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Libration of an Earth Satellite
With Critical Inclination

By YUSUKE HAGIHARA *

Theories on the motion of an earth satellite
have been worked out by Brouwer (1959), Gar-
finkel (1959), Kozai (1959), Vinti (1959), and
others. In all except Vinti's treatment, a
divisor of the form 1—5 cos2 / appears, where /
denotes the inclination of the satellite's orbit
to the earth's equator. Brouwer notes that
this method of solution cannot be applied to
this case, because the terms containing this
divisor become infinitely large for an earth
satellite having an orbital inclination with the
critical value cos"1 (1/^5).

In the present paper I propose to discuss the
behavior of the motion of an earth satellite
whose orbital inclination is approximately equal
to this critical value by applying my general
theory of libration (Hagihara, 1944) to the
motion of asteroids and natural satellites. We
follow Brouwer's notation and begin with his
equations of motion, after carrying out a first
transformation to eliminate all short period
terms in the differential equations. It will be
shown by a canonical transformation to these
transformed equations that the case for the
critical inclination corresponds to the case of
double points in a polar diagram in which the
radius vector represents cos / and the argument
represents its argument of perigee. This dia-
gram represents the integral of the transformed
equations, which are obtained by putting the
Hamiltonian function equal to a constant.

When the angular variable describing a mo-
tion varies between a limited interval smaller
than 2T, and does not reach either the value 0
or 2T, the motion is said to be one of libration.
When, on the contrary, it varies from 0 to 2x

and makes a complete rotation around the
circle, the motion is said to be one of revolution.
The motion resembles that of a pendulum
hanging from the end of a string whose other
end is attached to a fixed support. When the
pendulum makes a complete rotation around
the supporting point, its motion is one of
revolution. When the pendulum returns to
the stable equilibrium point in the vertical
position below the supporting point, without
ever reaching the unstable equilibrium point
vertically above its supporting point, and oscil-
lates around the stable equilibrium point, its
motion is one of libration.

In the orbit of an earth satellite there are two
kinds of double points, a center and a nodal
point. Around the double point corresponding
to the center, the pericenter of the orbit makes
a libration about either of its nodes, ascending
or descending. Values of the inclination at
either of the nodes, for such a libration, are
limited to a narrow interval. An earth satellite
having an inclination whose value at the nodes
lies outside these narrow limits has a motion of
revolution. The boundary of these two kinds
of motion consists of those asymptotic motions
that approach either of the double points of the
second kind corresponding to nodal points, as
shown in figure 3.

Equations of the problem

Following Brouwer (1959) we take Delaunay's
variables,

i Smithsonian Astrophyslcal Observatory.
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40 SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS

H=G cos I,

Z=mean anomaly,

g== argument of pericenter,

h=longitude of ascending node.

so that we are left with the discussion of the
canonical equations

dg ZF dG=J>F
dt~ dG' dt bg'

After eliminating all short-period terms by
Delaunay's transformation, Brouwer considered
the following terms in the Hamiltonian func-
tions:

F =F0+F1+F2+AiF2,

Fo==2L2'

*l~UG*\ 2~r2G2

1~5

t£ l 0 16 \GS

G7 G5J'8I1

where we have dropped the primes used in
Brouwer's notation for each of the variables;
k% and kA represent the coefficients of expansion
of the earth's potential, and n contains the
mass of the earth.

At first we have two integrals,

L=constant,

H= constant,

in which F is of the form:

F-F0=A1(G)+Aa(G)+B2(G).COB29. (1)

As F does not contain time t explicitly, we have
a further integral,

or,

i^= constant, (2)

^(GO +^(G [) +^a(^) • cos 20= (7,

and the equations reduce to:

dG
dt

dg
dt

=-2B2(G)sir\2g, (3)

cos 2g. (4)

motion occurs on the curve representing
(2),

2g=C,

or, when rewritten,

cos zg- (5)

from which we conclude that we must have

By combining integrals (3) and (5) we ob-

dG

2^/[B2(G)]2-[C-A1(G)-A2(G)]3

As the values of G are restricted by the above
inequality (6), the ratio G/H=l/cos I is re-
stricted; hence cos I is bounded on both sides,
and | cos 7| can not reach the value of + 1 , as
we shall see later. Thus I oscillates about a
certain value 70. We must find out whether
there is a libration for g.
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Then
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We make the following canonical transforma-
tion according to Poincare:

x=4G COS 2<7,

y=ifG sin 2g.

