maxi-
mum for e«0.02. For greater values of e, R
becomes a little smaller and rapidly approaches
a nearly asymptotic value, which is practically
reached for e=0.2.

It is a pleasure to acknowledge the expert
help of Miss J. R. B. Carmichael, who per-
formed most of the numerical integrations.

TABLE 1.—Values of R for Hv=63.78 km

e

0.00
0.01
0.02
0.05
0. 10
0.20
0.40
0.60
1.00

0 = 0

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

Values of R

0=0.1

1.000
1.032
1.050
1.044
1.040
1.039
1.039
1.039
1.039

0=0.2

1.000
1.061
1. 100
1.095
1.086
1.083
1.082
1.082
1.083

1.00
+ 0.2

.00

FIGURE 1.—Variation of R (see equation (5)) in function of the
scale-height gradient 0 for different orbital eccentricities.
The relative error of densities determined using formulas
that assume 0 = 0 is given by R— 1. Scale height at perigee,
ffB=63.78 km.
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FIGURE 2.—Variation of R in function of e for /3= + 0 . 1 . (For R see legend to fig. 1.)
Scale height at perigee, Hv= 63.78 km.





A Second-Order Solution of Vinti's
Dynamical Problem

By Imre G. Izsak

The accurate description of the motion of artificial satellites has presented a new problem in
celestial mechanics. I t is true that satellites of some other planets—for instance, the five inner
satellites of Jupiter and the five inner satellites of Saturn—have quite significant perturbations
caused by the oblateness of the parent planet, but the obtainable planetocentric accuracy of the
observations did not demand a highly sophisticated theory. In the case of artificial satellites of
the earth, however, the accuracy of the topocentric observations made by the Baker-Nunn cameras
amounts to a few seconds of arc. That means we have a geocentric accuracy of about one second
of arc, while the time record is accurate to a few thousandths of a second. It would be very difficult
to construct an analytical theory that would represent the motion with such an accuracy, either
for the computation of exact ephemerides or, what is even more important, for the best possible use
of the observations. The oblateness perturbations are only a part of the factors that influence the
satellite motion, of course. For instance, we know that low-orbiting satellites suffer large perturba-
tions of an "irregular" character caused by atmospheric drag, and that high-orbiting satellites are
affected by luni-solar perturbations. Solar-radiation pressure is another factor complicating the
situation, especially in the case of satellites with small mass/area ratio. The present paper deals
with the motion in the gravitational field of the earth.

Although a great many papers devoted to this problem exist in the recent literature, the most
comprehensive investigations were presented in papers by Brouwer (1959), Garfinkel (1959), and
Kozai (1959b), all of which appeared in the celebrated November 1959 issue olAstronomicalJournal.
These authors treated, by different methods, the first- and second-order secular perturbations, as
well as the first-order long-periodic and short-periodic perturbations of the orbital elements, where
order refers to the oblateness parameter. Less related to the present subject is the very powerful
semianalytical method for the computation of gravitational perturbations developed by Musen
(1959).

The distinction among the different kinds of perturbations has significance not only from the
theoretical but also from the practical point of view. In theoretical work, the secular, long-periodic,
and short-periodic terms are usually obtained by different techniques. In practical work, for
instance in an orbit improvement program, the short-periodic terms are used for the reduction of
the real motion of the satellite, as reflected in the observations, to a certain mean elliptical motion.
The secular and long-periodic variations are still present in this mean elliptical orbit and can be
obtained with a high degree of accuracy by the use of many revolutions of the satellite.

If the coefficients of these terms are expressed as functions of the orbital elements and the geo-
physical constants, the latter can be determined. The next step beyond the work of Brouwer,
Garfinkel, and Kozai would be to obtain the second-order short-periodic perturbations. As far as I
can see, this would be a rather tedious undertaking with their methods, because it involves several
multiplications of Fourier series. In this paper I shall adopt a quite different approach, based on a
remarkable approximation to the actual gravitational field of the earth, originated by Vinti (1959).
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Vinti's dynamical system

On the assumption that the earth is an axially symmetric oblate body, its potential can be developed
into the series

where /i=/w«=398.618±.003 Mm3 ksec"2 (O'Keefe, Eckels, and Squires, 1959),

/ is the gravitational constant,
mE and as are the mass and the equatorial radius of the earth,
the J% denote geophysical constants,
r and 5 are the geocentric distance and declination of the satellite,
and the P»(sin 5) are Legendre polynomials.

According to the latest determination1 by Kozai (1961b), we have the following values of the Jn:

J2= (1.08219 ± .00002) X 10~3, J3= - (2.29 ± .02) X 10~6,

J 4 = — (2.12±.04)X10-6, J s =- (2 .3± .2 )X10- 7 .

Thus J3, Jt, and J5 can be considered as of the second order with respect to J2.
Vinti has shown that if the relations

Jtn = ( - 1 ) n+1Jn2, Jf*+l = ( -1 ) Vi J5

are valid, the dynamical system f = — VV can be solved exactly; or to be more precise, the integration
of the differential equations can be reduced to quadratures. I t is expedient to note here that the
representation of the coordinates as functions of time or of another independent variable may still
be a difficult problem, involving the solution of a system of simultaneous equations. This is some-
times called the inversion problem and will play an important role in this paper. From the values
of the Jn given above it follows that for the gravitational field of the earth Vinti's relation JK=—J\
is not satisfied; instead we have

=-. 95 X10"6.

On the other hand, J\ is practically zero; hence it can not be used to generate the coefficients of the
odd harmonics. Nevertheless, the potential function

(2)

containing only the even harmonics, is a very good approximation to the potential function (1), the
difference

. . A
being of the second order in the oblateness parameter J2. We call the differential system, r = — VK,

Vinti's dynamical system. If this has been solved, the perturbations due to V— V can be treated by a
first-order method, that is, without multiplications of Fourier series.

1 Note added on this appearance of paper: Recent values of the geophysical constants as determined by Kozai
(1962) are:

J ,= (1.08248±.00004) X 10"» J3=-(2.562±.007) X 10-«
J4=-(1.84±.O9) X 10-« J ,= -(6.4±.7) X 10-«
J.= (3.9±.9) X 10-7 J 7 =_(4 .7 ± . l ) x 10-*.

It follows that D4= —.67 x 10~»; therefore, Vinti's approximation is better than expected two years ago.
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Oblate-spheroidal coordinates

At this point it is necessary to introduce oblate-spheroidal coordinates, which are defined by the
equations

x= *)Jp2-\-c2 -yjl — a2 cos a

y=^Jp*+c2 T/1 —a2 sin a r= V P 2 + C 2 ( 1 — a2)

Z=pcr. (3)

It follows that

The coordinate a is the right ascension of the satellite, and the surfaces a=constant are meridian
planes.

The equation of the surfaces p=constant in rectangular coordinates is

x*+y2 z2

p 2 + c 2 - t - p 2 *•

Consequently, these equations describe oblate spheroids, the intersections with the meridian planes
being confocal ellipses of linear eccentricity c, and semiminor axis p.

Similarly, for the surfaces a=constant we have the equation

-a2) c

which describes one-sheet hyperboloids of revolution, the intersections with the meridian planes being
confocal hyperbolas of linear eccentricity c. The geometrical meaning of the coordinate a is the sine
of half the angle between the asymptotes.

In the present application the constant c is meant to take care of the earth's oblateness, and is
necessarily small relative to the equatorial radius of the earth. This means that, far enough from the
origin, the coordinate surfaces p=constant and o-=constant are nearly spheres and cones, respec-
tively. Solving the equations (3) for p2 and a2 we get

2

the developments in spherical coordinates,

p=r-l 1— k(^) (1— sin2 5)—1(~) (1—sin2 5)(1—5 sin2 5)—.. . \ ,

<r=sin &< l + j r ( - ) (1—sin2 5 ) + - ( - ) (1—sin2 5)(3—7 sii

are easily derived from the preceding relations.
A

Vinti obtained the potential (2) by asking himself: What is the most general solution V{p, a) of
the Laplace equation

dp
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for a gravitational potential which makes the Hamilton-Jacobi equation

1 c2 \ f i

separable in these oblate-spheroidal coordinates? Requiring further that the solution should have no
singularities except a pole at the origin, and that as well as axial symmetry it should also possess

equatorial symmetry, he found that V(p, a)= , , . , ) where b is a constant. In order to see that
P " r 1

this is the same as equation (2), let us expand it into a series of spherical harmonics.
Obviously, bptf+ct^-^bReiip+ica)-1}- But

(P+ic<7)2=(p2-c2o2)+2tcp(T=(r2-c2)+2tc2=r2{l—2(—ic

so that by the definition of the Legendre polynomials

sin icr"1)2},

sin 8+(-
n-0

(-icr-1)»PB(sin 8).

Taking the real part of this equation we get

2B(sin 8) \
J

and comparing it with the equation (2) we see that we must choose

The above value of J2 and the value a£=6378.388 km give c=209.828 km.

Separable dynamical systems of Stackel's type

Vinti's dynamical system belongs to an important type of solvable problem in analytical dynamics,
known as dynamical systems of Stackel's type. The essentials of these systems can be summarized
as follows. Let

011 (<Zl) • • • 01n(<Z]

be a nonsingular matrix, in which the elements of the j th row depend upon the ,7'th coordinate only.
We call the inverse ^ = * - 1 of such a matrix a Stackel matrix, the elements of which depend on all
the coordinates & > • • • > qn, in general.

As was shown by Stackel (1891) (see Charlier, 1927), a Hamilton-Jacobi equation of the form

can be solved by the method of separation of the variables if, and only if, the coefficients a}{q) con-
stitute the first (or any) row of a Stackel matrix such that a/<z)=iAi/<z)> a11^ the potential energy can
be represented in the form

where the functions X]{<L)) depend on the jih. coordinate only. Such a dynamical system is said to
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be of Stackel's type. For our present purposes it is sufficient to see that the separation follows from
these conditions.

Indeed, the function TF(<z|a) defined by the equations

VS^^)i(^) q} (4)

contains n arbitrary constants, cti=h, a2, . . . , an, and is a complete solution of the Hamilton-
Jacobi equation:

2

According to Jacobi's theorem, the solution of the canonical system p>=—->—> 2=5-— is then given
ogj opj

implicitly by the equations

bW(q\a)

where the fij are the other n constants of integration.
We can also say that a dynamical system with the Hamiltonian function

/-I

has a system of n quadratic integrals

\ S ^ ( 2 ) ^ + S Mq)XJ(qJ)=ai, ( i=l, . . ., n)
I i=i j=i

in involution.
The separability of the variables is a formal property, and it occurs only in appropriate coordi-

nate systems.
In the most important practical applications the functions of qj under the square root sign in

equations (4) must all be positive inside closed intervals It and must vanish in the first order at their
endpoints. Then the solutions qj=qj(t\a\(i), pi=pj(t\a\fi) of equations (5) can be represented
for — 00 < £ < + 00 by multiple Fourier series (at least in general). This is the ideal of celestial
mechanics. However, in the much more difficult problems with which it deals, such a representa-
tion can be only an approximation, valid only in a finite interval of time.

I shall now describe briefly an important special case of Stackel-type dynamical systems. The
natural context for the treatment of these dynamical systems of Liouville's type seems to be the
apparatus of the Lagrange equations:

Y-—=0

It can be shown (Whittaker, 1959) that if the Lagrangian function has the structure

(6)
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where w ( g ) = S ut(([{), and the functions w<(g<), Vjiq

only, the Lagrange equations possess the "integrals"

depend on the indicated coordinate

(7)

Here h means the energy constant, the cu . . . , cn_x are independent constants of integration, but

n- l

Cn=—
1=1

Actually, in Whittaker's book we find the not-quite-fortunate specialization Vj(gj) = l; however, it is
easy to generalize his procedure.

The importance of this type lies in the fact that the inversion problem associated with it can be
much simplified. Indeed, if we introduce a new "independent" variable T by the differential relation

dt u(q)

where T denotes a conveniently chosen constant, the "integrals" (7) take the form,

r2

(8)

These equations can be integrated again immediately, giving the relation

(9)

where the d} represent n new constants of integration. Each of the equations (9) contains only a
single q]} instead of containing them all as in equations (5) in the case of a general Stackel-type
dynamical system. In other words, a dynamical system of Liouville's type of n degrees of freedom
splits up into n dynamical systems of one degree of freedom. After the coordinates q} have been
obtained as functions of the parameter T, the time dependence of the motion is given by the integral
of equation (8); that is,

S (TUi(qi(T))dr=T(t-t0)-
i=lJo

The Hamiltonian function belonging to the Lagrangian function (6) is

H=l {u(q)\

It is easy to see that to write it in Stackel's form we have to choose:

U3V3

l\

0
0

0

0

0
0
V*

0
0
0

0
0
0

0 »„_,
UJD —vn
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and Xi=

For n=2, Stackel's type is not more general than that of Ldouville.

The integration of Vinti's dynamical system
Let us now proceed with the integration of Vinti's dynamical system. To convince ourselves that the
Hamilton-Jacobi equation

is of Stackel's type, let us put

1 c2

2(P
2+c2) 2(p*+c2)2

c?o* 1 1
1-a2 2(l-<r2) 2(l-a2)2

0 0 \

,and X2=O (11)

Then, det *=
4(p2+c2) (1-

except for polar orbits, and

P2+c2
1 - C T 2

0

P
2+cV

0

(r-

The first line in this Stackel matrix agrees with the coefficients in the Hamilton-Jacobi equa-
tion (10).

The second line permits us to write down immediately the quadratic integral,

For <r=0, that is, for an equatorial crossing, the expression on the left side is positive. This is why

we are permitted to write the constant of integration as C2. The value of C is close to that of the
magnitude of the nonconstant angular momentum, the difference being 0(c2).

A

The third line corresponds to the square of the linear integral Pa=0, which results from the fact
that a is an ignorable coordinate; 6 is the 2-component of the angular momentum, and is positive or
negative according as the motion is direct or retrograde.

In order to obtain a complete solution of the Hamilton-Jacobi equation (10), substitute the
expressions of <£« and Xj given by equations (11) into the general formulas (4). By a suitable choice
of the lower limits of integration we get

(12)

where P ( P ) = 2 V + 2 M P 3 - ( C 2 - 2 C 2 A ) P 2 + 2 C 2 M P - C 2 ( C ' 2 - & 2 )

and Q(a) = — 2c2haA— (C2—2c2A)o-2+(C2 — G2) are two quartics fundamental in this theory.
636-014—6S
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The qualitative nature of the motion depends on the character of the roots of the quartic equa-
tions P(p)=0 and Q(<r)=O. There are several cases to distinguish according to different values of

the constants of integration h, C, G. In this paper, however, we are interested only in the kind of
motion for which p(t) oscillates between two real roots pi and p* that are bigger than the equatorial
radius of the earth, and <r(t) oscillates between two real roots —ax and -\-ai that are smaller than 1.
The condition pi=P2, that is, p(t) =pu characterizes "circular" orbits, and the condition o-x=0, that is
<r(t)=O corresponds to orbits in the equatorial plane of the earth.

Because for c=0 (two-body problem) the motion would be elliptic, parabolic, or hyperbolic
according as the constant of energy is negative, zero, or positive, it is reasonable to assume that in

A

our problem h<CO. Further, we must have Q((T)^0 during the motion, especially for <r=0, and
this condition gives CP^G2. Then it is clear that the equation Q(a)=0 will have four real roots
*u —<ri, <*2, —°2 with the following properties: 0 ^ < T I < 1 , O-2^>1. For c=0 the equation P(p)=0
would have two positive roots and zero as a double root. The roots for small values of c can differ
from these roots only by small amounts; that is, we shall expect two finite roots pi and P2, correspond-
ing to "perigee" and "apogee" respectively; furthermore, we shall expect two infinitesimal roots
Pa and pt, which are in general complex but become real in the case of very small inclinations. We
shall have opportunity to return to this point later. It would hardly be worth the labor to obtain the
exact, and necessarily rather complicated, algebraic conditions needed for the characterization of all
these circumstances.

Let us return to the complete solution (12). Differentiating with respect to h, C, G, we should

consider the lower limit pi as a function of the quantities pi(h, U, G). But because the integrand is

zero for p=pi, the result is the same as if pi were independent of h, C, G. We obtain the following
implicit equations for the determination of p(t), a(t), a(t):

=t-t, (13)

- « , (14)

The sign of the square root of P(p) has to be considered as positive if p is increasing from pt to pi,
but negative if p is decreasing from ps to p2. A similar requirement holds for the square root of

Q(o), the limits being — o\ and + <ri. The symbols t, w, and Q denote three constants of integration
whose meanings are related to the time at perigee, the argument of perigee, and the right ascension
of the node in a Keplerian motion, respectively. The caret above the letters serves to distinguish

the canonical set of elements h, C, G; —t, w, Q from other elements to be introduced later, which will
be more convenient in the development of the theory. The chief merit of the canonical elements
(automatically introduced in the method of separation of the variables) lies in the fact that the varia-
tions of these elements in the case of a perturbed motion are described by a canonical system of
differential equations.

To represent the coordinates as functions of time we would have to solve equations (13) and
(14) for p and a, then substitute p(t) and <r(t) into equation (15). This is a very hard task to carry
out and, by the way, an impractical procedure. Instead, we relate p and a to another "independent"
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variable v, analogous to the true anomaly in a Keplerian motion, as follows. If we put

dp
JP I =v, (16)

where r is a constant (depending on h, C, Q) to be defined later, equation (14) becomes

Jo

For a certain p=pi we will havez;=0, while <r=0 will correspond to vo= — Fw/C. If we introduce and
use Jacobian elliptic functions, we can easily invert relations (16) and (17) to obtain p and a as
functions of v. Then equations (15) and (13) take the form

67 p dv c*G r< dv

t-t=± p2dv+% o*dv. (19)
1 JO A J r 0

The first of these equations gives a as a function of v; the second is equivalent to Kepler's equa-
tion in a Keplerian motion.

Without going into details, we remark that the above simplification of the inversion problem is
made possible by the circumstance that a is an ignorable coordinate. If we first carried out the reduc-
tion to two degrees of freedom by using the integral #a=(p2+c2)(l—o^a^Q, we would then obtain a
dynamical system of Liouville's type.

Introduction of elliptic functions 2

We propose next to reduce the elliptic integrals of the first kind in equations (16) and (17) to Legen-
dre's normal form.

For this purpose let us seek a linear transformation with real coefficients of the complex p-plane,

<20>

such that the roots pi, p2, p3, and p4 of the equation P(p)=0 are mapped onto the points £i=l , €2= —1,
£3=i/m, and ^i=—i/m, respectively. The quantity TO is considered to be real or pure imaginary,
according as the roots p3 and p4 are (conjugate) complex or real. Because three points and their
images already determine a linear transformation, this number TO cannot be chosen arbitrarily.
Indeed, the cross ratio is an invariant of the linear transformation; that is,

Pi—Pi. P2—P3=ti—t3. {2—&
Pi—Pi'p2—p* £1—£4 "£2—$4 \l—imj

We have to determine p, d^, e% and m as functions of the roots p1; pj, p3 and p<; or if the latter
are written in the form

p1=a(l—e), p2=a(l + e), p3=a(/c—iX), p4=a(x+iX), (21)

as functions of a, e, K, and X. The first two of these equations give the definition of the orbital

3 Detailed references with regard to elliptic functions seem unnecessary. The book of Whittaker and Watson (1958) can serve as a general reference.
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elements a and e; although the orbit is not an exact ellipse, we can still call them the semimajor axis
and the"eccentricity. I t will be shown later how K and X are determined as functions of a, e, and s.

The relations Pj=?T J (i= 1> 2» 3» 4) ^ h t n e values of £, given above can be written in

the form:
p+d* —Pig*=pi,

p—d*+P2e*=f>2,

—imp+rf*—P3«* = — wip3,

tmp+d*—p4g* =impA. (22)

Solving the first two of these equations for p and d# we obtain

p .ff iZfiW(^-«). (23)

Also, transformation (20) becomes

In order to obtain convenient relations for the determination of em and m, take the sum of the products
of equations (22) by —1, 1, 1, 1, and use the factors im, im, 1, —1 in the same way. These combina-
tions yield:

{(PI+P2) — (P3+ PO } <?* = {(pa—Pi) + (P4—Pa)im}
and

} 2—fh)im\ e*= {(P1+P2) — (P3+P4)} im,

or, taking relations (21) into consideration, we obtain:

(1—K)e*=e—\m, and (X+em)«* = (l—K)m. (24)

Eliminating em or TO between these equations, we obtain second-degree equations for the determination
of m or e t, which can be written as

———2=7 e — (25)

and

1 + 4 (l-K)2+(

Having the choice between two possible values of m and e+, we require that m and 0* be close to 0
and e, respectively. For e=0 both m and e* vanish.

Now let us apply the linear transformation (20) to the elliptic integral (16). The radicand can

be written in the formP(p)=2A n (p—pj), where

and

A=petl—d^=ae(l—el). (28)
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As a consequence of our choice of the %Jf we have

4 t.—t n

so that

On the other hand, dp——. . >2 <Zf. Consequently, the integral (16) takes the form

^ T fg <ft . , , _ . , / - 2 A A 2

-1* Jo V(i-i2)(i+m2a~"' W l t n^*- V (1-4X4
which is still not Legendre's normal form. That form, however, can be obtained at once by putting

'0 V( I—v Ml —
where

/. . / - 2
^ " V ( l -

and
(30)

The inverse functions TJ(P) and f̂») are now given by the definition of the Jacobian elliptic functions
with modulus k as

fl|£M and£=cn (— »

This is the point where we can determine the constant T by demanding that the period of the
functions £(») should be 2x. Because the real quarter-period of cn{z\k2) is

K-5{1+(s)'*+(ri)'*+•••}• <31>
we must have £—cn ( — v\k? y that is,

r-£A (32)

The reduction of the elliptic integral (17) is quite immediate, as the quartic Q(a) contains
merely even powers of a. Let us write

and apply the transformation <r/oi=f. When we introduce the notation <rx/<r2=Z, equation (17)
becomes

(Vc2—^2 \
—P (p—vo)\l

2it where r0

— TwfC as in equations (18) and (19).
means
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It is advisable to introduce some new notations. First, because a oscillates between the values
— 0i and <ri, we can think of ax as the sine of the "inclination" / of the orbit; let us denote it by
«=sin / . Second, we shall need the real quarter-period L belonging to the modulus I, that is,

Third, we define an " argument of perigee" 3 as a linear function of v by the equation

2L , . _ T](>-G2 . v— ( » + S ) = — ^ — (v—v0).

Then if we put &>=€»+«, the small quantity

"21 r«
will be the motion of perigee, and

e = ^ r = 1 (34)

(35)

a constant close to the canonical element w.
Summarizing the results of this section, we have obtained the explicit representation of the

coordinates p and a as functions of the true anomaly v in the following form:

#+<4cn ( — vlk2)

P= )gfe ( (36)

l+e*cn (—vlk 2 )
\ * /

and
/or \

(37)

These formulas correspond to r=——— and sin d=s sin (»+«) in a Keplerian motion.3

* 1 + 6 COStJ v • / r

Determination of the constants e# , fe2, I2, and e

In the preceding section we gave the definitions of the orbital elements a, e, and s, which can be
A A

thought of as three independent constants of integration replacing the canonical elements h, C, and
G. The other fundamental constants e+, k2,12, and e must be expressed as functions of these orbital
elements.

According to the equations (25), (26), and (30), we first of all have to determine the quantities
K and X in terms of a, e, and s. The coefficients and the roots of the quartic equation P(p)=Q are
related to those of Q(a)=0 in the following manner:

1 Just before finishing the manuscript I received a copy of a very interesting paper on the present subject by Davis and Stein (I960), in which the
relevant elliptic integrals were reduced by the same transformations that I was using. In other aspects, however, the goal of these authors is quite different
from that of my paper. They were primarily concerned with the development of a satellite orbit computation program, and not with the construction of
an analytical theory in the spirit of celestial mechanics. In particular, Davis and Stein do not seem to be interested in the explicit representation of the
several fundamental constants as functions of the orbital elements.
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a*(l -e 2 ) C^+X2) = - c 2 ( & 2 - &")/2X=eV(«7P). (38)
A

After introduction of the dimensionless, small parameter p—c/a, the elimination of A between the
first and third equations gives (1— e2— V2)K-\- (K2-{-\2)—P2.

Similarly, eliminating s2/l2 between the second and fourth equations we get

-4p2s2K+(l-e2-p2s2)(K
2+\2)=p2s2(l-e2-p282).

These two equations determine the roots P3=CL(K—tX) and p4=a(ic+iX) in terms of the orbital ele-
ments o, e, and s. We obtain first

K~(l-e2-p2)(l-e2-p2s2)+4p2s2

and

or, developing in powers of v2,

«=^+^0-V-e-)+... (41)
and

^ ^ i e2]+ . . . . (42)

(Although the present theory is confined to the order of p*, the last i>9 term will be needed in the com-
putation of «, the motion of perigee to the order of v*.) Then

This expression shows that for very low inclinations X becomes imaginary, i.e., ps and p« become real,
as stated before. The value of the inclination for which X becomes zero is approximately given by
the formula $2=p2/(l—e2)2. For artificial satellites of the earth, v2 is of the order 10~3 and the
eccentricity is small, in general; hence this inclination is about 2°.

Returning now to our original purpose, we remark that the last of equations (38) written in the
j,2g2 y2s2

form 12=TZTz XTT2 a n d equation (40) give immediately

/2 rV Q.-e2-p2)(l-e2-p2s2)+4p2s2

1-e2 ( l - e 2 - v 2 ) ( l - e 2 - '

for the parameter of the elliptic function in equation (37). Or, developing in powers of p2, we obtain

. . . (44)

The quantities e+, m, and k are given as algebraic functions of the orbital elements by equations
(25), (26), (30), (39), and (40). However, since their closed expressions are too complicated to be
useful in numerical computations, we instead seek to represent them by power series in p2. Putting

1 -\-/>
e * = e \ l + p 2 x + p * y + . . . } , w e h a v e - y j ^ = ( l - h e 2 ) ~ p 2 ( l - e 2 ) x + p * [ x 2 - ( l - e 2 ) y ] - \ - . . . . O n t h e

h t t n d , ( l - * ) ^
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p*

From equations (41) and (42) it follows that ( 1 - € 2 ) K - ( K 2 + X 2 ) = V 2 ( 1 - 2 S 2 ) + ^ = ^ T - 2 ( 1 - S 2 )

(I_8s 2-e 2) + ...,and [ ( 1 — « 2 ) K - ( K 2 + X 2 ) ] I C = ^ 2 ( 1 - S 2 ) ( 1 - 2 S 2 ) . Then the reciprocal of equation (26)

becomes -v
2(l-e2)x+p*[x2-0—e2)y]+ . . . = - r 2 ( l - 2 s 2 ) - , _ ( l - s 2 ) [ ( l -5s 2 ) - ( l - s 2 )e 2 ] + . . .,

and, determining x and y by comparison of the coefficients, we obtain:

(45)

The equation (25) for the determination of m as a function of e, K, and X, contains also the
first power of X which, because of the branch-point at s2=v2/(l— e2)2+ • • •, cannot be represented as
a power series in p2. In other words, this branch-point is also a singularity of m. Therefore, we shall
take the square of equation (25). Working with power series, we can determine immediately the
parameter A:2=m2/(l+wi2) of the elliptic functions in equation (36). Putting k 2=e2 \v2x-\-v*y-{-. . . },

we have ( 1 -m*)2= ( 1 - 2 P V = F ( 1 + 3 F + • • -) = «2 {u'x+p^Se^+y)^-. . .} . On the other hand,

eX

From equations (41) and (42) it follows that

1 _ ^ = ( 1 3 ^ 2 [ (2-3 S
2 j+s 2 « 2 ]+^£^- 4 [( l-7 s

2+6S*)-(l-3S
2+2S*)e2] + • • •, (46)

and using equation (43) we get

A comparison of the coefficients gives x and y, and we obtain

T#2/>2 ,,4 .,2

f S V ] + ( 4 7 )

The computation of e is somewhat more tedious. It is given by equations (34) and (32), or,
what is the same, by

(48)

The quarter-periods K and L can be considered as already known quantities, expressed in terms
of the orbital elements by use of equations (31), (33) and (47), (44). Let us transform the expression
of A as given by equation (29) into a more convenient one. Recalling equations (21), (27), and
(28), we can write

2 .. __ _ _ A £3—£4 2Aim

or

(\-e%)(el+m2) " m

Then equations (48) and (29) yield l + c = ^ / ^ 2
 x

 G* JB * K. But from the last of equa-
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A A
/^2 /T2 2 I \ 2 I 2

tionsj(38) we have *—= (1 —e2) ——> and equation (25) gives — —/•,_ \2__/ 2_X2y n e n c e>
1 / 1 - e 2

•\(l-t)!i-((2_

Let us develop this expression into a power series of the small parameter v*. The first radicand
is given b y equation (42), and the third can be writ ten as-J\—2k2 , b y use of equation (30). Develop-
ing the second radicand, we use equation (46), as follows:

1 — e2 1
( 1 - K ) 2 - ( « 2 - X 2 ) , 2K- (^-X2)

1-e2

_ , , 2K-(K2+X2)

The square roots of this series and of equation (42) are:

V I—e2

( l-K)1-(e*-X«)=

^ 2w [(20-92s2+75s4)-(8-36s2+34s4)e2+3s4e4]+... (50)

and
/ O,,4

Furthermore, in virtue of relations (31), (33), (44), and (47), we have

= 1 ~ 4 ( l - e 2 ) 2 (s2+2g2g2) +64( l -e 2 ) 4 [(64*2-69*4)+(48-544s2+614s4)e2-8s4e4]+.... (52)

Multiplying the series (50), (51), and (52), we obtain the motion of perigee as:

€ = 4 ( l - e 2 ) 2 ( 1 2

Development of Fourier series for the right ascension and the generalized Kepler's equation
By now, the coordinates p and a are known functions of the true anomaly v and the orbital elements
a, e, and *. These coordinates were represented by the closed expressions (36) and (37), and the
relevant constants were given by the series (45), (47), (44), and (53). Our next task is to elaborate
the equations (18) and (19) to expedient formulas for the right ascension of the satellite and a gen-
eralized Kepler's equation, respectively. Since these equations contain elliptic integrals of the
second and third kind, we cannot hope to obtain concise expressions for them. In the spirit of
celestial mechanics, we propose to deduce Fourier series well adapted for numerical computations.
We would like to point out, however, that the role of these Fourier series is not the same as in the
customary constructions of satellite theories, where Fourier series are used from the very beginning

636-014—63 8
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to obtain successive approximations of different orders to the solution. The exact solution of Vinti's
dynamical system has already been denned by equations (36), (37), (18), and (19); our problem is
"only" to bring the latter two equations to an explicit form. This can be done by developing
"known" functions into multiple Fourier series.

To begin with, let us consider the first term in equation (18), which, taking into consideration
equation (37), and using the abbreviated notation

(54)
we can write

G Ca dw (55)C" dw
) Jo , 2 2{

2L i ;2V
/ • /• 1—g2Sn2/ W\l2)

where the integral is essentially of the standard form of the elliptic integral of the third kind, and
can be expressed by the Jacobian 0-function with (in our case) imaginary argument. It is in-
structive, however, to deduce directly the Fourier series of the integrand by the theory of residues,
and then to integrate it as follows.

The function 1/[1—s2sn2(2|Z2)] of the complex variable 2 is doubly periodic with periods 2L and
2iU, regular at all points of the fundamental period-parallelogram 0, 2L, 2L-\-2iL', 2iL', except at
two simple poles zx and 22, where the denominator becomes zero. A little consideration shows
that, for Z < s < l , these poles must be of the form Z\=L-\-iy, Za=L-\-2iLf—iy, with 0<y<27 .
Now let us determine the residues of the above function at these poles by seeking the first terms in
its Laurent series. Since the Taylor series of sn2s near zj(j=l, 2) begins with sn2(zi-\-8)= sn2z,
+ (2sn z, en z, dn z/)d-hO(S2) and 1—^sn2 Zj=0, we obtain {l—s2 sn2 (zj-\-8)}-1 =— {2s2sn zf cn z}

dn 2^}~15~1-f 0(1). But at the pole 21 the values of the Jacobian elliptic functions aresn z1^lfs, cn zy=
—i^l—s^js, dn 2i = •yjl — l2lsL; at 22, on the other hand, sn 22=l/s, cn Z2=—ijl—s2/s, dn z%=
—Vl — Pis*. Consequently, the residues of the function 1/[1—s2 sn2(2|Z2)] at the poles zt and 22 will be

and u ...9 u i9< 9J and, changing the argument from 2 to — w, those of the

integrand in expression (55) will be:
—irr/4:L , iir/4L ,„_.

k a n d /= , /= g f 5 - (56)VI— s \1—l/s

The coeflficients of the Fourier series

l - s 2 s n 2 ( ^ w | Z 2 )

are given by the expression

<hn cos 2nw (57)

1 f* exp (2inw) ,
=* /2T \dw'

f JO 1 9 9 / *'*-' 119 1

1—^snM—w\l2j

If we extend the path of integration over the entire period-parallelogram, then from the periodic
/2L \

properties of the elliptic function sn I — w\l2) and exp (2inw) it follows that

r fr fr+TiL'lL friL'/L /»0 fr

9 = + + + =(l-22n) -ra-fl^o*., . (58)
J J0 J •* Jr+riL'tL JriL'lL JO

where
g=exp ( -xL ' /Z) . (59)
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The only singularity of the function exp (2inw) being at infinity, the residues of the integrand are the
values (56) multiplied by exp (2inwi) and exp (2inw2) respectively. Here Wi and w2 are the points

corresponding to zx and 22, namelyKT (L-\-iy)=^-\-iT, and ^y (L-\-2iL/—iy)=^-\-iiry-—iY, where

F = x y y , so that using the definition (59), we see that exp (2m« 1 )=( -1)" exp (—2nT) and

exp (2inw2) = (—l)ng2n exp (2nY). Then, according to the theorem of residues we have

±-. <j>=- Res (Wl)+ Res (w2)^^—J^= (-1)" {exp (-2nY)-<?» exp (2nY)} .

Comparison of this result with relation (58) gives, for

a2 (~l)n

with

r=exp (—Y)=exp(—~y\ (61)

This procedure cannot be applied to the determination of the coefficient a0, because for n = 0
the divisor 1—q2n becomes zero. But substituting ?/>=0 in equation (57) we see that the constant
term in our Fourier series will be represented by the infinite series

c r o = l — 2 S % - (62)
n=l

A consideration of the merits of the method of residues leads to the following remarks. Besides
unquestionable elegance, the chief advantage of the method consists in giving an expression for all the
coefficients of the Fourier series. In a satellite theory, though, we represent these coefficients in
terms of the orbital elements as power series in the small parameter v2, and this is not easy if we base
this development on equations (60) and (61).4 For example, we had first to develop the quantity y,
then F and T=exp (— Y), the latter being approximately the tangent of half the inclination. Also,
some simple transformations of the expressions (60) and (62) should be made to show that their finite
parts (not containing v2) are identical with formulas for a Keplerian motion. In the case of the
p-integrals in equations (18) and (19) we had to handle even more complicated expressions. These
difficulties make it advisable to seek for a more elementary process that will yield the first coefficients
of the Fourier series in a rather immediate way. From the theoretical point of view, the arguments
v and w are the most natural ones: to the equations (36) and (37) there correspond Fourier series
whose arguments are multiples of the single arguments v and w, respectively; and equations (18)
and (19) give rise to the sum of two such series. In other words, none of these Fourier series contains
trigonometric terms with arguments of the form av+Pw; in particular, there are no long-periodic
terms whatsoever. The more elementary process we are going to follow now will make use of other
arguments, which are not linearly connected with each other but will permit us to deduce relatively
simple formulas well adapted for numerical computations.

Let us consider again expression (55), and introduce a new variable rf/f the so-called amplitude of
2L
— w by the definition•K

sn I — w \ I2 l=s in ^. (63)

* Note added on this appearance of paper. A consistent application of the method of residues seems now to me the preferable procedure.
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Simultaneously we will have

cn I —i/ ; | t )=cos y and an ( — w \ I J = Y 1 — t sin*^;

moreover,

dw=7rr

so that the expression (55) becomes

r(l+e)

As shown in the theory of elliptic functions,

where

g=exp ( _ ^ 7 Z ) = _ ^ l + _

or, with sufficient accuracy for our purposes,

^=w+-g (1 + 2") s in 2 + i

jr_ C* d+
2 i j o ( l -^sin^jVl-^sin2^ '

the inverse relation of which is

I2 / V\ 3 Z4

ID^}[/—~-— I 1 -|—— i s i n 2\p-\-j:— s i n 4np— . . . . (66)

The development of the integrand in expression (64) into a Fourier series turns out to be simpler,

Gif we include in it the constant factor . . 7rr • First of all, according to equation (34) we have

and from the second and fourth of equations (38) it follows that \—C"""
T(l+e)2L JfrZf

Q2• Q2 I g2
„ , J or what is essentially the same, A — A - = — J - (1— J2/*2)- Hence expression (64)
l2fr CPG2 s

can be brought to the form

c* yi—$2vi—p/s2<fy
Jo (1—s2 sin2 ^) VI — I2si

j £/s Z21 s2 sin2 \̂
Proceeding now to its development, we put 1 _ p s m 2 ^ , a B l ~ ^ 2 1 — p s m 2 ^ from which we obtain

V l—P/s2 __1 ^ 1—s2_sin2jA__l /I2 l - g 2 s i n 2 A 2

1— / 2 s i n 2 ^ 2« 2 1—Z 2 s in 2 ^ 8 \s21 - 1 2 sin2 ^ / * "
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so that the integral becomes

C* •\ll—s2-\l\—l2ls2dyp _ C* VI— s2d\p VI2 , I*

Q/4

1—s2sin2*+

The elementary integral on the right side is familiar to us from the theory of Keplerian motion:

C* /17*yya-tan-» (Vl=? tan*).Jo 1—s2sin2*

There is not much to say about the second integral in equation (19). Its value is needed only
up to 0{v2), which turns out to be:

r u s2 p 2f
2L i ; 2 ^ «2 «• c* s i n 2^

JH l+«Jo \«- / l+e2Zj0 Vl— J2si

To develop the second integral in equation (18), we define a new variable <f>, the amplitude of
2 K
— v by the equation

7T /2K \
sn I — v\kr )=sin 4», (69)

\ ir /

which is analogous to equation (63); the integral to be evaluated is then

d<t>
Jo P2+C*-2K)0

where

Again, we try to obtain a Fourier series in the argument 0 by developing first the integrand according
to powers of v2, which is the only reasonable method we can think of.

Anticipating the not surprising result, that the coefficient of a trigonometric term with
argument n<f> will contain en as a factor, we shall use here the notations

so that
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and

/i u • 2 l + | s i n ^ + . . .VI—Arsin2^ z

If, as always, we neglect terms of 0(v6), we have

.. .W|Y

which upon substitution of

and

(j\ =v{{l-\-U cos 4+6e2 cos2</>+4e3 cos3

becomes

cos 0

cos3 - ( ' » ' 1 + ^ e4 cos20+ .. A

Expressing the powers of the cosine by cosines of multiple angles, and integrating, we obtain

n ,C*
Jo

e sin *+§ [Q-S^-S^l)-^2] «2 sin

In order to deal with the first integral in equation (19), that is,

Jo 2K

we have to introduce some analogue of the eccentric anomaly in a Keplerian motion. I t seemed to
us that the following procedure is a quite natural one for this purpose.

The above integrand can be represented up to O(y*) as a linear combination of the functions
D~2, D~l, 1, D, D2 with constant coefficients, where the abbreviation £>=l+g#cos <f> stands for the
denominator of p. The integrals of the 1, D, and D2 terms (all representing "perturbations") can
immediately be expressed by <f>, sin <f> and sin 2<f>:

(*d<t>=<t>,
Jo

I Dd4>=<f>-{-e^ s i n tf>,
Jo

(73)
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Furthermore, if we define the eccentric anomaly E by

f r 7 8 ^ (74)

so that -j—=̂ —r > then we have
a0 l + e c o s £

Jo Kyi — el)

f*D-*dt=-JL. (75)
Jo yl—e%

As a consequence of this definition of the eccentric anomaly and equation (70) we can write

p=a(l—e cos E), (76)

which is the same expression as that for the radius vector r in a Keplerian motion.
Turning now to the execution of this development we put

il^ JZ^j (l-2sV]+ . . ., (77)
and

^ ^ sV]+ . . ., (78)

to give (1— ee*) + (e*—g)cos 0=(1—e^)(l—a2)+52I> and (1—4)Fsin2 0=— &2[(1—4)— 2D+Z?2].
Furthermore we have

5 2 )3 2 ( l - ^ ) -^ - 1 +5l ( l - e | ) - 2 (79)
and

yl—Psin20

+ ( l - ^ f e ( l - ^ ) Z> - | [ ( 1 - e * 2 ) - ^ - 2 ( 3 - e | ) ] D 2 - ^ ? (4Z^-Z?*)+ . . . . (80)

Multiplication of equations (79) and (80) yields the integrand in question in the required form:

—52)52+Ar2 ( l - 3 5 a ~ ^ ) ]

Now all we have to do is to apply the rules of integration (73) and (75); we obtain

- « 2 ) - | ( i - « * - x ) ] e sin ^
| | . . . . (81)
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Let us remark, in addition, that the above expansion features first the powers of the eccentricity
e* as a factor of the trigonometric terms. These were converted to powers of the eccentricity e by
using the relation g=e*(l—52). If we neglect quantities of O(v6), this transformation makes a
difference only in the coefficient of sin E.