The transformed equations are

dt dx'

where

9fl»

2EP

H5F / 15 /L\2IP _ 9 \
^ L \ l 6 W r*~16/

cos 2fir,

with

=T6 irf U ; ' ^ = s z^ \H) ' ^=

If —̂ =—-=0. thenx=constant, y=constant,
5x dy '

and we have an equilibrium solution which cor-
responds to the double points of the curveF(x, y)
=C representing one of the integrals. Take
the first order term Fi with regard to k2. We
suppose that kt is of the same order as k\.

P__Atr SIP "I IP
1 O I ~ / ~ 2 I ..2\2 I /~2 I ..2\a

Fx=0 at x*+y2=G= ±V3 H, or cos / = ±l/VB,
or 7=54?7 and *—54?7. The variations of
G and ^ are very slow, being of the second order.

Now

bF1_jAJP_ r 5H2 1
dx-tf+yrl tf+y2)2]'*'

ZAJP r
L

-g-1 and -r?-± both vanish at (i) x=y=0 , (ii)

V , (iii) x 2 +y 2 =» . We shall dis-
cuss each of these three cases.

(i) x=y=Q has no physical meaning, because
G—0 and cos / = » . cos / should be bounded
by |cos 7 | ^ 1 , or G r=z2+y2^H. |cos 7| = 1
corresponds to an equatorial orbit. It does not
correspond to a double point.

(ii) G—±^5 H corresponds to Brouwer's
critical inclination cos / = ± 1 / V 5 ; that is,
/=63?4 and -K—63?4. Henceforth we sup-
pose that G is always positive and that H is
negative when cos / < 0 and positive when
cos i > 0 . Then Au A2, At, B2j £ 4 > or < 0
depending on whether cos / > or < 0 and
H> or < 0 . For a retrograde motion of the
mean anomaly we suppose cos / < 0 , so that
we always take the mean motion

(iii) x2+t/2=a> corresponds to a polar orbit
with /=7r/2. Since

dF .
dG

dG2~

2 \

3A,
(

15H2

G2

5H2

G2

+ 0**

) G*

we have

^ = 0 , at G=±JTEJ2 H and ».
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Hence F has a minimum at G=+-y[5H and a The motion is given by the equations
maximum at G=—f5H, and points of inflection , ZA IP T 5H2

at G=±V 15/277 and #=«>. " —=. . .' ^ A 1 —

For G=l/cosI=x2Jry2, F1=Cl has three
roots if

one root if

25V5
• n ;

and no root if

If we take cos I=H/(x2+y2) as the ordinate,
the situation is more clearly seen; cos 7=0 or
£?=co corresponds to a polar orbit I=±ir/2.
The values cos 7 = -f-1, G— +77, or cos 7 = — 1,
G=— 77 both correspond to an equatorial orbit.

Figure 1 shows the curve for Fi/(Ai/2) with
G/H as the ordinate; figure 2 shows the same
curve with cos I=H/G as the ordinate. The
arrows show the sense of rotation of the
pericenter.

Now we have

dg
dt'

<iF\
dG~~

3AtIP
'2(^+y2)4

5772

and dg/dt is positive or negative depending
on whether G2<5H2 or G2>5H2. Hence
the motion of the pericenter is direct for
|cos 7|>1/V5, that is, for | T T / 2 - 7 | > 2 6 ? 6 ; and
is retrograde for |cos 7|<1/V5, that is, for
|TT/2—7|<26?6; and stationary for | cos 7 |=
1/V5, that is, for |TT/2—7|=26?6. Any point on
the critical circle x2-\-y2=G=-/E77 is an equili-
brium point; that is, the pericenter is at rest
with the fixed value of 7 but with an arbitrary
value of g, the argument of the pericenter.

The circumstance is quite different when we
consider the second order terms of F. The
orbit is determined by the Hamiltonian

1P_A1[ , ,
1 2 L +

3772

(x2+2/2)2
1 7T3

or
x2+y2= constant.

dt (x2+
dy_ SArIP Fx 5H*^ "I x

We have

Put
x=r cos ,̂ y = r sin

then r*= constant and

5i72

Hence
= —27C, a constant.

g=-K(t-tQ).

K=0 for the critical inclination. We have
G=r2=Hjcos 7=constant, 7=constant, g=con-
stant. Thus, if we take only the first order
terms, the orbit is an ellipse with rotating
pericenter and rotating node. Further,

dh
dt1 • ' -v XX ' **M

dt
l=7lo(t — to),

For the critical inclination the pericenter does
not move, whatever g is, but the node rotates
with the mean motion,

in the retrograde sense for

and

in the direct sense for

cos I— —=•
V5
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CL-H
6 2

FIQUBB 1.—Curves for Fi/(Ai/2) against OfB, where F\ represents the first order term with coefficient At in the
Hamiltonian function and GfH=l/coa I.

First order effects

So far the discussion has dealt with the first
order effects in the case in which the earth is
supposed to be spheroidal. The center of
mass of the earth is taken to be the coordinate
origin, so that Brouwer's term AiF2 does not
enter. We next consider the effect of k% and
kt, that is, the terms F2 and A4F2. The position
of the pericenter was arbitrary in the first order

discussion for the satellite with critical inclina-
tion, but when we consider the second order
effects the pericenter will be seen to be fixed,
as it should be from physical considerations.

We see after some computation that

at(i)
dz~~dy '

= « , or cos 7=0,

567711—Cl-
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- E C CO5 I

EQUATORIAL
ORBIT POLAR

ORBIT

EQUATORIAL
ORBIT

FIGURE 2.—Curves for Ftl(Ai/2) against cos /, where Fi represents the first order term with coefficient
Hamiltonian function.
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a polar orbit; and (ii)

The polar orbit

For a polar orbit, for which

= 0 .

cos 7=0,

H=Gcos 7=0,
we have

therefore

h=constant.

The node is stationary with an arbitrary posi-
tion of the node. For H=0 we have, by
omitting the second order terms,

3 n*k2 .. . v

The motion of the pericenter is retrograde for a
polar orbit. The eccentricity given by

and

9+a2L36*

oscillates between two finite limits with the
period

As h is a constant, the node is stationary and the
inclination remains constant, and a polar orbit
always remains a polar orbit.

Second order effects
In order to examine the case in which

1 —n

and

we put

and solve for p. Denote the solution for p
by P=PI and p=pn, respectively, for x2=

H and for x2= — -JE H. We then obtain the
equations

pie/z

Thus each of the critical points is displaced
by this amount of the first order from the
corresponding point in the first order approxi-
mation. The critical point should be situated
on the x-axis in the second order approximation;
that is, the value of 6 or 2g for the critical
point should be 0 or T. Hence the critical
points, which were considered to be the equilib-
rium points in the first order approximation,
are unstable except for the point on the x-axis
on the critical circle; that is, if we consider the
second order terms, they should tend to ap-
proach the point on the x-axis; in other words,
the pericenter should tend to be on the equator
and to coincide with the node.

We consider the equations,

C+A1(r)+A2(r)+Ba(r) cos 0=0,

dO A,
eo*

Here

Hence r, that is, O=H/cos I, is bounded on
both sides and I oscillates between finite
limits.

A[ (r) is small near the critical point and is
zero at the critical point, and changes sign in
passing through it. As dg/dt=Q at the critical
point, the pericenter is stationary and g is in
direct motion for |cos 7|>1/V5, that is, for
|T/2—7|>26?6; and is in retrograde motion for
|cos 7|<1/V5, that is, for |ir/2-7|<26?6.
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The nearer the pericenter to the critical point,
the slower is the motion.

As

the motion of the node is in the retrograde
sense near the critical point, cos / = + 1/V5, and
the direct sense near cos / = — l/V^. The node
is stationary for a polar orbit; \dh/dt\ increases
as / decreases from T/2 to 0 and is a maximum
for an equatorial orbit.

Motion near the critical points

In order to study the nature of the motion near
the critical points, we set

and suppose that p is of the order one-half with
regard to k2. By retaining the terms up to the
second order in our integral (2) we obtain

50V& 625 V5

JI/A 1875V5~Ll6VflV 16.