The explicit form of the solution

For purely practical purposes, we have already solved the proposed problem, because equations (18),
(19), (36), (37), and the Fourier series (67), (68), (72), (81) of the integrals, together with the defini-
tions of the relevant constants, permit us to compute the position of the satellite for a given time.
This form of the results, however, is not completely satisfactory from the theoretical point of view,
until we express all the appearing constants explicitly as functions of the orbital elements. No diffi-
culties of principle are involved in carrying out this program, just a few multiplications of power
series, of which only terms up to 0(v*) are required. As a by-product, we shall have opportunity
to define and express the motion of the node and the mean motion of the satellite in an appropriate
way.

Let us rewrite equations (18) and (19) corresponding to the results reached in the previous
chapter, taking into consideration also the definition (32) of the constant T:

Jo (1—s2sin2#Vl-J2sin2^ A Jo(1—s2sin2#Vl-J2sin2^ A Jo (p
2+c

2) V l -

These formulas indicate that we still have to determine the expansions of the constants a2/A up

to OW), and d/A and ^ up to O(v2).

According to equations (28), (29), and (30) we have

A

and the first of equations (38) gives —2h=—^—r-

= V e2(l-4) ' (84)

I t was found convenient to define a t this point another semimajor axis and an auxiliary mean
motion by the Keplerian relations

and n=J%-: (85)
V a3- 2 A

also, we define a "mean anomaly" hj M=n(t—t). Instead of equation (84) we can then write
a2 1A a 1 / g Z i j ^ n e2\

71
 ~A==TTZ \ * a/-, —* \> or remembering the definitions (77) and (78) of the quantities k2 and 52,

we have

w ^ = 1 ^ 1 + ^ 2 . (86)

Preparing for the derivation of our final results we obtain the following developments immediately
from the definitions of the relevant quantities:

- • •.} (87)
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and

,-=!-; [(12-48s2+39s4)-(8-16s2+7s4)e2]- (88)

Let us come to the determination of the constant UjA. From the second and fourth of equations

(38) we have
-2ka2

= (1—S2)(S2P2/12—V2), which, combined with equation (84), gives

-j=Vl—s2^s2v2jl2—v2 -\/i 2+k2/e2. The development of this quantity can be obtained by use of

equations (44), (45), and (47) as

Finally, the third constant to consider becomes simply

TTIT /1A 7 2 \ ,,2

2(1—e2)2 '

(89)

(90)

How to express equations (82) and (83) in an explicit form is now obvious. In formulas (67),
(68), (72), and (81) we have to substitute the developments (44), (71), (47), (77), and (78) of the
figuring constants, and carry out the multiplication by the constants (89), (86), and (90). The
details of these elementary but somewhat lengthy operations will not be given here; rather we
confine ourselves to giving the results, which are:

£ A i / R

-J2=tan-1 (Vl -
l l - i

^

f 2 /i 2 4 / i o2

and

^(3+e2)}* sin}* si

sin *

(vS\-e2 y4Vl —
\ 4 ( l - c 2 ) 8(l x,2\3 [(6-7s2)-(2-3«2)e2] U 2 sinvs2sii )• (92)
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The connection between the arguments <f> and ^ is expressed according to equations (54) and
(66), and the analogous equations for the argument v, by the relation

-». (93)

It seems appropriate to comment on the developments in this paper with the same reminder
Dr. Brouwer used in the conclusion to his paper (1959): "Anyone who has ever carried out develop-
ments of the type presented here knows that extreme caution is necessary if errors are to be avoided,
even if the method used is straightforward."

All the necessary computations I performed at least twice, and in two different ways whenever
possible. Unfortunately, such a procedure in itself cannot guarantee that there is not a single
mistake in the formulas.

I make some further remarks concerning the derivation and form of the results. Certain
simplifications in the formulas suggest that by handling the constants in a more efficient way it should
be possible to arrive at a shorter derivation of expressions (91) and (92). (For instance, due to the
definition (85) of the quantity n, the coefficient of the eccentric anomaly E becomes 1. This is in
agreement with earlier, unpublished results of the present writer. Furthermore, the coefficient of
e sin E'\s simply —1/(1+#c), at least up to O(v*).) Admittedly, it would be more elegant to use the
linearly connected arguments v and w in the developments instead of <f> and rp.

A rather pleasant job has still to be done, namely, the determination of the motion of the node
and that of the anomalistic and draconitic mean motion of the satellite.

Since we have not yet mentioned the "plane" of the orbit, we have had no chance to define its
ascending node on the equator, whose mean rate of change should be obtained now. The idea of the
motion of the node comes originally from perturbation theories based on the concept of osculating
orbital elements. In a theory like this one, which uses a pure coordinate method, the motion of the
node can nevertheless be defined in a formal way.

Let us consider again the expressions (91) and (92), in which the fundamental arguments are <i>
and rp, the first being a " true anomaly" and the second an "argument of latitude." As known from
the theory of Keplerian motion, the following expansions hold true:

tan"1 (Vl-s 2 tan $ = i H S

where s=sin/ , r=tan - , and £"=0+2 ]£} tz^L s i n j<f>, where <?=(1 — VT r e i ) / e*=4±( l+ j+ . . A

This means that equations (91) and (92) could be written in the forms

(94)
and

=M, (95)

where 8, 6, 0, and 7 are constants of Oiy1), and the Latin capitals denote Fourier series in the indi-
cated arguments. We are not going to substitute series expansions for closed expressions in any
practical application, of course. All we are interested in is the possibility of these expansions, and
the fact that we can read off the coefficients of the secular terms immediately from equations (91)
and (92); we shall need them soon. Moreover, according to equation (93), the relation between the
arguments 0 and ^ is of the form

w, (96)
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where, as before, e is the motion of perigee given by equation (53), and the Fourier series G(4>) and
H(#) are of 0(*»).

When the argument ^ increases from 0 to 2x, i.e., the satellite makes a complete revolution with
respect to the equator, the right ascension a changes by 2v minus a quantity of Oiv2). This small
amount can be thought of as the regression of the node, yet it is in general not the same for consecu-
tive revolutions. But equations (94) and (96) imply that lim — ^——'-^- exists, its value

a

being ( l+5)+0/(l + e). We can call the small quantity V=^-\-TJT ^ e motion of the node. Com-
parison of equation (91) and (94) yields the values of the constants 8 and 0, and e is already known.
In this way we obtain for the motion of the node the formula

(97)

To determine the anomalistic and draconitic mean motion of the satellite we proceed as follows.
Ignoring their physical meaning in connection with the motion of a satellite, let us consider equations

A

(95) and (96) as relations between two pairs of variables, partly <f> and yj/, partly M and w. We are
interested in periodicity properties of the functions defined by these equations. First of all, it is

A A
clear that for any integers i and j the identities M(<f>-\-2iri, \l/-\-2irj)—M(<j>, ip)=2iri(l-\-8)-\-2irjy,
and cc(<f>+2iri, \f/-{-2ir})—«(</>, ^) = — 2Ti(l+€)-\-2Trj are valid. To simplify them, we shall per-

A

form the linear transformation M=(l-\-8)M-\-yN, w= — (l+e)M-\-N, the inverse of which is
A A

±i£—*vco {_ 1 ~\~ c )xVz ~\— 1 1 ~4~ 8 ) co
M=, . o\,/, • \ > N= ,. i o\_i_/ii \— The periodicity properties of the functions M(<f>, \f/)
and N(<f>, \j/) wHl be expressed by the identities M(<f>-\-2in, rl/+2irj)—M(<t>, ^)=2xi and
N(<t>-\-2iri, $+2Trj)—N(<l>, \f/)=2irj. Then a little consideration reveals that, if we assume the
existence of uniquely determined inverse functions </>(M, N) and #(M, N), their periodicity prop-
erties must be the same, that is,

/)-tf(M, N)=2iri

)-t(M, N)=2wj. (98)

As we see, the inversion problem of the basic equations (13), (14), and (15) has been changed to that
of the equations (92) and (93); in this altered form, however, the problem is almost trivial.

Now, equations (98) mean that the functions <A(M, N)—M, and ^(M, N)—N can be expressed
A

as Fourier series in the two arguments M and N. Consequently, if we again consider M, M and N
as linear functions of the time, and define the anomalistic and draconitic mean motion of the satellite

by the limits n , = lim y v " ^ VK*', n#= lim r v " ^ y w , then we have

(99)

and
n,. (100)

It is interesting to observe that up to Oiv3) the mean motion n^ depends only on the total energy
h of the system.
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Summary

The second-order solution of Vinti's dynamical problem is represented in the following form, well
adapted for numerical computations.

The radius vector and the sine of the declination are given by the formulas

r=aV(l—e cos E)2+v2(l-s2sin2t), sin S=
I . 2 1—

"V1"1"1' (1- ecosE)2

Actually, these expressions are exact, i.e., valid to any order of approximation. They can be
thought of as representing a transformation from the coordinates r and 5 to the angular variables
E and ^. Then the right ascension of the satellite and the generalized Kepler's equation are found
to be the Fourier series with secular terms, (91) and (92). The relation between the true anomaly <t> and
the argument of latitude f is expressed by equation (93), and equation (74) is the definition of the
eccentric anomaly E.

A A

The orbital elements a, e, s=sin/ , t, Q, and « serve as the fundamental constants of integra-
tion. Other important constants are:

a second eccentricity, e*;
the parameters P and I2 of the elliptic functions encountered in this theory;
the motion of the perigee, e;
the motion of the node, JJ;
the auxiliary mean motion of the satellite, h
the anomalistic and draconitic mean motions of the satellite, n^, and n^=( l + «)w .̂

These constants are given as functions of the orbital elements by the expansions (45), (47),
(44), (53), (97), (87), and (99).

No small divisors appear in this theory; neither c, which becomes 0 in the case of the critical
inclination 63°26', nor e, which is troublesome in some methods using orbital elements instead of
coordinates. The absence of « as a divisor reflects the fact that the solution of Vinti's dynamical
problem can be exactly represented by (rapidly) convergent trigonometric series. The absence of
e as a divisor lends itself to a discussion of the case of very small eccentricities.6 This problem and

A

the perturbations due to the potential V— V will be treated later in another paper.

Appendix

For the sake of completeness, I give here the expressions for the right ascension of the satellite and
the generalized Kepler equation, in case one prefers to use the arguments v and w=(l-\-e)v-\-a
instead of <$> and \f/:

e sin v

* After the completion of tbis paper, I found that a very Interesting Investigation Into the geometry of satellite orbits has appeared in several recent
papers by Strnbel, the latest of which (Strubel, 1960) seems to be the most complete. He paid special attention to the problem of very small eccen-
tricities, and to that of the critical inclination.
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and

V 8 i n 2v

{ v2-<Jl—e2

4(l-e») ~ sin16(l-e2)3 ^

This form of the
results is easily derived from equations (91) and (92) by substituting into these equations the
expansions

The differences between Q* and S2 and between M* and M are constants of O(v?).

s i n ^

sin 2<^=

s i n s i n

sin

sni 2^= 6 ) sin

If the inclination is near 90°, the right ascension does not seem to be a proper coordinate of the
satellite, because its finite part becomes a discontinuous function of w for s = l . To avoid this
unessential singularity, we could obtain another interesting and useful form of the results by intro-
ducing a slowly rotating reference plane, with constant inclination / , and right ascension of the
ascending node i2=





Effects of Solar-Radiation Pressure on the
Motion of an Artificial Satellite

By Yoshihide Kozai

The effects of solar-radiation pressure on
the motion of an artificial satellite have been
studied by several authors (Musen, 1960;
Parkinson, Jones, and Shapiro, 1960). As
they predicted, the orbit of Satellite 1960
i 1 (Echo I) has been greatly affected by the
solar-radiation pressure (Shapiro and Jones,
1960). And even for Satellite 1958 /82 (Van-
guard I), which is of moderate size, Musen,
Bryant, and Bailie (1960) found that the dis-
crepancy between the observed and computed
values of perigee height could be explained
by the solar-radiation effect.

When the author (Kozai, 1959a, 1961b) de-
rived several constants of the earth's gravita-
tional potential from the motion of artificial
satellites, he did not take this effect into con-
sideration. Although the effect is very small
for the average satellite, it must be considered
in the future in the reduction of observations.

In the present paper the author wants to
study this problem in order to reduce the
observations of satellites of moderate size.
The analytical expressions for the perturba-
tions of the first order are easily obtained;
however, the two limits of integration are
derived by numerical methods.

Disturbing functions

The equations of variations to be solved are the
following:

da 2na3 „ f

di na2 Tm*r r
-rr= . WF- cos L,dt ji—2 a

. . dQ,sm % -rr—dt

dw, =—cos i -jT+na2 - F \ —S(v) cos v

+T(v)(l+-\smv~\,

dt

where the conventional notations are used for
the orbital elements, L=v-\-u, p=a(l—e2);
n2a*FS(v), n2a?FT(v), and n2a*FW are three
components of the disturbing force due to the
solar-radiation pressure in the direction of the
radius vector of the satellite, in the direction
perpendicular to it in the orbital plane, and in
the normal to the orbital plane; and F is a
product of the area-mass ratio, solar-radiation
pressure, and a reciprocal of GM.

To derive the expressions of S(v), T(v), and
W, we make the following assumptions:

(1) The distance of the sun and the satellite is
infinite; that is, the parallax of the sun is negligible.

(2) The solar flux is constant along the orbit of the
satellite if there is no shadow.

(3) There is no re-radiation from the surface of the
earth.

Then the expressions are the following:

S(v) = — cos2 K cos2 K cos (X©—L— Q)

-sin21 sin21 cos (Xo+G-Z)
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—2 sin i sin £ {cos (X©—Z)

—cos (—X©—L)}

—sin2 - cos2 2 cos (Q—X©—Z)

o 6

—cos2 5 sin2 ^ cos (—X©—L— Q),

W=sin i cos2 -x sin (X©—12)

—sin i sin2 _ sin (X©+fi)

—cos i sin « sin X©, (2)

where X© is the longitude of the sun, and c is
the obliquity. The expression of T(v) is ob-
tained if cos in S(v) is replaced by sin except
for the trigonometrical terms with an argument
i, e, i/2, or e/2.

Solutions
There is a very important difference between
the solar-radiation force and the gravitational
force. The solar-radiation force is sometimes
a discontinuous function of time because when
the satellite enters the shadow, its motion is
free from this effect.

Suppose that the satellite exits from the
shadow at a point where the corresponding
eccentric anomaly of the satellite is Eu and
enters the shadow at E2. If the force is con-
tinuous, the integral of the short-periodic effect
can be neglected. However, for this case there
is a possibility that this effect will be cumula-
tive to a certain amount during a long interval
of time. Therefore, the short-periodic terms
must be kept in the solutions.

By use of the eccentric anomaly E as the
independent variable, the perturbations of the
first order after one revolution can be derived
in closed forms as follows:

5a=2a3F (S cos E+ TVl — e2 sin E)

+T (—2e sin

-e2 cos 2E

^ sin

5i=a2^ -pSL fl / (1+e2) sin E
•yl—e2L\ v.

—jsin 2E vcos «

+Vl — «2 (cos E—| cos 2S j sin w

£2_3
B, 2 e

s in •i5S2=a2
JF

- 4 sin 2£4
vsin a

— Vl-e2 ( cos E~ cos 2£;' J COS W

3w=—cos'iSQ

(e sin E+^ sin 2E\

—e2(e cosE

= - | r'-dM-JT
2 Jo a

—y/l — e2 cos

- | sin 2E) - T V ^

(3)

where the limits of integration are Ex and Ei
unless other values are written; S and T are
the expressions of S(v) and T(v), in which L is
replaced by w; that is,

S=S(0),

T=T(0). (4)

If the satellite does not enter the shadow
during one revolution, the terms depending
explicitly on E vanish, and in particular, 5a
vanishes.
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In the expressions of So? and 612, indirect
effects of the solar-radiation pressure through
w and J2 must be considered as follows:

(5)

Shadow equation
If the geocentric angular distance between the
sun and the satellite is denoted by a, the
shadow boundary is expressed by the equation,

d8o
~dt =

i8Sl_
dt ~

do
de

dil
de

i da ..
'+TiSl

. dh..
+dih

, do
+ da

,dQ
+ da

r sin a=a®, (6)

where a© is the radius of the earth and is as-
sumed to be constant. The following relations
hold among r/a, E, S, T and a:

- cos a=—&(cos

-=l—e cos E.a

— T-y/l — e2 sin E,

(7)

If o, Q, and Xo are assumed to be constant
during one revolution of the satellite, S, T and e
can also be regarded as constant; then E can
be derived from equation (6).

However, as the equation is of the fourth
degree with respect to sin E or cos E, it is very
difficult to get general analytical solutions
except for a circular orbit. If the orbit is
circular, the terms of odd powers of sin E or cos
E disappear, and the equation becomes quad-
ratic for cos2 E or sin2 E. And it is almost
impossible to expand the solutions into power
series of the eccentricity because of slow con-
vergency. Even if the series is convergent,
it is possible that the equation has no real
root even though the equation has two real
roots for the circular orbit, and vice versa.

Therefore, the author thinks that equation (7)
must be solved numerically for every revolution.
There are four roots; however, under a condition
that cos a must be negative, the number reduces
to two, at most. If there is no real root, the
satellite does not enter the shadow. And if
there is only one real root, the satellite touches
the shadow at one point.

Numerical examples
The author has devised a program to calculate
these effects on the IBM-704 computer. This
program computes the inequalities of the orbital
elements due to the solar-radiation pressure,
if the approximate expressions of the orbital
elements are known.

As an example, inequalities of the orbital
elements for Satellite 1958 /3 2 during the
period 36526-36615 (Modified Julian Days)
are plotted in figure 1. This computation is
based on an estimated acceleration of 9.7X10"8

cm/sec2 (Musen, Bryant, and Bailie, 1960).
The semimajor axis is expressed in earth equa-
torial radii, and the mean anomaly is in revolu-
tions. The author (Kozai, 1961b) earlier used
the same observations to derive geodetic
constants; the effect of the solar-radiation
pressure was partly taken into account in
that reduction.

The perturbations for Satellite 1960 tl have
been roughly computed by this program, and
have been checked with observed values.
As the eccentricity is small (order of 10~2), the
change of the argument of perigee is very rapid
due to the solar radiation. For this case it is

36525 550 575 600 SO
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FIGURE 1.—Inequalities of the orbital elements due to the
solar-radiation pressure for Satellite 1958 02.
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FIGURE 2.—Variations of {' and »j for Satellite 1960 tl with
observed values represented by dots. Epochs are given
in 37100 (MJD).

better to use, instead of e and a, $=e sin «,
17=6 COS co.

The following expressions are derived under
an assumption that the satellite never enters
the shadow, and they are compared with ob-
servations in figure 2:

£=£'+0.00066,

€'=0.04409 sin (91?99+2?965J)

+ 0.03579 sin (AQ—Q) + 0.00188 sin (Xo+fi)

—0.00519 sin Xo,

77=0.04409 cos (91?99+2?9650

+ 0.03373 cos (Ao—fi)—0.00200 cos (Xo+8)

—0.00169 cos Xo, (8)

where 0.00066 in £ appears because of the odd
harmonic of the earth's potential; 0.04409 is the
so-called proper eccentricity; and other terms
are due to the solar-radiation pressure. The
time t is measured from 37171.0 (MJD) in days.
The proper eccentricity and the phase angle
91?99 are determined from observations by the
method of least squares. The acceleration is
also determined to be (4.470 ± 0.024) X10~3.

Although the satellite entered the shadow
after 37171 (MJD), the above expressions can
follow the actual variations quite well.



The Effect of Radiation Pressure on the Secular
Acceleration of Satellites

By Stanley P. Wyatt

The secular perturbations of a satellite orbit arising from solar-radiation pressure have been
discussed recently (Musen, 1960; Musen, Bryant, and Bailie, 1960; Parkinson, Jones, and Shapiro,
1960). In particular, the variations of 1 or 2 km in the perigee height of Satellite 1958 /32 (Vanguard
I) predicted by Musen and his collaborators, when combined with the gravitational effects of the
sun and moon, agree very well with the observed changes during the first two years in orbit. Very
recently, much larger variations of eccentricity and perigee height of Satellite 1960 il (Echo I)
during its early life have been observed and found to be in excellent accord with theory (Jastrow
and Bryant, 1960; Shapiro and Jones, 1960).

The problem to be considered here concerns the short-term secular variations in period to be
expected from solar-radiation pressure. The secular acceleration of a satellite as a function of the
time can often be derived from observation with considerable accuracy. As is well known, these
accelerations, AP/P, may then be employed to deduce values of P,T/H{, where pq and Ht are the
density and scale height of the atmosphere at the locations of perigee. The question naturally
arises how high in the atmosphere it is legitimate to deduce these parameters from the observed
period changes. Are there other perturbing forces, in addition to atmospheric drag, that will produce
finite values of AP/P? If so, how can their effects be eliminated in order to avoid erroneous con-
clusions about the structure of the thermosphere? In what follows it will be shown that the effect
of solar radiation on the week-to-week variation in period is negligible when a satellite is continually
in sunshine. Later, however, because of the motion of sun, node, and perigee, the satellite must
spend some of its time passing through the earth's shadow; the secular acceleration due to the force
of sunlight may then exceed that due to atmospheric drag at heights above 800 km or so.

The perturbing acceleration due to radiation pressure
A satellite of average physical cross-section A and mass m at distance r o = 1 a.u. from the sun inter-
cepts energy at the rate LQA/4:irT%, where Lo is the total power output of the sun. Hence the
momentum gained per unit time, or repulsive force, is of amount LQAJA.TCT3®, where c is the velocity
of light. If the incident energy is reflected specularly or is absorbed and re-emitted isotropically,
virtually no net momentum is carried away. We therefore assume that the radial acceleration
has a magnitude

f=(A/m)LQ/4ircri
e. (1)

We also assume for simplicity that during the few hours a satellite spends revolving once around the
earth the vector f is a constant relative to the satellite's orbit. We thus ignore a variety of small
effects: (1) possible variations of the solar constant; (2) the minuscule change in the solar distance;
(3) the slight motion of the sun in right ascension and declination; (4) the motion of the satellite's
node; (5) the motion of the satellite's perigee; and (6) the Poynting-Robertson drag. The magnitude
of f is probably constant to good accuracy. The change in direction of f, through items (3), (4),
and (5), amounts at most to a few tenths of a degree during one typical orbital period. Item (6)
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modifies the direction of f by less than one minute of arc. The influence of all these factors on the
secular acceleration of a satellite is ordinarily much smaller than that due to the earth's shadow*
and we shall not consider them here.

A more important effect appears to be re-radiation of sunlight from the earth. When the sun
is overhead, a satellite at a typical height experiences an upward push due to the reflected component
of sunlight amounting to at least 20 percent of the downward push of direct sunlight. When the
sun is at larger zenith distances, the effect is less important, but is complicated by the fact that the
repulsive force is no longer quite radial from the center of the earth. Over the entire earth the
magnitude of the mean outward acceleration due both to the reflected sunlight and to the infrared
radiation by the surface and atmosphere is less than 20 percent of that due to direct sunlight for
satellites with perigee heights greater than 800 km. Although it is desirable that the influence
of terrestrial re-radiation be calculated, we shall not attempt to do so in this study.

The secular acceleration of a satellite
The instantaneous time rate of change of semimajor axis of an earth satellite is given (e.g., Moulton,
1914; Smart, 1953) by

da Pe sin 0 „ . P(l-\-e cos 6)
dt

where P is the orbital period, e the eccentricity, 6 the true anomaly, R the component of f directed
radially away from the center of the earth, and S the component in the satellite's orbit plane a t right
angles to the radius vector and making an angle less than 90° with the velocity vector of the satellite.
To change this expression to the ra te of change of period with true anomaly, we make use of the law
of areas, the polar equation of the orbit, and the derivative of Kepler's third law. Substitution gives

dP
de~-

dPdadt_
'da dt dd~

3Pa2(l-e2)
6M9

Re sin 6+S(l-\-e cos 0)
(l+ecos0)2 •} (3)

The components of the disturbing acceleration may be deduced from figures 1 and 2. The a^-plane
coincides with the orbit plane of the satellite, Q is the direction of perigee, and P the instantaneous
position of the satellite. The direction of the sun is S, inclined by an angle i'=ZS from the orbit
normal. The direction J defines the direction^of the z-axis and is the intersection of the orbit plane

fsini'

FIGURE 1.—The celestial sphere, showing the direction of the
orbit normal Z, of the sun S, of perigee Q, and of the in-
stantaneous satellite position P. The direction of the
radiation vector is from S toward the origin.

FIGURE 2.—The satellite's orbit plane, with symbols as in
figure 1. The component of the perturbing acceleration
due to solar-radiation pressure is / sin i' and is directed
toward the negative x-axis.
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and a perpendicular plane which contains the sun. The instantaneous true anomaly of the satellite is
6=QP; we define the angle 0=JQ. Figure 2 shows that the total magnitude of the perturbing
acceleration in the orbit plane is j sin i'; the radial and transverse components are therefore

R= —/sin i' cos (0+0),

S= + / sin %' sin (0+0). (4)

Substituting equations (4) in equation (3) and integrating around the orbit, we find that the secular
acceleration of an earth satellite due to the pressure of sunlight is

AP_2 f2T dP ,fl_3a2(l—e2)/ sin i' CW
P~PJo ddm~ GM® Jo.*,

[cos 0 sin 0+sin 0(e+cos 0)]
ecos0)2

Again, it should be stressed that the assumptions implicit in this formulation are that f has a constant
magnitude as the orbit is described and also that the angles i' and 0 are constant during this interval.
The limits of integration on the right side of equation (5) account for the fact that in the general case
a satellite will enter the earth's shadow when the true anomaly is Oi and emerge when it is 02. During
this time, of course, the perturbing acceleration vanishes. The first term in the integrand is
readily evaluated, while the second term is found on substituting the well-known relation tan (6/2)
= (l+e)1/2(l —e)~m tan (E/2), where E is the eccentric anomaly. The value of the integral is

e"1 cos /3+sin 0 sin 0
1+e cos 0

«"2* e"1 cos /3+sin 0 sin 0 |9>

0,0, 1 + e cos 0 U
cos 0 . cos ( 0 + 0 ) 1

e 1 + e cos 0J
* = c o s j 0 + 0 )

1+e cos 0
(6)

When equations (1) and (6) are substituted in equation (5), the expression for the secular acceleration
of a satellite due to solar-radiation pressure becomes

APjZ(A/m)Lea
2(l—e2) sin %' [~cos (0+0)11 * . .

P 4vcr'oGMe Ll+ecos0_|L' (J)

It is convenient for numerical purposes to describe the physical characteristics of the satellite itself by
a dimensionless quantity D, such that (A/m)=D, cm2/gm, and also to express the ratio of perigee
distance to the earth's equatorial radius by another dimensionless quantity K such that
qJR@=a(l—e)/R®=K^l. Then equation (7) simplifies to

AP=3D,LoR'eK
2(l+e) sin i' [~cos (0+0)"]

P~ 47Tcra
o6

rM©(l-e) Ll+«cos0j

—e) sin (8)

The earth's shadow
To evaluate the bracket in equation (8) we must know the values of the true anomaly, 0\ and
0a, a t which the satellite enters and leaves the ear th 's shadow. To keep the problem tractable we
assume, without appreciable error, t h a t the shadow is a circular cylinder of radius R@, with axis of
course in the anti-sun direction. The intersection of this cylinder with the orbit plane is a semi-
ellipse, as shown in figure 3. I t s equation in the coordinate system already defined is

z2 cos2 i'+if=R%, x£0. (9)
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Q
FIGURE 3.—The general geometrical relation of a satellite's

orbit and the semi-ellipse of the earth's cylindrical shadow
projected onto the orbit plane.

Transforming to polar coordinates and equating to the expression for the satellite's orbit, we find the
values of di and 02 are the two solutions of

(10)1—sin2 i' cos2 (0+0) (1+e cos 0)2'

If there are no solutions in the second and third quadrants, the satellite is in sunshine all around the
orbit; if there is one solution, 0i=02, the satellite touches the shadow at only one place and spends
none of its time in darkness. As before, we may substitute q/R®=K^ 1; then 6\ and 02 are the two
solutions of

(1+e cos 6)2=K?{\+e)2[\—sm2 i' cos2 (fl+B)), (ii)

The specific values of 0X and 02 for a given high satellite can be found by computing i' and /3 for
every few days and solving equation (11) by graphical or other approximate methods. The angle %',
between the orbit normal and the sun, is given by

cos i'=cos i sin 5©+sin % cos 8© sin (ay—a©), (12)

where i is the inclination of the orbit plane to the equator, a© and 5© are the right ascension and
declination of the sun, and ay is the right ascension of the ascending node. The angle /3 can be
found from

cos 0 sin i '=sin 5© sin fig+cos 5© cos SQ cos (OQ—a©), (13)

where OQ and 8Q are the right ascension and declination of perigee. When the angles of entry and
exit, 0i and 0j, have been found for various epochs they may then be used in equation (8) to compute
predicted secular accelerations as a function of the time.

When we abandon consideration of a specific satellite and ask for a general solution of equation
(11) to be substituted in equation (8) for AP/P, the problem is formidably complex because the angles
of entry and exit depend on four arbitary parameters. Let us therefore first consider some specific
applications that will perhaps elucidate the effect of radiation pressure on the period changes of a
high satellite and then proceed to develop a quasi-general solution as a power series in the eccentricity.
(For objections to this procedure, see Kozai, 1961a, especially page 30.)

Special cases of orbital orientation and shape
(a) Orbit normal pointing toward the sun.—Here i'=0° and therefore the right side of equation (8)
is zero. Physically, no satellite can spend a finite fraction of its time in the earth's shadow, even if
K=l.

(b) Satellite in sunshine all around the orbit.—If i' is sufficiently small, the satellite will see the
sun above the earth's horizon continually, as was the case with Echo I (1960 tl) during its first two
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weeks aloft in August, 1960. Under such conditions, even if %' is not zero, AP/P=0. Mathematically,
the left side of equation (6) is to be evaluated from 0 to 2x, and the result is zero. Regarded physi-
cally, the perturbing effects cancel on opposite sides of the orbit. The null result here is like that of
the solar gravitational perturbation of a satellite, where there is never a "shadow" in which to hide:
the secular acceleration is zero when f is regarded as a constant vector relative to the satellite orbit.

(c) The circular orbit, i' arbitrary.—To find the period change of a satellite in a circular orbit
and spending time in the earth's shadow, set e=0 in equation (8) and note that, by symmetry,
O3+02)=27r— (/9+0i). Evaluating the bracket, we see that AP/P=0. Because of the symmetry
the momentum loss while the satellite is moving toward the solar hemisphere is just balanced by
the momentum gain when it is moving toward the opposite hemisphere.

(d) The angle /3=0° or 180°, i' arbitrary.—By symmetry, 02=2TI—0X. The bracket in equation
(8) is therefore zero and hence AP/P=0 for this case also, the interpretation being similar to that of
case (c).

(e) The asymmetric case with i'=90°, &=90° or 270°.—It may be thought from all the foregoing
that radiation pressure has no effect at all on satellite accelerations. The present example is intended
to show otherwise. It is also one that can be evaluated without great difficulty. When /3=90°
the solution of equation (11) gives cos 6i=[K(l-\-e)—e]~1 and cos 02= — [K(1 -\-e) +e\~l. Substitution
in equation (8) shows that for i'=90°, /S=90°, the secular acceleration is

AP ,e),

U(K, «)= (14)

the period decreasing with the time. If j8=270° the effect is equal and opposite, the period increasing
secularly. Although I have not tried to prove it, this special example probably reveals about the
maximum secular acceleration to be expected from radiation pressure. For one thing, with i'=90°
the full force of sunlight is in the orbit plane; for another, with /3=90° or 270° the effects of asym-
metry are large. Table 1 presents numerical values of U(K, e) for several relevant values of the
eccentricity e, and the perigee distance K=qJR®.

TABLE 1.—Values of U(K, e) for use with equations (14)

K

1.00
1.05
1.10
1.15
1.20
1.30
1.40
1.50

e=0. 00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.01

0.20
0.06
0.05
0.05
0.04
0.04
0.04
0.04

0.02

0. 29
0. 12
0.10
0.09
0.09
0.08
0.08
0.08

0. 05

0.48
0.27
0.23
0.22
0.21
0.20
0.20
0.20

0. 10

0.74
0.49
0.45
0.42
0.41
0.41
0.41
0.42

0.15

0.98
0.71
0.66
0.63
0.62
0.62
0.63
0.65

0.20

1.22
0.93
0.88
0.86
0.85
0.86
0.88
0.91

0.30

1.78
1.45
1.39
1.37
1.37
1.40
1.45
1.51

0.40

2.49
2.10
2.04
2.04
2.05
2. 11
2. 19
2.29

0.50

3.46
2.99
2.94
2.94
2.98
3.09
3.22
3.38

Inspection of the table reveals several points. First, the secular acceleration is zero for circular
orbits of all sizes, as expected. Second, for any fixed value of the perigee distance, U(K,e) increases
monotonically with e, because of the increasing asymmetry of the passage through the earth's
shadow. Third, for any fixed value of the eccentricity, U(K,e) has a relative maximum for the
smallest possible orbit (K=l), falls to an absolute minimum at some intermediate value of K, and
then rises once again. Interpreted physically, for a fixed e there is maximum asymmetry for K=l,
while there is none at all as K—>» and the earth's shadowing effect becomes infinitesimal. With
increasing K, however, the decrease in asymmetry is compensated and then overtaken by the



118 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

y

FIGURE 4.—The construction for a nearly circular orbit. The
semi-ellipse of the projected shadow is shown, as are also
the orbit and its inscribed circle of radius equal to the
perigee distance. Notation as in case (f).

decreasing gravitational control of the earth on the satellite. When U{K, e) is differentiated partially
with respect to K, it is found that the absolute minimum occurs at a perigee of

(15)

For any eccentricity in the range 0.0 ̂  e ^ 0.5 the minimum value of U(K, e) may be found by adopting
the smallest value in any given column of table 1, because the absolute minima for all these eccen-
tricities occur within the range of K that is tabulated. Thus, for this particular orientation and
independently of K, the magnitude of AP/P ranges from zero for a circular orbit to at least 0.5 X 10~7

Dt at «=0.10, at least 1.1X1O~7.D, at 6=0.20, and at least 4.1X10"7 Ds at 6=0.50.
(f) The orbit of low eccentricity.—A quasi-general solution for the secular acceleration may be

developed as a power series in e. In equations (8) and (11) make the substitution <£=/3+0, where r
and <f> are polar coordinates in the orbit plane as defined by the coordinate system of figure 2, such
that x=r cos </», y=r sin <f>. Next circumscribe a circle of radius q around the center of the earth,
as shown in figure 4. In the figure, ZJCA=<f>i&nd ZJCB=<j}2. Define <£i = <£oi+'Mi, #2=002+^2, where
Ui and U2 are small quantities if the eccentricity is small and zero for a circular orbit. As can be seen
from figure 4, <£Oi = ZJCAQ and must lie in the second quadrant, while 0oo= ZJCB0 and must lie in
the third quadrant. The solution of equation (11) with e=0 gives

COS $01=COS 002=—
K sin i'

s i n < f c n = — s i n </>02=-
Ksini'

(16)

Now set iMi=a16+o2e
2+ . . ., <u2=61€+62e

2+ • • •> substitute each in equation (11), and then equate
coefficients of like powers of e in order to obtain expressions for au a2, . . ., bu b2, . . . . Then
return to equation (8) for the secular acceleration and expand it similarly as a power series in e,
a series which will of course contain at, a?, . . ., bu b2, . . . . Substitution of the explicit expres-
sions for these coefficients, already found above, then gives the secular acceleration as a power series
in e to any degree of accuracy. Unfortunately, of course, the greater the desirable degree of accuracy,
the greater is the undesirable degree of complexity in working out the coefficients. I find the quasi-
general solution, as far as order e2, to be

^-=-I.4OXIO-7Z>,FCK:, 6,/M'),

(17)

where n and v are given by equations (16).
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This expression has both merits and demerits. I t vanishes, as it should, for a circular orbit.
For a finite eccentricity it is zero for /3=0° or 180°, as expected from case (c). Also, if we set i '=90°
and 0=90° in equation (17), it is found to agree with the exact equation (14) when the latter is
expanded to the second order in e. The acceleration predicted by each formula for this special
situation is

0 772a

(.18/^=-1 .40X10-

Although equation (17) is consistent with some of the foregoing special cases, it arouses suspicion
on at least two grounds. First, consider a time when n=0 and therefore by equation (16) 0oi=<£o2
= 180°. The final term in equation (17) suggests an infinite secular acceleration under these condi-
tions. Actually, this particular situation occurs when the circumscribed circle of figure 4 touches
the projected shadow at one and only one point—on the anti-sun axis. It is readily seen, therefore,
that no satellite traveling on any orbit whose inscribed circle is such that /x=0 can spend a finite
fraction of its period in darkness. The difficulty here is a mathematical one rather than a physical
one, and as has already been pointed out AP/P=Q on all occasions when equation (11) has less than
two solutions. A second, and legitimate, suspicion is aroused when # = 1 in equation (17). It is
not enough to dismiss this problem with the comment that any satellite with K— 1 is itself in grave
trouble; we deal with this problem as case (h).

(g) The orbit of low eccentricity, i'~90°.—Specializing equations (16) and (17) for those times
when the radiation force lies fully in the orbit plane, we find that

F(#,g,/3,9O°)=eF(#,/S)

, 2#2 sin 0

f K2—2 . COS &^K2—1\ .

(19)

Table 2 gives values of V(K, /3) for several combinations of # and 0 and may be used to estimate
quickly the leading term of equation (19). The absolute value of the second term is less than 20
percent of the leading term for all values of /S at # = 1 . 0 5 if e<0.022; at #=1 .10 if e<0.048; at
#=1 .15 if e<0.077; at #=1 .20 if e<0.109; at #=1 .30 if e<0.184; at #=1 .40 if e<0.270; and at
#=1 .50 if e<0.211. The minimum absolute contribution of the second term occurs in the neigh-
borhood of # = -y/2 and then rises again with increasing perigee distance until for very large orbits 20
percent contribution occurs at e=0.100. The sign of the second term is usually negative for # < y f 2
and is negative for all values of /? provided #<1.27 .

From this specific example it appears likely that equations (16) and (17) constitute an adequate
approximation to the practical estimate of secular accelerations due to radiation pressure, at least
for a fair variety of orbits. First, as will be shown in the next section, the effect of sunlight on

TABLE 2

K

1.05
1. 10
1. 15
1.20
1.30
1.40
1.50

— Values of V(K, ,fl) for use with equations (19)

0 = 0°

0.00
0.00
0.00
0.00
0.00
0.00
0.00

15°

1.78
1.37
1. 21
1. 12
1.05
1.04
1.04

30°

3.44
2.64
2.33
2. 17
2.03
2.00
2.01

45°

4. 87
3.73
3. 29
3.07
2.88
2.83
2. 85

60°

5.96
4.57
4.03
3.76
3.52
3.46
3.49

75°

6.65
5. 10
4.50
4. 19
3.93
3.86
3.89

90°

6.89
5. 28
4.66
4.34
4.07
4.00
4.02

636-014—6
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AP/P is swamped by the effect of drag if .K<O.12 approximately, and it is therefore unnecessary
in practice to be concerned about the nature of the solution when K is very close to unity. Second,
whenever 10*1-12 the contribution of the second term of equation (17) is moderately small if e
is not too large. Presumably the higher-order terms converge rapidly. Although an extension
of the power series beyond 0(e2) would be useful for more eccentric orbits, it has not been attempted
in the present work.

(h) The nearly circular orbit, i'=90°, K=l.—When perigee is at or very near the earth's sur-
face, the approximation leading to equation (17) breaks down. Geometrically, when K=l, we
have <£oi=9O° and #02=270°, and even when the eccentricity is small the angles U\ and tt2 are of
rather good size, and therefore terms beyond 0(e2) are needed to obtain an adequate approxima-
tion. Alternatively, it is straightforward enough in the present special case to solve equation (11)
and substitute the results in equation (8) as a power series in e. The appropriate formula, to order
3/2 in e, turns out to be

(20)

This expression vanishes for e=0 and also for 0=0° or 180°, as we are entitled to expect from pre-
vious illustrations. Table 3 contains W(e, /S) for a few selected pairs of e and /S. The approximate
equation (20) with 0=90° is identical with the exact equation (14) when K=\ and the function
U is expanded to order 3/2 in e. When 0=90°, equation (20) is good to 1 percent if e<0.08, and
to 10 percent if e<0.28.

The competition of radiation pressure and atmospheric drag

It is well known that the instantaneous tangential acceleration of a satellite moving through a
stationary atmosphere is given by

T=-(A/m)(CD/2W, (21)

where CD is the dimensionless drag coefficient, p is the atmospheric density at the point in question,
and v the speed of the satellite there. When the magnitude of this perturbing acceleration is com-
pared with that due to solar-radiation pressure as given by equation (1), the ratio of the two is

(22)

a quantity that is independent of the characteristics of the satellite itself. Setting C D = 2 , P

=f/X10~18 gm/cm3, adopting for v the circular velocity at 800 km, and inserting the other constants,
we have

R^l.2J. (23)

TABLE 3.—Values of W(e, 0)

e

0.00
0.01
0.02
0.03
0.04
0.05

0=0°

.000

.000

.000

.000

.000

.000

15°

.000

.037

.054

.067

.078

.089

30°

.000

.074

.107

.133

.155

.176

for use with equations (20)

45°

.000

.110

. 158

.196

.229

.260

60°

.000

.144

.206

.256

.300

.340

75°

.000

.175

.251

.312

.365

.414

90°

.000

.203

.291

.362

.424

.481
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Thus, outside the earth's shadow the two forces are of equal magnitude at a height near 800 km for a
mean state of the atmosphere (Nicolet, 1960c). When the sun is active and when it is close to midday
at the perigee of a satellite, the high atmosphere is distended and the level of equal magnitudes is
above 800 km.

In equation (23), J decreases more or less exponentially with height. Therefore, atmospheric
drag is all-important for low satellites and less so for high ones. For example, Vanguard I (1958 02),
with D,=0.21, should by equation (14) and table 1 show a maximum secular acceleration due to
radiation pressure of ±0.25 X10~7. Referring to equation (8), the quantity sin i' passes through a
maximum on the average every 45 days, which is the time taken on the average for (aN—ao) to
regress through 180°; the semi-amplitude of this fluctuation is about 0.1X10"7. A second periodic
variation is that of the angle 0, which passes through a complete cycle every 2.4 years. This interval
is the length of the "day" at perigee, the average time taken for (<XQ—ao) to advance by 360°. The
semi-amplitude of this long-run variation is about 0.25 XI 0~7. When the anticipated effect of radia-
tion pressure is compared with the observed accelerations of Vanguard I (Jacchia, 1959d; Briggs,
1959), it appears that the period changes can confidently be attributed to drag. The effect of
radiation pressure is small, and about equal to the precision with which the accelerations can be
determined; it is less than the effect of drag by a factor ranging from about 5 when perigee occurs at
night to about 50 when it occurs nearly under the sun. Thus for satellites as low as Vanguard I
radiation effects are to be found by analyzing such elements as perigee height (Musen, Bryant, and
Bailie, 1960; Musen, 1960) rather than orbital period. The latter may be employed to deduce the
structure of the thennosphere.

At greater heights the situation is more delicate. During its first two weeks aloft, Echo I (1960
il) had a perigee height near 1500 km, several scale heights above the reference level of 800 km. For
example, if the scale height in this layer averages about 110 km, corresponding to T=2000° K and
a composition of atomic oxygen, equation (23) then gives i?<1.2e~'<0.01, so that the relative
magnitude of the drag force is small.

Echo I of course spends some of its time in sunshine all around the orbit. As shown in case
(b) of the previous section, the effect of radiation pressure on period changes is then zero within
the framework of our assumptions. On such occasions the characteristics of the thennosphere
can be studied without accounting for the comph"cations of solar radiation. There is, however,
the limitation that at these times i'^0° and we are therefore confined to examining the twilight
zone of the high atmosphere. If the diurnal sunward bulge persists at these great heights, its
properties can only be deduced when Echo I has the sun near its zenith in part of its orbit and
thus is in darkness hah* a period later.

When a very high satellite periodically transits the earth's shadow, radiation pressure then
has the upper hand. The preliminary mean value of AP/P for Echo I during the first twelve
weeks of passage through the umbra was near —4XlO~*. The sign accords with expectation be-
cause the angle fi was in the first and second quadrants during this interval, and the amount is
roughly consistent with prediction. The open circles of figure 5 give weekly predicted accelera-
tions and the filled circles the observed accelerations. The first seven observed points are weekly
means of the day-to-day values computed under the direction of P. E. Zadunaisky; the last five
observed points are relatively rough graphical accelerations by the author and are preliminary
only. In order to obtain the best vertical fit of predicted and observed points we must adopt
Dt^270 in equation (17), whereas a diameter of 100 feet and a mass of 60 kilograms gives D,^120.
Apart from this, the two curves are in reasonable agreement.

The factor of 2 or 3 by which the observed period changes exceed the predicted ones could
arise from several effects. First, an error in the announced value of D, could either aggravate
or reduce the discrepancy. Second, Echo I during this time may have been passing more or less
centrally through a diurnal atmospheric bulge, which would reduce the discrepancy. A third
possibility is nonspecular reflection from the balloon surface; complete back reflection will dou-
ble the magnitude of the perturbing acceleration of equation (1), whereas isotropic reflection by
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FIGURE 5.—Comparison of observation and theory. The
filled circles are preliminary observed secular accelerations
of Echo I during its first three months of transiting the
earth's shadow; open circles are the predicted values due to
solar radiation pressure.
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each surface element into its outward hemisphere will increase equation (1) by a factor of 4/3.
One definite reason why the observed negative accelerations during these three months should be
greater than the predicted values is the effect of terrestrial re-radiation. Reflected sunlight was
acting during these weeks to amplify the negative secular acceleration. In addition, if the infra-
red radiation from the surface and atmosphere is nonisotropic in the sense of being stronger on the
daylit hemisphere, this component was also acting during September and October of 1960 in the
same fashion. We can, of course, unscramble some of these effects more easily when Echo I has
been aloft for a longer time. Perhaps it is not too much to hope that the radiation effects can
be assessed well enough so that residuals may then permit deductions on the structure of the highest
atmosphere even when Echo I is encountering the earth's shadow.

Remarks and conclusions
Studies of the atmosphere above about 800 km are made difficult because extraneous effects

rival that of drag on the period changes of satellites. The competing effect of solar-radiation
pressure can be evaluated and eliminated by the use of equations (16) and (17), provided the
orbital eccentricity is not too large, that Dt is well known, and that it is possible to estimate a
factor by which the satellite deviates from a specular reflector. The effect of terrestrial re-radia-
tion has not been taken into account quantitatively in this study, although its role relative to
direct solar pressure may be appreciable. Two further investigations are therefore suggested:
(a) extension of the power series of equation (17) for more accurate assessment of the effect of
direct solar-radiation pressure; and (b) calculations on the influence of re-radiation from the earth
on the orbit of a satellite.

I am grateful to Dr. F. L. Whipple, Director, for the opportunity to work at the Smithsonian
Astrophysical Observatory during the summer of 1960, when this study was first conceived; to
Dr. L. G. Jacchia of Smithsonian, whose comments helped get the study started; to Mr. P. E.
Zadunaisky of Smithsonian, whose acceleration data helped complete it; and to Dr. P. Musen of
the National Aeronautics and Space Administration and Drs. H. M. Jones and I. I. Shapiro of
Massachusetts Institute of Technology, Lincoln Laboratory, for furnishing me information on the
work being done at these institutions on radiation pressure effects.

Abstract
Satellite accelerations play a crucial role in determining the structure of the high atmosphere, and it is therefore

important to assess and eliminate the effect of perturbing forces that compete with air drag and that may therefore
confuse our picture of the thermosphere. In particular, this study evaluates the effect of solar-radiation pressure
on the secular acceleration of earth satellites. For perigee heights less than about 800 km the period changes due to
radiation pressure are minor compared with those due to atmospheric drag. At greater heights and lower air
densities, radiation pressure becomes increasingly important. When a satellite is in sunshine all around its orbit,
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the period change arising from the pressure of sunlight is zero. But during the weeks or months it is penetrating
the earth's shadow and is therefore exposed to a photon wind only part of each circuit, the secular acceleration may
attain substantial values, positive or negative depending on the orientation of the orbit relative to the sun. Several
special cases of orientation are discussed, and a general formula for computing secular accelerations due to radiation
pressure is derived as far as terms in the square of the eccentricity.





Experimental and Theoretical Results on the
Orbit of Echo I

By Pedro E. Zadunaisky, Irwin I. Shapiro, and Harrison M. Jones

In this paper we compare experimental and
theoretical determinations of the orbital ele-
ments of the Satellite 1960 i 1 (Echo I) for
every day from August 13, 1960 (one day after
launching), through March 1, 1961. This
comparison shows that the strikingly large
variations of the eccentricity and geocentric
perigee distance can be attributed almost
wholly to the effects of sunlight pressure on the
balloon, in accordance with our theoretical
predictions (Parkinson, Jones, and Shapiro,
1960; Shapiro and Jones, 1960, 1961).

We have also inferred preliminary atmos-
pheric densities for the altitude range (about
950 to 1500 km above the International
Ellipsoid) traversed by the perigee of Echo.
In this calculation it is necessary to consider
the energy gain (or loss) of the satellite from
the solar-radiation field. After subtracting
the variations of the rate of change of period
owing to this latter effect, we find that the
remaining fluctuations correlate with those
of the solar flux at 10.7-cm and 20.0-cm wave-
length and can be attributed almost entirely
to air drag. In addition, the air drag shows a
large increase during the major solar flare of
November, 1960.

From the time variation of eccentricity we
deduced approximate values for the rates of
gas leakage from the balloon. Our conclusions
are only tentative because many other im-
precisely known quantities (such as the reflec-
tion characteristics and shape of Echo as a
function of time) influence our results.

Our present (highly speculative) estimate
of the lifetime of Echo I is that, barring a
substantial change in its shape, it will perish
in the spring of 1964.

Description of experimental orbit computa-
tion

From observed positions of the satellite we have
derived the mean orbital elements by a process
of successive differential corrections. That
process has been described in detail elsewhere
(Zadunaisky, 1960), and we shall therefore
give only the main features of the present
computations.

The observations used came mainly from
the Smithsonian Baker-Nunn photographic
tracking stations. Some radio measurements
from the Minitrack stations of Goddard
Space Flight Center were included for the time
during which the satellite's beacon was operat-
ing. In addition, we included a very large
number of excellent optical observations sent
from the Observatory of Paris at Meudon,
France.

The word "mean" hi reference to the orbital
elements must be understood here in two senses.
First, it indicates that the first-order short-
period perturbations due to the second harmonic
of the earth's gravitational potential have been
computed analytically and then subtracted from
the observations before the differential correc-
tion of the elements was performed. Second,
the elements are mean in the sense that each
set represents observations distributed along a
two-day arc, which corresponds to approxi-
mately 25 revolutions of the satellite.

A quadratic polynomial in tune was used to
represent each element, except the inclination;
for the latter we found that a linear expression
was accurate enough. Then by a process of
successive differential corrections we improved
only the constant term of each polynomial to
obtain a best least-squares fit of the orbit to
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the observations made during the two days,
one before and one after the epoch of the
elements. In the polynomial representing the
mean anomaly we always corrected all three
coefficients in order to take into account the
rapid and unpredictable changes due to atmos-
pheric drag. The coefficients of the linear
and quadratic terms of the other polynomials
were kept constant for periods of several weeks
and were then readjusted. As elements were
determined for each day, the observations used
in two successive determinations overlapped
for one day; we were thus assured of a better
continuity in our results.

Description of theoretical orbit computation

Our theoretical orbit computation is based on
the well-known first-order differential equations
relating the rate of change of the orbital ele-
ments to the perturbing accelerations (Moul-
ton, 1914, chap. 10). We solve for the time
dependence of the elements by first integrating
these equations over an orbital period—keeping
the elements constant during the integration.
The integration can be carried out analytically
in closed form for all perturbing accelerations
except that due to air drag. The new values
for the elements are then used in determining
the changes in the elements during the next
orbital period, and so forth. This iteration
procedure is carried out on an IBM-7090
digital computer. The initial values used
for the elements are those determined from
the observations of the satellite; all future
values are calculated by the iteration method.
This method yields a very accurate estimate of
the long-period and secular contributions to
the changes in the elements. However, the
contributions of the short-period terms are
averaged out.

At present, our computer program includes
perturbations due to the following phenomena:

(a) direct solar-radiation pressure, including the
effects of the earth's shadow;

(b) neutral atmospheric drag.1 The atmospheric
density is assumed to be spherically symmetric and
constant in time, but this all-too-simple model is now
being generalized;

(c) the second through the fifth harmonics of the
earth's gravitational field;

(d) Solar and lunar gravitational fields.

1 Charge drag is quite small for Echo I and has been neglected.

(e) Solar radiation reflected from the earth.2 Our
model for the reflection characteristics of the earth
involves an arbitrary, but uniform, mixture of diffuse
and specular reflection. However, only specular reflec-
tion is now included in our program.

It is clear that (aside from the approximate
nature of our physical model and the errors
accompanying observations) our theoretical
elements and our experimental elements differ
even in principle. Our comparison of the two
sets of elements is based on the assumption that
the differences that arise purely from the differ-
ing principles of element definition are small
and can be neglected in this analysis.

Comparison of experimental and theoretical
results
In calculating a theoretical orbit for Echo I in
order to compare it with results derived from
the observations, we must first consider the
physical characteristics of the balloon. Soon
after launch, the satellite closely approximated
a sphere 100±l ft in diameter. I t was con-
structed from half-mil Mylar, externally coated
with an aluminum layer approximately 0.2/*
thick. Its initial weight was 156.995 lb, in-
cluding 33.34 lb of sublimating powders. The
powders were of two kinds: the first (weighing
10 lb) was highly evaporative, while the second
had a much lower vapor pressure.

The magnitude of the acceleration due to the
pressure of sunlight is K(A/M) (I/c), where
(A/M) is the cross-sectional area-to-mass ratio
of the satellite (initally 102 cm2/gm); / is the
solar energy flux; c is the velocity of light; and K
is a scattering constant (0<K<2) whose value
depends on the reflection characteristics of the
surface. The constant c is known very ac-
curately. For the solar constant we have used
the value 2.00 cal/cm2 min, which is quoted in
the American Institute of Physics Handbook
with a probable error of 2 percent. The ratio
A/M, on the other hand, is not accurately
known. Small holes that were introduced

* The infrared radiation from the earth, if it were uniform, would only
have the effect of changing the earth's mass by an entirely negligible
amount, provided that the satellite always presented the same cross-
sectional area towards the earth. (This last requirement is satisfied for
the case of the spherical Echo I.) Preliminary investigations of the in-
frared radiation from the earth (Intermountain Weather, Inc., Final
Report under Contract AF 19 (604) 2418) Indicate that at 1000 km this
radiation is within ±10 percent of uniformity. Since the re-radiated
power at 1000 km is only a small fraction of that of direct radiation, the
effect of the former on the orbit is probably quite small.
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before launching and meteoric punctures will
permit gas to escape at a rate almost impossible
to predict accurately. Hence, since 21 percent
of the initial satellite mass was in the form of
sublimating powders, it is difficult to determine
purely theoretically the accurate time depend-
ence of the satellite mass. The value of K is
also uncertain: for specular reflection from a
perfect sphere, K=l; however, small irregu-
larities in the shape or any diffuseness in the
reflection of sunlight will tend to increase K.
In view of these difficulties, we have considered
K(A/M) (lie) to be a (partially unknown)
parameter and have allowed it to vary in a
reasonable manner so as to obtain the best
agreement between the theoretical and ob-
served variations in the orbital elements.

In figure 1, we have plotted the residuals of
the eccentricity e from a polynomial expression
obtained by the method of least squares. The
experimentally deduced values are indicated by
points, and the theoretical values by open
circles. The rather close agreement between
the two sets was obtained by assuming that
K=l and that the total mass of the satellite
decreased at the rate of 0.64 lb/day for the first
13 days, and then decreased at 0.16 lb/day.
According to this model, only a negligible
amount of the gas remained in the balloon after
January 15, 1961. The decrease by a factor
of four in the rate of mass loss, in spite of the
expected increase in the meteorite holes, may
possibly be due to the escape of the more
volatile of the two powders.3 These rates of
mass loss are somewhat arbitrary; other rates
may lead to equally good or better agreement
with observations. However, the uncertainty
in our value of K(A/M) (lie) at any given time is
probably not more than a few percent. Fur-
ther improvement in our estimate of this
parameter apparently will require considera-
tion of other physical effects, such as a possible
diurnal bulge of the atmosphere (see discussion
below of the argument of perigee). Since we
infer K(A/M)(I/c), as well as an air-density
model, from the data, we may possibly be

«The slow final rate of mass loss could not be measurably Influenced by
an accumulation of air molecules penetrating only one surface of the
balloon, since It Is possible to show that the balloon had so far collided with
only about one pound of air. Accretion of mass through collisions with
meteoritic dust probably amounted to much less than a pound.
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"covering up" the effects of some neglected
physical perturbations.

That the satellite did gradually lose a sub-
stantial portion of its mass (or, more precisely,
that K(A/M) increased gradually) may be
inferred from comparisons of the observed
maximum value of the eccentricity (emax=
0.0788) with the following theoretical calcu-
lations:

(a) By assuming that K(A/M) maintains its
initial value of 102 cm2/gm, we find emax=0.0705.

(b) By assuming that the satellite lost all of
its gas soon after launching while K remained
unity [K(A/M) = 130 cm2/gm], we obtain
«max=0.0885.

We have also plotted in figure 1 the residuals
(from a polynomial) of the experimental and
theoretical values of the geocentric perigee
distance q. The densities used in computing
the theoretical curve were obtained by match-
ing approximately a second-degree polynomial
in altitude to the logarithm of the experimen-
tally determined densities. The relatively low
values of the theoretical perigee distance in the
neighborhood of January 1, 1961, are due
mainly to the correspondingly high values of
the eccentricity. On the other hand, the
relatively low theoretical values that persist
after the middle of January are related to the
"theoretical" density values being somewhat
greater than the average "observed" values.
This discrepancy could be largely eliminated by
a small change in the density values used in
the theoretical computation. However, our
present air model is independent of time.
Hence, for a given altitude, we cannot repre-
sent properly both the average air density dur-
ing November-December and that during Jan-
uary-February when solar activity was relatively
much lower (see fig. 3).

The perigee distance reached its first mini-
mum value on December 29, 1960, about two
days later than the eccentricity reached its
maximum value. This difference is due mainly
to the decrease in semimajor axis caused
by air drag.

In figure 2, we have plotted the residuals
(from polynomials) of the experimental and
theoretical values of the argument of perigee
w, the right ascension of the ascending node 12,
and the orbital inclination i.
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We see that for co the two curves are generally
in good agreement until about February 1,
1961, at which time they start to deviate
systematically. Part of this discrepancy would
be eliminated by reducing the rate of mass loss
of the satellite during the middle of December,
1960, since the contribution to d> due to radia-
tion pressure is positive from 40 days after
launch through March 1, 1961.4 (The com-
bined effect of these changes would reduce the
differences between the theoretical and the
experimental values of the eccentricity.) We
are also investigating the consequences of a
possible diurnal bulge in the atmosphere
(Jacchia, 1960a). Such a bulge in the equi-
density contours will be effective in changing
o) when it intersects the orbit plane in a region
asymmetrically placed with respect to the
apsidal line. To estimate crudely the mag-
nitude of this change in «, we consider the
density to have a 8-function contribution
superposed on the otherwise uniform density
of the atmosphere along the satellite path.
Limited by the average, over-all density de-
duced from figure 3, we find that co can change
at a maximum rate of approximately 0.1
deg/day.

The theoretical and experimental residuals
of fi are in good agreement until the end of
September, 1960. The systematic deviations
that occur after that date would be substan-
tially eliminated by correcting the average
densities. The relatively low theoretical air
density values before January 1, 1961, caused
an increase in the residuals, whereas the rela-
tively high subsequent values reduced the
residuals. The experimental and theoretical
values of i are in close agreement except for
a short period near the end of September,
I960.5 The oscillations in the inclination angle
during the first few months after launch are
due primarily to effects of sunlight pressure as
predicted elsewhere (Shapiro and Jones, 1960).

In figure 3 we have plotted the contributions

* Except for the first week after launch, the change in u due to radia-
tion pressure is negligibly small until early October, 1960. However,
we note that sunlight pressure contributes about 15 percent of the 3.4
deg/day mean rate of change of a.

> The change in i due to a rigid rotation of the atmosphere was not
Included in our theoretical computations. Its cumulative value on
March 1, 1961, would be about —0.01 degree. A more refined analysis
will be necessary to establish the presence of this effect on the orbit
of Echo.

to the rate of change of period (P) due to
atmospheric drag and to solar-radiation
pressure. We computed first the total
"observed" dP/dt; then, using the theory
outlined in the previous section, we found the
rates of change due to radiation pressure
(P(R)). These were then subtracted from
dP/dt to obtain the values P(D), which we
attribute to air drag.6 As can be seen by
comparison with the upper graph in figure 3,
the variations in P(D) seem to correlate with
the variations of the solar flux at the 10.7-cm
wavelength. In addition, —P(D) exhibits a
marked increase at the time of the major solar
flare on November 12, 1960 (Jacchia, 1960a).
(The wide "scatter" of P(D) values in early
December, 1960, makes it difficult to discern
a correlation with the major flare that occurred
during that period.)

We note that radiation pressure can have
no effect on the period if the orbit is circular.
However, if the orbit is noncircular and is
partly in shadow, the satellite can enter and
leave the shadow region at different distances
from the center of the earth. The resulting
net gain or net loss of energy from the radiation
field is proportional to the difference of the
projections of these distances along the
earth-sun line.

From figure 3, we also see that the radiation-
pressure contribution to dP/dt is, in general,
of the same order of magnitude as that of air
drag at these altitudes. Paradoxically, when
perigee height is near its minimum value, the
change in energy induced by radiation pressure
is still comparable to that caused by air drag,
despite the increased air density. This fact
can be understood in a qualitative way from
the following argument. If the air density
depends only on height, then as a function
of eccentricity, the energy change in one
revolution owing to air drag is represented by a
constant term plus terms in even powers of
the eccentricity. On the other hand, when
the qualifications given above are satisfied,
the energy change per revolution caused by
radiation pressure is represented by a linear

• A portion of this drag may be attributed to a possible dust belt around
the earth. However, if one assumes that the air density is correlated
with the 10.7-cm wavelength solar flux and that the density of the dust
belt is not so correlated, then It appears that at most a small fraction
of P(D) is due to dust drag.
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FIGURE 3.—Effects of solar activity on the motion of Echo I.

term plus higher powers in the eccentricity.
Hence, the energy change owing to radiation
pressure can increase more rapidly with increas-
ing eccentricity than can the energy change
owing to air drag when the atmospheric scale
height is reasonably large.

We note that Echo I lost energy to the solar-
radiation field until the end of December,
1960; then the satellite stayed in sunlight
throughout its orbit for about two weeks.
In January, 1961, the satellite gained energy
from the solar radiation, in the manner de-
scribed above.7 In fact, during the latter part
of January and much of February, 1961, it
gained more energy from the solar-radiation
field than was lost to air drag. This marked
the first time that a passive artificial satellite
exhibited an actual increase in period.

Through March 1, 1961, the cumulative loss
of orbital energy of Echo I was manifested in a
decrease of about 50 km in its semimajor axis.
Of this total, approximately 0.1 km can be

7 In general, a satellite will lose energy to the radiation field when
sunlight pressure causes its perigee height to fall, and will gain energy
when this pressure causes the perigee height to rise.

attributed to the Poynting-Robertson drag
effect. Unfortunately, this effect is hopelessly
masked by the large and rapid fluctuations in
the atmospheric drag.

Computation of atmospheric densities

It is generally assumed that the neutral air
drag acceleration is given by —%CD(A/M)v2p,
where CD is a dimensionless aerodynamic drag
coefficient; v is the velocity of the satellite
relative to the atmosphere; and p is the atmos-
pheric density. Using this assumption, one
obtains a relation between P(D) and the air
density pp at the height of the perigee of the
satellite's orbit. This relation is

P(D)=-fCD(A/M)p,, (1)

where / is given by a rather complicated func-
tion of the orbital eccentricity, the oblateness
of the earth, and the (assumed) velocity of ro-
tation of the atmosphere (Sterne, 1959). In
the derivation of this formula it was assumed
that the atmospheric density at an altitude
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AZ above perigee can be expressed by

p=Pp exp (—AZ/H), (2)

where H is the density scale height.
There are several difficulties associated with

inferring atmospheric densities from equation
(1). First, it is necessary to use the appro-
priate P. With the mean anomaly represented
by a polynomial like M=M0-\-Mi(t—to)-\-M2

(t—t0)
2, where t$ is the epoch of the elements,

it is usual to consider the rate of change of the
period to be given by P=—2M2fM\. This
form, however, leads to difficulty because the
mean anomaly is measured from perigee, the
angular motion of which is subject to relatively
large variations owing to the solar-radiation
pressure. On the other hand, equation (1) was
derived on the assumption that the perigee
position is stationary. Therefore, in order to
use an equivalent P, we corrected M2 for the
contribution due to the mean acceleration of a>.
We then calculated P(D) by subtracting P(R)
from the "corrected" values of P.

Second, it is not clear what value should be
used for CD. The concepts usually employed in
calculating CD may require considerable modifica-
tions for the high altitudes traversed by Echo I.
If, however, a future analysis indicates that a
different (but constant) value of CD should be
used, then it will be quite simple to correct our
density determinations.

Third, it is difficult to determine a meaningful
value for the scale height since densities at dif-
ferent altitudes have been calculated for differ-
ent periods of time. Since the density at each
altitude suffers large fluctuations in time, com-
paring densities at different altitudes at differ-
ent times is inadequate for determining the re-
lation between densities at different altitudes
at the same time. From figure 3 it would seem,
as has been shown at lower altitudes, that the
solar activity must be considered when deter-
mining scale heights. A further difficulty is
caused by the possible diurnal bulge in the at-
mosphere which, among other things, can in-
validate equation (2). In any case, the rather
large fluctuations in our values of P(D) seri-
ously limit the accuracy of scale-height calcula-
tions.

In our computation we assumed that the ratio
{AjM) varied with time (as determined from

our theoretical match with the experimental
variations in eccentricity), and that CD main-
tained the constant value 2.5 (Stirton, 1960).
Air densities corresponding to five possible scale-
height values (ranging from 50 to 450 km) were
then computed. Some of our results are given
in table 2 of Smithsonian Special Report No.
61. For illustrative purposes, we present in
figure 3 only the densities derived from the
assumption of a 250-km scale height. Of course
it should be understood that the scale height
is probably not constant over this altitude (and
time) range.

Because of the uncertainties in our values of
the drag coefficient and the scale height, the
densities we have inferred from the orbit of
Echo I must be considered provisional. Cer-
tainly a more refined analysis of the data is
needed to improve bad determinations of P(D).

Lifetime of Echo I

Because our knowledge of air densities and
the variation of drag coefficient with altitude is
inadequate, we find it almost impossible to pre-
dict accurately the lifetime of Echo I. We do
know, however, that the perigee altitude and
the eccentricity oscillate with a peak-to-peak
period of about 300 days.8

In view of the large amplitude oscillation of
perigee height, it is most likely that the satellite
will perish soon after one of these regular dips of
perigee into the atmosphere. Hence, one can
estimate the month of "death" almost as accu-
rately as the year. The best estimate we can
make, using air-density values determined dur-
ing the first few months after the launch, is
that the balloon will stop orbiting shortly after
its fourth dip into the atmosphere in July, 1963,
if its shape is not substantially changed before
then.9 However, in view of the decrease in air
density to be expected in the next few years (in
accordance with the correlation between sun-
spot activity and upper atmosphere densities),10

the balloon will probably survive at least until
its fifth dip in the spring of 1964. In figure 4 we

* More accurately, the period from maximum-to-maximum value of
perigee altitude Is closer to 310 days, while the minimum-to-minimum
period varies.

• Cross-section measurements made on Echo I by the M.I.T. Mill-
stone Hill Radar Indicate that little change occurred In the shape of the
balloon from the first few days after launch until January 11,1961.

'• For this and other useful suggestions, we thank Dr. L. O. Jacchia.



132 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

MEAN ALTITUDE

JAN 0
200H 1961

, I •
MJD 37,150 350

JAN 0
1962

JAN 0
1963

JAN 0
1964

JAN 0
1965

550 550750 950 38,150 350
TIME (days)

FIGURE 4.—Time variation of perigee altitude and mean altitude of Echo I.

750

present the time variation of perigee altitude
and mean altitude for several different extrap-
olations of our density model. These curves
illustrate various possibilities for the behavior
of perigee distance near the end of the balloon's
life.
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Abstract
In this paper we compare theoretical and experimental determinations of the orbit of Satellite 1960 i 1 (Echo I).

The experimental orbit was deduced from Baker-Nunn photographic data.
The observed variations of the Echo orbit—due primarily to the effects of the pressure of sunlight—are in ex-

cellent agreement with our theoretical results. The perigee altitude has an oscillation of large amplitude (approx-
imately 600km) and long period (approximately 300 days), which has a decisive influence on the lifetime of Echo I.
Our present best estimate is that the balloon will perish in the spring of 1964.

We have also estimated the rate of escape of gas from the balloon by comparing the observed and the calculated
variations in orbit eccentricity.

From the changes in orbital period we have inferred air densities over the altitude range 950 to 1500 km, making
corrections for the rather large changes in period that are due to a net loss or net gain of energy from the solar-radia-
tion field. The atmospheric drag is strongly correlated with the flux of the 10-cm and 20-cm solar radiations, as
well as with a major solar flare.



The Atmospheric Drag of Artificial Satellites
During the October 1960 and November

1960 Events

By Luigi G. Jacchia

Accurate accelerations dP/dt were derived in
the interval from November 4 through 24, 1960,
for six satellites with perigee heights ranging
from 350 to 1121 km.

The accelerations were determined by the
following procedure. Using the Differential
Orbit Improvement (DOI) program of the
Smithsonian Astrophysical Observatory, we
computed the orbits at suitable intervals. We
then fitted, by means of least squares, em-
pirical time functions to all the elements in
the 20-day interval, allowing no systematic
residuals except in the mean anomaly M, in
which the residuals were permitted to rise to
db 10~8 revolutions in exceptional cases (the er-
ror in the major axis resulting from such resid-
uals is smaller than 50 meters). The empirical
functions representing the elements were then
fed into the DOI program modified to yield
residuals in the mean anomaly for individual
observations when the orbital elements and
their time variations are given. We then plot-
ted these residuals, and added the second time
derivative of the resulting curve to the second
time derivative of the empirical equation for
M; allowance was made for any acceleration re-
sulting from the motion of the perigee. The re-
sulting values of d2M/dt2 were then transformed
to dP/dt.

The results of these computations are shown
in figure 1, in which the acceleration curves
are arranged in decreasing order of perigee
height zP. At the bottom we have added the
acceleration curve derived by G. V. Groves
(1961) for Satellite 1959 e2. The accelerations
of Satellite 1960 tl have been corrected for the

effect of radiation pressure, according to the
data of Zadunaisky, Shapiro, and Jones (1961).

All these curves are rather faithful images
of the geomagnetic-index curves shown in
the lower part of the diagram. Since the
acceleration curves are drawn in natural
rather than in logarithmic scale, the correspond-
ence should be best with the aP index, of which
Ap is a daily mean. The two major magnetic
perturbations, with maxima at November 13.4
and November 16.1 (U.T.) are reflected in
all the acceleration curves with no appreciable
time differential and with relative intensities
comparable to those of the peaks in the av

curve. The beginning and end of the pertur-
bations are essentially coincident with the
beginning and end of the magnetic storm,
confirming previous results by the author
(Jacchia, 1959b). The weaker perturbation
of November 21 is clearly visible in the accelera-
tion curve of Echo I (Satellite 1960 il) and
can be traced in those of Satellites 1959 a\
and 1960 fl.

The figures outside the right margin of
figure 1 give the mean value A of dP/dt for
each satellite before and after the perturbations
of November 12 through 17^ The plotted
points represent the ratio A/A of the instan-
taneous acceleration A to this mean value A.
The relative intensity of the perturbation for
each satellite can thus be estimated directly
from the amplitude of the individual curves—
i.e., by reading the maximum ordinate on
the scale on the left. Other pertinent data—
the declination of the satellite's perigee 8P

and the geocentric angle \f/ between the perigee
133
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and the sun—are given inside the right margin
of the diagram. The arrows at the top and
at the bottom of the diagram mark the instant
corresponding to the appearance of 3+ flares
on the sun.

It should be apparent that the amplitude of
the perturbation shows a general tendency
to be greater at greater heights, although
other factors probably complicate the picture.
The two lowest satellites (zp = 205 and 305
km, respectively) show a jump by a factor of
2 in the drag during the November 13 perturba-
tion, not much greater than the amplitude
observed for Satellite 1958 61 (2p«220 km)
during the magnetic storms of July 9 and
September 4, 1958 (Jacchia, 1959b). A cor-
relation of the amplitudes with 8P and ^ is not
immediately apparent. It is true that Satellite
1960 £1, with a large amplitude, had its perigee
in relatively high latitudes (+49°); on the

other hand, Satellite 1958 /S2, with the largest
amplitude of all, has an inclination of 34°,
which keeps the satellite at low latitudes
throughout its orbit. The smaller amplitude
of the perturbation for the Echo I satellite
could be explained by the much greater scale
height prevailing at that height.

More clues seem to be necessary to under-
stand the mechanism through which corpuscular
radiation interacts with the atmosphere.

As an addendum we present in figure 2
the accelerations of Satellites 1960 il and
1958 Alpha, during the magnetic storm of
October 6-7, 1960. The increase of the atmos-
pheric drag amounted to a factor of a little
over 2 for both satellites; again the develop-
ment of the perturbation was simultaneous
with that of the magnetic storm.

All satellite accelerations are tabulated in
tables 1 and 2.
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TABLE 1.—Accelerations P of six satellites during the
November 1960 events

(Pu is the acceleration due to radiation pressure, according to Zadunaisky,
Shapiro, and Jones (I960).)

Nov. 1960
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
11.8
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14.0
14.2
14.4
14.6
14.8
15.0
15.2
15.4
15.6
15.8
16.0
16.2
16.4
16.6
16.8
17.0
17.2
17.4
17.6
17.8
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0

1960

10»P
- 6 . 0
- 6 . 0
- 5 . 5
- 6 . 2
- 6 . 2
- 6 . 2
- 6 . 7
- 7 . 3
- 7 . 1
- 7 . 3
- 7 . 1
- 7 . 6
- 8 . 0
- 9 . 4

-10 .8
-15 .7
— 19.2
-14 .1
-11 .0

- 9 . 6
- 7 . 4
- 7 . 2
- 6 . 6
- 6 . 2
- 6 . 0
- 6 . 5
- 6 . 7
- 7 . 2
- 7 . 2
- 8 . 3
- 8 . 8
- 7 . 6
- 7 . 5
- 7 . 3
- 6 . 6
- 6 . 3
- 6 . 4
- 6 . 4
- 6 . 1
- 6 . 2
- 6 . 3
- 6 . 2
- 6 . 4
- 6 . 0
- 6 . 4
- 6 . 8
- 7 . 4
- 7 . 1
- 7 . 1
- 6 . 4
- 6 . 4
—6.6
- 6 . 6
- 6 . 6

il (Echo I)
io«pfi
-2.9
-3.0
-2.9
-2.9
-2.9
-2.9
-2.9
-2.9
-2.9
-2.9
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.8
-2.9
-2.9
-2.9
-2.9
-3.0
-3.0
-3.0

1 0«(p-/
- 3 . 1
-3.0
-2.6
-3.3
-3.3
-3.3
-3.8
-4.4
-4.2
-4.4
-4.3
-4.8
-5.2
-6.6
-8.0

-12.9
-16.4
-11.3
-8.2
-6.8
-4.6
-4.4
-3.8
-3.4
-3.2
-3.7
-3.9
-4.4
-4.4
-5.5
-6.0
-4.8
-4.7
- 4 5
-3.8
-3.5
-3.6
-3.6
-3.3
-3.4
-3.5
-3.4
-3.6
-3.2
-3.6
-4.0
- 4 6
-4.2
- 4 2
-3.5
-3.5
-3.6
-3.6
-3.6

TABLE 1.—Accelerations P of six satellites during the
November 1960 events—Continued

1958 02 (Vanguard I)

Nov. 1960 107P

4.0
6.0
8.0

10. 0
11.0
11.5
12. 0
12. 5
13.0
13. 5
14.0
14. 5
15.0
15.5
16.0
16. 5
17.0
18.0
19.0
20.0
21.0
22.0
24.0
26.0

-0 .61
-0 .61
- 0 . 59
-0 .65
-0 .69
- 0 . 8
- 1 . 1
- 2 . 5
- 3 . 6
- 4 . 2
- 2 . 2
- 0 . 4
- 0 . 1
- 0 . 4
- 0 . 8
- 0 . 4
- 0 . 1
- 0 . 3
-0 .35
- 0 . 4
- 0 . 4
- 0 . 4
- 0 . 5
- 0 . 5

1969 al (Vanguard II)

Nov. 1960

4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
12.5
13.0
13. 5
14.0
14. 5
15. 0
15.5
16.0
16. 5
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0

WP

- 1 . 5
- 1 . 8
- 1 . 7
- 1 . 7
- 1 . 6
- 1 . 8
- 1 . 9
- 1 . 9
- 1 . 7
- 3 . 8
- 7 . 7
- 8 . 3
- 3 . 7
- 3 . 1
- 1 . 3
- 1 . 2
- 2 . 7
- 2 . 7
- 1 . 4
- 1 . 4
- 1 . 4
- 1 . 8
- 1 . 7
- 1 . 7
- 1 . 4
- 1 . 1
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TABLE 1.—Accelerations P of six satellites during the
November 1960 events—Continued

1959 Eta {Vanguard III)

TABLE 1.—Accelerations P of six satellites during the
November 1960 events—Continued

1960 £1 (Explorer VIII)

Nov. 1960
4.0
6.0
8.0

10.0
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
22.0
24,0

107P
- 4 . 9
- 5 . 0
- 5 . 1
- 5 . 4
- 5 . 6
- 5 . 6
- 5 . 9
- 7 . 6
- 9 . 5
- 9 . 9
- 6 . 9
- 5 . 0
- 5 . 3
- 4 . 7
- 6 . 0
- 6 . 7
- 5 . 7
- 5 . 7
- 4 . 7
- 4 . 1
- 3 . 7
- 3 . 7
- 3 . 4
- 3 . 5
- 3 . 6

1960 $1 (Explorer VIII)

Nov. 1960
6.0
7.0
8.0
9.0

10.0
11.0
11.5
12.0
12.5
12.75
13.00
13.25
13.50
13.75
14.00
14.25
14.50
14.75
15.00
15.25
15.50
15.75
16.00
16.25
16.50
16.75

10«P
-0 .37
-0 .39
-0 .41
-0 .45
-0 .50
-0 .56
-0 .58
-0 .61
-0 .75
-0 .92
- 1 . 2
- 1 . 7
- 2 . 15
- 2 . 0
- 1 . 5
- 1 . 0
- 0 . 7
- 0 . 5
- 0 . 5
-0 .45
- 0 . 5
- 0 . 6
- 0 . 8
- 0 . 7
- 0 . 7
- 0 . 6

Nov. 1960
17.00
17.25
17.50
17.75
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
23.0
24.0

10«P

- 0 . 6
- 0 . 5
- 0 . 5
- 0 . 3 5
—0.37
- 0 . 3 6
- 0 . 3 5
- 0 . 3 0
—0.40
- 0 . 4 4
- 0 . 5 0
- 0 . 4 6
—0.47
—0.44
- 0 . 4 2

1958 Alpha (Explorer I)

Nov. 1960

4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14,0
14.2
14.4
14.6
14.8
15.0
15.5
16.0
16.5
17.0
17.5
18.0
19.0
20.0
21.0
22.0
23.0
24.0

106P

- 5 . 1 4
- 5 . 1 1
— 5. 16
- 5 . 3 7
- 5 . 5 9
- 5 . 6 7
- 5 . 7 9
—6. 10
- 5 . 9
- 6 . 1
- 6 . 1
- 5 . 9
- 6 . 5
- 7 . 0

- 1 0 . 3
— 10.7
- 1 0 . 3
- 7 . 6
- 6 . 4
- 5 . 6
- 5 . 2
- 5 . 2
- 5 . 2
- 5 . 3 1
- 5 . 3 8
— 6. 16
- 5 . 8 4
- 5 . 17
— 4.56
—4.48
- 4 . 5 7
- 4 . 5 8
- 4 . 5 0
—4,56
- 4 . 5 7
- 4 . 5 5
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TABLE 2.—Accelerations P of two satellites during the
October 1960 events

(p is the acceleration due to radiation pressure, according to Zadunaisky,
Shapiro, and Jones (I960).)

Oct.

Sep. 1960
25.0
26.0
27.0
28.0
29.0
30.0

1.0
2.0
3.0
4.0
5.0
5.50
5.75
6.00
6.25
6.50
6.75
7.00
7.25
7.50
7.75
8.00
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0

1960 il {Echo I)

108/>
-3 .55
-3 .55
-3 .26
-3 .07
-2 .87
-2 .84
-2 .74
-2 .52
- 2 . 1 1
-1 .89
-2 .46
- 2 . 8
- 2 . 9
- 3 . 0
- 3 . 8
- 4 . 1
- 4 . 7
- 4 , 5
- 3 . 8
- 3 . 3
- 3 . 3
- 3 . 2
-3 .04
-2 .97
-3 .57
-4 .08
-4 .22
-4 .23
-4 .79
-4 .87
-4 .79
-4 .99
-4 .95
-4 .55
—4.79
-4 .71

10° PR

-1 .63
— 1.56
— 1.49
-1 .36
— 1.22
-1 .05
-0 .88
—0.71
-0 .56
-0 .50
—0.51
-0 .56
-0 .58
-0 .61
-0 .64
-0 .68
- 0 . 7 1
-0 .75
-0 .79
-0 .82
-0 .86
-0 .90
-1 .05
- 1 . 19
-1 .32
-1 .44
-1 .45
-1 .62
-1 .70
-1 .78
-1 .84
-1 .91
-2 .00
-2 .06
—2. 13
—2.21

1958 Alpha {Explorer I)

Sep. 1960

25.0
26.0
27.0
28.0
29.0
30.0

106£
-3 .5
-3.3
-3.5
-3 .5
- 3 . 1
-3.2

10° {P-PR)
-1 .9
-2.0
-1 .8
-1 .7
-1.65
-1 .8
-1 .9
-1 .8
-1 .6
-1 .4
-1.95
-2 .2
-2 .3
-2 .4
-3 .2
-3 .4
-3.95
-3 .8
-3 .0
-2 .4
-2 .4
-2 .3
-2 .0
-1 .8
-2.25
-2.6
-2 .8
-2 .6
- 3 . 1
-3 .1
-2.95
-3 .1
-2.95
-2 .5
-2 .6
-2 .5

TABLE 2.—Accelerations P of two satellites during the
October 1960 events—Continued

1958 {Alpha Explorer I)

Oct. 1960 10« P

1. 0
2.0
3.0
4.0
5.0

5. 5
6.0

6. 2
6. 4
6.6
6. 8
7.0
7. 2
7. 4
7. 6
7. 8
8.0
8. 2
8.4
8.6
8.8
9.0

9. 5
10.0
10. 5
11. 0

12.0
13. 0
14.0
15.0
16.0
17.0
18.0
19. 0
20.0
21.0
22.0

- 3 . 7
- 3 . 6
- 3 . 1
- 3 . 0
- 3 . 4

- 3 . 6
- 3 . 8

- 3 . 8
- 4 . 8
- 5 . 6
- 7 . 2
- 8 . 3
- 7 . 3
- 5 . 8
- 5 . 0
- 4 . 8
- 3 . 9
- 3 . 6
- 3 . 8
- 3 . 8
- 3 . 9
- 3 . 8

- 3 . 9
- 3 . 9
- 4 . 0
- 4 . 5

- 4 . 7
— 5.0
- 5 . 0
- 5 . 2
- 5 . 3
- 5 . 4
- 5 . 3
- 5 . 1
- 4 . 8
- 4 . 7
- 4 . 5
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Effect of the Diurnal Atmospheric Bulge on
Satellite Accelerations

By Stanley P. Wyatt

The spherically symmetric isothermal atmosphere

Several authors have derived expressions for the secular acceleration of a satellite moving through
the high atmosphere (Sterne, 1958b; Groves, 1958b; King-Hele, Cook, and Walker, 1959). The
simplest and most tractable assumptions one can make are that the terrestrial atmosphere is spheri-
cally symmetric, stationary, and of constant scale height throughout those strata traveled by the
satellite in question. Within the framework of these assumptions, the secular acceleration is given by

AP A qPa

P~ 6LDmJl^e

Here, AP/P is the dimensionless change of period per period; CD the drag coefficient; Aim the ratio
of the average geometrical cross-section of the satellite to its mass; q the perigee distance and e
the eccentricity of the satellite; pq the atmospheric density at the level of perigee; E the eccentric
anomaly of the satellite; and e the base of natural logarithms. The dimensionless constant c is
defined by c=qe/H(l —e), where H is the scale height of the atmosphere and is assumed to be constant.

Equation (1) can be integrated by two techniques, depending on the magnitude of c and e
for the satellite in question. For present-day satellites, the value of q is between approximately
6600 and 8000 km, and of e between 0.00 and 0.25. The scale height of the high atmosphere lies in
the approximate range 50 to 100 km. Thus q/H is a large number, between 60 and 160, and the
relevant values of c for existing satellites are between 0 and 50. For a satellite orbit of moderate
eccentricity, the drag is significant only near perigee. Using the formulas of Sterne (1959), one can
change the variable of integration in equation (1) through the substitution 1—cos E=y2/c, making
the integrand the product of e""2 times a power series in y2fc. The upper limit of integration can be
extended to infinity because of the negligibly small air density at large values of y. The secular ac-
celeration for such satellites is given by Sterne's equation (10), with d=l. I have confirmed his
result; in a spherically symmetric, stationary atmosphere, the secular acceleration of a satellite in
an appreciably eccentric orbit is

where

== . . > (3a;

and

This formula is accurate to one percent for values of c ^2.5 and therefore can be used for all satellites
with e>0.04.

139
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For small eccentricities, the atmospheric drag is appreciable all around the orbit; consequently,
equations (2), (3a), and (3b) are not valid. Instead, equation (1) can be expressed as the
product of ee cos * times a power series in e cos E. The integral can then be evaluated in terms of
Bessel functions of imaginary argument. If n is a positive integer, we have

r
Jo

/
cos nEAB=f/ , (c )=xS ,, , w (4)

To order c3, Sterne (1959) finds and I confirm that within the framework of the stated assumptions,
the secular acceleration of a satellite is

A P A
~=-3irCD £ Opt[e-e/o(c)F.+««-Ji(c)V,], (5)
IT ifh

where a is the orbital semimajor axis and where

V 0 = l+§«' -£ (6a)
and

Tables of <rclo(c) and e~e/i(c) are available in Watson's (1944) treatise on Bessel functions. For a
circular orbit, equation (5) reduces to

^p-=-?*CD^aPa. (7)

Some complicating effects
Modifications of these equations have been derived for several effects. One interesting generaliza-
tion is the assumption that atmospheric density is a function of height above the oblate-spheroidal
earth rather than above a sphere (Groves, 1958; Sterne, 1959). Thus when the perigee of a satellite
is located at high latitude, the predicted drag is less than when it is later located near the equator.
For a polar satellite, the secular acceleration arising from such an effect would vary approximately
15 percent either side of the mean during rotation of perigee for a scale height of 50 km, and approxi-
mately 10 percent for a scale height of 100 km. For low-inclination satellites, the variation would
be less. As we shall see later, however, this effect is masked by others for high satellites.

A second modification of the drag equation takes account of the rotation of the atmosphere with
the earth (Sterne, 1959). A satellite moving in a direct orbit experiences a "headwind" of smaller
magnitude than does one moving in a retrograde orbit. For equatorial orbits, neglect of atmospheric
rotation leads to errors of approximately 10 percent in the secular accelerations. For orbits of
higher inclination the error is smaller.

A third modification accounts for the increasing scale height of the atmosphere with height
above ground (Jacchia, 1960b). From data at heights near 400 km, Jacchia finds that neglect of
this variation leads to overestimates of the acceleration by approximately 5 percent in the nighttime
atmosphere, and up to 10 percent in the daytime atmosphere. The maximum error occurs near
e=0.02; of course, the error must be zero for a circular orbit.

The diurnal bulge of the atmosphere

The assumption of a spherically symmetric atmosphere at heights of several hundreds of kilometers
has been shown to be untenable by several analyses (Jacchia, 1959c; 1960a; Priester and Martin, 1960;
Wyatt, 1959). The high atmosphere bulges toward a point in the sky some 15° to 30° east of the
sun. For a fixed index of solar activity, the observed accelerations of Satellite 1958 #2 (Vanguard
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I) indicate that the air density at 665 km is about 10 times as great when perigee passage occurs an
hour or two after noon as when it occurs during the night. I t is also clear from observations of
several satellites that the scale height of the atmosphere increases with height at all times of day.

Interpreting these results physically, Nicolet (1960a) finds that the density of the high atmosphere
is governed largely by the absorption of solar ultraviolet radiation below 200 km. The influx of
energy fixes the temperature gradient of the atmosphere between 200 and 300 km and also the
temperature of the nearly isothermal atmosphere at greater heights. Because the ultraviolet input
at any place depends both on the time of day there and on the general level of solar activity, the
high-atmosphere density variations depend on both of these parameters, as observed. Above
approximately 300 km the time scale of heat conduction is short and any vertical column of air is
isothermal, provided that the injection of heat from the Chapman corona is small. Although T is
presumably constant at these levels, the scale height, H=kTlgm, increases with height. The accelera-
tion of gravity decreases, of course, as the inverse square of the distance from the earth's center, thus
contributing to the increase of H. The mean molecular weight w also decreases with height, because
above approximately 150 km the air is in diffusion equilibrium; each type of molecule is sorted out
according to its mass and thus the concentration of N2 relative to O decreases with height. This
factor contributes importantly to the observed increase of scale height with height. I t should be
added that, although a vertical column above 300 km is spatially isothermal at any one moment,
there is a temporal variation of about 500° K between day and night, a variation arising from the
varying injection of solar radiant energy at the lower atmospheric levels.

The fundamental drag equation in a bulging atmosphere
Jacchia (1960a) stresses that the diurnal bulge will distort the motions of satellites from the motions
they would have if the atmosphere were spherically symmetric. The chief problem addressed in the
present paper is the derivation of a fundamental drag equation for a bulging atmosphere in which
the scale height increases with height, followed by a comparison with the spherical approximation
with H constant. At the expense of some added calculation, the new equation should permit the
derivation of more precise atmospheric densities and other parameters of the high atmosphere.

The most tractable assumption is that the atmosphere is axially symmetric, and this assumption
is not at odds with observations to date. I shall adopt it here and, with Jacchia (1960a), shall
further assume that the atmospheric bulge always points toward the same declination as the sun,
but with a lag angle X. Thus the right ascension of the symmetry axis is ao+X. Previous analyses
indicate that 15° ^X^30°, so that at any given level of the high atmosphere the peak density occurs
between one and two hours after local noon. Jacchia's analysis of the accelerations of Satellites 1958
Alpha, 1958 02, 1958 62, and 1959 a l shows that between 200 km and 700 km the atmospheric
density can be well represented by

p=Po(z)F2O{l+O.19[exp (0.0055s)-1.9] cos9 (*'/2)}, (8)
where

log po(3) = —16.021—0.0019852+6.363 exp (—0.00262). (9)

These equations are in cgs units except that z, the height above ground, is in kilometers. The angle
yf/' is the geocentric angle from the axis of the bulge. Equation (9) gives the density as a function of
height for the nighttime atmosphere at a moment when the daily-mean 20-cm solar flux of F20

(Priester and Martin, 1960) is unity. Unit flux density is defined as 10"20 Wm~2(c/s)~1. As can
be seen from equation (8), Jacchia finds that the density at a given point is proportional to the first
power of the solar flux, other factors being equal. In the brackets of equation (8), the dependence on
^' indicates the sharpness of the bulge as found empirically and the dependence on z shows that the
diurnal effect increases with height. Equation (8) is of such a form that it includes the effect of
increasing scale height with height. Jacchia's two formulas are remarkably successful in representing
satellite observations to date. Although they are empirical in nature, I propose to adopt them as a
basis for computing the drag equation in a bulging atmosphere.
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For any satellite in an orbit of moderate eccentricity, the maximum drag occurs not necessarily
at perigee passage, but nevertheless fairly near it. For another satellite in a more circular orbit,
the maximum drag may occur at any value of the true anomaly. In either case, the height above
perigee, z— zQ, at which significant drag occurs is never very large. Let us therefore express equations
(8) and (9) in terms of s=z—za. Also, for economy we shall deduce the drag equation for a constant
level of solar activity, setting -F2o=l. Equation (9) for the nighttime atmosphere, $' = *, becomes

0 0 2 6^S2) . (10)

The approximation here introduced is needed in order for us to integrate the equations. It under-
estimates the density given in equation (9) by about one percent two scale heights above perigee and
by about 20 percent four scale heights above perigee in the range 200 km^zff^600 km; thus, it is
an adequate representation for any given orbit. Equation (8) becomes, without approximation,

5<i'-1.9] cos6(*72)}. (11)

The general density function we shall employ is obtained by substituting equation (11) in (10) and is

P(S, * 0 = P ( 0 , TT) {[1-K COS6 (^/2)]6-°'+Z COS6 (+'/2)r**} (1+ Us*), (12)
where

#=.361 ,
i=.19cOO55%
^(.OSSOge--0026^.004571) km"1,
R= (.038096" •°°26^—.000929) km"1,
U= .00004952c- 00262« km"2.

These quantities are either constant or are functions of perigee height alone and can be tabulated
once and for all. We shall consider the physical significance of some of them later.

Having chosen equation (12) for the density function, we find that the secular acceleration of
a satellite becomes

^j' 1 l p s« (f £)«-*•} (l+U*)dE. (13)
To progress further, we must express both $' and s as functions of E, the eccentric anomaly.

First let us find the relation between \j/r, the instantaneous geocentric angle between the bulge-
axis and the satellite, and E. Figure 1 shows the geometry, with A the north celestial pole, V the
vernal equinox, N the ascending node of the orbit, Q the direction of perigee, P the instantaneous
position of the satellite, and B the instantaneous direction of the atmospheric bulge. We wish to
evaluate ^'=Bp. In triangle ABP we have

cos ^'=sin 8B sin SP-f-cos 8B cos 8P cos (aP—aB), (14)

where aB, 8B; aP, 8P are the right ascension and declination of the bulge and satellite, respectively.
By hypothesis aB=ao-\-\ 8B=8Q; and since these coordinates change slowly we shall regard them
as effectively fixed over an interval of a few days. Next let us express the equatorial coordinates
of the satellite as functions of its slowly varying orbital elements and of its rapidly varying eccen-
tric anomaly. In the spherical triangle NFP, we have NF=aP—ay, where aN is the right ascension
of the ascending node; FP=8P; NP^OJ+O, where w is the argument of perigee and 6 is the true
anomaly; ZFNP=i, the inclination; and ZNFP=90°. With the aid of the relations

sin 5i>=sin i sin
cos (co+0)=cos 8P cos (aP—aN),

tan (aP—as) =cos i tan (o>+0), (15)
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FIGURE 1.—The celestial sphere, showing the interrelationship of the locations of the
atmospheric bulge axis B, of satellite perigee point Q, and of the instantaneous satel-
lite position P.

the desired formula comes out to be

cos ^'=M cos 6-\-v sin 0,
M=sin 8B sin i sin u-f cos 5B[cos (aN—aB) cos w—cos i sin (aN—aB) sin w],
j»=sin 8B sin i cos a—cos 8B[cos (aN—aB) sin w+cos % sin (aN—aB) cos «]. (16)

Next, the true anomaly is related to the eccentric anomaty and e, the eccentricity, by the equations

cosE—e
cos 6=- ^1 — e cos k,

sm Q=
ll-e2 sin E
1 — e cosE

It thus turns out that the required angular separation of the satellite and the bulge axis is

,. M(COS E— ej+vVl — e2sin Ecos^= !- i^

(17)

( 1 8 )1-e cos E

An alternative formula for $' can be found if we consider in figure 1 the triangle BQP. We have

cos ^ '=cos \f/'t cos 0+sin ty'q cos x sin 6, (19)

where ^/'q=QB is the geocentric angle between perigee and the bulge axis; x = £BQP; and 6 again
is the true anomaly. Comparison with equations (16) shows that

i>=sin ^'i cos x- (20)
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We next wish to obtain s as a function of E. We readily find that

s=z—zQ=r— q=a{\—e cos E)~a(l — e)=±-^-z -• (21)

Substitution of equations (18) and (21) in equation (13) yields the equation for the secular accelera-
tion of a satellite passing through a Jacchia-type atmosphere, the integrand now being a function
of E and of miscellaneous "constants" of the atmosphere and the satellite orbit.

Finally, instead of expressing the acceleration in terms of the nighttime density, P(0,TT), we find
it more useful to give it as a function of the density and scale height at the perigee point at the time
in question, since the latter quantities are the ones that can be deduced from the observations.
From equation (12) we find that

\~K) cose(^/2)}. (22)

Next, we define the density scale height (Jacchia, 1960b) by

1 __ 1 dp (23)

The density scale height is identical with the ordinary pressure scale height, kT/gm, if the tempera-
ture gradient and molecular-mass gradients are zero separately or if Tfm is independent of height.
Under actual conditions, with dT/ds^O and d7w/ds^0, the density scale height is somewhat smaller
than the ordinary scale height. Differentiating equation (12) and evaluating the right side of
equation (23) at s=0, \f/'=}f,'t> we obtain

H(0 , n - (l + (-E-g)cos(^/2)}
K '*a)~~Q{l-Kcos* (t'/2)+RLcos6 (fJ2)} K '

In particular, we may now interpret the constant Q, since equation (24) shows that H(0,ir) = Q~1.
Thus Q is the reciprocal of the nighttime scale height at perigee. The perigee scale height on the
bulge axis is H(0,0) ={ 1 + {L-K)}{Q(l -K)+RL} ~K

The equation for an eccentric orbit
Let us define a dimensionless variable of integration, y2, by y2=s/H, where for simplicity in the
sequel we shall write H(0, \f/'g) =H. It follows from equation (21) that

. (25)l c o s f f ^ .
ge

This is the same substitution effected in the first section of this paper, but it should be stressed that
we are here concerned with the scale height at a perigee point located at a particular height and at a
particular angular distance from the sunward bulge. Our next task is to transform the integrand
of equation (13) into a function of y alone. First, the three factors involving s transform very
simply, and exactly, by substitution of s=Hy1. Second, the three factors explicitly containing E
can be expressed as power series in (H/q)y2. In particular,

(.1— e cos
and

(!+«)'" r H(2-e) 3ffl "1
(l-e)1/2 L 2(1+e) V ^22

2(l+«)2 V " 'J

, g ( l - g ) . • 3 H 2 ( l - e ) 2 ^ , " I ,

- ^ - y + 32gv ^ • • Jdy-
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The product of these factors is

^- {1+eyUy | l + f My>+^Ny*+ . . . 1 (28)
qe L 2 T J

where M and N, given by equations (3), are functions of e alone. Physically, these terms occur
because atmospheric drag exerts a tangential perturbing force; they appear independently of any
particular choice of atmospheric model. Third, we need to express ty' in terms of y. We have
cos8 (^ ' /2)=f (1 + cos rp')z. Substitution of equation (18) then gives us an equation for ^ ' as a func-
tion of E. With the transformation equation (25) we then obtain ^ ' a s a power series in -J(H/q)y.

Finally, note that the upper limit of integration of equation (13) becomes y2=rr/^_ \' Since we

are here dealing with orbits of appreciable eccentricity we may extend the upper limit to infinity
without appreciable error. All integrations involving odd powers of y then vanish, and therefore
#' can be expressed for our purposes as a power series in (H/q)yz. The formula turns out to be

cos6 (*'/2) = u-v — y2+w ^-V*- (29)

The coefficients u, v, and w are constants for a given orbit; they are given by

| (30)

When we substitute equations (21), (22), (25), (28), and (29) in equation (13), the secular
acceleration becomes

(31)

Equation (31) can be integrated term by term after multiplication of the several brackets. Note
that the three power series in the first two brackets of the integrand have been truncated at
(H2/q2)y* in order to keep the calculation manageable. The coefficients of terms of higher order
decrease approximately in the ratio H/qe, which is less than about 0.1 provided the eccentricity is
not very small. The justification for terminating the final bracket at order y* was described in
the previous section.

Comparison with the simpler drag formula
Instead of writing down the general result of integrating equation (31), it is simpler to give the
ratio of this acceleration to that given by equation (2) for the spherically symmetric atmosphere of
constant scale height. One reason, of course, is that the coefficients are nearly identical. A second
reason is that the ratio is independent of F20, the solar flux at 20 cm. Let us call this ratio J. To
state its meaning more precisely, consider a date on which the perigee of a satellite lies zt km above
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the earth's surface and at a geocentric angle ̂  from the bulge. The quantity J is then the secular
acceleration of the satellite as it describes one orbit through the Jacchia atmosphere divided by the
secular acceleration of the same satellite as it describes the same orbit through a spherically sym-
metric atmosphere in which the scale height is constant and in which the density and scale height
agree with the Jacchia atmosphere at the perigee point (but not necessarily anywhere else along
the orbit).

I have integrated equation (31) and computed values of t/for perigee heights ranging from 200
km to 600 km, for eccentricities from 0.1 to 0.3, and for four specific orientations of the orbit with
respect to the bulge. It turns out that the values of J are never much less than unity and that no
term involving either M or N contributes more than 0.007 to the end result. We may thus drop all
such terms in both equations (2) and (31) without significant error. The ratio then becomes

(32)

where we have set R = QZ* and where all other quantities have been previously defined.
In table 1 the values of J are computed from equation (32) for several perigee heights, eccentric-

ities, and orientations of the orbit relative to the sunward bulge. The values are given to three
decimal places to indicate better the trend of the numbers. Two points should be kept in mind,
however, when the entries are examined. First, the final calculations have been much simplified by
leaving out all terms in M and N. Second, the convergence of the terms in equation (32) is very
rapid in all situations except where the perigee height is large (zff^600 km) and the eccentricity
rather small (e^O.l). In this extreme situation the atmospheric distortion is a maximum, the
scale height is large, and at very low eccentricities the drag may be significant at all points around
the orbit. Calculating and integrating the terms in y6 in equation (31), I find that the true value
of e/in the most extreme case of table 1 is even more exaggerated than the tabulated entry of 1.52;
it is greater by about 3 percent. Truncation of equation (29) at order y* affects other entries by
smaller amounts.

TABLE 1.—Values of J for several types of orbit
z/km)

200 300 400 500 600

0. 10
0. 15
0.20
0.25
0.30

Perigee coincident with bulge (p
1.024
1.030
1.033
1.035
1.035

1.016
1.028
1. 035
1.039
1.041

1.005
1.026
1.037
1.045
1.050

= 1, *=0)

0.990
1.022
1.040
1.052
1.060

Semi-latus rectum of orbit coincident with bulge G»=0, >

0. 10
0. 15
0.20
0.25
0.30

1.044
1.040
1.039
1. 038
1.037

1.076
1.067
1.062
1.059
1.057

1. 145
1. 122
1. 109
1. 101
1.096

1.280
1.230
1.203
1. 185
1. 173

0.977
1.018
1.044
1.060
1.072

'=±1)

1.520
1.435
1.382
1.346
1.322

Orbit normal coincident with bulge 0*=0, »=0)

All e 1.032 1. 042 1.057 1.084 1. 132
Apogee coincident with bulge G»=—1, r=0)

Alle 1.030 1.035 1.040 1.045 1.049

Interpretation of the results
Generally, the entries of table 1 show that the secular acceleration in a bulging atmosphere of
increasing scale height is greater than in the same orbit when the atmosphere is spherically symmetric
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and of constant scale height. This means that use of the simpler formula tends to produce over-
estimates of the values of p^H from the observed accelerations, although not always.

The dominant reason for «/>l when either the orbit normal or the apogee coincides with the bulge
is the increase of scale height with height. Reference is made, for these and subsequent remarks,
to figure 3 of Jacchia's paper (Jacchia, 1960a), which is helpful in visualizing these effects. When
the normal to the orbit plane coincides with the bulge axis, the satellite is entirely ignorant of the
bulge because it always moves 90° away from it; when apogee coincides with the bulge axis, J is
not significantly different from unity because of the cos6 (\f/f/2) dependence. For both orientations
the values of J increase with increasing perigee height because of the gradient of the scale height.

When perigee coincides with the bulge, the gradient of the scale height governs the run of J at
low values of z8; the bulge is not pronounced at these levels. At 500 and 600 km, however, the
interplay of the two effects is stronger. At the higher eccentricities a satellite climbs steeply away
from perigee, and in the limiting case of an outbound radial orbit it is oblivious of the bulge and
the value of J is governed solely by the effects of scale height. At low eccentricities, however,
a satellite climbs uphill from perigee rather slowly and encounters equidensity contours that are
trending downhill with increasing distance from the bulge axis. The values of J for these cases
are slightly less than unity.

Finally, when the semi-latus rectum of the orbit coincides in direction with the bulge axis, the
asymmetry is marked, particularly for large perigee heights and low eccentricities. In this case a
satellite encounters maximum density at some point displaced 10° or 15° from the perigee point
toward the bulge axis; the secular acceleration is therefore significantly greater, up to 50 or 60
percent, than that given by the usual simpler formula.

The equation for a circular orbit
A general formula for the drag in a bulging atmosphere can in principle be derived for orbits of
small eccentricity, as before, in terms of Bessel functions of imaginary argument. Tentative work
indicates, however, that the resulting expression is of formidable complexity and provides little
or no insight into the physical effects. Accordingly, this paper will not be concerned with finding
an analytic expression for the acceleration in orbits of very small, but nonzero, eccentricity. Quali-
tatively, however, it is apparent that the more circular an orbit is, the more indifferent the satellite
is to the atmospheric density and scale height at perigee. Maximum drag may occur at any point
on the orbit.

In the limiting case of a circular orbit, the greatest drag occurs when \f/f is a minimum. The
minimum geocentric angle between satellite and bulge axis, f^, is given by tLB=irl2—i', where
%' is the angle between the bulge axis and the orbit normal, with 0 ̂ ir ^ ir/2. The density function
to be employed for a circular orbit is given by equation (12) with s=0, and is

p(0, yf,') = p(0, *•) {1 + (L—K) cos8 (^'/2)}• (33)

In this particular case, moreover, 1]/' is given by

cos ^ '=sin i' cos E, (34)

and the secular acceleration turns out to be
f (T xr\ r* o ~i^

(35)

Since no satellite passes through the point ty'=v unless i '=x/2, and since all satellites must pass
through ip'=ir/2, we shall find it more useful to express equation (35) in terms of p(0, ir/2), which
can be determined from equation (33). The result is then

*?- Q n A rn w / i 1 3(L-K) sin*i'\ f .



148 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS v 0 1-«

Notice that this result is identical with the simpler equation (7) when i'=0. The reason is, of
course, that when i'—Q and e=0 (and under no other conditions) a satellite sees constant density
all around the orbit, just as in the spherically symmetric approximation. When AP/P is observed
for a satellite moving in a circle with i's^O, the atmospheric density deduced from equation (7)
will be greater than p(0, x/2) by a factor equal to the bracket of equation (36). Alternatively
interpreted, this factor is the ratio of the secular acceleration at i' to that at t '=0. It is greater
than unity because of the sharpness of the bulge: density excesses in the daytime hemisphere more
than compensate density deficiencies in the dark hemisphere. When t'=ir/2, the satellite passes
squarely through the bulge; in this case the bracket is a maximum, ranging from 1.04 at 200 km
to 1.22 at 400 km and up to 1.56 at 600 km.

Conclusions
It should be emphasized, with Jacchia, that the density function here employed is not a necessary
consequence of high-atmosphere physics, but rather a product of numerical analysis of satellite
observations. For this reason it does not seem necessary at this stage to work out the exceedingly
complex higher-order approximations to equation (32) or the drag equation for orbits of very small
but non-zero eccentricity. The results of table 1 for orbits of moderate eccentricity and of section 8
for circular orbits indicate, without more elaborate calculations, that use of the drag formula for a
spherically symmetric atmosphere of constant scale height leads to a somewhat erroneous evaluation
of the structure of the high atmosphere.

The formulas developed here should, at the expense of some added calculation, make it possible
to improve our picture of the Jacchia-type atmosphere by refining the values of its constants. Qual-
itatively, the results of table 1 indicate that at heights of 500 km or so the atmospheric density on the
bulge axis is a bit greater than given by the usual drag formula, while the density 90° around from
the bulge axis is substantially less. We may therefore tentatively conclude that the sunward bulge
is even sharper than previously thought.
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Abstract
Formulas are developed to express the secular acceleration of a satellite on passing through an atmosphere which

bulges in the sunward direction and in which the scale height increases with height, these two properties of the high
atmosphere having previously been established from satellite observations. Comparison of the new formulas with
those for a spherically symmetric atmosphere of constant scale height indicates that deduced atmospheric densities
may be systematically incorrect by up to 50 or 60 percent at heights of 500 to 600 km when the earlier and simpler
equations are used.



The Motion of Satellite 1958 Epsilon around
Its Center of Mass

By G. Colombo

This report presents a preliminary study of the motion of Explorer IV (Satellite 1958 Epsilon)
around its center of mass. The body is, to a good approximation, symmetric around its longitudinal
axis and, therefore, the tangential motion can be considered a regular precession, at least during one
orbital revolution.1 I shall refer to a precessional velocity ^, and to an angular velocity around the
longitudinal axis, <P, the angular velocity vector <a of the body being the resultant of these two com-
ponents. Many good observations (Naumann, 1961) of the motion, especially of the variation of
<p, were made during the first 60 days after launch, and the variation in the direction of the preces-
sional axis was computed. Although the dererminations are not precise, they definitely indicate
an angular displacement of the precessional axis of at least 10° per day in the first 30 days after
launch. Also, it is certain that the angular momentum of the body remained almost constant during
the whole period under consideration.

I have derived a method for computing the angular perturbation of the angular momentum.
Computation of the angular variation of the precessional axis due to the atmospheric drag, using a
nutation angle of 84°, yields a maximum value of 5° or 6° per day. For the gravitational torque,
the same perturbation has a maximum value of 2° per day. The perturbation due to the action of
the earth's magnetic field on an intrinsic magnetic dipole of the satellite amounts to 2° per day if
the maximum torque is of the order of 300 dyne-cm, since the effective value of the torque is the
value averaged over one precessional period. In addition, an evaluation of a magnetic dipole
induced in the ferromagnetic shell of the satellite has been tentatively done. The corresponding
theoretical torque would give an important contribution also for a nutation angle of 90°. I t seems,
however, very difficult to choose a realistic value for the magnetic permeability because (1) the field
is very weak and the experimental determinations are made only for stronger fields, and (2) the actual
value of the permeability is related to components of the field which are changing sinusoidally. In
any case, we give the formula needed to compute the total perturbation per revolution, which
depends on the velocity vector of the center of mass at perigee, the position of the earth's magnetic
dipole with respect to the orbital plane, and, naturally, on the orbital elements.

This study also treats the problem of the rapid decrease in <P during the first 30 days after launch.
The decrease in the spinning of the satellite is not easily explained by the hypothesis that it is caused
by the action of an external torque, since the modulus of the angular momentum remains almost
constant. The most probable cause of this decrease is an internal vibrational motion that causes
the transfer of angular momentum from the axis of symmetry to a transverse axis. The observed
variations are in good quantative agreement with the law for the decrease in <p.

The question does not seem to be closed, since I definitely think that the problem of the motion
of a ferromagnetic body of any shape in a varying weak magnetic field has yet to be solved. With
torques as weak as those with which we are working, any effects neglected and perhaps undetectable
in the usual experimentations may have a significant influence on a satellite.

> Some Information (Lundqulst, Naumann, and Fields, 1961) about the physical structure of the body of Explorer IV was received just after I com-
pleted this report.
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1. Coordinate systems
Let us associate the satellite S with three coordinate systems: first, with a moving coordinate system
(i, j , k) whose axes lie along the principal axes of inertia of the satellite and whose origin is the center
of mass G of the satellite (k is the unit vector of the gyroscopic axis oriented toward the satellite's
nose); second, a coordinate system (d, c2, £2) with £2 oriented along the precessional axis; and third, a
coordinate system (X, Y, Z) with origin at the perigee of the orbit of G; the X-axis is oriented toward
VQ (the velocity of G at perigee), the F-axis is normal to the orbital plane, and the Z-axis is oriented
toward the radius vector of the orbit at perigee. Let \p, <p and 8 denote the Eulerian angles of the
system (i, j , k) with respect to the system (eu c2, Q,). Let Ko denote the angular momentum of S with
respect to the center of mass G (note that KG is in the same direction as $2, since the tangential motion
is a regular precession). Also let 0 denote the angle between fi and the X-axis; 0x the angle between Q
and the F-axis; \ the angle between the projection of £2 on the XZ-plane and the Z-axis; and X the
angle between the projection of £2 on the FZ-plane and the Z-axis (see figs. 1 and 2).

FIGURE 1.—Definition of angles. FIGURE 2.—Reference systems.

2. Perturbation of the precessional motion
The elements that characterize the regular precessional motion may suffer perturbations due to the
torques exerted by the following: (a) atmospheric drag, (b) gravitational field of the earth acting on
the nonspherical shape of S, (c) interaction of the earth's magnetic field with an intrinsic dipole of S,
(d) interaction of the earth's magnetic field with an induced dipole of S, (e) energy dissipation due to
internal vibrational motion. Let Pa, Ph, Pe, Pd, and Pe denote the perturbations due to a, b, c d,
and e, respectively. Assume, as usual, that the total perturbation of the tangential motion is the
sum of the perturbations Pa, Pb, Pe, Pd, and Pe evaluated over the unperturbed motion.

To begin, we note that the average torques of Pa, Pb, Pe, Pd, and Pe that affect the motion in
one revolution are always perpendicular to Ka and that for perturbation Pe the external torque is
zero. Therefore, the modulus of the angular momentum of S during the motion may be considered
constant. The second-order effect of the drag is not considered since it is insignificant. In the
motion of Explorer IV (Satellite 1958 Epsilon), this property of the angular momentum was well
maintained during the first 30 days after launch. Only for this period do we have good observations.

2.1. Perturbation Pa.—First, the torque due to the atmospheric drag is computed. The
instantaneous torque M o can be described by the expression

Mo=c*p(G)\vo\voXk=(C0-C2 cos2 7+Ci cos3 y)p(€f)\va\faXkt (1)
where y is the angle k makes with vo; p(G) is the atmospheric density at G; vo is the velocity of
G; and Co, C2, and C3 are the coefficients that characterize the shape of S.2 We arrive at this expres-

1 More exactly, the coefficient c* should be expressed as c*=Co+Ci cos 7—Cj cosJ -H- Ct cos3 y— & cos4 y, as we will see later, but the second and
fifth terms of this expression play the same role as the fourth and third terms respectively. Therefore, we will have a good approximation if we consider
only equation (1). We shall return to this argument in section 3.1.
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sion by assuming that the center of pressure Q' is always along the gyroscopic axis of the satellite
and that this center can vary in its position with a change in y. The computation of Co, C2, and
C3 in the case of Explorer IV will be made in section 3.1. Finally, we assume that the velocity
of the atmosphere relative to the orbit, compared to the velocity of 0 over the orbit, is small.

Next, the average value of M o in one precessional period is computed. Let vx, vv, and vt

denote the components of vo with respect to the system (ci, c2, Q). Thus,

\va\ cos y=vo-k=(vx sin \[t—vy cos $) sin 8-\-vt cos 5,

k=(c! sin \p—c2 cos ^) sin 5+Q cos 8. (2)

Averaging over $ from 0 to 2ir, we obtain

k=cos 512,

cos27k=cos 8 ["sin2 5+^- (2 -5 sin2 5)1 2 ,

cos37k=r-r^3 ( | sin4 5+cos4 8)-|•£-. sin2 5(sin2 5 -4 cos2 5)1 2 . (3)

Finally, the average value of M o in one revolution is computed. Let

v%2Io=^ £ yo\vo\ P(G)dt,

£ I {G)dt (4)

where T is the orbital period. Hence,

s 5 (Co-C2 ^ ^ IO-C72 cos 5 ( l - | sin2 5^ I24-C3 ( J sin* 5+cos4 8) I','

—I C3 sin2 5(sin2 5—4 cos2 8)lz\ XQ; (5)

thus, the modulus of Ko will remain constant for this perturbation (Ma is perpendicular to Ko)
and also for the other perturbations, as we shall see in sections 2.2 and 2.3.

If the moment of inertia around the gyroscopic axis is designated by C, and the initial veloc-
ity around this axis by r0 (assuming that the initial motion is approximately a rotation around
the gyroscopic axis only), then Ka=Cr0Q. Therefore, equation (5) becomes

-JT=~yif- ~{ c o s 5 ( Co— C2 ) Io—C2 cos 5 ( 1— s sin2 5 H2

+C3 ^ | sin4 5+cos4 5) I'3
f— I C3sin2 5(sin2 5 -4 cos2 8)%|xa (6)

636-014—63 11
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Equation (6) differs from the analogous form used by Beletsky (1960) for two reasons. First,
Beletsky does not consider the possibility of the displacement of the center of pressures along the
gyroscopic axis. This displacement is certainly true for Explorer IV, which is very asymmetric
with respect to the plane normal to the gyroscopic axis passing through G. Second, the Beletsky
equation contains a factor cos2 8, which can be misleading. Actually, there should be a factor of
cos 8 only. In a quasi-tumbling motion, the factor cos 8 is very small, and, as we shall see, it plays an
important role in the discussion. Therefore, in one revolution, the atmospheric drag causes a rota-
tion of the precessional axis around a well-determined axis. This axis is dependent on the vector
given by equation (4) and, naturally, on the nutation angle. Also, it is important to note that the
terms in I3 and %' are not zero if cos 8 is zero.

Note that the rotation axis of 8 varies from one revolution to another since it depends on the
orbital elements of G, of which the most important are the secular variation of the argument of
perigee (the motion of perigee) and the right ascension of the ascending node (the regression of the
node).

2.2. Perturbation P&.—To compute the torque corresponding to Pb, we refer to the article by
Beletsky (1960). We can write the expression

^£2=5 Z\A-C) cos 0t (l-|sin2s) NX8, (7)
Cub £ \ £ /

where N is the unit vector normal to the orbital plane and parallel to the F-axis, and A is the moment
of inertia with respect to an axis normal to the axis of symmetry through G. Moreover,

% (8)

where h is the characteristic constant of the earth's gravitational attraction, and r is the geocentric
distance of G. If, as before, K6=O02, then

^7=1 7ZT (A~ c) c o s ei (l ~% s in2 5) N X 8 . (9)
at & L/TQ \ & j

Therefore, the gravitational torque causes a rotation of 8 around an axis normal to the orbital plane.
This axis of rotation can be considered constant during one revolution. Also, the angular displace-
ment of 8 due to perturbation Pb in one revolution can be computed by use of equation (9).

2.3. Perturbation Pe.—The intrinsic magnetic moment of S can be expressed as

(10)
and the earth's magnetic field as

H=Hxc1+Httc2+HzSt. (11)

Thus, the corresponding torque acting on the body is

M£°=/*XH. (12)
Assume that, to a good approximation,

where m^n and nr is the period of precession. If ip is much greater than ^, equation (13) can be
written with a value of m that is not so large.3 Also suppose that H remains constant along the arc
of the orbit covered by G in the period mnr. In this way,

M(
a

m) = M3 cos 5QX H. (14)
1 The assumption is not necessary If MI—0.
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If m=n, the average value of M&"0 over one precessional period is

M e 0 ^ ^ 1 " 0 0 8 5)HXCi+/i3 cos 5J2XH. (15)

The last case will be excluded for the present, but we shall return to it in section 4.1, at the end of
this paper. Therefore, equation (14) is retained.

We should average MS"5 over one orbital period. To compute this average, we assume that the
earth's magnetic field is, in the usual form,

where u is the unit vector of the earth's dipole; r is the unit vector of the direction from the earth's
center to G; and fiB is the magnetic moment of the earth's dipole. The mean value of M o is

-j-dv, (17)

dv ' v '
where v is the true anomaly of G over the orbit. Since

dv 27ra2
 / r —jj a(l-e*)

- 7 7 = rn-t V I — * » r==:T~i 7 \ '

dt Tr2 v 1+e cos (p— w)
we obtain with the usual notation

ft^ f (19)
where H should be expressed as a function of v. For this perturbation, we should remember that
the earth's dipole makes one rotation around the polar axis in one day. Since the angular dis-
placement of a is about 9° during one revolution, we cannot consider a constant when integrating
equation (19).

We must write u=0.95Hi+0.29[n cos Ta(M-\-a0—Q) + UiXn sin Td(M+ao—Q)], where u, is
the unit vector of the earth's polar axis; n is the unit vector of the ascending node of the orbit;
Ta is the orbital period in days; M is the mean anomaly of Q; ao is the right ascension of u at the
time of perigee passage of G; and Q is the right ascension of the ascending node. The computation
of this perturbation is not easy; it would be preferable to postpone it until we have exact information
about the internal circuitry and the eventual permanent magnets in the payload.

Let im denote the inclination of the orbit over the equatorial plane, rm, of the earth's magnetic
dipole, and nn the radius vector of the ascending node of the orbit in this plane. To obtain an idea
of the magnitude of this perturbation, we consider nm and u as constant during one revolution.*
Thus, from equation (19), we have

tf(i-y<* [ (~I s i n 2 *-) u + l s i n *•cos

and finally,

' n X L 0 ) a + 2 Sm *" COS

From equation (21), the rotation of $2 due to perturbation Pe can be determined. Therefore, in one
revolution Q rotates around an axis that depends on im and nm.

In each of the three perturbations just discussed, we have found that Ko • —fr=Q> which means

that the modulus of Ko is not affected by these perturbations, at least if MI=0-

-> ->
* This assumption is justified, since the small change in the orientation of H along the orbit due to tbe variation of u is negligible when the angle

-> -> -»-» -*
between Q and H is large. When the angle Q H is small, tbe variation In the direction of Q is also small.
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2.If. Perturbation Pd.—Let us consider the perturbation of the angular momentum due to the
interaction between the earth's magnetic field (Fischell, 1961) and the ferromagnetic components of
the satellite. To give a possible explanation of the angular rotation of Q, and also for an angle 5
very near to 90°, we suppose that the satellite has a ferromagnetic component in the shape of an
elongated cylinder as the shell of the satellite. For such a component, the magnetization vector is
almost always oriented as is the axis of the cylinder. Thus,

1=0*—l)(H-m)m, (22)

where m is the unit vector of the axis of the ferromagnetic component (with m=mii+fn3k), and p
is its magnetic permeability. If we neglect the small hysteresis effect, the torque acting on the body
can be written in the following form:

M S W 0 = ( M - 1 ) ^ (m.H)mXH=(m.H)mXM*H, (23)

where V is the volume of the ferromagnetic component. Averaging as in the computation of per-
turbation Pe, and assuming (if mi5^0) that <p^>^>\p, we obtain

Mr>=M* [ ^ ( 1 - 3 cos2 5 ) + ^ (2 -3 sin2 5)1 £2X(H.$2)H. (24)

We suppose, as before, that a and um are constant during one revolution. Then, averaging over one
orbital period and neglecting any small terms in e2, we find that

3 / 9 \ 1 9
+2 cos im sin in I - sin2 im— 1 JuXnOT-8 + - sin2 ^ ( n ^ S ) ^

j~27
+ — sin2 im cos im(u-nmXG cos im+u-Q sin im)

L o

- | u-Q sin in cos vjuXn™ V [ ^ (1-3 cos2 3 ) + ^ (2-3 sin2 5)1 (25)

A/2For an approximate computation, let us suppose that sin im=cos im=^-> with cos 5=0 and
sin 5=1. Hence

a6(l-c2)9

9 F27 *? ~\ "\
( Q ) + [ X 2 + | Q j X m V- (26)

This torque is zero if a, €1, and nm are coplanar and if nm and Q are parallel, or if m\=2m%, and,
therefore, these are all exceptional cases.

2.5. Perturbation Pe.—The observations of Explorer IV definitely indicate that the angular
momentum maintains a quasi-constant modulus during the first 30 days after launch. In this
period, a diminution of the order of 0.1 of the initial value occurs. Thus, the great diminution
of the kinetic energy (the final value is about 1/80 of the initial value) cannot be ascribed to
external torques, and therefore must be ascribed to internal dissipation. In this section, we shall
study the possibility of a transfer of angular momentum from the motion about the axis of
symmetry to the motion about the precessional axis, resulting from internal dissipative vibra-
tional motion sustained by the precessional rigid body motion around the center of mass. Note
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that the aerodynamic torque (without the second-order effect) and the gravitational torque are,
a priori, coplanar with the gyroscopic axis, and, therefore, cannot be responsible for the observed
variation of •*. Not even the torque due to the second-order effect of the aerodynamic drag can
completely explain such diminution. Indeed, the perturbation due to the aerodynamic torque
will also cause an equal damping of the precessional component of the angular velocity (Notni
and Oleak, 1959; 1960). We should also examine the possibility that this dissipative action,
which does not change the modulus of the angular momentum, can result from the interaction
between the earth's magnetic field and the satellite. A simple computation of the average work
done by the magnetic field acting on the intrinsic magnetic moment gives a value of zero, if

In the usual notation, the expression for the kinetic energy of S is

[A($+ft sin2 5)+<?(«>+* cos 5)2]. (27)

Moreover, in any instant t of the precessional motion

r A cos 5

Suppose that initially the motion is a quasi-rotation about the axis of symmetry of the body with
velocity r0. Let P denote a point mass with a very small moment of inertia relative to the inertial
characteristics of S. Let Po denote the equilibrium position of P when the body is at rest, where
(zb, 0, s0) are the coordinates of Po with respect to (i, j , k). Assume that, if P is not at Po, then
both an elastic force with center at Po and a dissipative force acting in the same direction as the
velocity of P relative to (i, j , k) and proportional to the velocity act on P. If S has a component
with small mass elastically connected to the rigid body, the dissipation can be due to elastic
hysteresis. The motion of P with respect to the moving frame (G, i, j , k) is governed by the
equation

m ^ = E + D + F £ + F ^ + R , (29)

where E is the elastic force; D is the dissipative force; Fc is the centrifugal force; F^is the Coriolis
force; and finally R is the linkage force. Since we assume that the displacement of P is very small,
the centrifugal force that acts on Po can always be substituted for the centrifugal force that acts
on P. A simple computation gives us the centrifugal force as the sum of two forces. The first
of these two forces is almost constant with respect to (i, j , k):

F'c= -m S (2<ft, cos8+<?)zok-fck+^Q)2(xoi+ z<>k) +** (j£ sin2 d+z0 cos2 s\ k \ ; (30)

the second is pulsating:

F " = — m / f 2 ^ 0 sin <p sin 8+ft ^ sin 25 sin «T1 k + ^ [~—j sin2 8 cos 2*

+ 2 z0
 s m 25 sin >̂ i-f̂ 2 ^ xo sin2 5 sin 2^+jr z0 sin 25 cos <p j r (31)

The Coriolis force is not computed since we assume that the point P moves in only one direction,
with direction cosines au a2, a3 relative to (i, j , k). The equation of motion of P is

8+2Ds-\-os(s—so)=— ( 2x<^ sin <p sin 5 + ^ ~ sin 25 sin <p J a3

+^* f —y sin2 8 cos 2^+2 z0 sin 25 sin <p J ax-\-^ l - i 0 sin2 5 sin2 <p+^ z0 sin 25 cos <p J a2 > (32)
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where s is the distance from P to Po along the direction of motion, and sQ is the coordinate of the
new equilibrium position after the addition of the centrifugal force to the elastic force. Naturally,
s0, a?o, and ZQ depend on 5, <p, and \p; however, in order to make a simple, approximate computation,
we assume that s0 is so small that the evaluation of the right-hand side of equation (32) is exact
enough. In the specific case of Explorer IV, the constant force involved is so small that this
approximation is fully justified. We definitely can write that the equation of motion of P relative
to S is, with the above approximation, in the form

s-\-2Ds-\-a2s=—2a>i^\f/sin <psiu 8—\l?cb2 s in 28 sin {(p—951)—IJ^CLZ s in 2 5 cos (2<^>—v^)' (33)

For this perturbation, the motion of S is characterized by the equations

|KG|=constant, (34)
and

where Ec is the total amount of the energy dissipated in one period of rotation of the body around the
axis of symmetry. To evaluate Ec, we assume that <f> can be considered constant during one rotation
of the body around the axis of symmetry. Also, <p=<pt. Equation (34) can be written

cos 8)2+Aty sin2 8=0*7%. (36)

Therefore, from equations (28) and (36), we have

<p-\-^ cos 5=7*0 cos 5, $~~r' (37)

and finally,
A n

<p=v= , rQ cos 5. (38)

Thus, equation (33) can be written in the following form:

s-\-2Ds+a2s=A0 sin 25 sin (pt—<pi)-\-Ai sin2 5 sin (2v—<p2). (39)

The energy necessary to sustain a forced vibration of the oscillator P is

„ ZM2,sin225-j'2 , 4ZL42.sin45-J'
2
 /A~

tLc=- - g 1 -~2 > (4U)
where

(41)

It is natural for us to assume at this point that <r2>>^2, and also that ( r 2 » 1 6 D V (these assump-
tions exclude the presence of free masses in the interior of the satellite, which is a possibility if any
breakage occurs during the launching of the satellite). Hence, the energy dissipated for one cycle is

Ee=El sin2 25 cos2 5+Ef sin* 5 cos2 5, (42)

and the energy dissipated per second is

En=E\ sin2 25 cos3 5+£f sin4 5 cos3 5. (43)

Now, if the modulus of the angular momentum is assumed constant during the motion, then &~
depends on 5 only. Then,

c o s 2 h+2A' ( 4 4 )
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If

we have

and the equation

becomes

cos 8

cos 8=->
V

dm (45)

(46)

if (A—(7)>0. Let us consider the solution of equation (46) corresponding to the initial conditions

p(0) = l+«, with *>0 and arbitrarily, e>0. Since -£ > 0 , p is an increasing function of t for any-

one value of the parameters Ef2. The sign of d?p/dt2 is, for £>0, the same as that of (22<22—I??8)

P2+2(E?-E?), which is positive for

2{E?-E?)_ Ef
^

The curve in figure 3 shows the trend of the function p(f) if Efl^>2Eti, where

p**=

(47)

(48)

This deduction is based on the hypothesis that Dfa* remains constant while 8, <p, and ^ vary during
the motion. Since, however, the characteristics of the oscillator change during the motion, they

are functions of S. If, for example, we assume that -1=X2v~<l, equation (46) becomes

(49)

Also, the trend of the function p(t) can change since there are two points of inflection. The curve in
figure 4 shows the trend of the function p(t) if 0<eZ<l and Ef

V

FIGURE 3.—Variation of the precessional period with time
(Case I).

FIGURE 4.—Variation of the precessional period with time
(Case II).
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3. Body motion of Explorer IV
In this section, we shall compute the extent to which the phenomena considered above can explain
the observed motion of Explorer IV during the first 30 days after launch.

3.1. Torque due to the atmospheric drag.—We shall now evaluate for the specific case of this
satellite the coefficients introduced above. To begin, we note that the variation of the modulus of
the angular momentum during the first 30 days is, to a very good approximation, not more than 3
percent of the initial value. The external forces acting on the body cause a first-order variation in
the direction of the momentum, and a small second-order variation in the magnitude of the momen-
tum. The ratio of the magnitude of the total variation of the momentum to the variation of modu-
lus of the angular momentum is only a few percent. An exact computation of the aerodynamic
torque would be very time-consuming. Assume that the satellite moves in free molecular flow
and that the re-emission of the molecules from the body is completely diffuse.

Since we need only a good approximation of the function C0—C2 cos2 y—C3 cos3 y in order to
have equation (1) represent the terms of the atmospheric drag in the best manner, only the coeffi-
cients Co, C2, and C3 will be evaluated now. First, we compute the modulus of the momentum for
7=ir/2. The total force of the atmospheric drag acts in the direction opposite to that of vo, while
the resultant of the reactions due to the re-emitted molecules is in the same direction as vo. The

drag is ^^VQL, where 2 is the maximum projected area, and ^"is equal to 2.2 for the hypothesis of

free molecular flow and diffuse re-emission. The point of application of the resultant drag is on
the axis of symmetry at a point G' where GG'=—/Ok, and / 0 >0 .

Next, let us consider the situation for y^ir/2. The computation is now more complicated
since the moments due to the impinging molecules should be distinguished from the moments due
to the diffusely re-emitted molecules. If we substitute for the satellite's body an equivalent cylinder
with plane bases normal to the axis of symmetry, the resultant force of the impinging molecules is

^fiP(So|cos7|+S|sin7|) -£} where 2 is the same as above; ^ = 2 ; and 20 is the transverse area.

The center of pressure, G'', is independent of y and is the same as above. The moment, with respect
to G, of the atmospheric drag due to the impinging molecules is

^ 0K|. (50)

Now we evaluate the component of the torque due to the diffusely re-emitted molecules. As
computed by Cook (1959) ,fi the total force acting on the lateral surface of the cylinder is perpendicular
to the axis of symmetry in the plane parallel to vo, and the modulus of the total force is

where sr is the "molecular speed ratio of re-emission." 6 Since the center of pressure of the total
force is also the same as before, and since the force is perpendicular to the axis of symmetry, then

^ K | . (51)

' On page 26 of bis paper, Cook evaluates only the component of the total drag due to re-emission, In the direction of TO.

* Mr—*-\j—, where « - r—SI?eer1
0 ^ ^ *? r> T-absolute temperature of the atmosphere, and T,-absolute temperature of the gas re-emitted

f Tr most probable molecular speed
from the surface of the satellite.
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We note that the torque due to re-emission from the bases of the cylinder is an order of magnitude
smaller than the aerodynamic torque and that if the bases are plane, or if the cylinder is open, this
torque is zero. Therefore, for any one 7 we obtain, with good approximation,

M G = | [2(20|cos 7|+2x|sin 7|)+0.221]k/0Xvo|»o|. (52)

We must now compute the influence of the asymmetry of the body with respect to a plane nor-
mal to the axis through the center of pressure. Let us suppose that the momentum of the re-emitted
molecules of the nose of the satellite, not computed for the equivalent cylinder with plane bases, is
at least one order of magnitude smaller than the total momentum for very small values of 7. We
will evaluate the asymmetry of the body by substituting / 0 + / i cos3 7 for /0, where 0 < /1 < /0- This
assumption is very approximate, but we shall see later that a more exact evaluation is not worth the
effort required. The relation / i > 0 depends only on the fact that none of the molecules impinging
on the exhaust nozzle is diffused out of the body. Thus

M o = ||[2(S0|cos7l+2x|sin7|)+0.22,] ( /„- / , cos37)kXvoM, (53)

where 20=200 cm2, 2,=3000 cm2, /0=14 cm, and / , = 7 cm.
We made the approximate evaluation of / , by considering position I of the satellite corresponding

to the angle 7^x/6, and position II corresponding to the angle 7^5TT/6; these positions are dia-
grammed in figure 5. The momentum of the impinging molecules is the same for the two positions,
but the momentum of the diffusely re-emitted molecules is not the same. If only a small fraction
of the (p20tfo cos 7) molecules impinging on the exhaust nozzle are re-emitted from the body in posi-

V3tion II, then these molecules are diffusely re-emitted with a momentum equal to 0.2 p20flo \- L in

position I, where L (the distance from the nozzle to G) is about 100 cm. This value for the momen-
tum is the difference in the momentums corresponding to the two positions. If we evaluate this
difference by using equation (53), then / , = 7 cm.

Finally, we evaluate the coefficients Co, C2, and C3 by identifying the value of Mo from equation
(53) with the value of Mo from equation (1) for the same value of 7(7=TT/2, 0, ir). We obtain

C0=4.2X104cm3, C2=3.5X10*cm3, C3=2X103 cm3.

To finish, we must evaluate for Explorer IV the vectors defined in equation (4). In figure 6
the ratio (/WQ)/(P*VO2) has been plotted against the true anomaly of Q over the orbit, where p* is the
density and t% is the velocity at perigee. We assume that the scale height is about 40 km.
The vectors in equation (4) can be evaluated from the graph in figure 6. If we consider only the
contribution of the drag in the interval (—15°, 15°) around perigee, and if vo is assumed constant
and equal to y%, then

T 1 vo T cos2 6 ya r c o s 0 vo T,,_cos3 0 vq
12 \vo\' ^ 12" |»«|* *3 ~ 12

FIGURE 5.—Asymmetric property of the satellite.

636-014—63 12
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Substituting Co, C2, C3> Io, Is, Is and l'a' in equation (6), we obtain this differential equation:

{ 2 - 1 )cos>> , ( l - | sin*

+2 103 ( | sin* 5+cos4 sVlO3 • | • cos 0 sin2 3(sin2 5-4 cos2 5) | ^ | x n . (55)

Thus, the direction of the angular momentum rotates around •$. Using equation (55) with 8=84°,
0=45°, t>*=8 km/sec, p=1.8X10"13 grams/cm3, ro=2ir/12 sec"1, C=4.7X107 grams/cm2, we obtain

— ^0?45. Note that the motion of the satellite is a quasi-tumbling motion corresponding to a roll

period of 1 second.

i

1 in.

0.754

0.323
1 >

10°
1

20° 30° 40°

FIGURE 6.—Relative atmospheric density versus true anomaly
along the orbit.

Hence, ^ =' rev

We observe also that the value of p* was taken from tables from Jaccbia (1960a). This is a repre-
sentative value, close to the mean for the epoch. Since, according to the same source, erratic
fluctuations in p* by a factor of 2 are in order, we can expect that the variations of Q due to the
atmospheric drag were similarly affected.

8.2. Gravitational torque.—In this section, we shall compute the magnitude of the perturbation
due to the gravitational torque, Pb. Using the orbital elements of Explorer IV, we find that equation

(8) becomes ^ = l ( r 6 rad2/sec2, and equation (9) becomes ^=1.62X10"6 cos 0X (l— | sin2

cos 0, sin 0X (l— | sin2 AV 2 /
3.3. Magnetic torque.—To compute the perturbation due to the magnetic torque, Pe, we assume

that the earth's magnetic dipole is /*B=8.1X1025 emu; thus, 3, Mg
 2.3/2^0.25 gauss. Let us put

a 1̂ e )
tw=50°, —-=1.4X103^3-cos5( —j/i+jii^Xn )XQ. For example, we notice that if the intrinsicrev 07*0 \ 4 4 /

magnetic moment has, parallel to the axis of the body, a component of the order of 0.5 amp-m2

(corresponding, for example, to a solenoid parallel to the axis of symmetry, with 10,000 turns and

1 cm in diameter, in which there is a current of 0.5 amp), then ^=0?01. This action corresponds
rn rev

to a maximum torque of 12.5 dyne-cm.
Measurements carried out by the Radio Corporation of America (private communication) on

Tiros I (Satellite 1960 /32) showed the presence of a disturbing magnetic torque of about 200 dyne-cm
owing, probably, to interaction between the earth's magnetic field and the component of the intrinsic
magnetic dipole parallel to the spin axis. Perhaps 70 percent of the torque comes from the residual
magnetism of the high permeability components in the satellite; the remaining 30 percent comes
from current loops in the electrical circuitry of the satellite's instrumentation.

Grumman (private communication) has estimated the disturbing magnetic torque expected
for the Orbiting Astronomical Observatory proposed for launch in 1963. The major part of the
torque expected in this satellite will result from its permeable structure; the contribution of the
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internal complex circuitry will be minimized by proper electrical design. The amount of torque
predicted is many hundred dyne-cm. Since we do not know if this minimization has been done for
Explorer IV, the value 17.5 may be too small.

Finally, let us make a crude evaluation of the torque, averaged over one precessional period,
due to the induced magnetic dipole that we obtained in section 2.4.

If we assume that wii=0, 7713=1 and Q=u ^ — n m —-»

then

BW-+.X-.
Finally,

M£»'> = + 7 X l O - ^ M - l ^ u X n ^ dyne-cm. (57)

The shell of the body of Explorer IV and the casing of the last-stage rocket left attached as
part of the satellite were both made of 410 stainless steel, whose initial permeability is 110. If we
assume that there is no premagnetization 7 to be considered, then equation (57) becomes (using
y=2000 cm3 and M = H 0 )

M^I') =+154nXn«, dyne-cm,

which corresponds to a variation of 1?3 per revolution. The chosen value of 7 may be far from the
actual value for the reasons given in the introduction. This amount is quite sufficient to explain
the variation of £2 during the motion, and even during the period of tumbling motion.

sec

3

2

1

0

-

5
1

10 15

y

20 25 day*

FIGURE 7.—Observed variation of the precessional period.

4. Results and conclusions
4.1. The period of rotation around the gyroscopic axis.—The history of the period of rotation
around the gyroscopic axis is traced in figure 7. Fields (Lundquist, Naumann, and Fields, 1961)
determined the period from the modulation of the counting rate of the directional counter. The
observations seem to have been made very carefully. Thus, the observed curve can be compared
with the theoretical one8 that was obtained from the energy transfer due to the internal vibrational
motion (see figs. 3 and 4). The existence of the first point of inflection is evident. The explana-
tion given earlier of the definite second point of inflection, which corresponds to the 23rd day after
launch, may seem artificial. However, this second point of inflection can be explained in another
way. Perhaps the decrease in the probably significant torque due to the interaction between the
earth's magnetic field and the ferromagnetic components of the satellite plays an important role.

The rapid increase in the period on the 31st day after launch corresponds to the first time in
the history of the satellite that <p—$. Perturbation Pt may also be the explanation of this
phenomenon. Note that this particular case has been excluded for reasons of simplicity.

»If there is any Important premagnetization (Lundquist, Naumann, and Fields, 1961), this may become a predominant factor with respect to the
induced magnetization, and therefore must also be considered in the perturbation P,.

* We observe that *> + 4> cos $ s ^ and also that p sx n/y during the whole period of motion.
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The rapid decrease in the period on the 33rd day after launch is very striking. Several causes
sufficient to explain such a phenomenon can be found quite easily. The necessary torque is so
small, 10 dyne-cm in comparison to the 200 dyne-cm which are needed to explain the decrease in
the first 5 days, that any electromagnetic phenomenon may be responsible for this exceptional
decrease. Consequently, we would need to know the internal ferromagnetic components to evaluate
their interaction with the earth's magnetic field. This torque can at least partially explain the
decrease in lp due to energy leakage by magnetic hysteresis in the ferromagnetic components.
Because of the shape of the body, we prefer to consider this action more than the influence of the
eddy currents. While we exclude the possibility that the initial decrease of lp can be explained
only by the eddy currents, the action of these currents and the magnetic hysteresis in the ferro-
magnetic components consistent with the variation of the earth's magnetic field along the orbit
can contribute to the decrease during the whole period of motion.

4-2. Possibility of the determination a priori of the body motion.—There are two phenomena of
first-order magnitude in the body motion of Explorer IV: the decrease of lp and the rotation of $2,
with the modulus of the angular momentum assumed to be constant in the first-order approximation.
The first phenomenon was explained in section 4.1. In this section, the change in the direction of
Q will be discussed.

If we exclude the possibility of handling the global problem of the motion of G and of the motion
of S around G, then we should know the function 8(i) and the dependence of the orbital elements
of G on time. From equations (6) and (9), and from the equation attained by averaging exactly
equation (19), we can write the global perturbation equation

^=R(8,d}d1,y,\1,\2)XQ, (58)

which has the first integral Q2=l. If we project this equation over the inertial frame of reference,
taking into account the variability with time of the X, Y, Z axes, we obtain the equations

^ - / . ( Q i , Q» t), ^-2=/2(Qx, 02,1), (59)

where J2i is the right ascension and Q2 is the declination of Q. In this way, if exact observations of
the variation of 12 and also of dQ/dt are available, we can compute the additional torque that is
necessary to explain the total variation of Si. The experimental determination of the axis of tumble
is not so exact as the determination of the angular velocity lp. Therefore, such a computation
cannot give exact enough information about this additional torque. Indeed, the determination
of the axis of tumble has a possible error of 10°, an error that is very much greater than we can
tolerate in a complicated computation, considering the work involved.

4.8. The displacement of Q during one revolution.—The only numerical computation which can
be made easily is that of the average diurnal variation of Q. The variation observed in the first 30
days after launch was evaluated as more than 10° per day. Of this amount, 5° or 6° can be
explained as a consequence of the perturbations Pa, Pb, and Pe. That is, 60 percent of the variation
which was evaluated from the recorded signal strength observations correlated with the satellite's
antenna radiation pattern (Naumann, 1961), from the variation of the angle of the axis of tumble
with v% (Zadunaisky, 1961), and from the recorded variation of the temperature of the body cor-
related with the position of the sun.

The rapid change in the direction of Q during the first day after launch is easily explained if
we assume that the factor cos 8 is very important for the perturbations Pa and Pe and that the atmos-
pheric drag can cause a variation of 10° or more per day. We compute the angular variation of
Q for 5=84° in order to obtain an idea of the order of magnitude of the perturbations Pa, Pb, and
Pe in the period of quasi-tumbling motion.
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The gravitational torque may be responsible for a variation of 0?l per revolution around the
orbital plane, the drag torque for an average variation of 0?4 per revolution, and the magnetic torque
for an average variation of 0?2 per revolution, if we assume that the satellite has an intrinsic mag-
netic moment corresponding to a maximum torque of 300 dyne-cm, as has been provided for the
other satellites. If we take into account the fact that the axes of the rotations due to Pa, Ph, and Pe

are not parallel, we can compute the average variation. The result is not much more than 0?45 per
revolution, or 6° per day, which is the maximum amount.9

We note, finally, that the perturbation Pd due to the interaction between the earth's magnetic
field and the ferromagnetic components of the satellite is not easily computed, because of three
chief problems: the direction of the induced magnetic moment, the evaluation of the permeability,
and the hysteresis phenomenon.
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On the Accuracy of Measurements Made Upon
Films Photographed by Baker-Nunn Satellite

Tracking Cameras

By Karoly Lassovszky

At present the Smithsonian Astrophysical
Observatory operates twelve Baker-Nunn satel-
lite tracking cameras throughout the world.
The photographs taken by these cameras are
reduced at the photoreduction division of the
Observatory's headquarters in Cambridge,
Massachusetts.

The introduction to the first catalog of
precise satellite positions (Lassovszky, 1960)
mentioned that we had earlier begun an investi-
gation to determine the accuracy of the measure-
ments of the satellite positions on Baker-Nunn
films. These studies included consideration of
personal measuring errors and similar problems.
Some preliminary results appeared in the first
catalog. In the present paper, we give further
details.

Personal measuring errors

The focal length of the Baker-Nunn camera is
50 cm. Although the exposure time is usually
very short, varying from 0?2 to 3*2 when the
camera is stationary, a fast-moving satellite
produces on the film a trail that may be several
centimeters long. If the exposure is made near
the equator, we do not obtain perfect point
images even of the stars. Plate 1 shows a typical
exposure. Since a rotating barrel shutter inter-
rupts the exposure five times, the photographic
trail of the satellite is chopped into six segments
divided by short breaks. (The star images are
too short to show breaks.) The length of each
break corresponds to the time interval during
during which the shutter was closed. The inter-
val may be as much as 0*16; and the length,
several millimeters. At the instant the third

(the central) break is made, the time of the
exposure is photographed on the film. To
determine the position of the satellite at this
time, we measure the center of the central
break and the centers of the reference-star
images.

Generally, the satellites are so faint that, in
order to obtain measurable images, we must
have the camera move to track the satellite.
If the tracking rate is precisely the same as the
rate of satellite motion, we obtain a point image
of the satellite with star trails in the background
(see plate 1). We then measure the point image
of the satellite and the central breaks of the
reference stars.

Even if we obtain a point image of the satel-
lite on some frames, we do not generally find
such images on all frames of the same film, since
the angular velocity of the satellite is not the
same at different altitudes. The image may be
more or less elongated, or even appear as a
short trail. If the image has an oblong shape,
we measure its center. If the image is actually
a trail, we obtain the position of the center by
measuring both ends of the trail.

If the camera tracking rate differs substan-
tially from that of the satellite, the satellite
trail may be so long that shutter breaks become
visible in it as well as in the star trails. In that
case, the central breaks in the trails of both the
satellite and the stars are measured.

The accuracy of the measurements on trails
or on breaks is, of course, less than that of the
measurements made on point images, and we
may expect that the greater the length of the
trail or break, the less the accuracy of the

165
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measurement. We shall discuss now some per-
sonal errors that may affect the accuracy of the
measurements.

Settings at different orientation angles.—During
the measurement, the filmholder is rotated
until the north-south direction on the film is
parallel to the F-axis of the measuring machine.
(All the measurements discussed here were made
on Mann two-screw comparators.) Since the
camera may track in any direction on the sky,
the trails or breaks can form various angles
with the X- or F-axis of the comparator. We
might expect that the accuracy of the setting of
the image on the reticle lines would be affected
by the angle. To answer this question, we
measured two different breaks at different
orientation angles.

In one case, the length of the break was IOOJU.
The film was rotated through ten degrees in
orientation angle between each set of 30 inde-
pendent settings made on both the X- and F-
reticle lines. The standard error of all the
settings made on the X-reticle line was 3.31/x,
and the standard error of all the settings made
on the F-reticle line was 3.33/*. Since the
standard errors were almost the same, we con-
clude that the accuracy of the measurements
on the average is the same whether the meas-
urer makes the settings on the horizontal (X)
or on the vertical (F) line. The standard
errors of the 30 measurements on each reticle
line made separately at different orientation
angles varied between 2.6 and 4.0M on the in-
line and between 2.5 and 4.8/x on the F-line.
Neither of these values, however, shows any
systematic change with the orientation angle,
in either the Jf-axis or the F-axis. Thus, we
believe that the accuracy of the measurements
is not a function of the orientation angle.

A second set of measurements carried out by
another person supports this conclusion. In
this case, the length of the break was 4V; the
film was rotated five degrees between each set
of measurements; and 12 independent settings
were made on both the X- and F-reticle lines
at each orientation angle. Figure 1 shows the
standard errors of the -ST-measurements ob-
tained at each angle. This figure and three
others not given here indicate that the standard
errors have a random distribution and show no
sign of dependence on the orientation angle.

FIGURE 1.—Standard errors of the measurements of a break
at different orientation angles.

Since the accuracy of the measurement
seems to be independent of the orientation
angle, we restricted our other investigations
of personal errors to a single angle. We chose
0°; that is, we placed the film in the comparator
in such a position that the trails or breaks
were parallel to the horizontal reticle line
(X-axis), and the settings were made on the
vertical line (F-axis).

Frequency distribution oj settings.—Seventeen
measurers made settings on trails and on
breaks of different lengths, turning the screw
of the measuring machine until the reticle
line, according to the measurer's estimate,
was centered on the image. Each such series
contained about two dozen settings. Since
some persons measured more than one trail
or break, the total number of measurement
series was 34.

We find great variety in the frequency dis-
tribution of the settings made by the different
measurers. Of course the distribution also
depends strongly on the length of the image.
Moreover, we might expect that the distribu-
tion depends also on whether the measure-
ments were made on trails or on breaks.

Of the 34 series of images, 28 were trails
and 6 were breaks. The trails varied in
length from 0.052 to 3.955 mm; and the breaks
from 0.031 to 0.410 mm. The frequency
distributions of the settings vary greatly with
the persons measuring and with the image
length; also, not many settings were made on a
single image. Therefore, in order more easily
to compare the results obtained on trails and
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on breaks, we determined the frequency distri-
bution from all the settings made on the six
breaks and independently determined the
distribution from all the settings made on
the six shortest trails. The mean length of
the breaks was 0.151 mm, and that of the trails
was 0.154 mm; that is, they were practically
equal. The two frequency distributions are
given in figure 2; the length of each vertical
line indicates in percent the number of settings
made at different distances (expressed in
microns) from the zero point, which is the
mean of all the settings. (Because of the
"magnitude error," to be discussed later in
the paper, this point is not necessarily the
center of the break or the trail.)

Although the scattering of the settings on
the breaks seems to be slightly smaller, con-
sidering the inhomogeneous and scanty mate-
rial, we cannot definitely state that there is
any substantial difference between the two
distributions. On the contrary, from their
similarity we can draw the conclusion, at
least on the basis of the material at hand,
that the accuracy of the measurements is
not essentially affected by whether the measure-
ment was made on a break or on a trail. There-

1 II.

_ BREAKS
jl =0.151 mm

II,

fore, in the following discussion, we shall
disregard whether the image was a break or
a trail and use all the data together. In any
case, the measurements made on breaks were
too few in number to be discussed separately.

The lengths of the images varied from
0.031 to 3.955 mm. If we arrange the obser-
vation series according to the increasing length
of the image, we notice a progressive flattening
of the frequency distribution curves. How-
ever, continuity is strongly disturbed because
of the different accuracies of the measurements
made by different persons; this personal
effect fades out if we combine the material into
several groupings. From the groups formed
in this way, we show in figure 3 the frequency
distribution curve of the group having an
average image length of 0.080 mm, and that
of the group having an average image length
of 2.886 mm. If we add to these curves those
obtained for an intermediate image length
(shown in figure 2), we can see by comparison
that the frequency distribution curves flatten
progressively as the length of the image
increases.
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FIGURE 2.—Mean frequency distributions of settings made on
breaks and trails.
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FIGURE 3.—Frequency distributions of settings made on
images of different lengths.
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The "magnitude error."—In measuring, we
set the reticle line at the point that, in our
judgment, is the center of the break or the
trail. In the frequency distribution curves,
the zero point represents the mean of these
settings. This does not mean, however, that
the zero point is really the center of the image,
for two reasons. Besides the scattering of the
observation errors, an effect that may be
lessened by increasing the number of observa-
tions and taking the mean, our procedure
involves a systematic error whose effect cannot
be reduced even by increasing the number of
observations; it is well known that we usually
do not measure the center of the image exactly
even if it is a perfect disk since, for physiological
reasons, we do not stop turning the screw at the
exact instant when the reticle line is centered
on the image. This systematic error differs
for different observers; futhermore, it varies
even for the same observer according to the
size of the image disk, which in turn depends
upon the brightness of the star. For this
reason, it is often called the "magnitude error."
We usually eliminate this error by first making
a direct measurement of an image and then,
after rotating the film or plate through 180°,
making a reverse measurement of it.

When we measure breaks or trails instead
of disks, a similar error may occur which
depends upon the width of the break or the
length of the trail, as well as upon the person
who makes the measurement.

To determine the magnitude error, we made
settings not only at the point that the observer
estimated to be the center of the image but
also at both ends of the oblong image. The
difference between the settings at the two ends
gives the length of the image, and their mean
gives the center of the image. We can assume
that the values for the center and the lengths
computed by this method may also be affected
by systematic error for some physiological
reason, since we may perhaps make these
settings differently when the end of the image
is on the left side or on the right side, or when
it is above or below. The results of our
statistical investigations, however, indicate
that this systematic error is insignificant
compared to the "magnitude error."

The Mann comparators we use are provided

with a projection system. When the X-screw
is moved clockwise, the X-readings increase,
and the image projected on the screen passes
through the vertical cross line from left to right.
Of the 34 observation series discussed here, in
21 cases the mean values of the estimated
centers were less than the values of the centers
computed from the settings made on the two
ends of the images; in 11 cases they were more,
and in 2 cases the centers coincided.

Of the 17 observers who made the measure-
ments, on the average 9 stopped turning the
screw only after the center of the image passed
the reticle line, 7 stopped before it passed the
line, and one did it both ways. It must be
emphasized that this statement is valid only
for the means of the settings. In fact, the
scattering of the accidental errors is so great
that many accidental errors are larger than the
magnitude error. Perhaps the best way of
stating this is that a given person systematically
makes more settings on one side of the center
than on the other side.

The magnitude errors, that is, the differences
between the estimated and the computed
centers obtained for the images, varied from
—39/* to +65fi. Arranging all the magnitude
errors in order of increasing absolute value and
indicating for each error the corresponding
length of image, we can expect to find a re-
lationship between the two quantities. The
magnitude errors are, of course, greatly in-
fluenced by the systematic personal effects,
but, since our data are scarce, we are obliged
to use all of these heterogeneous data. Plotting
the magnitude errors against the image lengths,
we find that although there is a great scattering,
the expected relationship is certainly apparent.
Forming 8 groups from the material, we get
the relationship represented in figure 4. The
scattering of the individual values is conspic-
uous only at the longer lengths, but these long
images were measured only for the purpose of
this study. In practice, the trails are usually
less than 0.2 mm and the breaks smaller than
0.1 mm.

The effect of the distances of the reference
stars on the accuracy
For the determination of the satellite positions,
we used the linear plate-constant method. For
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LENGTH OF IMAGE IN MILLIMETERS

FIGURE 4.—The relationship between the length of image and
the "magnitude error."

the computation of the six plate constants, three
reference stars would theoretically be sufficient.
However, we have persisted in using six stars,
employing the least-squares method to compute
the six constants from twelve equations. When
there were large residuals, one or two reference
stars were sometimes omitted. If large resid-
uals still remained, we repeated the measure-
ments, never using fewer than four reference
stars.

We further decided that the reference stars
should lie not farther from the satellite image
than 20 mm on the film, a distance correspond-
ing to 2?3 in the sky, and that the reference
stars should be symmetrical about the satellite
image, so that the image will always lie within
the configuration even if some of the reference
stars must later be omitted.

Among the different sources of error that
influence the accuracy of the reduced position,
distortion of the emulsion may cause serious
problems. Another source of error may be the

1

_

I

0.9 I

\
»0.7

optical distortion of the field of the camera.
When we began to use the linear plate-constant
method, we assumed that, within the admis-
sible maximum area of configuration of the
reference stars, the distortion did not appreci-
ably influence the accuracy. We were aware,
however, that this assumption needs proof
since, if it were not valid, our method would not
be wholly reliable.

To find out how the position obtained is
affected by use of reference stars at different
distances, we chose various star groups, each
containing six stars, around the object whose
position was to be determined. The average
distances of the groups differed, but, in a
given group, the distances of the stars were
nearly the same. On a chart of the area
surrounding the object, rings were constructed
around the central image; stars were chosen so
that the reference stars of a given group were
all inside the ring and properly distributed.
Since the width of the frame was only 54 mm,
the exterior radius of a complete ring cannot be
larger than 27 mm even when the center object
was exactly in the middle. However, we could
go even farther from the center object by choos-
ing three reference stars in the left part and
three in the right part of an incomplete ring
with an exterior radius larger than 27 mm.

We chose three stars on a frame and deter-
mined their positions by using reference stars at
different distances. One of the stars was
approximately in the center (II) of the frame;
of the other two, one was in the center of the
left (I) hah0 and one was in the center of the
right (III) half of the frame. In field I, four
groups of reference stars were available around
the chosen center star; in field II, seven groups;
and in field III, six groups. The greatest dis-

-t -i

FIGURE 5.—The shifts of the positions of three different stars on the same frame when
reference stars at different distances from the center star are used. The numbers
at the positions give the mean distances of the reference stars in centimeters.
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tance of the groups in field I was approximately
2 cm; in field II, 3 cm; and in field III, 2.5 cm.
The position of each center star was determined
separately from each of the groups around it;
then the mean position of each center star was
computed from all the stars in its field. Choos-
ing the mean position as origin, we can see in
figure 5 how the position of the center star
changes when different groups are used for the
reduction. For every position of the central
star, the chart indicates the mean distance of
the group of reference stars used to determine
that position. No relationship seems to exist
between the position and the distance, at least
in the area examined. This result may be
regarded as favorable since the scattering of the
mean positions is not very much greater than
that to be expected even if these positions had
been obtained from the reiteration of the
measurements using the same reference stars.

We also tried to find out, from another
graphic representation of these results, how the
distances of the reference stars influence the
computed positions. Combining the results
obtained for the three centers we took the mean
of the positions obtained from the groups that
were nearer to the center star than 1.4 cm,
then took separately the mean of the positions
from groups that were farther than 1.4 cm from
the center star. The distributions of the
individual positions around the two mean posi-
tions are illustrated in figure 6. Although the
number of observations is not very large, one
notices at first glance that the scattering of the
positions derived from the groups of reference
stars nearer to the center star than 1.4 cm is
undoubtedly smaller than the scattering at
distances larger than 1.4 cm. However, even
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FIGURE 6.—The scattering of the positions obtained when
reference stars at different mean distances are used.

in the latter case, all the positions are in a
4 " x 4 " square; that is, they are in an area not
larger than we can expect from the measure-
ments made with the Mann comparators on the
Baker-Nunn films.

In practice, we of course choose reference
stars that are as near as possible to the satellite
image, even though sometimes, in areas poor in
stars, we are obliged to use reference stars that
are farther than 1.4 cm from the satellite image.
On the basis of our investigation, however, we
seem justified in using the linear plate-constant
method, at least in an area with a diameter of
5 cm (5°.8).

The accuracy of the measurements

We may regard the figures given in the preced-
ing section as a graphical illustration of the
accuracy that we obtain in the reduction of
Baker-Nunn films. Making use of the numer-
ical values of the measurements, we can also
express this accuracy numerically; that is, we
can compute the standard error of a position
determined on a Baker-Nunn film.

Before we made the investigations discussed in
the preceding section, we had already obtained
some information about the relative accuracy of
the measurements made with both the Van
Biesbroeck goniometers and the Mann
comparators.

In SAO Special Report No. 41, we described
the methods used to measure the position of a
satellite, and recounted the sources of errors
that we could expect. The accidental personal
errors cannot be avoided, but we can lessen their
influence by using a greater number of reference
stars, or by increasing the number of settings on
them, or by repeating the whole measurement.
We assume that the so-called magnitude error
is eliminated (or at least lessened) when both
direct and reverse measurements are made.

At the beginning of the photoreduction proj-
ect at the Smithsonian, two Van Biesbroeck
goniometers were chiefly used. The goniometer,
which in fact consists of two independent instru-
ments, a theodolite and a filmholder, may itself
be a source of errors. Since the two parts of
the machine are not stably connected, changes
may occur, in time, so that the axis of the film
holder may not pass exactly through the center
of the theodolite, and the vertical axis of the
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theodolite may not be perpendicular to the axis
of the filmholder. The smallest readable unit
on the Van Biesbroeck goniometer is 1"'.

On a screw comparator, there are two chief
sources of errors: the periodic and the secular
screw errors. The smallest readable unit of the
Mann comparators is 1/z, corresponding to 0"A
on the Baker-Nunn films. According to the
manufacturer, the periodic error of the Mann
machines is less than In, and the secular error
within the measuring area of the reference stars
is less than 0.5M- We can regard both values as
satisfactorily low.

In the photoreduction division, each computer
from time to time measures the same image
twice to check his own consistency. (Averages
of the differences obtained from a large number
of such double measurements give characteristic
information of the efficiency of the measurers.)
Figure 7 shows the results of 54 such double
measurements made with the Van Biesbroeck
goniometers, and of 90 double measurements
made with the Mann comparators. The co-
ordinates of each dot give the differences in a
and in 5 of the two positions obtained by the
double measurement in question. The distance
D of the dot from the origin represents the
angular separation of the two positions. The
much smaller scattering of the dots shows at a
glance that the measurements made with the
comparators are of higher accuracy than those
made with the goniometers.

From all the double measurements, the
following standard errors have been derived
for a single determination of position:

Number of double
measurements made with

Standard errors
M* MJ MD

Van Biesbroeck 54
goniometer:

Mann comparator: 90

3T99 3T21 5T72

1. 10 1. 12 1. 82

These values show that the accuracy obtainable
with the Mann comparators is more than three
times greater. These results differ only slightly
from those given in Special Report No. 41
(p. 8), which was based upon fewer observations.

The positions obtained from the measure-
ments made with goniometers seem to have on
the average a larger error in a than in 5. The
difference is small, however, and after the
omission of a few double measurements in
which the agreement between the two positions

is poorest, the difference becomes insignificant.
On the other hand, the positions obtained with
the Mann comparators showed the same stand-
ard error in both a and 5. As we shall see, the
same conclusion was reached from other meas-
urements made later. This result does not
seem to confirm earlier conclusions that the
error in right ascension is generally larger.
(This larger error in right ascension was ex-
plained by the fact that most of the satellites
whose positions were measured at that time
were traveling in a west-to-east direction, and
errors in the direction of motion are somewhat
greater than errors perpendicular to the line
of motion.)

We must not forget that for each double
measurement the same reference stars were
used; therefore, the effect of any catalog
errors is the same in both measurements.
Thus, the catalog errors are not reflected in
the position errors of the satellite. To examine
the effect of catalog errors, we made special
measurements. We determined the positions
of seven satellites when they were passing
through areas rich in stars. Thus we could
determine the position of each satellite using
four, and in one case even five, independent
configurations of reference stars. The con-
figurations used for each satellite were chosen
so that their mean distances from the satellite
were approximately the same. (This was done
in order to eliminate the occasional effect of
the distance of the star from the satellite image.)
The measurements were made by five different
persons. The agreement between the positions
obtained from different configurations was
satisfactory. From the 29 independent posi-
tions, the following standard errors were de-
rived for one position:

29 1T00 1T01 1T50

These values differ only slightly from those
determined by the double measurements (11'0,
IT 12, l!82). Although we might have ex-
pected to obtain larger values when different
reference stars were used, in fact the values
are slightly smaller. We can conclude that
the catalog errors have practically no effect
on the accuracy that can be obtained with the
Mann comparator on the Baker-Nunn films.
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FIGURE 7.—Differences in a and 8 of double meaurements made with Van Biesbroeck goniometers and with Mann comparators-
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In addition, we have some other measure-
ments that can be used for the determination
of accuracy. As mentioned in the first para-
graph of this section, we can also use to deter-
mine the accuracy the measurements made to
find out how the distance of the reference stars
from the satellite image influences the determi-
nation of the satellite's position. We made
two groups of positions, one group derived
from the reference star configurations that
were nearer to the center star than 1.4 cm, and
the other group where the distances varied
between 1.4 and 3.0 cm. From these two
groups, the following standard errors were
found for one position:

r n p* MJ ftp

r<1.4 8 0f83 0T66 1T03
1.4<r<3.0 9 1.4 1.12 1.60

The standard errors obtained from the first
group are, of course, smaller. The standard
errors obtained from the second group are
approximately the same as those from the many
previous measurements. This fact may seem
unexpected since the average distances of the

reference star configurations are generally
smaller for the usual measurements than they
were in the second group of these special
measurements. This favorable result can per-
haps be explained by the facts that for these
special measurements a better film was used,
and the center object was not a satellite but a
star image.

If we combine all the results discussed here
but discard the eight positions obtained from
the measurements of the reference star con-
figurations nearer to the center star than 1.4
cm, we get as the final result:

1T09 1T11 1!77

If restricted to one decimal, we can say that
the standard error of a position determined
from the measurements made with Mann com-
parators on Baker-Nunn films is ±1*1, both
in right ascension and in declination.

Acknowledgment
I express thanks to Mr. G. Kirklin for helping
with some of the reduction work.





Density of the Heterosphere Related to
Temperature

By Marcel Nicolet

An analysis of the behavior of the hetero-
sphere, i.e., of the terrestrial atmosphere where
the mean molecular mass cannot be taken as a
constant parameter, requires a theoretical study
to supplement observational results from which
it is not yet possible to obtain all the param-
eters needed for a complete picture of the phys-
ical conditions.

If a general consistent picture of the vertical
distribution of density in the heterosphere at
heights between 200 km and 1500 km is ob-
tained from acceleration data derived from
earth-satellite orbits, the analysis leads some-
times to unjustified conclusions concerning the
physical conditions. The sharp increase of
molecular mass, the gradient of temperature
increasing with height, the inflection of density
curves, and the correlation of density with un-
usual indices of solar activity are among other
physical anomalies that are introduced into this
analysis.

In this paper, an improved method for cal-
culating physical parameters of the heterosphere
is applied, in which the temperature is selected
as the essential parameter, and diffusion and
heat conduction are introduced.

Formulas for density

The vertical distribution of the upper atmos-
phere density deduced from the rate of change
of the period of the motion of a satellite in its
orbit is generally represented by the formula

p=Poexp (— (1)

in which p denotes density at height z, and po
at s = 0 ; and Hp is a parameter of the vertical
distribution of density, which must be defined

by
ldp
pdz

with the condition

dHp/dz=0.

(2)

(3)

These formulas cannot lead to correct con-
clusions concerning the temperature or the mean
molecular mass in the heterosphere.

To provide a basis for an analysis of the ver-
tical distribution of the temperature and mean
molecular mass, we must use at least the general
formula representing conditions of a perfect gas
and of hydrostatic distribution.

The general form to be used is (Nicolet, 1954)

dp dn.dT dz
(4)

where p is the total pressure; n is the total
molecular concentration; T is the absolute tem-
perature; and H is the local atmospheric scale
height. The atmospheric scale height H is
defined by

kTH=—, (5)
mg '

where m is the mean molecular mass; g is the
acceleration of gravity; and k is Boltzmann's
constant. The variation is, therefore, related
to the variation of T, m and g; that is,

dH=dT dm dg
H~T m g' (6)

By using equation (6), and introducing the
gradient of the atmospheric scale height

(7)
175
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we find that the general equation (4) leads to

pdz H'
and

ldp
pdz

1+0
" H

(8)

(9)

Thus, from equations (2) and (9), the rela-
tion between the local atmospheric scale height
H and the density parameter Hp is

H= (1+0)HP. (10)

The values of Hp, which are deduced from the
slope of the density-versus-altitude curve,
cannot represent real atmospheric conditions.
The use of Hp may lead to wrong conclusions
about the structure of the thermosphere,
especially where the gradient of the atmospheric
scale height is large.

If the height interval is small enough, 0 can
be assumed constant for calculation purposes.
If equations (8) and (9) are written in the form

dp=_ldH
V & H'

1+0 dH
and

dpg 1
~P9=~~ 0 H'

the integration with /3=constant leads to

and
Po \H{

(11)

(12)

(13)

P9 =

Po9o

The expansion of equations (13) and (14) gives

Po

-^—exD /

The second term in brackets is less than 0.01

at z=H0 if 0<O.42 and at z=\ Ho if /3<0.84.

Neglecting terms less than 0.01 before unity,
we can reduce equation (16) to

-^-=expf —
Po9o x

(17)

which is sufficiently accurate when an analysis
is made in a height interval less than one scale
height.

With a constant gradient of the scale height,
equation (10) leads to

(18)

and equation (12) becomes

dpg_ \^d

Pg~ JP~
(19)

If the same terms are neglected as were for
expression (16), equation (19) becomes after
integration,

(20)

Equation (15) must be compared with ex-
pressions (1) and (20). Since an analysis of
the physical conditions of the heterosphere
cannot be made without allowing for the effect
of the gradient of the scale height, it is useful
to have available a variety of atmospheric
models for which computations have been
carried out for combinations of the scale-height
gradients associated with the variations of
temperature and of mean molecular mass.

It will be noticed that the difference between
the parameter of density Hp with its gradient
/3P and the local atmospheric scale height H
with its gradient 0 increases with increasing
values of j8.

Method of determining atmospheric models
Inspection of density values at 200 km obtained
bv calculation reveals that the scale-height
gradient below 150 km plays the leading role
in determining the density at higher altitudes
(Nicolet, 1960b). In other words, if boundary
conditions are assumed in the neighborhood of
120 km, the atmospheric density between 200
km and 250 km is fixed by the scale-height
gradient between 120 km and 150 km but is
not much affected by the values of the scale-
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height gradient above 150 km. The net
result is that the vertical distribution of density
at high altitudes depends on the temperature
at the level of the thermopause, and the varia-
tion of the scale-height gradient above the
thermopause is due essentially to the decrease
of molecular mass. Thus, the atmospheric
conditions are defined by a diffusion distribu-
tion and related to the time of conduction
(Nicolet, 1960c).

From an analysis using various boundary
conditions and scale-height gradients, it appears
that the temperature must be considered the
most important parameter in deducing the
vertical distribution of atmospheric density.
Consequenlty, the vertical distribution of
temperature is related to the conditions of
heat conduction, and the heterosphere can be
assumed to be in diffusion equilibrium.
Average conditions lead, therefore, to consist-
ent atmospheric models in which the tempera-
ture and its vertical gradient can be determined
when diffusion equilibrium is assumed.

The diurnal variation of the density is rep-
resented by a change of the temperature and
a variation of its vertical gradient. In the
same way, the effects of solar activity can be
interpreted by a variation of the ultraviolet
radiation that affects the temperature gradient
and leads to variations of the temperature of
the isothermal layer. In fact, it should be
possible to predict how the density must vary
during a solar cycle when the boundary condi-
tions are known.

Finally, the magnetic storm effects can also
be included since Jacchia (1961) has shown
that the atmospheric-drag perturbations during
geomagnetic disturbances have a worldwide
distribution. The interpretation must be that
a general heating occurs, corresponding to an
increase of the temperature at all latitudes.

It is certain that atmospheric conditions
change in the E layer and involve a variation
of temperature that is an important parameter
to determine boundary conditions for atmos-
pheric models of the heterosphere. We cannot
present here all the possibilities, and average
conditions have been adopted in order to lead
to a density of the order of 4 X10"12 gm/cm3 at
200 km. It must be noticed that for the same
gradient of temperature, a variation of ±50°

K at 120 km leads to a variation of ±50 percent
of the density at 200 km.

The average conditions adopted here are as
follows:

Density p(120 km) =3.5X10-" gm/cm1

Temperature T(120 km) = 325° K
Concentration n(0) = 7.6X1010 oxygen atoms/cm*
Concentration n(02) = 1.2 X10" oxygen molecules/

cm3

Concentration n(N2) = 5.8X10" nitrogen mole-
cules/cm8

Scale height H= 10.37 km

Atmospheric conditions from 150 km to 650
km

The vertical distribution of density between
120 km and 150 km is practically unaffected
by the form of the variation with height of the
scale-height gradient, and the density in the
region of 150 to 160 km is almost a constant
for the same boundary conditions at 120 km.
The values of density to be expected at 150 km
for temperatures varying from 877° K to 642°
K are given in table 1. Such a range of tem-
peratures corresponds to equal intervals of
times (t—0, t=10) for a cooling by conduction
of the whole heterosphere considered as a
plane-parallel atmosphere subject to diffusion.
The 12 models of table 1 correspond to the
following temperatures at 150 km and their
associated gradients between 150 km and 160
km:

Model T(°K) fdT\
no. \dz/

0
1
1.5
2
3
4
5
6
7
8
9
10

877
873
863
852
829
803
777
751
726
699
671
642

18
15
14
13
11
10
9
8
7
6
5
4

In tables 1 to 10, T refers to temperature in
°K; H, the atmospheric scale height in km; /3,
the gradient of H for the height interval indi-
cated in the table; Hp, the density parameter
deduced from formula (10); p, the density in
gm/cm3 with (-12) for 10~12; p, the pressure in
mm Hg with (-6) for 10~6; M, the mean
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molecular mass with the mass of atomic oxygen
M—16; n, the total concentration in cm"3 with
(+10) for (1010).

The essential character of the data of table
1 is that the parameters Hp and M are almost
constant, while the atmospheric scale height
and its gradient vary. The density is almost
constant, (2.5±0.1)X10~12 gm/cm3 for tem-
peratures higher than 700°K. Below 700°K,
boundary conditions at 120 km are affected.

Since Hp= (20 ±1) km for the whole range
of temperatures, it is clear that density data
deduced from satellite air-drag may lead to
wrong conclusions about the atmospheric struc-
ture. For example, a constant scale height is

sometimes deduced from an analysis of satellite
data even though there is in fact a strong
gradient of the atmospheric scale height. When
an association was made between the apparent
scale height and the temperature, the wrong
conclusion was reached that the atmosphere
was almost isothermal.

Consequently, table 1 reveals that the varia-
tion of the atmospheric scale height and its
gradient can be very important, while other
parameters, and particularly the density param-
eter Hp, show no practical variation. Such
a variation of the atmospheric scale height
must lead to the variation of all physical
parameters at higher altitudes.

No.
0
1
1.5
2
3
4
5
6
7
8
9

10

No.
0
1
1.5
2
3
4
5
6
7
8

No.
0
1
1.5
2
3
4
5
6
7
8

T
877
873
863
852
829
803
777
751
726
699
671
642

T

1540
1414
1358
1305
1210
1126
1051
985
925
867

T
1791
1613
1532
1458
1327
1215
1120
1037
965
896

H

29.8
29.6
29.3
2& 9
28. 1
27.3
26.4
25.6
24.7
23.8
22.9
21.2

H

56.0
51.8
49.6
47.8
44.3
41.6
39.0
36.8
34.8
32.8

H

68.4
62.2
59.3
56.7
52.0
48.2
44.9
42. 1
39.7
37.4

TABLE 1.—Physical parameters at 150 km

0150-180

0.67
0.56
0.53
0.48
0.44
0.38
0.35
0.31
0.28
0.28
0.25
0.20

H,
20.0
20.7
20.9
21.0
21.0
21.0
21. 1
20.8
20.4
20. 1
19.8
19.2

p

2. 41(-12)
2.43
2.45
2.48
2.54
2.59
2.62
2.65
2.61
2.35
2. 14
1. 97(-12)

V
5. 0(-6)
5.0
5.0
5.0
5.0
5.0
4.9
4 .8
4.5
3.9
3.4
3. 0(-6)

TABLE 2.—Atmospheric conditions at 200 km

0200-210

0.32
0.27
0.25
0.23
0.20
0. 18
0. 15
0. 13
0. 13
0. 12

H,
42.7
41.3
40. 1
39.6
38. 1
36.2
34.5
32.0
31.3
30.4

p

4. 07(-13)
4. 14
4. 17
4. 17
4. 16
4. 10
3.98
3.84
3.59
3.03

V
1.6(-6)
1.5
1.4
1.4
1.3
1.2
1. l(-6)
9. 8(-7)
8.6
6.9(-7)

TABLE 3.—Atmospheric conditions at 240 km

#2«0-i«0

0.25
0.21
0. 19
0. 18
0. 16
0. 14
0. 13
0. 12
0. 11
0. 10

58.8
54.2
52.3
49.7
49.0
44.2
41.8
39.4
37.0
35. 1

p

1. 77(-13)
1.72
1.70
1.66
1.58
1.47
1.35
1.23
1. 09(-13)
8. 64(-14)

V
8. 3(-7)
7.3
6.9
6.4
5.6
4 .8
4.2
3.5
2.9
2. 2(-7)

M

26.2
26.2
26.2
26.2
26. 1
26. 1
26. 1
26. 1
26. 1
26. 1
26.0
26.0

M

24.8
24.7
24.7
24.6
24.5
24.4
24.3
24. 1
24.0
23.8

M

23.9
23.7
23.6
23.5
23.3
23.0
22.8
22.5
22.2
21.9

N
5.6( + 10)
5.6
5.6
5.7
5.8
6.0
6.0
6. 1
6.0
5.4
4.9
4. 8( + 10)

N

9. 9( + 9)
1. 0( + 10)
1.0
1.0
1.0
1.0( + 10)
9. 9( + 9)
9.6
9.0
7.7( + 9)

N

4. 5( + 9)
4.4
4.3
4.2
4. 1
3.8
3.6
3.3
2.9
2.4(+9)
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At 200 km (see table 2), the gradient of the
atmospheric scale height is about 50 percent of
its value at 150 km; even for a range of 500°
K in the temperature, the density remains
practically constant; p=(4.1±0.1)X10~13 gm/
cm3 for 1050°K<T< 1550°K. This shows
again how important are the boundary condi-
tions that are chosen in the E layer; what is
needed is a very small gradient to reduce the
200-km density by an appreciable percentage.
However, the variation is more apparent in the
pressure, which decreases with decreasing
temperature.

Between 250 km and 650 km, the gradient
of the atmospheric scale height is generally
between /3=0.2 and 0.1, as can be seen from an

inspection of the figures in tables 3 to 8. Since
the gradient is relatively small, the difference
between the atmospheric scale height H and
the density parameter Up becomes less im-
portant, i.e., 20 percent to 10 percent. Never-
theless, the effect of small values of /S between
0.1 and 0.2 cannot be neglected since it corre-
sponds to the decrease of the molecular mass in
the isothermal layer.

Inspection of figures of physical parameters
from 200 km to 650 km shows how their
amplitude increases with altitude. For ex-
ample, at 400 km (see table 6), the density
varies by a factor of 10, and the pressure by a
factor of 20, and the mean molecular mass
decreases from M=20.6 to M=16.6 when the

No.

0
1
1.5
2
3
4
5
6
7
8

T

1975
1752
1650
1556
1393
1261
1150
1057
978-1(*)
903-1

TABLE

H

81.3
73.3
69.6
66.3
60.5
55.8
52.0
48.7
46.0
43.3

4.—Atmospheric conditions at 300 km

/S300-320

0. 18
0. 16
0. 15
0. 14
0. 12
0. 12
0. 11
0. 10
0. 10
0.09

H,

73.7
65.9
63.3
60.6
55.5
51.7
48.8
46. 1
43.3
41.0

p

6. 86(-14)
6. 15
5.80
5.44
4.76
4.08
3.45
2.89
2.35
1.71 (-14)

P

3. 7(-7)
3.0
2.7
2.4
1.9
1.5
1.2(-7)
9.4(-8)
7.2
5.0(-8)

M

22.6
22.2
22.0
21.8
21.4
21.0
20.4
20.2
19.8
19.4

N

1. 8(+9)
1.7
1.6
1.5
1.3
1.2
1.0( + 9)
8.6(+8)
7.2
5.3( + 8)

'The symbol I means the temperature at the thermopause.

TABLE 5.—Atmospheric conditions at 340 km

No.
0
1
1.5
2
3
4
5
6
7
8

No.

0
1
1.5
2
3
4
5
6
7
8

T

2036
1796
1683
1583
1408
1271
1155-1
1059-1
978-1
903-1

T

2086
1826
1707
1597
1412-1
1272-1
1155-1
1059-1
978-1
903-1

H

sa 0
79.4
75.3
71.6
65.2
60.3
56. 1
52.6
49.7
46.8

11

96.9
87.3
82.8
78.6
71.6
66.2
61.5
57.6
54.2
52. 1

P34O-380

0. 16
0. 14
0. 13
0. 12
0. 12
0. 11
0. 10
0.09
0.08
0.09

H,
80.0
72.4
68.6
65.8
61.0
57.2
53.6
49.8
47.3
44.8

P
4. 00(-14)
3.40
3. 13
2.86
2.36
1.92
1.54
1. 23(-14)
9. 55(-15)
6. 61 (-15)

V

2.3(-7)
1.8
1.6
1.4
1.0(-7)
7.7(-8)
5.7
4.3
3. 1
2. 0(-8)

TABLE 6.—Atmospheric conditions at JfiO km

/3<00-420

0. 14
0. 13
0. 12
0. 11
0. 10
0.09
0.08
0.07
0.08
0.09

H,

41.2
82.3
74.6
73.6
67.7
62.7
59.2
55.4
52. 6
50.4

p

1. 93(-14)
1.53
1.36
1. 19
9. 11(-15)
6.89
5. 16
3.86
2.81
1. 82(-15)

p

1.2(-7)
8. 7(-8)
7.3
6. 1
4.2
3.0
2. 1
1.4(-8)
9. 9(-9)
6. 0(-9)

M
21.8
21.3
21.0
20.8
20.3
19.8
19.4
18.9
18.3
18. 1

M
20.6
20.0
19.7
19.4
18.9
18.4
18.0
17.6
17.3
16.6

N

1.1(4-9)
9.6(4-8)
8.9
8.3
7.0
5.8
4. 8
3.9
3. 1
2.2

N

5.6(4-8)
4.6
4. 1
3.7
2.9
2.2
1.7
1.3(4-8)
9.8(4-7)
6.4(4-7)
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temperature range is between 2100°K and
900° K, corresponding to a variation of H from
97 km to 52 km. Such a general result shows
that an arbitrary choice of the mean molecular
mass cannot be made as it was for the COSPAR
International Reference Atmosphere (1961).
It is unwise to attempt to specify atmospheric
conditions with an arbitrary molecular mass,
since it may lead to inconsistent information
relative to the thermal or diffusive equilibrium
of the upper atmosphere. Wrong conclusions
indicating a decrease of temperature between
400 km and 500 km, such as obtained by
Lundback (1961), reveal that the analysis of
observational data is not correct since the atmos-
phere at these altitudes is at least isothermal.

It should also be borne in mind that diffusion
must adapt the molecular weight mg to the
temperature conditions prevailing in the iso-
thermal region, and there is no reason, there-
fore, to expect some sharp decrease of molecular
mass at a particular altitude.

When the molecular mass is more than 14,
the gas is presumed to consist essentially of
nitrogen and oxygen, and it should be remem-
bered that molecular nitrogen behaves almost
in the same way, both for mixing and for
diffusion conditions. Its mass M=28 does not
differ very much from the mean molecular
mass of the air, M=29. Thus, the vertical
distribution of molecular nitrogen is closely
related to the vertical distribution of tempera-

No.
0
1
1.5
2
3
4
5
6
7
8

No.
0
1
1.5
2
3
4
5
6
7
8

No.
0
1
1.5
2
3
4
5
6
7
8

T
2123
1837-7
1711-7
1598-7
1412-7
1272-7
1155-7
1059-7
978-7
903-7

T
2128
1837-7
1711-7
1598-7
1412-7
1272-7
1155-7
1059-7
978-7
903-7

T
2131-7
1837-7
1711-7
1598-7
1412-7
1272-7
1155-7
1059-7
978-7
903-7

77
113.4
101.6
96.4
91.6
83.6
77.6
72.3
68.1
65.0
63.6

77
118.3
105.9
100.4
95.4
87.1
80.9
75.8
72.0
69.7
70.2

77
128.8
114.8
109.0
103.8
95.5
90.1
86.8
86.0
88.3
97.6

TABLE 7.—Atmospheric conditions at 520 km

&20HM0

0. 13
0. 12
0.11
0. 10
0.09
0.08
0.09
0. 10
0. 11
0.15

77,
104.0
95.2
90.9
86.5
79.4
74.1
6a 6
64.2
60.6
58.0

p

5. 45(-15)
3.85
3. 19
2.62
1.75
1. 17(-15)
7.76(-16)
5. 15
3.35
1. 92(-16)

V
3. 9(-8)
2. 15
1.9
1.5(-8)
9. 2(-9)
5.7
3.5
2.2
1.4(-9)
7. 7(-10)

TABLE 8.—Atmospheric conditions at 560 km

0MO-SM

0.12
0.11
0.10
0.10
0.09
0. 10
0.10
0.12
0.16
0.22

77,
104.2
100.2
95.2
90. 1
83.3
76.9
70.9
66.7
63.5
60.4

p
3. 72(-15)
2.54
2.06
1.66
1. 06(-15)
6. 85 (-16)
4.36
2.78
1. 74(-16)
9. 65(-17)

V
2.7(-8)
1.7
1.3(-8)
9. 8(-9)
5.7
3.4
2.0
1.2(-9)
7. 6(-10)
4. 2(-10)

TABLE 9.—Atmospheric conditions at 650 km

0MO-7OO

0. 10
0.10
0.10
0.10
0.11
0.12
0.19
0.26
0.36
0.70

H,
124.2
109.9
104 8
99.3
90.6
84.3
7a 2
74.5
72.6
74.9

p

1. 66(-15)
1. 07(-15)
8.25(-16)
6.32
3.70
2. 19
1. 28(-16)
7. 55(-17)
4.42
2.36

V
1.3(-8)
7.4(-9)
5.4
4.0
2.1
1.2(-9)
6.7(-10)
3.9
2.4
1.4(-10)

M

18.6
17.9
17.6
17.3
16.8
16.3
15.8
15.4
14.9
14. 1

M
18.0
17.4
17.1
16.8
16.3
15.8
15.3
14.8
14.1
12.9

M
17.1
16.5
16.2
15.9
15.2
14.6
13.7
12.7
11.4
9.5

A
1.8( + 8)
1.3
1.1 ( + 8)
9. l( + 7)
6.3
4.3
3.0
2.0
1.4(+7)
8.2( + 6)

N
1.2( + 8)
8. 8( + 7)
7.3
5.9
3.9
2.6
1.7
1. K + 7)
7.4( + 6)
4.5(4-6)

N
5.9(+7)
3.9
3. 1
2.4
1.5(4-7)
9.1(4-6)
5.6
3.6
2.3
1.5(4-6)
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ture in the homosphere and heterosphere. Its
concentration at 400 km varies according to
temperature conditions defined by table 6

from 2X108 molecules/cm8 to 5X10* molecules/
cm3, i.e., a factor of the order of 40 when its
concentration at 150 km remains constant,

No.
0
1
1.5
2
3
4
5
6
7
8

1.

No.
0

1

5

2

3

4

5

6

7

8

T
2133-7
1837-7
1711-7
1598-7
1412-7
1272-7
1155-7
1059-7
978-7
903-7

T
2133

1837

1711

1598

1412

1273

1155

1059

978

903

77
156.5
144.2
140.8
140. 1
145.3
159.6
180.6
201.2
216.6
224.9

TABLE

z
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000
1000
1250
1500
2000

TABLE 10.—Atmospheric conditions

/3»oo-iooo
0. 14
0.20
0.24
0.30
0.44
0.58
0.61
0.53
0.39
0.23

77,

at 900 km

P V
147.6 2. 52( —16) 2. 2(-9)
133. 0 1. 29 1.0(-9)
126.9 8.86(-17) 7. 0 ( -
122. 5 6. 06
118. 6 2. 88

4.8
2.4

122.8 1.47(-17) 1. 3 ( -
135.0 7.93(-18) a i ( -
154. 8 4. 73
179. 2 3. 11

5.4
3.8

205.3 2. 18( —18) 2. 8 ( -

-10)

•10)
-11)

ID

11.—Atmospheric data between 1000 km and 2000 km

H
171
232
352
666
164
257
412
642
165
278
434
612
170
303
446
579
189
339
435
516
216
347
405
466
241
336
371
423
254
316
342
387
255
294
316
358
247
273
292
330

p (total)
1. 28(-16)
2. 82(-17)
8. 20(-18)
1. 79(-18)
6. 08(-17)
1. 19(-17)
3. 68(-18)
1. 05(-18)
4. 03(-17)
7. 73(-18)
2. 59(-18)
8. 14(-19)
2. 68(-17)
5. 24(-18)
1. 94(-18)
6. 49(-19)
1. 24(-17)
2. 79(-18)
1. 22(-18)
4. 10( —19)
6. 51 (-18)
1. 79(-18)
8. 48(-19)
2. 64(-19)
3. 78(-18)
1. 24(-18)
5. 93(-19)
1. 67(-19)
2. 48(-18)
9. 04(-19)
4. 17(-19)
1. 05(-19)
1. 78(-18)
6. 71 (-19)
2. 94(-19)
6. 65(-20)
1. 34(-18)
4. 99(-19)
2. 06(-19)
4. 11 (-20)

p(He)
6. 2(-18)
4. 1(-18)
2. 8(-18)
1. 4( —18)
5. 3(-18)
3. 4(-18)
2. 2(-18)
9. 9(-19)
4. 8(-18)
2. 9(-18)
1. 9(-18)
7. 9(-19)
4. 5(-18)
2. 6(-18)
1. 6(-18)
6. 4(-19)
3. 7(-18)
2. 0(-18)
1. 1(-18)
4. 1(-19)
3. 0(-18)
1. 6(-18)
8. 2(-19)
2. 6(-19)
2. 5(-18)
1. 2(-18)
5. 9(-19)
1. 7(-19)
2. 0(-18)
8. 8(-19)
4. 2(-19)
1. 1(-19)
1. 6(-18)
6. 7(-19)
2. 9(-19)
6. 7(-20)
1. 3(-18)
5. 0(-19)
2. 1(-19)
4. l(-20)

V
1. 2(—9)
3. 4(-10)
1. 4(-10)
5. l(-l l)
5. 5(-10)
1. 6(-10)
7. 3( —11)
2. 9(-ll)
3. 6(-10)
1. l(-10)
5. 4(-ll)
2. K-ll)
2. 5(-10)
8. l(-ll)
4. 2( —11)
1. 6( —11)
1. 3( —10)
4. 8( —11)
2. 6( —11)
9. 0 ( -12 )
7. 7( —11)
3. 2( —11)
1. 6( —11)
5. 2 ( - 12 )
5. 0(-ll)
2. l(-l l)
l.K-ll)
3. 0(-12)
3. 5(-ll)
1. 5( —11)
6. 8(-12)
1. 7(-12)
2. 5( —11)
l.O(-ll)
4. 5( —12)
1. 0( —12)
1. 8( —11)
7. 0(-12)
2. 9(-12)
5. 8(-13)

M
14.2
11.2
7.9
4.2

12.7
8.7
5.8
4.2

11.8
7.5
5. 1
4. 1

10.7
6.4
4.6
4.0
8.5
5. 1
4.2
4.0
6.7
4.4
4. 1
4.0
5.4
4.2
4.0
4.0
4 .7
4. 1
4.0
4.0
4.4
4.0
4.0
4.0
4. 1
4.0
4.0
4.0

M
15. 1
14. 1
13.4
12.6
10.7
8.8
7.1
5.8
5.0
4.4

AT (total)
5.4(4-6)
1. 5(4-6)
6.3(4-5)
2.3(4-5)
2.9(4-6)
8.3(4-5)
3.8(4-5)
1. 5(4-5)
2.0(4-6)
6.2(4-5)
3.0(4-5)
1. 2(4-5)
1.5(4-6)
4.9(4-5)
2.5(4-5)
9.7(4-4)
& 8(4-5)
3.3(4-5)
1.8(4-5)
6. 1(4-4)
5.9(4-5)
2.4(4-5)
1.2(4-5)
4.0(4-4)
4.2(4-5)
1.8(4-5)
8.9(4-4)
2.5(4-4)
3.2(4-5)
1. 3(4-5)
6.2(4-4)
1.6(4-4)
2.5(4-5)
1. 0(4-5)
4.4(4-4)
1. 0(4-4)
1.9(4-5)
7.5(4-4)
3.1(4-4)
6.2(4-3)

N
1.0(4-7)
5.5(4-6)
4.0
2.9
1.6
1.0(4-6)
6.8(4-5)
4.9
3.8
3.0(4-5)

AT (He)
9.3(4-5)
6.2(4-5)
4.3(4-5)
2.1(4-5)
8.0(4-5)
5.0(4-5)
3.3(4-5)
1.5(4-5)
7.3(4-5)
4.4(4-5)
2.8(4-5)
1.2(4-5)
6.7(4-5)
3.9(4-5)
2.4(4-5)
9.6(4-4)
5.5(4-5)
3.0(4-5)
1.7(4-5)
6.1(4-4)
4.6(4-5)
2.3(4-5)
1. 2(4-5)
4.0(4-5)
3.7(4-5)
1.8(4-5)
& 9(4-4)
2.5(4-4)
3.0(4-5)
1.3(4-5)
6.2(4-4)
1.6(4-4)
2.4(4-5)
1-0(4-5)
4.4(4-4)
1.0(4-4)
1.9(4-5)
7.5(4-4)
3.1(4-4)
6.2(4-4)
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namely 4X1010 molecules/cm3. Such a large
variation affects the mean molecular mass since
the corresponding variation in density is the
order of a factor of 10.

Presence of helium

It should be noticed from the figures of tables
7 and 8 that the mean molecular mass becomes
less than Af=16. This is due to the introduc-
tion of helium. Diffusion leads to an im-
portant concentration of helium atoms at the
upper levels (Nicolet, 1961a). Physical condi-
tions such as that represented by the already
analyzed models lead to an almost constant
value of n(He) at 500 km. The values of
helium concentration do not vary by more
than ±30 percent from an average value for
temperatures between 2100° K and 750° K.
The absolute value is, however, related to the
level of the beginning of diffusion.

Starting from the normal mixing ratio
n(He)/n(N2), the concentration of atomic
helium at 105 km is

n(He)ioskm=3.OXlO7 atoms/cm3. (21)

If diffusion begins at that level, the concentra-
tion at 500 km is

w(He)5ookm=(1.8±0.5)X106 atoms/cm3, (22)

when the temperature at 500 km varies from
2133° K (model no. 0) to 733° K (model no.
10). If, instead of beginning at 105 km, the
diffusion starts at 110 km or 115 km, the con-
centration given by equation (22) must be
decreased by a factor of 2 or 4. A difference
of about 5 km of the altitude of the diffusion
level corresponds to a difference of a factor of
2 in the concentration of helium.

In the present calculation, we have adopted
105 km as the level where diffusion of helium
begins; a correction is easily introduced if
diffusion is considered to start at other
altitudes.

Table 9, which gives the atmospheric con-
ditions at 650 km, shows how the effect of
helium may be important at such altitudes
when the temperature is sufficiently low. For
example, if T<1000°K, corresponding to
nighttime conditions at the beginning of 1961,

2000 -

1500 -

1000 -

500 - :

I00O 1500

TEMPERATURE (K)

FIGURE 1.—Altitudes of surfaces of equal density as a function of the temperature.

2000
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the total density decreases to less than 5X10~17

gm/cm3, while the density of helium reaches
about 5X10~18 gm/cm3. The presence of he-
lium leads to a molecular mass less than 12.
The effect of helium has also an important
consequence. The atmospheric scale height
never decreases below 85 km even if the tem-
perature at 650 km varies by about 1000° K.

The effect of helium is particularly apparent
at 900 km, where there is a large variation of
the mean molecular mass (see table 10). The
mean molecular mass, which is still of the
order of 15 near 2000° K, may reach such a low
value as 5 for temperatures less than 1000° K.

Since the perigee heights of Satellite 1960 i 1
(Echo I) are in the range of 900 to 1600 km,
a set of atmospheric data is given in table 11
for altitudes between 1000 km and 2000 km.
The density and concentration of helium are
included in the table to allow a comparison
with the total density and concentration.
A change in the level of diffusion of helium can
easily be introduced by an adequate correction.

From an analysis of data on the orbit of Echo
I, Zadunaisky, Shapiro and Jones (1961) and
Romer (1961) have deduced densities that
cannot be explained by an atomic oxygen
atmosphere or atomic hydrogen atmosphere,
but are in accordance with an effect of helium.

An atomic mass M= 16 would require a
temperature too high to fit observational data
between 500 km and 700 km. An effect of
atomic hydrogen on the mean molecular mass
would lead to too high concentrations. The
atmospheric-drag perturbations as observed by
Jacchia (1961) during geomagnetic disturbances
show that the drag of the neutral constituents of
the atmosphere has still the most important
effect even at altitudes above 1000 km. The
figures of table 11 show how helium can be
introduced in the analysis of Zadunaisky,
Shapiro and Jones (1961) with scale heights
greater than 300 km at 1500 km, and then 150
km at 900 km. The presence of helium is un-
avoidable above 1000 km.
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General tables of p, ptf"2, and H

Table 12 summarizes the vertical distribution
of density deduced according to the physical
conditions described in the preceding sections
and, therefore, the results obtained for the
various models already analyzed by their
various parameters in tables 1 to 11. It can be
noticed that the levels of constant density
increase regularly with increasing temperature.
A picture of constant density levels between
500 km and 2000 km is provided in figure 1.
There is a linear relation between the altitude
and the temperature, and the various slopes for
curves of constant density show the increasing
effect of the temperature when the absolute
value of the density decreases. Such relations
between temperature and variation of density
with height must be related to tbe diurnal
bulge described by Jacchia (1960a) and must be
also associated with the results of his (1961)
accurate analysis of the atmospheric-drag
perturbations.

From comparison of the density data of
table 12 with published data on densities
deduced from satellite air-drag, a picture of
the temperature variation during the years
1958 to 1961 can be provided (Nicolet, 1961b).
The maximum density obtained in October
1958 corresponds to a temperature between
2000° and 2100° K, while the average value
from September 1958 to January 1959 may
correspond to a temperature between 1700°

and 1800° K. The two density distributions
given by Martin et al. (1961) correspond to
about 1750° K and 1150° K. As far as the
density distributions given by King-Hele and
Walker (1961) are concerned, they represent
average conditions showing the variation from
1958 to 1960, namely 1750° K to 1350° K
for late-1958 and late-1960 daytime values, and
1050° K to 950° K for late-1959 and late-1960
nighttime values. Even if a systematic error
is involved in such a determination, the varia-
tion of the temperature shows the general trend
of the diurnal variation and the solar activity
effect (Nicolet, 1960c).

In order to make available a consistent table
of parameters more closely associated with
data deduced from satellite observations, table
13 gives the values of pH1'2 and H from 150 to
2000 km. The value of H1'2 is not subject to
variation at 150 km for a range of temperatures
of about 125° K with defined boundary condi-
tions at 120 km, and a small variation is
apparent near 200 km. The maximum varia-
tion occurs in the region of 600 to 700 km. At
1000 km (see fig. 2), the variation for 750 < T<
1850° K corresponds to the variation obtained
at 500 km. It should be noticed that pH112 and
H do not necessarily vary in the same way, and,
therefore, p and pW2 may have different
variations in the region where different con-
stituents are involved.
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Effects of the Earth's Ionosphere on HF Radio
Astronomy from Artificial Satellites

By M. D. Grossi, K. M. Strom, and S. E. Strom

Ground-based radio telescopes are known to
be able to conduct reliable observations only
within the band roughly defined by 10 mc/s and
10,000 mc/s. The lower limit is established by
ionospheric refraction effects, and the upper
limit by atmospheric behavior.

Airborne and balloon-borne radio telescopes
can extend the upper limit above 10,000 mc/s
with high-altitude observations. For the fre-
quency band below 10 mc/s, a satellite-borne
radio telescope appears a suitable means of
observation.

Recent literature (Haddock, 1960) has
pointed out the desirability and the feasibility
of a satellite-borne HF l radio telescope orbiting
outside the ionospheric layer of maximum elec-
tron density. Among others, the Harvard Col-
lege Observatory is presently involved in the
design of such a satellite (Space Radio Project).
The satellite will be able to perform observa-
tions not affected by the limitations imposed by
the ionosphere.

Many relevant experiments can be performed
by such orbiting telescopes. Among these are
(Haddock, 1960; Burke and Franklin, 1955;
Davies, 1954; Piddington, 1951; Herbstreit and
Johler, 1948): (a) measurement of integrated
radio flux from our galaxy at frequencies below
the F2 layer cutoff; (b) measurement of the
dynamic spectra of solar bursts well below
30 mc/s; (c) measurement of the dynamic
spectra of planetary radio bursts well below
30 mc/s.

General

The purpose of the present report is to present
i Considered as the frequency range 1-10 mc/s.

an analysis of some effects of the ionosphere on
HF observations from satellite-borne radio
telescopes. We deal primarily with a search
for focusing effects of the ionosphere on in-
coming cosmic noise in the HF band. The
analysis covers a variety of cases of interest
for satellites in various orbital altitudes and
with a wide range of observation frequencies.

In this preliminary analysis, we have con-
sidered the ionosphere to be a nonhomogene-
ous, nonisotropic, magnetoionic medium. The
electron-density profile used in the calculations
is illustrated in figure 1. We assume the earth's
magnetic field to be dipole in nature. We have
taken into account ionospheric irregularities
and discontinuities only for cases in which
these disturbances are much larger in size than
are the wavelengths considered.

We compute the effects of the ionosphere on
incoming radiation by employing a Hamiltonian
optics approach. We discuss the necessary
numerical procedures involved in the ray-
tracing in relation to a program suitable for
use in an IBM-7090 computer.

Rays are computed and plotted for sources
located at infinity and for frequencies in the
band 1-30 mc/s.

We basically consider refraction, reflection,
and resultant focusing effects of the ionosphere
for frequencies higher and lower than critical,
and for satellites in conjunction and in opposi-
tion with respect to the source and the earth.
In cases of special interest, we compute the
equivalent aperture of the ionosphere, consider-
ing the ionosphere to be analogous at radio
frequencies to a spherical shell lens, with the
observing satellites located at the focal region.
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FIGURE 1.—Electron-density profile derived from averages
of IGY data.

Hamiltonian ray-tracing in the earth's
ionosphere

In this section, we consider plane waves incident
on the ionosphere from a radio source effectively
at infinity. We disregard the specific nature
and position of the source, and the effect of the
interplanetary medium.

The effect of absorption in the earth's iono-
sphere is not included in the equations as
written, although the inclusion of this effect
would involve the addition of only one equation
to the system. It is reasonable to neglect
absorption because the collision frequencies
encountered in most cases considered here are
extremely small. However, the Hamiltonian
ray-tracing method is suitable for use in quite
general cases of propagation in a magnetoionic
medium.

The method of ray-tracing follows from the
application of the principles of Hamiltonian
optics. Mathematically, this ray-tracing prob-
lem reduces to solving simultaneously the
following six differential equations (Haselgrove,
1955; Wong, 1960).

(i)

(2)

i _

^ s i n 0;

(3)

(4)

2/2=- [ - ^- cos 0J; (5)

These are the Hamiltonian equations for a
ray path in a general magnetoionic medium.
They are analogous to the Hamiltonian equa-
tions in classical mechanics. The ray is de-
scribed in terms of the associated wave normal.

The quantities in equations (1) through (6)
are defined as follows: r, 0, $ are the spherical
coordinates of a point in the earth's ionosphere;
ylt y2, y3 represent the components of the wave
normal with respect to a Cartesian system
whose origin is placed at r, 9, <£. This system
is illustrated in figure 2. The yi direction is
along r; y2 along 0; and y3 along 3>. The system
is chosen to be right-handed and orthogonal;
r, 0, etc., are the derivatives of these variables
with respect to time.

The phase refractive index /u is given ex-
plicitly by a form of the Appleton-Hartree
formula (where collisions between electrons
and air molecules or positive ions are neglected):

N(r, 0, 3>)
1.24X104/2

1—
(7)

& cos*

where /=frequency of radiation in mc/s;
N(r, 0, <$) is number of electrons/cm3 (the electron
density, which is, in general, dependent upon
the position in the ionosphere as well as the
height of the point under consideration);
JH{T, 0, $)=the gyrofrequency in mc/s; and M
is given by

W
1—

1.24X104/2

(^=the angle between the wave normal and the
earth's magnetic field). If this field is taken to
be dipole in nature, and if the polar axis of the
spherical coordinate system coincides with the
dipole axis, then:

1
yi cos 0+~ 2/2 sin 0

cos \f/=

{
cos

{ -7 sin2 04
(9)
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WAVE
NORMAL

FIGURE 2.—Spherical coordinate system used in ray tracing.

Note that in a general magnetoionic medium
the direction of the wave normal is not coincident
with the direction of the ray. We must there-
fore make the distinction between these two
directions when considering a magnetoionic
medium (such as the earth's ionosphere) that is
nonisotropic. The electromagnetic energy is
propagated along the ray direction. However,
there are two distinct phase velocities, one along
the ray and the other along the associated wave
normal. Equations (1) through (6) are written
for a nonisotropic medium; thus we need to
include the wave normal components, yu y2, y3,
and their derivatives.

Note also that an electromagnetic wave
incident in a magnetoionic medium splits into
two components. The energy is split into two

636-014—63 14

characteristic modes of propagation called the
extraordinary rays and the ordinary rays, which
are generally distinct entities. In equation (7),
the positive sign corresponds to the ordinary ray,
and the negative to the extraordinary ray.

For our case of a radio source effectively at
infinity, we consider the incoming rays as parallel.
These rays are incident on the ionosphere. The
boundary of the ionosphere is chosen to be at
about 8,000 km from the earth's surface, where
the electron density reaches the assumed inter-
planetary value of 600/cm3. The initial condi-
tions for the ray-trace are easily assigned by
examination of the geometry of the situation.
The geometry is illustrated in figure 3, where r0

is chosen as 14,378 km; 0O and f>0 vary for the
individual ray trace; and yu y2, and y3 are then
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y^-COSO-a )
y2= SIN(6-a )

LIMIT OF EARTH'S
IONOSPHERE

FIGURE 3.—Geometry for assigning initial conditions for ray-tracing.

assigned according to the convention in figure 4.
If we want, we can set y3=constant for each

ray trace. Then y3 can be varied for each set of
ray traces. For our computations, we found
this to be the most systematic way of assigning
initial conditions. For simplicity, in the cases
considered here, we assumed ^3=0. After the
initial conditions are assigned, the rays are
automatically traced by the computer. The
results of these computations are illustrated in
figures 5, 6, 7, 8.

y, » A C O S A

ya = / i COS B

integration. It is possible to estimate^the
truncation error per step of integration (Hilde-
brand, 1956). But in practice it is extremely
difficult (for the present functions) to approxi-
mate the total rounding-off error for this method;
therefore, there is an uncertain factor in the
solution. However, for nearby paths, the errors
are systematic. A detailed analysis of the
method can be found in Hildebrand (1956),
Bennett, Milne, and Bateman (1956), and
Ralston and Wilf (1960).

The boundary conditions are the initial
values of r, d, $, yu y2, y3, with

WAVE NORMAL 2/x=M cos A,

y2=n cos B,

y3=M cos C, (10)

FIGURE 4.—Convention for assigning wave normal components.

The method chosen for numerical integration
of equations (1) through (6) is the fourth-order
Runge-Kutta method. The advantage of this
method lies in the fact that we need only to know
the values of the variables r, 8, f>, ylf y2, y3 at
t=to- In other words, only one set of initial
conditions is needed with which to begin the

in accordance with the notation shown^in fig-
ure 4.

We assign the position, and we assume the
direction of the ray and the wave normal
initially coincident. The program for solution
of the differential equations (1) through (6)
is written in FORTRAN (Graham, Grossi,
Strom, and Strom, 1960).

Numerical solutions of the equations follow
from an application of the Runge-Kutta
method. The initial conditions and the fre-
quency are read into the machine. Subroutines
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for electron-density profiles and the necessary
derivatives are interchangeable for various
ionospheric models, including different electron-
density profiles and discontinuities. Both ordi-
nary and extraordinary ray paths are then
computed. At each integration step, the
present calculated values of r, 0, and $ are
printed out. Calculation time for ray-path
length 10* km is approximately 15 seconds on
the IBM-7090 computer. One can see that, at 0
and 0=180° (i.e., at the magnetic poles), there
are discontinuities in equations (1) through (6).
These discontinuities do not significantly affect
the computation of the ray paths, provided that
the path is a straight line over the magnetic
poles. However, if the ray is undergoing a
change in direction (refraction or reflection) in
the vicinity of the pole, the integration errors
increase. In fact, the certainty to which focal
points may be predicted is greatly reduced.
Significant errors are also introduced when the
ray enters a region in which the gradient of
electron density is great, i.e., at about 300 km
of altitude (see fig. 1). These errors can be re-
duced by use of smaller integration steps.

The illustrated ray paths avoid these dis-
continuities so that the total errors are small.

The search for focal regions

The method outlined in the previous section
has been applied to the cases of 5, 10, 12, 18,
and 22 mc/s sources at infinity. For simplicity,
we restricted the analysis to cases in which the
rays remained in the (r, 6) plane. Thus, 3^=0
for all cases considered.

In figures 5, 6, 7, and 8, we provide an
example of the plotting performed for the 5, 10,
12 mc/s cases. The incident rays are initially
equidistant and parallel. Owing to the close
proximity of these rays on the scale of figures
6, 7, and 8, we have illustrated the incident rays
by thick black lines. The rays are then plotted
separately after the point of significant diver-
gence.

We notice there are extended focal regions
along the line containing the center of the earth
and the source in opposition. Haselgrove,
Haselgrove, and Jennison (1961) postulated
the presence of focal regions in a situation of
conjunction. Figure 5 illustrates our tracings
for this case. The source here is considered

extended. Figures 6, 7, and 8 illustrate our
calculations for the situation of opposition and
contradict the common belief that the iono-
sphere would create a shadow in situations of
opposition with respect to a source at infinity.
The rays illustrated in these figures are ordinary
rays.

It is important to note, however, that a
satellite-borne radio telescope located at a
point of the focal region will not experience a
continuous intensified reception of the cosmic
radio background. Owing to the multipath
structure of the ionospheric propagation, al-
ternate maxima and minima of the intensity
received should be observed.

Calculation of the geometric gain for the
ionosphere
With the data obtained, we are able now to
calculate the geometrical gain of the ionosphere.
We again assume the ionosphere to be analo-
gous to a spherical shell lens. The gain as
computed is Ai/A2, where areas Ax and A2 are
illustrated in plate 1; At is the area intercepted
by the incident rays at the boundary of the
ionosphere, and A2 is the area of the circle of
least confusion, where the observing satellite is
placed.

Taking advantage of the symmetry of the
earth's magnetic field, we have Ai=2irr2 sin ddd,
where r and 6 obey the convention in figure 2.

The value of A2 follows directly from the
determination of the radius of the circle of
least confusion. For the case illustrated in
figure 6, the value of the geometrical gain lies
between 3 and 10, depending on the rays
chosen for calculation. Figures 7 and 8 illus-
trate cases in which the value of the gain lies
between 5 and 20.

The results obtained are based on idealized
assumptions concerning the electron density
and magnetic field. However, the focal proper-
ties of the actual ionosphere are affected by
irregularities and discontinuities of various
causes; consequently, the focusing behavior
can be predicted only in statistical terms.

To obtain a preliminary idea of the magni-
tude of these effects, we have considered a non-
spherically symmetric distribution of electron
density. We retained the N(r) curve as illus-
trated in figure 1, but we imposed the simple
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FIGURE 5.—Ray-tracing for a situation of conjunction with/=5 mc/s (distances are measured from the
center of the earth).

model of day-to-night variation shown in
figure 9. The minimum value of electron
density corresponds to the center of the night
side of the earth. Computations show that
the effect of this model of day-to-night varia-
tion on the geometrical size of the focal region
is negligible.

Extension of the method and further search
for interesting focal regions

We plan to refine our analysis by adopting a

fully three-dimensional model of the iono-
sphere and by including various realistic
models of irregularities and discontinuities
that are large with respect to the wavelength.

These models will include electron clouds,
ionospheric winds, seasonal variations, solar
bursts, and magnetic storms..

Absorption, when not negligible, will also be
computed.

With our refined analysis, we will study the
effect of the ionosphere on the incoming cosmic
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Geometry for computing the geometrical gain.
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FIGURE 6.—Ray-tracing for a situation of opposition with / = 5 mc/s (distances are measured from the
center of the earth).

noise, taking into account known radio sources,
both concentrated and diffused. We will plot
cosmic noise distributions on spheres that are
concentric with the earth and that have various
radii.

In the search for interesting focal regions,
we will investigate the focusing properties of the
ionosphere for frequencies higher than the
critical frequency of the F2 layer.

For these frequencies, the optical behavior
of the ionosphere below the F2 layer will also be
examined by using a Luneberg lens model
(Luneberg, 1944), with the source at infinity
and the focal region on the boundary of the
spherical refractor.

The search for the existence of a possible
focal region of the earth's ionosphere on the
surface of the moon is also planned. Data

will be collected to determine the feasibility
of a moon-based HF radio telescope exploiting
the focusing properties of the earth's ionosphere.
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Short-Periodic Oscillations in the Drag of
Satellite 1958 Alpha

By Luigi G. Jacchia and Jack W. Slowey

The authors have derived accurate orbital
accelerations over extensive time intervals for
several artificial earth satellites; they are now
in the process of converting the accelerations to
atmospheric densities and then analyzing them.
The procedure for deriving the accelerations,
which has been briefly described by Jacchia
(1961), involves the plotting of residuals in
mean anomaly for all individual satellite
observations. A survey of such plots for
Satellite 1958 Alpha (Explorer I) from Janu-
ary 1958 to April 1961 has revealed the exist-
ence of persistent, periodic drag oscillations
that can easily be recognized over intervals of
several weeks when the observations are
sufficiently numerous and well distributed.
The usable observational material for this
satellite consists almost exclusively of field-
reduced positions from photographs taken with
the Baker-Nunn cameras; unfortunately, the
time intervals during which the number and
distribution of observations were favorable to
the detection of the oscillations are not very
numerous. Whenever the oscillations could
be detected, they had a period of about 3.5
days, except toward the end (March 1961),
when the period increased to 4.2 days.

Table 1 gives values of the orbital accelera-

tions - j - during four time intervals during

which oscillations were rather obvious; these
values are plotted in figure 1. Although most
of the observed oscillations are tightly grouped
in a few such intervals, scattered oscillations
with an unmistakable periodicity of 3.5 days
can be recognized here and there, providing,
we think, sufficient continuity for the numbering
of the individual cycles over the whole time
interval here considered. The time in the

tables and diagrams is expressed in Modified
Julian Days (MJD), i.e., in Julian Days minus
2 400 000.5.

Table 2 gives a list of all observed times of
maximum of the short-periodic drag oscillations,
together with then* residuals from a linear ref-
erence equation: max=MJD 36280.0+3.52n,
where n is the serial number of the maximum.
The data of table 2 are plotted in figure 2.

Instantaneous periods, derived from the
data of table 2, are given in table 3 and plotted
in figure 3.

The drag oscillations we have described must
be interpreted as due to a systematic variation
of the effective presentation area of the satellite,
caused by the precession of the angular-
momentum vector of the satellite body in its
tumbling motion.

If the satellite is a cylinder of length L and
base radius r=eL, its total area A is given by
A=2treL2{\-\-t). Let a be the angle that the
angular-momentum vector makes with the
direction of motion. The mean presentation
area <S will be a function of a; let us call So the
value that S assumes when a = 0 , and Si the
value when a=90°. We shall have

and, always,
So>S>St.

S 2
The ratio ^r=—(-« represents the maximum

factor by which the satellite drag can vary
owing to change in a, provided the period of the
tumbling is very small compared to the orbital

199



200 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

UJ

in
«> »»• <M

I • I

I I 1 ">

i r

o
UJ

1 1 1

•••• • •
1

•
•
•

<

1 1

•

•

>

1

1 1

•

<

•

1 1

1

I

Q
-3

•o l-o

i
2
i

• • » «

I

TJ '"O

I



SHORT-PERIODIC OSCILLATIONS IN DRAG OF 1958 ALPHA—JACCHIA AND SLOWEY 2 0 1

Ao n i o° 2 o ° 3 o°
+ 20

o-c

+10

-10 1

__-V^—

1

i

1 1

/

36 750 37000

MJD

FIGURE 2.—Residuals from the equation Max= 36280.0+3.52n.
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TABLE 1.—Accelerations -rr of Satellite 1958 Alpha in
(XL

MJD -

SECTION I

selected

1 0 « ^

(MJD 36305-36349)

36305. 0
05.5
06.0
06.5
07.0
07.5
08.0
08.5
09.0
09.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14 0
14 5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19. 5
20.0
20.5
21.0
21. 5
22.0
22.5
23.0
23.5
24 0
24.5
25.0
25.5
26.0
26. 5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5

5.0
5. 1
5.2
5.0
4 6
4.7
4 5
4.5
5.6
6.2
6. 5
6. 1
5. 1
5.2
5.0
4.7
5.3
5.2
5.4
4.9
4. 5
4.0
4 5
4.8
6.3
7. 1
6.4
5. 1
4 6
4 9
5.4
6.4
6. 9
7.7
7.2
6.5
5. 2
5. 2
7.2
7.5
6.7
6.2
5.2
5.0
4 7
6.0
7.7
6. 4
6.2
5.6
5. 3
6.0
6.0
6.0

sections

MJD

36332. 0
32. 5
33.0
33. 5
34 0
34. 5
35.0
35. 5
36. 0
36. 5
37.0
37. 5
38.0
38. 5
39.0
39. 5
40. 0
40. 5
41. 0
41. 5
42.0
42. 5
43. 0
43. 5
44 0
44. 5
45.0
45. 5
46.0
46. 5
47.0
47. 5
48.0
48. 5
49.0
49. 5

SECTION

6.9
6. 2
4.8
5. 1
4 8
5. 2
5. 5
5. 1
5. 1
5. 0
5. 0
5. 1
5. 1
5.0
4. 7
5. 1
4. 4
4. 0
3. 5
4. 5
5. 7
5. 4
4 7
3. 9
3.3
4 0
5. 2
5. 3
5.0
4. 7
4.2
4 8
5.4
6. 0
5. 7
4 8

II
(MJD 36668-36711)

36668. 0
68.5
69.0
69.5
70.0
70.5
71.0
71.5
72.0
72.5
73.0
73. 5
74.0
74. 5
75.0
75.5
76.0

6. 9
7.0
7.4
6.8
5.4
5.4
6. 1
6. 6
7. 1
6.9
5.6
5.4
6.2
7. 1
7.4
7.4
6.2

MJD

36676. 5
77.0
77.5
78.0
78.5
79.0
79. 5
80.0
80.5
81.0
81. 5
82.0
82.5
83.0
83. 5
84.0
84. 5
85.0
85. 5
86.0
86. 5
87.0
87. 5
88.0
88. 5
89.0
90.0
91.0
92.0
93.0
94.0
95.0
96.0
97.0
98.0
98.5
99.0
99.5

36700. 0
00.5
01.0
01. 5
02.0
02.5
03.0
03.5
04 0
04 5
05.0
05.5
06.0
06. 5
07.0
07. 5
08.0
08. 5
09.0
09. 5
10. 0

6.3
6.3
6.6
6.8
7.4
7.4
6. 5
5.8
5.6
6.6
7.4
8.3
7.9
7.9
7. 5
6. 8
7.3
6. 9
7.4
8. 1
7.9
7. 5
7. 5
7. 1
7. 1
6.6
6.3
5.5
5.6
6.5
6.0
5. 1

5. 8
6.3
6.2
6. 1
6.3
6.8
6. 5
7.2
7.4
7.2
7.2
6.7
5.7
6.7
7.8
8. 1
7.8
6.4
6.4
6. 1
7.8
7. 8
7. 5
6.3
6.8
6. 9
8. 2

MJD

36710. 5
11.0
11. 5

dP
dt

7. 0
7.0
6. 7

SECTION III

(MJD 37191-37213)

37191. 0
91. 5
92.0
92. 5
93.0
93. 5
94 0
94.5
95.0
95. 5
96.0
96. 5
97.0
97. 5
98.0
98. 5
99.0
99. 5

37200. 0
00. 5
01.0
01.5
02.0
02.5
03.0
03.5
04.0
04 5
05.0
05. 5
06.0
06.5
07.0
07.5
08.0
08. 5
09.0
09. 5
10.0
10.5
11.0
11. 5
12.0
12.5
13.0

3. 8
4 0
4. 5
4 3
4 3
4 1
3. 9
4 2
3.7
4. 4
4 4
5. 4
5. 6
5. 2
3. 4
3. 2
2.8
3. 4
4. 1
4 6
4 4
4 2
3. 1
3. 1
2.9
3.6
3. 1
3.8
3.6
3.4
2.3
3.0
3.2
3.5
3.9
4 0
3. 7
3. 5
2.2
1.8
3. 1
4 0
4 5
3. 4
3.0

SECTION IV

(MJD 37356-37379)

37356. 0
56. 5
57.0
57. 5
58.0
58.5

1. 5
1.6
1. 4
1.4
1.6
1.8
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TABLE 1.—Accelerations -TT- of Satellite 1958 Alpha in

selected sections—Continued

MJD MJD

37359. 0
59.5
60.0
60. 5
61.0
61. 5
62.0
62.5
63.0
63. 5
64 0
64 5
65.0
65.5
66.0
66.5
67.0
67. 5
6a o
68.5
69.0

1. 8
1. 6
1. 8
1. 3
1.3
0.9
0.9
1. 1
1. 5
2.0
2.0
1.8
2.0
1.8
1. 3
1. 1
1. 6
1.6
1.8
2.4
2.0

37369. 5
70.0
70. 5
71.0
71.5
72.0
72. 5
73.0
73. 5
74 0
74 5
75.0
75.5
76.0
76.5
77.0
77.5
78.0
78.5
79.0

1. 6
1. 1
1. 4
1. 6
1.4
1.8
1. 8
1.8
2. 1
1.6
1.2
1.6
1.6
1.7
1.9
1.7
1.7
1.7
1.7
1.7

TABLE 2.—Satellite (1958 Alpha: Observed drag maxima
expressed in MJD and residuals from the equation
Max=86280.0+S.52n

n
0
1
2
9
10
11
12
13
14
15
16
17
18
19
20
94
95
96
103
104
111
112

i

36280. 2
283. 7
287.3
310.0
313.6
317.5
321.4
324.4
328.2
331. 6
(335. 1)
338.6
342.2
345.4
(348. 5)
608. 1
611.4
614. 8
640.0
643.3
669.0
672. 1

o-c
+ 0.2
+ 0.2
+0.3
-1.7
-1.6
-1.2
-0.8
-1.4
-1. 1
-1.2
(-1.2)
-1.2
-1.2
-1.5
(-1-9)
-2.8
-3.0
-3. 1
-2.6
-2.8
-1.7
- 2 . 1

n
113
114
115
116
118
120
121
122
123
191
192
193
195
200
207
209
210
228
229
230
231
232
248
249
260
261
262
263
264
265
271
272
273
274
303
304
305
306
307

l

36675. 2
678.7
682.5
686. 1
(693. 0)
700.9
704.5
707.0

(710. 0)
951.0
954.6
958.0
965.0

36982. 3
(37007. 5)

013.5
(017. 2)
079.4
083. 0:
086.0
090. 0:
093.6

37150. 0
153.5
193.0
197.0
200.7
204.5
208.3
212.0
233.5
(237. 5)
241.8
245. 6
(359. 6)
364.0
368.2
372.4
376.5

o-c
-2.6
-2.6
-2.3
-2.2
(-2.4)
-1.5
— 1.4
-2.4
(-3.0)
-1.3
-1.2
-1.4
-1.4
-1.7
(-1.1)
—2.2
(-2.0)
-3.2
-3.0:
-3.6
-3. 1:
-3.0
-3.0
-3.0
-2.2
-1.7
-1.5
-1.3
-1.0
-0.8
-0.4
(+0.1)
+ 0.8
+ 1. 1
+ 13.0
+ 13.9
+ 14.6
+ 15.3
+ 15.9

TABLE 3.—Periods of the short-periodic drag oscillations
observed in Satellite 1958 Alpha, deduced from the
data in table 2

MJD

36330
620
690

37000
090
150
220
370

Period
3.43 days
3.55
3.55
3.47
3.50
3.58
3.72
4.2
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period (if not, the departure from the statistical
mean involved in the computation of Si could
become important).

For Satellite 1958 Alpha we have e=0.0375,
which gives So/Si = 1.48. Although most of the
observed oscillations appear to fall within this
amplitude, a few cycles seem to exceed it,
reaching in the amplitude a factor of nearly 2.
If we consider that the plotted accelerations
are the second derivatives of a curve that is
often determined by only a few points, we
would not, at this stage, attribute much signifi-
cance to these large amplitudes but rather
consider the over-all distribution of ampli-
tudes as falling reasonably well within the
computed limits.

A variation of the drag by the maximum
factor SofSi would imply a variation of a close
to 90° in half the precessional period of 3*5, i.e.,

values of -j- of the order of 40° to 50° per day.

Colombo (1961) found that the interaction of
the earth's magnetic field and the ferromagnetic
components of Satellite 1958 Epsilon (Explorer
IV) can easily explain precessional perturba-
tions of the angular momentum of 17° per day

for that satellite, while the gravitational torque
and the drag torque cannot account for more
than 6° per day. I t may be necessary to
invoke similar magnetic interactions to explain
the much larger precessional motion in Satellite
1958 Alpha.

The data of table 3 need to be corrected if
they are to be interpreted as periods of the
precessional motion of the angular-velocity
vector referred to a fixed coordinate system.
The period is obviously referred to the perigee
of the satellite's orbit, which had an average
daily precessional motion of +2?1 in 1958 and
-+-2?4 in 1961. This would result in corrections
of ±0*07 to ±0*10; unfortunately, it is impos-
sible to specify the sign of the correction, unless
the direction of the precessional motion of the
angular-velocity vector is known.

In a forthcoming paper we shall give a
complete listing of the accelerations of Satellite
1958 Alpha, together with those of the other
satellites involved in the atmospheric investi-
gations. This preliminary note is intended
primarily to call to the attention of atmospheric
investigators the errors that can arise when
drag data of nonspherical satellites are used.



The Analysis of Gravity

By Harold Jeffreys

Properties of gravity

Gravity over the surface of the earth is a con-
tinuous function of latitude and longitude. A
little more can be said, because it is an integral
based on the distribution of density, which at
worst has only finite discontinuities. We can
form an idea of the rate of convergence of an
expansion in spherical harmonics as follows.
In one variable, if / , a function of bounded
variation in (0, 2T), is analyzed in a Fourier
series, the coefficients must decrease like 1/n
and their contributions to fj2dx like l/n?. For
the integral of such a function the decreases
will be like n~2 and TIT4. Over a sphere we
should expect the sums of contributions to
SSPdS from all harmonics of degree n to
decrease similarly, and if all harmonics were
normalized to make J'J%S2

nmdS=4:ira2 the ex-
pectations of the coefficients of Snm would
decrease like n~5/2. As the derivation of gravity
from the potential introduces a factor n— 1,
the coefficients in the potential should decrease
like n~in. Then a rough calculation shows that
if the major variations are for n = 0 , 1, 2, we
should expect the contributions to fffdS
from TO=4 to be about % of those for TO=3,
and those for TO>4 to be about % of those for
n = 3 . For a smoother function than the in-
tegral of a function arising from simple discon-
tinuities in density the decrease would be more
rapid. We should note also that if we simply
assume ffpdS to exist, it is necessary that
the double sum of the squares of the coefficients
a>nm, bnm shall converge. Hence

must decrease faster than I/TO. If it decreases
like I/TO2 the coefficients will on the whole

decrease like n~s/2. This tolerates greater
irregularity i n / t h a n we have just considered.
But in the series

the first few terms are 1, 0.25, 0.11, 0.06, and
2/3 of the excess over 1 is already taken into
account. So it is worth while, even for the
study of gravity alone, to proceed by examining
the coefficients of spherical harmonics for TO=0,
then for TO=0 and 2 (those in T I = 1 being
theoretically absent), then for TO=0, 2, 3, then
for TO=0, 2, 3, 4, and so on. This consideration
is even more striking for the external potential

on account of the extra factor -, and also
71—1

because there is a factor (a/r)n+1 in the potential,
which falls off rapidly as we recede from the
Earth's surface.

There is one apparent objection to this
analysis, that there are special narrow regions,
especially mountains and ocean deeps, where
the height of the rock surface above sea level
is anomalous for a region of the order of 100
km in width. This is the distance such that a
spherical harmonic of degree 200 or so keeps
the same sign, and in a harmonic representation
such regions would require many harmonics of
such orders to represent them, the terms adding
up in the anomalous regions but nearly can-
celing outside. Then the rapid decrease of the
coefficients might not start until TO=200 or so.
However, such regions, on account of their
limited area, cannot contribute much to
J\f(fdS. The essential point of the spherical
harmonic analysis is to consider a classification
of gravity anomalies into widespread ones,
keeping the same sign over distances comparable
with the radius of the Earth, and local ones that
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change sign within much smaller distances.
The analysis can investigate the former. The
local anomalies will need special treatment,
but the best treatment must have a standard of
comparison, and the best standard would be a
function that best fits the Earth as a whole,
that is, one based on the lower harmonics.

If only we knew gravity everywhere, the
problem would be easy. If

? = E S ( 4 , cos n\+Bn, sin n\)P'n(sm<f>), (1)

then on account of the orthogonality of the
spherical harmonics

JJ <7 cos <£(cos ri\, sin 7iX)P£(&^==JJ (P"n)
2

(Ans cos2 n\, Bn> sin2 ri\) cos <fxl\, (2)

taken over the surface. Thus the determina-
tion of all An,, Bni would be reduced to simple
integration. For conveniently spaced values
of g the formulas could be replaced by numerical
summation. However, this does not work.
Gravity is observed only at isolated points and
must be interpolated before we have the data
for the integrals. In some attempts linear
interpolation has been used right across major
oceans, and this is certainly invalid. What we
have to do is to choose the coefficients to fit
the observed values as well as possible; any
interpolation will introduce errors.

The harmonic analysis of a continuous func-
tion, such as the separation of a periodic term
from random noise, is a difficult statistical prob-
lem, which has not been satisfactorily solved
even for one variable. The ordinary method
of least-squares depends entirely on the errors
of separate observations being independent,
and this is nearly true for errors of measure-
ment. For gravity the errors of measurement,
judged by different observations at the same
place, are nowadays not more than 1 mgal;
even early in the 19th century most of them
were not much over 10 mgal. But differences
between stations within 1° or 2° of each other
are normally 20 mgal or so, and cannot be errors
of observation. In fact the observations de-
part from any smooth representation of gravity
by a short-range variation, which is mainly
genuine; and such a variation of gravity must
be a continuous function of position. But the

correlation between neighboring values of such
a function tends to + 1 when the separation
tends to 0, and the basis of the method of least-
squares breaks down.

Can we arrange the analysis so as to retain
the advantages of the method of least-squares?
For some separation the correlation must
become negative, and hence there is a separation
such that it is zero. Then there is no point in
using a lot of observations very close together—
they all say the same thing. If we can find a
distance such that the correlation is small and
can form summaries for observations covering
such a range of distance, there is some hope of
an approach to independence.

Analysis of gravity observations
I should say at this point that the external field
is completely determined if we know free-air

gravity defined by gf— g ( 1 -\— V where g is

gravity at height h above sea level (Jeffreys,
1959). A formula correct to orders h2 and eh
is available. All I have to say really concerns
free-air gravity, which is constant on a vertical
ascent; the correction 2g/a is 308 mgal/km.
Our problem is to estimate the low harmonics
in g}. The five harmonics Pu P\ (cos X, sin X)̂
PI (cos X, sin X) are theoretically absent from

Some principles that can guide us are as fol-
lows. First, it is known that heavy grouping
of data can give a very accurate determination.
If we have observations of a periodic function
of x uniformly spaced from 0 to 2ir, then com-
parison of the means over the ranges — \v to
\TT, and f TT to fir, determines the coefficient of
cos x with a standard error only 1.1 times that
obtained by using the whole of the observa-
tions; and similarly for the coefficient of sin x.
Now a harmonic containing cos 3X keeps the
same sign over a range of 60° in longitude.
If we used only the central half of such ranges
we should get a good determination for cos 3X,
and the end halves would give sin 3X. Further,
whether higher terms are present or not, there
will be little correlation between the errors pro-
duced in the means. Thus least-squares would
be expected to give a good approximation if
the data are summarized for ranges of 30° in
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latitude and longitude. The problem is to fill
in the gap between individual stations and 30°
squares.

In my analysis (Jeffreys, 1941, 1943), I saw
no advantage, and some disadvantages, in try-
ing to use more than one observation in a 1°
square. I took the most northerly observation
in whatever list I was using. The 1° squares
were then combined into 10° squares. I t was
found that the free-air anomaly (the departure
from the International Gravity Formula of
Cassinis, which was used as the standard) reg-
ularly showed an increase with height over land,
and a decrease with depth of the sea bottom
over sea. This is a consequence of any form
of compensation, but study of compensation
and its imperfections was not the object at this
stage. The important thing was that here was
a clearly systematic effect, and if the result for
a 10° square was to be representative of the
square it must be evaluated for the mean height
of the square. Thus to the data in a 10° square
I fitted a formula a-\-bh by least-squares and
reduced to mean height by evaluating a-\-bh,
where h is the mean height interpolated from
Prey's calculation. Similar methods were used
for sea squares and squares that were partly
land and partly sea (the values of b for sea
squares were generally less than for land
squares). The standard errors T0 of the esti-
mates for the mean height were evaluated as
usual.

The next question was, how much would the
10° means be expected to differ from the 30°
means? We have no information other than
the gravity data themselves; and harmonics in
a range about w=18 would produce a fluctua-
tion in the 10° means and largely cancel in the
30° means. I grouped the 10° squares into 30°
squares, so that a 30° square might have nine
10° squares in it. There was a scatter larger
than the apparent uncertainty of the 10° means
(treated as having independent errors) could
explain, and this implied a variation that could
keep the same sign for 10°, with an additional
uncertainty which I expressed by a standard
error TX of 20 mgal. This, it must be under-
stood, is not the uncertainty of the 10° means
themselves, but of the probable departure of
the true means over 10° squares from a smooth

formula that would fit the 30° squares. It
was the latter that I was trying to find.

Combining the uncertainty TX with the crude
uncertainty T0 I derived means and standard
errors for the 30° squares. Again the actual
variation was greater than the uncertainties
taken into account so far would explain, and
I introduced a further variation with root mean
square T 2 = 1 2 mgal to take this into account;
T2 would include contributions from all har-
monics of degree <6. Then I formed the
normal equations, neglecting all nondiagonal
terms, to see what harmonics might have co-
efficients substantially more than their stand-
ard errors. Apart from the constant and P2

terms, whose existence was not in doubt, three
showed up, namely Pi cos X, Pi cos 2X, and
Pi cos 2X. Normal equations were then formed
fully for coefficients of Po, P2, and these three
terms, and solved. As the T2 variation would
include these variations, their mean square was
subtracted from rf and the result was used to
estimate uncertainties. Residuals were formed
and reanalyzed, and a term in Pi sin 3X was
detected. (Two slight departures were made
from this treatment, but they need not delay
us here.)

If I were doing the work again I should make
two modifications. In the first approximation,
T2 included the variation I was trying to esti-
mate, and this was removed in the second. A
more usual practice would have been to analyze
from the 10° squares directly and look for out-
standing correlations between the residuals at
different separations, increasing the uncertain-
ties correspondingly if any showed up. Also, the
analysis was carried out piecemeal, groups of
harmonics whose values were likely to influence
estimates of one another being taken together.
Now that electronic calculators are available,
it would be easy to do the direct analysis for all
possible harmonics to degree 3. I should not,
however, expect either change to affect the
results greatly.

Zhongolovitch's analysis

After my work an analysis resembling it in
many respects was made by I. D. Zhongolovitch
(1952). He determines systematic corrections
for some of the older observers very much as I
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did, and also some corrections to base station
values for more recent ones. My 10° "squares"
were of course not square except near the
equator, the range of distance in longitude
being less than in latitude. So long as the
uncertainties were evaluated I do not think
that this could make much difference. Zhon-
golovitch used regions more nearly square.
Each extended over 10° of latitude, but the
numbers along each zone of latitude were
chosen so that the areas would be approximately
the same as for equatorial squares. Thus they
dropped from 36 in the equatorial zone to 3 in
each polar zone. The advantage of this is, I
think, more than compensated by the fact that
it is no longer possible to group nine 10° squares
into one 30° square and get an estimate of the
Ti variation at an early stage in the analysis.

He estimates b and b' as I did, but gives two
sets of solutions, one (first variant) using the
simple mean for the stations in each square, the
other (second variant) reducing to the mean
heights of the squares as I did. As the second
variant corrects for an obvious systematic
error, I think the first needed no consideration.
In my work I considered the possibility that
for forms a-\-bh, a/Jrb'h' applied to the squares
that were partly land and partly sea, the values
of a, a' for the land and sea portions might be
different. I took all the 18 squares where a and
a' were well determined and found a'^>a in 9
cases, a'<C.a in 7, and a'=a in 2, and decided
that there was no systematic difference. Zhon-
golovitch, however, used 46 squares and finds
a mean a'—a=19 mgal and allows for it. The
respective numbers are a'^>a, 32 cases, and
a '<a , 14 cases. As his total number of squares
is not very much different from mine, I think
that the difference between 18 and 46 cases
must be due to his having retained squares
where I should not have considered a and a'
well determined.

My comparison was with the International
Gravity Formula, which can be written 979770
+3446.0 P2 (sin tf>) + 5.3 P4 (sin <f>). Zhon-
golovitch's is with Helmert's formula 978.030
(1+0.5302 sin2 <*>-0.000007 sin2 2^=979754.85
+3454.40 F2+6.26 P4.

However, his solutions take no account what-
ever of either T0 or rt. The first, T0, will be
arge if there are few observations or if their

values vary irregularly within a square. But
he forms normal equations for the coefficients
of the harmonics using the data for the separate
squares as independent estimates, treating all
as of equal weight. This is clear from his
table 6; if any allowance had been made for
the uncertainty of the reduction to the mean
height of the region, the diagonal coefficients
would be less for the second variant than for
the first, but in fact they are the same. Thus
excessive weight has been given to squares
with scanty or irregular data. Standard errors
are derived from the scatter of the data, but
they may be too low on account of correlation
between adjacent errors due to the presence
of harmonics of degrees about 6; and as the
values for squares near the poles have especially
large uncertainties T0, if there is any systematic
error in them it will have biased some of the
estimates, especially those of the coefficients
of P2 and P3.

In table 7 Zhongolovitch (1952) gives 15
different solutions from his data for each
variant. Here Anm, Bnm are departures from
the coefficients in Helmert's formula. The
normal equations are for coefficients up to Au,
Buf with certain multipliers, but in the solu-
tions some coefficients are either taken as zero
or given values taken as not subject to error.
I state the coefficients estimated.
Column 1. .Aoo, A20 only.

2. Aoo, A20 (.A40 taken equal to differ-
ence between Helmert's and the
International value).

3 . Aoa, A2o, -"30-
4. .4oo, A20, Am (An treated as ini-

tially unknown).
5. Am, A20, AM, A4Q.
6 . AQQ, A2o, -"22> X>22-

7. Aoo, A20, An, Azi, A32, B33.
8. All to £33.
9. All to Bu.

10,11,12. A30, Aw re-estimated as for 3, 4,
5 with values of ^00 and A20 from
column 1.

13. All to B33; coefficients up to Bn
taken from column 6.

14. All to Bu', coefficients up to Bzs
taken from column 13.

It is column 14 that Zhongolovitch quotes
in a later paper (1957). It practically halves
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A30 and Azi in comparison with column 9.
Column 15 is based on the hypothesis that the
same gravity formula holds in the unoccupied
squares as in the occupied ones. This is
reasonable, but is applied as follows. Values
for the unoccupied squares are calculated from
column 13; then the whole of the coefficients
up to Bgg are calculated by numerical integra-
tion over the whole surface. Naturally this
makes only slight changes in the coefficients up
to #33. No uncertainties are given, and in
fact the nearest approaches to estimates with
valid uncertainties axe given by columns 8 and
9. Column 15 fits the observed squares with
standard deviation 18 mgal, the unobserved
ones with standard deviation 5 mgal. This
of course is too good to be true. We really
have no idea how the contributions from
intermediate harmonics vary in the unob-
served regions; even if a range of 180° in
longitude is available, it cannot adequately
separate a harmonic of degree n from one of
degree n + 1.

Itfappears that if harmonics above the second
degree are considered at all, only columns 8 and
9 are genuine least-squares solutions and all the
others must underestimate the uncertainties.
As indicated above, even columns 8 and 9 are
doubtful on account of correlation of errors and
of treatment of all squares as equally well de-
termined. Nevertheless the comparison is of

some interest. Column 7 estimates the same
harmonics as I found, and should agree with
mine if the method is free from bias.

Comparison of the solutions is made easier
in terms of the mean squares of the contribu-
tions of the various harmonics to gravity. The
mean squares of Pnm (cos mX, sin mX) are as
follows:

n
0
1

2

3

4

m
0
0
1
0
1
2
0
1
2
3
0
1
2
3
4

Mean square
1

1/3
1/3
1/5
3/5

12/5
1/7
6/7

60/7
360/7

1/9
10/9

20
280

2240

From column 9, foreach'entry of the form a±a
we take a2, a2 times the mean square of P^
(cos mX, sin mX). An extra figure was kept in
the calculation. (See table 1.)

Ato is not included in the summation because
some departure from the international formula
in this coefficient is to be expected on any hy-
pothesis concerning the earth's internal state.

Am
Atl

B3l

Aa

Ba

TABLE 1.

Estimate

+ 15. 42 ±6. 05
+8. 23±3. 14
+0.32 ±2. 35
+ 0. 23±0. 80
-1.93 ±0.68
+0. 57±0. 32
+0. 47±0. 31

+ 2.27 ±6.28
-4.96 ±2.46
-2.74 ±1.93
—0. 07 ±0. 43
+ 0.65 ±0.46
+ 0.21 ±0. 12
+ 0. 09 ±0. 12
+ 0.033 ±0.041
+0.061 ±0.042

Mean square
from estimate

34.0
58.0
0.9
0.4

31.9
16.7
11.4

153.3

27.3
8.3
0. 1
8.4

12.3
2.3
2.4
8. 3

Mean square
from uncertainty

5.2
8.5
4.7
5.5
3.9
5.2
4.8

38. 1

6.7
4. 1
3.7
4.2
4.0
4.0
3.8
3.9

69.5 34.6
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An
A2i

Atl

Bs.
Au
B32

A33

B33

I/a

Column 8
+ 22. 32 ±1.79
-15 . 80 ±4. 86
+ 3. 54±1. 30
+ 0.06 ±1.29

+ 12. 37 ±5. 24
+4. 25 ±2. 16
-0 .96 ±1.95
+ 1. 08±0. 66
-1 .32 ±0.60
+ 0.95 ±0.25
+ 0. 65±0. 25
296.0 ±0.6

TABLE 2.
Column 9

+ 22. 80±l. 83
-17. 53 ±5. 24
+ 5. 27±1. 52
+ 0. 46±1. 39

+ 15. 42 ±6. 05
+ 8. 23±3. 14
+0.32 ±2. 35
+ 0. 23±0. 80
- 1 . 93±0. 68
+ 0. 57±0. 32
+ 0. 47±0. 31
295. 8 ±0. 7

Column 7
22. 33 ±1.83

- 1 1 . 87±4. 37
+4. 43 ±1.22

+4. 32 ±2. 24

+ 1.07±0. 68

+ 0. 62±0. 25
296.6 ±0.6

H.J. (1943)
+ 2. 47±1. 93
- 6 . 1 ±5.0
+4. 01 ±1.42

+ 4. 24±2. 43

+ 1. 30±0. 68

+ 0. 46±0. 26
296.2 ±0.7

Taking the mean-square contributions from the
uncertainties as estimates of the probable con-
tributions to the mean squares of the estimates
from the outstanding variation, we have from
the third harmonics 5.4, and from the fourth 4.3.
The value for x2 would be 28.1 on 7 degrees of
freedom for the third harmonics, 16.4 on 8 de-
grees of freedom for the fourth. Both would be
highly significant if the estimates were inde-
pendent, but this is doubtful, and nearly half
of the sum 69.5 for the fourth harmonics comes
from A4l, which is just over twice its standard
error. In my preliminary analysis Aa was
+ 1.4±2.0.

If we subtract the contributions from the
random errors, we are left with 115.2 mgal2

from the third harmonics and 34.9 mgal2 from
the fourth. From our rough preliminary con-
sideration these are in about the ratio that we
should expect, although it is rather surprising
that so much of the contribution comes from
one harmonic. Also the decrease cannot con-
tinue at the rate suggested, since it would imply
r f + r | < l / 8 of the contribution from n=3;
actually it is about ten times that contribution.

In my solution the mean-square contribution
from 7 third harmonics was 46 mgal2, of which
27 mgal2 was accounted for by random errors;
thus my terms are substantially less than
Zhongolovitch's.

On the face of it the third harmonic coeffi-
cients that can be determined without serious
doubt as to their signs are ^30, A3U Bw, and
possibly ^33. Those that I found were A3U A&,
and .B33, thus agreeing only for A31.

Comparing column 9 with column 8, in which
the fourth harmonics were not estimated, we
find the following (table 2). I also give my
solutions and Zhongolovitch's column 7.

Three of the changes exceed the standard
errors in column 9, and five exceed those in
column 8. The most striking is for A3i. The
changes are surprising, seeing that only one
coefficient of a fourth harmonic in column 9
exceeds twice its apparent standard error. The
difference between his Aw, -̂ 20 and mine is
mostly due to the fact that he has compared his
data with Helmert's formula, whereas I used
the International formula. The estimates of a
(the eUipticity) are comparable. For the
harmonics that I found worth estimating the
agreement between my results and column 8 is
quite good. However, I found no indication of
a significant A30, which is striking in both
column 8 and column 9; and my A32 is in good
agreement with column 8 but not with column
9, and I failed to find B& or A&.

Comparison with results from artificial
satellites
Comparison with results from artificial satellites
shows further anomalies. The zonal harmonics
in the field are well determined because they
produce effects that accumulate secularly or
over long periods. If the potential is taken in
the form

=$ [l+± ± (£)' P- (Cnm cos s\
1 L n=»2 m-0 W

+Snm sin sX)

determinations for m=0, n=0 to 5 have been
found. Terms with ray^O give effects that
accumulate for much shorter times, and hence
are more difficult to evaluate. The coefficient
in g is nearly n— 1 times the corresponding one
in U. Then we have, chiefly from the work of
Kozai (1961b,c):
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I/a
10«C22

106Cso
106C31

10«S31

10«C32

10«£32
1O°C3 3

108<S33

10«C4O

lO'Cw

298. 20 ±0.03
+ 0. 60±0. 28
- 2 . 24±0.28
+ 2. 29±0. 02
+ 2. 99±0. 36
+ 1. 18±0. 31
+ 0. 20±0. 20
+ 0. 36±0. 20
-1 .71 ±0.29
+ 0. 84±0. 27
+ 2. 12 ±0.041
+ 0.232 ±0.021

^ 2 2

B22

AM

A3l

Bzi

Ai2

B32

A33

B33

Ai0

Am

+ 0.60 ±0.28
- 2 . 24 ±0.28
+4. 58±0. 04
+ 5. 98±0. 72
+ 2. 36±0. 62
+ 0. 40±0. 40
+ 0.72 ±0.40
- 3 . 42±0.58
+ 1. 68±0. 54
+ 6. 36±0. 12
+ 0.93 ±0.08

Comparing with the values from gravity
(allowing for the n—1 factor), we see that the
best established term from artificial satellites,
(72O, leads to a value of the ellipticity a differing
from the gravity value by about three times the
standard error. Again Cm would correspond to
A30= +4.6±0.04. As my value (1943) was
+ 1.6±5.0 (Table VI, p. 63), it is consistent;
but Zhongolovitch's values deviate by about
1.5 and 1.7 times their apparent standard
errors. With regard to these terms I am sure
that the artificial satellite values are right.
Helmert's formula, used by Zhongolovitch for
comparison, corresponds closely to the artificial
satellite value of a. The sum of his A20 and A^
is small, and P20 and P& keep the same sign
through most of the northern hemisphere. It
looks as if the separation of these harmonics
must depend mostly on the scanty observations
in latitudes south of —30°, and the difference
between his solution and mine for A30 is due to
his having given too much weight to them. I
am inclined to think that the error in my A20

is due to errors in the comparison of base
stations. As many of these have now been
improved, and there are now many more
observations in the North Pacific and in the
southern hemisphere, it should now be possible
to make a much better determination.

For m=0, A3i is reasonably consistent with
my value and with Zhongolovitch's column 8,
and A32f B33 might be consistent. But A22, B22,
-B31, B32, ^33 are in serious disagreement. Here
it seems to me that the values from gravity and
from satellites are both under suspicion. The
error in A2Q indicates at least that there is some
systematic error in gravity, which may have
affected the estimates of the other coefficients.
Kozai (1961c, p. 10), on the other hand, re-
marks that the true standard errors of his
values are much larger than those quoted; if I

understand him, nonorthogonality in the nor-
mal equations had not been allowed for.

Possibilities of improvement

I think that in the long run gravity should give
much better determinations for m^O than the
artificial satellites. The number of 10° squares
would be 542 if all were occupied; the polar
circles of radii 10° are each treated as one square.
A full gravity survey would not eliminate rlt

which will contribute a mean square departure
in the neighborhood of 400 mgal2. The error of
representation, the departure of the true mean
over the square from the estimated mean,
would be about the same, but would be divided
by about 3 if we had one observation for
every 5° square. Thus, if we had an observa-
tion in every 5° square, the mean square con-
tribution to any harmonic arising from the
uncertainties could be brought down to about
1 mgal2. This is to be compared with about
5 mgal2 from the present gravity data. Kozai's
results as they stand give less than 1 mgal2 up
to B3i, 1.4 mgal2 for A32 and £32, 15 mgal2 for
^33 and .B33. He also gives values for coeffi-
cients up to Biif some of which have greater
uncertainties still. Since his uncertainties are
said to be probably too low, it seems that even
if artificial satellites may give the better values
^or m = l and possibly m=2, gravity survey will
still be needed for higher m.

It may appear that Zhongolovitch's work
would have used many more observations than
mine, but this does not seem to be the case.
He has 410 squares altogether, of which 204
contain observations. I had 542, of which 217
had observations. For the 30° squares I had
49 occupied out of a possible 62, but if we take
only those where the standard error is <15
mgal the number sinks to 33, which do not
include any centered on latitudes +90°, —60°,
and —90°. Zhongolovitch also comments on the
extreme asymmetry of the distribution with
regard to the equator.
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Abstract
Methods of analysis of gravity to estimate the low harmonics are discussed. The work of Zhongolovitch is

described in some detail, as it does not appear to have been translated and is the most extensive analysis made so far.
There are serious inconsistencies between his results, mine, and those derived from artificial satellites, and suggestions
are made for future work in the hope that these may be reconciled.



The Stabilization of an Artificial Satellite
at the Inferior Conjunction Point

of the Earth-Moon System
By G. Colombo

It is obviously important to be able to keep an artificial satellite stable at the inferior conjunction
point (Li) of the earth-moon system, while using the minimum amount of momentum. The fact
that the inferior conjunction point is an exact solution of the four-body problem (earth-moon-sun-
satellite) (Colombo, 1960; Klemperer and Benedikt, 1958, p. 25), if we neglect only high-order
perturbations, is an advantage of this solution that makes it preferable in some ways to the triangular
Lagrangian solution (Z,4) of the restricted three-body problem. On the other hand, the larger
degree of instability of position Lx compared to that of Lt is a disadvantage. It is, however, necessary
to note that the perturbing action of the sun on Z-4 is of the same order of magnitude as that of the
moon.

In the discussion that follows, we shall first compare the order of approximation of the solutions
Zj and L4 to indicate their characteristics. Second, we shall study some devices to stabilize a satellite
in a region around Li without using momentum. The devices considered are a solar sail of relatively
small dimensions, and a mechanical autonomous device. It is also possible to obtain this stabiliza-
tion with a jet system that uses a minimum momentum.

Each stabilization system needs a built-in position-detection device of high precision, which
may become possible in the next few years. But the final goal of this paper is to indicate the
smallness of the acceleration needed to keep a satellite in a region of 50 km around Lly and to examine
the possible stabilization systems, assuming that the position-sensors could detect displacements
of the order of 2 km. This discussion, even though theoretical at present, may be useful in the future
for designing a device to stabilize a satellite at the inferior conjunction point.

1. Collinear solution
The symbols used are defined as follows:

E, center of the earth;
M, center of the moon;
S, center of the sun;
T*, inertial reference system;
TE, reference system centered at E and oriented as T*;
a(#), acceleration of a moving point Q with respect to rg

A(Q), acceleration of a moving point Q with respect to r*
As(<?), acceleration due to the action of all the perturbing bodies S, V, M, J
A-B(Q), acceleration due to the action of the earth
Aj/(Q), acceleration due to the action of the moon
mi, mass of the earth
m2, mass of the moon
m3, mass of the sun

213
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F, force on E due to M
\M, velocity of the moon with respect to TS

The fundamental hypothesis may be stated as follows: AS{Q) is a linear function of Q, at any
time t, in a spherical region around E. With this hypothesis we shall neglect small terms, which
we will evaluate at the end of this section. (We shall also neglect the perturbations due to the oblate-
ness of the earth and to the possible oblateness of the moon.)

Let us define P with the following equation:

EP=PEM. (1)

Thus, for the above hypothesis we can write

As(P) = (l-P)As(E)+pAs(M). (2)

Next, we write the equations of motion of M and P with respect to TE, and the equation of motion
of E with respect tor*:

> = -A*(£)+A*(P)+AM(P)+A5(P), 1

(3)

Consequently,

mi™2 \ (4)
z(P)=~+As(P)+AM(P)+As(P)-As(E).

Finally,

The accelerations A*(P) and AM(P) and the force F are parallel; therefore, we can solve the equation
in p:

A / D \ I A fT>\ ^ 2 ( 1 P) PW] -p ,~N

B \*J I "-At \±) = = * • \O)

If we take, for example, the solution pu satisfying the conditions 0<p 1 <l , we will have

a(P)=P la(M). (7)

This solution corresponds to the inferior conjunction point Lu If we put a satellite at point Li
with an initial velocity v(P) equal to PiVjir, the satellite will always satisfy the equation

EP=P lEM. (8)

The motion of P will be homotetic to the motion of M with respect to E.
To obtain a rough estimate of the degree of approximation, let us consider the most unfavorable

condition for the perturbation. Assume that the moon and sun are in conjunction and, for simplicity,
neglect the smaller action of the other perturbing bodies. We have for any Q of EM, under these
conditions, the equation

AJG)—AJE) C2\EQ\
\ES\* \ \ES\
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We showed that the linear term does not cause relative perturbations, which can never come from
the total quadratic term, but only from the difference,

1.5X10-8 cm/sec2. (10)

This perturbation is of the same order of magnitude as the solar pressure for a body with an area-
to-mass ratio of 10~4 cm2/gram.

2. Triangular position
The difficulty of defining exactly a triangular solution for the real earth-moon system is well known.
We choose to define the point L4 with the equation

(11)
where

n=|EMXvI

I think this is the most natural definition of the libration point Li, but it is not an exact solution of the
real earth-moon-sun-satellite problem, even if we neglect the parallactic term as we did in the previous
section.

We shall now evaluate the acceleration needed to keep a satellite at Lt, taking into account only
the sun's action. Let us put, as in the fundamental hypothesis given above,

As(P)=As(S)-aEP+3a ^ | ^ ? ES, (13)

where

From equation (3), taking into account equation (13), we obtain the following equations of motion for
P and M:

a(P)=A,(P) + AM(P) - AM(E) -«EP+3a

F«5 FM

Ag(M)-AM(g)-aEM+3« j^ j 2 ES.

Now, if we define the operator,
e<9a=a cos 0+nXa sin 6, (16)

we will have for Z4:

EL«=e"/3EM. /

The acceleration needed to keep P at L4 is:

{(ES.EM)nXES-(ES.nXEM)ES}+ :f ^ X T ^ + ^ ^ X E M . (18)

The intensity of the acceleration (18) is of the order of 10~3 cm/sec2. Note that in this position the
acceleration due to the action of the moon is of the same order of magnitude, that is to say, 3X10~a

cm/sec2. Therefore, the question is: since the triangular Lagrangian solution is a solution of a
schematic model of the real problem, made by neglecting a force of the same order of magnitude as

636-014—63 15
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the force that we do consider, what information will we gain from this model about the real motion of
a satellite in a region around the point i4?

The perturbing acceleration (18) may be considered an almost-periodic perturbation. We
denote by nm and n, the mean motions of moon and sun respectively. The quasi-period of A(<) is

—r- This acceleration may cause a forced oscillation, but it is necessary to observe that if wew)
take into account all the terms of the same order of magnitude, we have to work with a nonlinear,
nonautonomous system. Moreover, this system seems to be very close to a harmonic or sub-
harmonic resonance condition. In fact, it is very easy to write the vectorial equation for the
motion of P in a small region around L^ We put EP=EL4+L4P=EIi4+x, and we obtain as a first
approximation:

™ < mE\L-6 \ELi\
2V~mu]'X

x]ML,

[(EL4.ES)EL4-(EM. ES)EM]}+A<«>=0. (18')

A preliminary crude analysis of equation (18) makes the opinion stated above almost certain. We
will not waste time by indicating the difficulties of the problem of the secular stability of the motion
around Z4. We will only refer the reader to the work of Brown and Shook (1933) on the Trojan
group, and observe that the case we are studying is more complicated than the Trojan case for the
following reason: the earth-to-moon mass ratio is much smaller, and the effects of the perturbing
acceleration due to the sun are very much greater than are those due to Saturn in the case of the
Trojan group.

If the problem were only to study the short-period stability, it would be enough to perform a
numerical integration. I think, however, it is necessary to begin with a solution defined precisely as
we have defined it. Starting as we suggested above, we can evaluate carefully all the forces of the
same order of magnitude acting on the satellite.

3. Inequalities for the acceleration in a region around L}

To study the possibility of stabilizing a satellite in position L1} we must first study carefully the
gravitational acceleration of a point P in a region around Lx. Taking into account only the action of
the sun and neglecting the other celestial bodies, we have from equation (3):

a ( P ) = A 5 ( P ) - 5 ( ) + * ( ) + * ( )

= - « E P + 3 a ^ + ^ H ^ )

We know that
EP*=EL1=PlEM (20)

is an exact solution of equation (19). Now we put
EP=EP*+P*P (21)

and we obtain the equation

P*P _/dAg(P)\ (*kM(P)\
dt* V 5P / P .

 r + \ dP A
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denoting by O2(P*P) terms of two orders of magnitude less than the other terms, in a spherical
region R around Lx of radius 150 km. We will write equation (22) in the following form:

dt2 \EM\*

OL2 =
htn2

\MP

(23)

Now we consider the reference system T, centered at P* with the Z-axis normal to the ecliptic,
and the X-axis directed toward the point T • We define a fictitious moon M* and a fictitious earth
E*, in the following manner: M* and E* move in circular orbits centered at P* in the XF-plane
with radii (1 — px)a and pxa, where a is the semimajor axis of the real moon. The true longitude of
M* is the mean longitude of the real moon, and E* is always in the opposite direction to M* with
respect to P*. We note that it is possible to choose the initial position of M* in such a way that
the angle between the directions P*M and P*M* is never greater than 8°. Now we write equation
(23) in the form:

E*M*+Aa+O2(P*P),

\M*P*

(24)

We will evaluate Aa when P moves in the rotating orbit we shall define soon. We take a reference
system T(r)(x, y, z) centered at P*, the 2-axis coincident with the Z-axis, and the z-axis directed
always toward M*. We suppose P moves in an ellipse e with respect to T(r), with principal diameters
in the x and y directions and semidiameters p and q, respectively. The components of the explicit
part of the acceleration at the right-hand side of equation (24) are

2(a*l+a%)x, - (25)

If we take an auxiliary reference system T[T) centered at P*, £-axis directed toward M, f-axis normal
to the osculating plane of the moon's orbit, the components of the explicit part of the acceleration,
we have at the right-hand side of equation (23) are

Now we put

and we obtain
|Aa| = (a*+«2*) {4(\£-

(26)

(27)

(28)

Let us denote by i*>0 the maximum of the angles z£, yrj, z{. On the arc of the ellipse e where
z>0 , y>0, we have

0< £< x cos i*+y sin i*,

0<! 17̂  x sin i*-\-y cos i*,

0< f < (xt+y2)1'2 sin i*.

(29)
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Let X* be the maximum value of the function \(t) we defined in equation (27). If we put
x=p cos 0,2/=2 sin 0, 05s 0<TT/2, we will find:

|Aa|< (c$+c$) {cos2 0[3p2(X* cos i * - l ) 2 + p 2 ( X * + l ) 2 - 2 X V cos i*]+sin2 6[Zp2 sin2 i*
+g2(X*2+l)—2XY cos i*]+2 sin 0 cos 0[3pg(X* cos i*—1) sin i*-2\*pq sin i*]}1/2. (30)

Or if we take into account that i* is less than 8° and 0°< 0< 90°, X*<3, we obtain
|Aa| <(<*?+<*£) {p2 cos2 0[4(X*-l)2+sin2 i*]+g2 sin2 0[(3+X*) sin2 i*+(X*-l)2]}1 /2 . (31)

Let us put g_=8p; then we have finally,
|Aa|<8p(a?+a2*){(X*-l)2+(3+X*) sin2i*}1/2. (32)

4. A forced orbit around Lx

Now let us consider a particle P moving with the fictitious acceleration with respect to T,

E*M*+S
*F*

\S*E*\' (33)

where SJ>0 is constant, and S* is the mean sun. Let us choose the unit value of time in such a way
that the mean motion of the moon is 1 and the unit value of length is a. We write the equation of
motion of P with respect to r(r), and we find:

-|flf| cos ( 1 -

sin < l -

d?z_ .
dt2~ *'

(34)

where n is the mean motion of the sun (ri^l/13 for the unit value we chose) and

(35)

We note also that for the unit value we chose A^Q. This system has a periodic solution in the form

x=p cos (1—n)t,

y=q sin (1— n)t, - (36)

2=0.

For our purpose we need only a crude evaluation of the solution. We have approximately

P=-ftS> q^—S. (37)

If we take p^20 km we need a constant acceleration |#|=4.2X10~4 cm/sec.2

5. Stabilization on the forced orbit
Now we go back to equation (23) and project it onto the reference system 7(r), taking the same unit
value of time and length we used in the preceding section. We will have

x—2y=[l+2A+all(t)]x+aa(t)y+au(!t)z-\S\ cos (l—rfit+X-nit)

y+2x=[\-A+a22{t))y+a2l{t)x+a23(t)z+\S\ sin (\-n)t+Y-^{t), )- (34')

s=[—A+an(t) ]z+a3, (t) x+Ov (t) y+Z—^t).
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We added three distinct accelerations to the right-hand side. The first is the constant acceleration
S we introduced in the previous section. The second is the result of a stabilizing control device; we
suppose that this control device supplies the following acceleration:

X= — (1+2A+8f)[x-p cos (1—n)t]—8\[x+(l—ri)p sin (l—n)t],*\

Y=-fi[y-(l-n) q cos (l-n)t], (38)

The coefficients are related to the intensity of the answer and the sensitivity of the instrumentation
for detecting deviations from the prescribed motions. The third acceleration (<pi, <&, &) is the accel-
eration we need to ensure that equation (34') still has the exact solution of equation (36). For this
purpose the component must be

<pi=an(t)x+a{2(t)y+ai3(t)z+O^(P*P), (39)

where 02{)(P*P) are the components of the accelerations that are two orders of magnitude smaller
than those we put in 02(P*P) in equation (23). We have

{ S <p\t)2} m< |Aa|+O2(P*P). (40)

If we take into account equation (32) and we observe that in our case i*<8°, \ * < l + 3 e (e is the
eccentricity of the moon's orbit), we will have

\Aa\<0.5\S\, (41)

when the point P moves in the proposed orbit around Lt in equation (36). No doubt, if we are able to
achieve the accelerations in equations (34) and (35) to be added to the constant acceleration S, the
satellite will be stable in the orbit in equation (36). The degree of stability is related to the coef-
ficients 8i, S2, ft, 7X entering into the components X, Y, Z. We can use as much as 0.2 \S\ for the
purpose of stabilization; this means (if p=20 km) 1X1O~* cm/sec2. If we want to have a damping
factor of 1 or more, we need a device capable of detecting a variation of 2 km/hr in the velocity—
that is, a high-sensitivity device. In any event, we need to be able to detect a variation of 2 km in posi-
tion to have a sufficiently good stabilization. Figure 1 gives a diagram of the acceleration needed to
keep the satellite stable in the orbit in equation (36). The needed acceleration vectors have their
origin at the point 0; their ends are in the shaded region. The maximum angle between the direction
mean sun-satellite and the required orientation is less than arc sin 7/10 or 45°. Therefore, it would
be possible to obtain the acceleration we need from the solar pressure over a system of sails or flat
orientable balloons that are linked to each other and to the satellite in such a way that the configura-
tion can be altered from within the satellite.

To obtain a crude evaluation of the maximum extent of the surface needed to provide the
required external force we shall proceed as follows. We suppose the satellite to be at the geometric
center of a plane, orientable, reflecting surface. The maximum extent of the surface will be com-
puted in such a way that the corresponding acceleration of the complex satellite-sail, due to the
radiation pressure, is 1.8- \S\, when the normal N to the plane is parallel to the direction SP. If the

orientation of the sail is changed so that N makes an angle # ( < | ) with the direction SP, the

acceleration will have the direction of N and its intensity will be 1.8 • |S| • cos2 0. Thus diminishing
the extent of the surface and varying the orientation, we will be able to supply to the complex all
the acceleration vectors with the ends inside the region bounded by the closed curve OQRQ'O and
therefore all the acceleration vectors with the ends inside the shadowed region. We can now
evaluate the ratio Ajm from the equation (Garwin, 1958: Sohn, 1959) 1 .8 |S |=0.8X10~M./TO in the
c.g.s. system. If we assume, as before, that p=20 km we will find ^l/m=9.5. This means that for
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-r

FIGURE 1.—Diagram of the accelerations.

a 200-kg satellite we need a maximum reflecting area of 19X105 cm2 or 190 m2. I think we are not
very far from the actual possibility of achieving an automatic control device (including directional
and positional sensors, computer, and servomechanism) that can arrange at any time the required
configuration of the system of sails or flat balloons; the solar pressure over the complex will provide
both the external force and the external torque needed for the adjustment of both the position and
the direction of the complex.

We shall not discuss the technical questions involved, since this is not the purpose of the present
study. Nor shall we discuss in detail the possibility of providing the same stabilization with very
small rockets. The preceding sections make it clear that it would be possible to program the action
of such rockets so that they could act from time to time for a short period, when the control device
detects some variation in position and velocity, in such a way that the amount of consumed momen-
tum is a minimum. However, to make this computation we need first a careful analysis of the
gravitational motion of a nonsailed satellite around the libration point and, second, an exact
evaluation of the sensitivity of the instrumentation.

6. Autonomous stabilization of a system of two points
Since we are considering only the theoretical possibilities, at least for the present, we should like to
discuss one other method for stabilizing a satellite at the inferior conjunction point without consum-
ing momentum. For simplicity, we shall deal with the classical restricted three-body problem;
and to stay close to the problem of the preceding sections we shall use the same reference systems
and the same unit values for the dimensions as in section 4. Let us consider the motion of two
points P^Tt, yu 2,) and P2(x3, y2, z2) of equal mass, and suppose that P , and P2 are constrained by
the following holonomic constraint:

P H [ 6 ( ) 2 (42)
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where (xi+x2) is the x coordinate of the center of mass Q of the two bodies. To build this constraint
we need only a position sensor and an internal device to change the distances between the points as
necessary. We can change the exterior force that acts on the system by changing only (with the
interior force) the distance PiP2. We will need only energy without loss of mass for the system.

Now we write the Lagrangian equations of motion of the system:

*i-2&=(l+2^)z1+X0r1-:r2)-4X&(z1+z2) {
*i-2&= (1 +2A)x1+\(r2-x1) -

x2= (1—A)y2+\(y2—
zl-\-Ail=\{zi—z2)

(43)

Let us consider the static solution,

3/1=2/2=0,

x
A

(44)

and study the linear stability of the solution. We put

a
»2=— o

(45)

x=x*+x,, J
and we will obtain from equations (42) and (43) the following system:

(yi—th)t

(y2-yi),

(Zl-z2),

(46)
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It is very easy to see that if
4a6>l , (47)

we have linear stability.
It would be possible to study some nonholonomic constraint of the form IP1P2I =/(Pi, P2, P\, P2, t),

which can give a more realistic and reliable stabilization device, by taking into account the actual
possibility of detecting deviations in position and velocity as well as the time lag between the detec-
tion of the deviations and the suitable variation of the distance computed and accomplished by the
interior mechanisms. To gain an idea of the reliability of the stabilization complex, we will suppose
a=10 km. This means a= 10/380000 and, from equation (47), we need 6>9500. If we choose
6=19000, for a displacement of G in the ^-direction of 1 km we need to vary the distance PiP2 from
10 km to 9.5 km. Obviously, we need a highly sensitive control complex. It is interesting to note
that it is possible, in principle, to change the exterior gravitational force acting on the complex by
using only an interior force and information from outside.
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May and June 1959

Catalogue of Satellite Observations:
Addenda and Corrigenda, Station
Coordinate Lists

*Solar Effects on the Acceleration of L. G. Jacchia
Artificial Satellites

*Anticipated Orbital Perturbations of
Satellite 1959 Delta Two

February 2, 1960

February 5, 1960

February 8, 1960

February 10, 1960

January 15, 1960

March 30, 1960 (re-
issued January 30,
1961)

May 24, 1960 (revised
June 30, 1960)

A Table of the Times of Perigee Pas-
sage for Satellite 1959 Beta Two

•Note on the Secular Motions of the
Node and Perigee of an Artificial
Satellite

Catalogue of Satellite Observations for
July and August 1959

Osculating Elements
Catalogue of Satellite Observations

*On the Effects of Image Motion on the
Accuracy of Measurement of a Flash-
ing Satellite

Catalogue of Observations of Satellite
1958 5 2 for the Period August 1-22,
1959

Catalogue of Observations of Satellite
1958 5 2 for the Period August 23-31,
1959

Catalogue of Additional Observations
of Satellite 1958 52 for the Period
Mayl-May29,1959

Catalogue of Observations of Satellites
1958 52,1958 Epsilon, and 1958 Zeta

Orbit Determination from Simultane-
ous Doppler-Shift Measurements

A Variable Atmospheric-Density Model
from Satellite Accelerations

Orbital Elements for July and August,
1959
Satellite 1958 Alpha
Satellites 1958 £1 and /S2
Satellite 1958 52
Satellites 1959 al and a2
Satellite 1958 Gamma

Relative Positions of the Sun and Per-
igee of an Artificial Earth Satellite

Y. Kozai and
C. A. Whitney

R. E. Briggs

Y. Kozai

R. G. Albert

Y. Kozai
R. G. Albert
J. A. Hynek

R. G. Albert

R. G. Albert

R. G. Albert

R. G. Albert

I. G. Izsak

L. G. Jacchia

B. Miller
C. A. Martin
Y. Kozai
R. C. Nigam
I. G. Izsak
P. E. Zadunaisky

•Reprinted in Smithsonian Contributions to Astrophysics, vol. 6, 1963.
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No.

41

Date

May 25, 1960
(out of print)

42
(0-12)

43
(C-13)

44
(0-14)

45

46

May

May

May

July

July

25,

25,

25,

11,

11,

1960

1960

1960

1960

1960

47
(C-15)

48
(C-16)

49
(C-17)

50

51

September 9, 1960

September 9, 1960

September 9, 1960

October 3, 1960

October 17, 1960"

52 November 21, 1960

53 December 5, 1960

Title

The Catalogue of Precise Satellite
Positions

Preliminary Time Reduction for the
Determination of Precise Satellite
Positions

The Star Chart Project
Explanation of Codes Used in the

Catalogue
Shutter Correction in Time for the

Baker-Nunn Camera
Catalogue of Satellite Observations

Catalogue of Satellite Observations

Catalogue of Satellite Observations

List of Coordinates of Stations En-
gaged in the Observation of Arti-
ficial Satellites

*The Effect of a Variable Scale Height
on Determinations of Atmospheric
Density from Satellite Accelerations

Comment on the Paper Entitled
"Symmetry of the Earth's Figure"

Catalogue of Satellite Observations

Catalogue of Satellite Observations

Catalogue of Satellite Observations

Author

K. Lassovszky

E. Weston

P. A. Pardue
E. P. Bullis

P. E. Zadunaisky

D. V. Mechau

D. V. Mechau

D. V. Mechau

D. V. Mechau

L. G. Jacchia

C. A. Whitney

D. V. Mechau

D. V. Mechau

D. V. Mechau

P. E. ZadunaiskyThe Orbit of Satellite 1958 Alpha
(Explorer I) During the First 10,500
Revolutions

Satellite Orbital Data D. V. Mechau
Satellites 1958 01 and 1958 02 B. Miller
Satellites 1958 52 and 1959 il Y. Kozai
On the Orbital Elements of Satellite Y. Kozai

1959 d
*A Theory of Satellite Motion About an I. G. Izsak

Oblate Planet: I. A Second-Order
Solution of Vinti's Dynamical Prob-
lem

The Orbits and the Accelerations of R. C. Nigam
Satellites 1959 al and 1959 o2

•Reprinted in Smithsonian Contributions to Astrophysics, vol. 6, 1963.
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No. Date

54 December 19, 1960
(0-18)

55 December 19, 1960
(0-19)

56 January 30, 1961

57 March 3, 1961
(C-20)

58 March 3, 1961
(0-21)

59 March 3, 1961

60 March 10, 1961

61 March 20, 1961

62 May 26, 1961

63 May 29, 1961

64 July 7, 1961

65 July 14, 1961

Title

Catalogue of Satellite Observations:
Satellite 1958 Alpha, 1958 01, 1958
02, 1958 52, 1958 Epsilon, for June
1-Aug. 31, 1960

Catalogue of Satellite Observations:
Satellites 1959 al, 1959 «2, 1959 Eta,
1959 il, for June 1-Aug. 31, 1960

A Method of Analysis for Lens and
Mirror Systems

A Determination of the Ellipticity of
the Earth's Equator From the
Motion of Two Satellites

Effects of Solar Radiation Pressure on
the Motion of an Artificial Satellite

Catalogue of Satellite Observations:
Satellites 1960 01 (carrier rocket
Tiros I), for Apr. 1-nJune 1, 1960;
1960 02 (Tiros I), for Apr. 2-Aug. 31,
1960; 1960 7I (carrier rocket, Transit
IB), for Apr. 13-June 3, 1960; 1960
72 (Transit IB) for Apr. 14^July 25,
1960

Catalogue of Satellite Observations:
Satellites 1960 tl (Echo I), and 1960
i2 (carrier rocket, Echo I), for Aug.
12-Aug. 31, 1960

The Positions of the Baker-Nunn Cam-
era Stations

•The Effect of Radiation Pressure on the
Secular Acceleration of Satellites

•Experimental and Theoretical Results
on the Orbit of Echo I

•The Atmospheric Drag of Artificial
Satellites During the October 1960
and November 1960 Events

•Effect of the Diurnal Atmospheric
Bulge on Satellite Accelerations

The Revised Orbit of Satellite 1958
Zeta

Atmospheric Drag on Non-Spherical
Artificial Satellites

Author

D. V. Mecahu

D. V. Mechau

R. J. Davis, S. E. Strom,
and K. M. Strom

I. G. Izsak

Y. Kozai

D. V. Mechau

D. V. Mechau

G. Veis

S. P. Wyatt

P. E. Zadunaisky, I. I.
Shapiro, and H. M.
Jones

L. G. Jacchia

S. P. Wyatt

R. C. Nigam

P. E. Zadunaisky

•Reprinted in Smithsonian Contributions to Astropyhsics, vol. 6, 1963.
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No. Date

66 July 17, 1961
(C-22)

67 July 17, 1961
(C-23)

68 July 17, 1961
(C-24)

69 July 17, 1961

70 July 18, 1961

71 July 24, 1961

72 August 9, 1961

73 August 10, 1961

74 September 18, 1961

SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

Title
Catalogue of Satellite Observations:

Satellites 1958 Alpha (Explorer I) ,
1958 j81 (carrier rocket, Vanguard
I), 1958 Epsilon (Explorer IV), 1959
01 (Vanguard II), 1959 «2 (carrier
rocket, Vanguard II), 1959 Eta
(Vanguard III), and 1959 d (Ex-
plorer VII), for Sept. 1-Dec. 31,1960

Catalogue of Satellite Observations:
Satellites 1960 d (Echo I), and
1960 i2 (carrier rocket, Echo I), for
Sept. 1-Dec. 31, 1960

Catalogue of Satellite Observations:
Satellites 1960 01 (carrier rocket,
Tiros I), for Sept. 14-21, 1960; 1960
02 (Tiros I), for Sept. 2-Oct. 15,
1960; 1960 yl (carrier rocket, Tran-
sit IB), for July 7-27, 1960; 1960 T2
(Transit IB), for July 26-Nov. 7,
1960; 1960 rjl (Transit 2A), for June
26-Dec. 29, 1960; 1960 V2 (Greb),
for June 22-Dec. 23, 1960; 1960 i?3
(carrier rocket, Transit 2A, Greb),
for June 23-Dec. 31, 1960; 1960 £1
(Explorer VIII), for Nov. 4-Dec. 30,
1960; 1960 £2 (carrier rocket, Ex-
plorer VIII), for Nov. 19-Dec. 24,
1960; 1960 Omicron (Discoverer
XVII), for Nov. 13-Dec. 31, 1960;
and 1960 Sigma (Discoverer XVTII),
for Dec. 8-31, 1960

List of Coordinates of Stations Engaged
in the Observation of Artificial Earth
Satellites

*The Motion of Satellite 1958 Epsilon
Around its Center of Mass

Elements of the Orbit of the Satellite
1959 Eta (Vanguard III) During the
First Year after Launching

Tesseral Harmonics of the Potential
of the Earth as Derived From Satel-
lite Motions

Differential Orbit Improvement with
the Use of Rotated Residuals

*On the Accuracy of Measurements
Made Upon Films Photographed by
Baker-Nunn Satellite Tracking
Cameras

Author

D. V. Mechau

D. V. Mechau

D. V. Mechau

D. V. Mechau

G. Colombo

P. E. Zadunaisky and
B. Miller

Y. Kozai

I. G. Izsak

K. Lassovszky

•Reprinted in Smithsonian Contributions to Astrophysics, vol. 6, 1963.
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No. Date

75 September 19, 1961

76 October 2, 1961

77 October 24, 1961

78 October 25, 1961

79 October 30, 1961

80 November 1, 1961

81 November 24, 1961

82 November 30, 1961
(P-D

83 January 31, 1962

84 February 9, 1962

85 February 12, 1962
(P-2)

86 February 21, 1962

Title

•Density of the Heterosphere Related
to Temperature

•Effects of the Earth's Ionosphere on
HF Radio Astronomy From Artificial
Satellites

•Short-periodic Oscillations in the Drag
of Satellite 1958 Alpha

Satellite Orbital Data:
Satellites 1958 Alpha, 1958 /SI and

1959 il, for May-Dec. 1960

•The Analysis of Gravity

•The Stabilization of an Artificial Satel-
lite at the Inferior Conjunction Point
of the Earth-Moon System

The Orbits of the Satellites 1959 cd
and 1959 a2 and the Perturbations
on the Perigee Distance of 1959 a l

Catalog of Precisely Reduced Observa-
tions: Satellites 1959 a l , for Feb. 17-
June 30, 1959; and 1959 Eta, for
Sept. 18-Dec. 31, 1959

Project Celescope

Author

M. Nicolet

M. D. Grossi, K. M.
Strom, and S. E.
Strom

L. G. Jacchia and J.
W. Slowey

D. V. Mechau
B. Miller

H. Jeffreys

G. Colombo

R. C. Nigam

G. Veis

R. J. Davis and Cele-
scope staff

L. G. Jacchia and
J. W. Slowey

Preliminary Analysis of the Atmos-
pheric Drag of the Twelve-Foot
Balloon Satellite (1961 51)

Catalog of Precisely Reduced Observa- G. Veis
tions: Satellites 1959 a l , for July 1-
Dec. 31, 1959; 1959 a2, for Mar. 6-
May 31, 1959; 1960 i2, for Sept. 10-
Dec. 31, 1960; 1960 Omicron, for
Nov. 13-Nov. 16, 1960; and 1960
Sigma, for Dec. 8-Dec. 10, 1960

Satellite Orbital Data I. G. Izsak
Satellites 1958 Alpha, for Jan. 1- B. Miller

July 1, 1961; 1958 01, for Jan. 1-
July 27, 1961; 1960 $1, for Nov. 4,
1960-July 3, 1961; 1961 51, for
Feb. 16-July 2, 1961; and 1961 wl,
for April 28-Sept. 1, 1961

Satellite 1959 d, for Dec. 31, 1960- J. Weingarten
July 1, 1961

•Reprinted in Smithsonian Contributions to Astrophysics, vol. 6, 1963.
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No. Date

87 February 23, 1962
(C-25)

88 February 23, 1962
(C-26)

89 February 23, 1962
(C-27)

90 March 14, 1962

91 April 20, 1962
(P-3)

92 April 23, 1962
(E-l)

93 May 4, 1962

Title
Catalogue of Satellite Observations:

Satellites 1958 Alpha (Explorer I),
1958 01 (carrier rocket, Vanguard
I), 1959 ol (Vanguard II), 1959 a2
(carrier rocket, Vanguard II),
1959 Eta (Vanguard III), and 1959
il (Explorer VII), for Jan. 1-June
30, 1961

Catalogue of Satellite Observations:
Satellites 1960 il (Echo I) and 1960
i2 (carrier rocket, Echo I), for Jan.
1-June 30, 1961

Catalogue of Satellite Observations:
Satellites 1960 £1 (Explorer VIII),
for Nov. 3, 1960-June 30, 1961; 1961
51 (Explorer IX), for Feb. 16-June
30, 1961; and 1961 ul (Explorer XI),
for April 27-June 30, 1961

On the Critical Inclination in Satellite
Theory

Catalogue of Precisely Reduced Obser-
vations: Satellites 1958 52, for Dec.
1-17, 1958; 1959 o2, for Jan. 1-Dec.
31, 1960; and 1959 Eta, for Jan. 1-
June 30, 1960

Satellite Orbital Data
Satellite 1958 52, for Dec. 7-14, 1959
Satellite 1959 a\, for Feb. 21-Dec.

30, 1959
Satellite 1959 a2, for Mar. 19-May

28, 1959
Satellite 1959 Eta, for Sept. 23-Dec.

30, 1959
Satellite 1960 i2, for Sept. 11, 1960-

Mar. 12, 1961
Satellite 1960 Omicron, for Nov. 13-

15, 1960
Satellite 1960 Sigma, for Dec. 8-10,

1960
Satellite Orbital Data

Satellite 1958 Alpha, for July 1,
196 Wan. 1, 1962

Satellite 1959 d, for July 1, 1961-Jan. 1, 1962
Satellite 1960 £1,

Jan.1, 1962
Satellite 1961 51,

Jan. 5, 1962

for July 1, 1961-

for July 2, 1961-

Author

D. V. Mechau

D. V. Mechau

D. V. Mechau

I. G. Izsak

I. G. Izsak
Y. Kozai
P. Stern and

M. Gutierrez
P. Stern

R. Nigam and
P. Stern

I. Izsak and
J. Weingarten

J. Weingarten

J. Weingarten

I. G. Izsak
B. Miller

M. Gutierrez

M. Hall

J. Weingarten
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No. Dale

94 May 23, 1962

95 June 18, 1962
(P-4)

96 June 25, 1962
(C-28)

97 June 25, 1962
(C-29)

98 June 25, 1962
(C-30)

99 July 16, 1962

100 July 30, 1962

101 July 31, 1962
102 August 27, 1962

(P-5)

103 August 28, 1962

104 September 10, 1962
(P-6)

105 September 28, 1962

106 November 1, 1962
(P-7)

Title
On the Motion of Explorer XI Around

its Center of Mass
Catalog of Precisely Reduced Obser-

vations: Satellites 1959 Eta, for July
1-Dec. 31, 1960; and 1960 i2, for
Jan. 1-June 30, 1961

Catalogue of Satellite Observations:
Satellites 1958 Alpha (Explorer I),
1959 al (Vanguard II), 1959 Eta
(Vanguard III), and 1959 d (Ex-
plorer VII), for July 1-Dec. 31,1961 ;
and 1959 al (carrier rocket, Van-
guard II), for July 1-27, 1961

Catalogue of Satellite Observations:
Satellites 1960 il (Echo I) and 1960
i2 (carrier rocket, Echo I), for July
1-Dec. 31, 1961

Catalogue of Satellite Observations:
Satellites 1960 £1 (Explorer VIII)
and 1961 51 (Explorer IX), for July
1-Dec. 31, 1961; 1961 v\ (Explorer
XI), for July 1-Sept. 28, 1961; and
1961 o\ (Transit 4a) and 1962 o2
(Injun Solar Radiation), for June 29-
Dec. 31, 1961

Chemical Analysis of 643 Particles
Collected by High-Altitude Aircraft
and Balloons

Accurate Drag Determinations for
Eight Artificial Satellites; Atmos-
pheric Densities and Temperatures

Numerical Results from Orbits
Catalog of Precisely Reduced Obser-

vations: Satellite 1959 al for the
Entire Year 1960

Satellite Orbital Data
Satellite 1959 Eta (Vanguard III),

Sept. 1, 1960-Dec. 31, 1961
Satellite 1960 il (Echo I), Jan. 1-

Dec. 31, 1961
Catalog of Precisely Reduced Obser-

vations: Satellite 1961 SI from Launch
Feb. 16^June 30, 1961

The Trajectory of Tektites

Catalog of Precisely Reduced Obser-
vations: Satellite 1959 al From Jan.
1-June 30, 1961; Satellite 1959 ijl
from Jan. 1-June 30, 1961

Author

G. Colombo

K. Haramundanis

B. Miller

B. Miller

B. Miller

F. B. Riggs, Jr.,
F. W. Wright,
and P. W. Hodge

L. G. Jacchia and J.
W. Slowey

Y. Kozai
J. MacDonald, K.

Haramundanis et aL

I. G. Izsak
B. Miller

B. Miller

J. MacDonald et al.

G. S. Hawkins and S. K.
Rosenthal

P. Stern



242 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

No. Date

107 November 9, 1962

108 November 20, 1962

109 December 21, 1962

110 December 14, 1962

111 December 15, 1962

112 January 21,1963

113 January 23, 1963

Title Author

On Some Singular Orbits of an Earth- G. Colombo and D. A.
Moon Satellite with a High Area- Lautman
Mass Ratio

On the Libration Orbits of a Particle G. Colombo, D. Laut-
Near the Triangular Point in the man, and C. Munford
Semirestricted Three-Body Problem

Re-Entry and Recovery of Fragments C. A. Lundquist, R. C.
of Satellite 1960 cl Vanderburgh, W. A.

Munn, D. Tilles, E. L.
Fireman, and J.
DeFelice

Project Celescope, an Astrophysical R. J. Davis, ed.
Reconnaissance Satellite

Possible Contributions of Space Experi- P. Swings
ments to Cometary Physics

On the Secular Decrease in the In- R. C. Nigam
clination of Artificial Satellites

Satellite Orbital Data I. G. Izsak
Satellite 1958 Alpha, for April 1- B. Miller

July 1, 1962
Satellite 1959 al, for March 31- M. Gutierrez

June 30, 1962
Satellite 1959 Eta, for March 31- M. Hall

June 30, 1962
Satellite 1959 il , for March 31-June M. Gutierrez

30, 1962
Satellite 1960 {1, for April 1-July 1, M. Halt

1962
Satellite 1961 81, for March 31- J. Weingarten

June 30, 1962