8B2 f
125V5I

— 1 COS0

de 11

25W

\2SH

B2

125H

Bi

we determine the value of C. For the
equilibrium point P(y=0, cos 0=-fl) :

625V5
["15/ZV 9
U6W

8B2

For the equilibrium point P'(y=0, cos 0=
1):

25V5 625VH

p i 5 ^ z y 9"| 8^2
16J 125V5 5VH

We have

at p=0, and

and

respectively, for the points P and P'. Hence
F is a minimum at P and a maximum at P \

We set C= CQ-\-72, C=Co+ci, respectively,
for the critical points P and P''. Substituting
in equation (2), F=C, we get forP;

Q A op r*i / r \ 2 ~l

C2 ^ p"* ^ - I YT I —1 ' (1 — COS 0)
10V5 125V5L5W/ J v

3125^
- l i . (l-cos<?)=0;

forP'

To study the behavior of the curve passing
through the critical point, we put c2=0 and
Cj=0, respectively, in these two equations.
We get no root for p in the case 0=0+e for P,
and two roots for p in the case 0=*-+e for P'.
Hence P is a center and P' is a saddle point in
Poincare"'s terminology.

The distance between the two intersections
of the x-axis with the two branches passing
through P' of the curve represented by the
integral (2), that is, F=C, gives the width of
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the domain of libration. By putting c'2=0,
cos 0= + l for this curve, we get:

4y2
5*JbAx

or

e r 4V2

Put

6 A .

and note that

/ „ , Bt /I

/ R _|_5<

1

KIT-1**
and is of the order of the square of eccentricity,
as

and provided that

1 + P >

We assume further that

1

and write

Then from the equation F=C we obtain for P:

P2=c2—b2 (1—cos 0);

p2=<h'-\-b2 (1+cos 0).
forP ' :

A case of libration.—For P we put b2—c2

= b2 cos 0O and the equation we have to solve is

-7-=—Oi V^2 V c o s 0—cos do-

We have

Hence the pericenter g makes a libration.
The amplitude of the libration increases as
{b2—c2)lb2 decreases. The half-amplitude tends
to 0O=T/2, extending to the unstable double

points in the limit (b2—c2)/b2-*O and the motion
is asymptotic to these double points. The period
of the libration is

2 J-e
dd

s 0—cos 0O

and becomes infinite in the limit (ba—t
(which is a case of asymptotic motion to the
critical point), while it tends to zero in the limit
(b2—c2)/b2—>l or c2/62-K), that is, at the equilib-
rium point.

We have

2dz
Vcos0— cos 0O

with

mdt,

1 0
- = t a n -> a= cos 0O= (fi2—c2)/b2,

m \ 4 2o , 1+a
1—a 1—a

According to the formulas in the author's work
on the general theory of libration (Hagihara,
1944) we put

4a2-3 (9—8a2) a
9i~21(\-aY'

then we have

As

dz \C2 j .

^(s) has two real roots, Zi>0>22i and two
conjugate complex roots, and z and 6?(z) are
both real. We take u as the real variable, and

dz

with
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and 2iuf as the two periods of the elliptic
functions. While u varies from 0 to 2a>, t varies
from 0 to V /̂̂ 2 • «• The period T of the
libration with regard to t is ^c2/b2 •«. Then
from the theory of elliptic functions we have:

t 2 ^J^

^+JL cot «•+*. ± s i n

with

- j^f n=?o>, u=j Vc2 • it - *0) •

case o/ revolution.—For P' we have
and we have to integrate:

and, by inverting, we get

. 6 .y=sin »=sin g

ii.it n̂ O

where

Thus the period T with regard to t is

ATT

or roughly

as can be seen by expanding the square root in
the numerator in powers of k2, and the mean
motion of the pericenter is of the second order.

For 6=0 we have L—O= constant, and
L/H=l/cos /«±V5. In the equation (2),
F=C, the coefficient b2 of cos 2g vanishes and
we get p2=constant and dO/dt=constant. The
motion of the pericenter is one of revolution.
Thus the motion changes from libration to
revolution for a nearly circular orbit with
vanishingly small eccentricity in the scope of
the present approximation.

We have assumed that Ba^-zBi. If Ba=
5

-i?4, which, as noted by Kozai (1960), is theo
case J\=Ji corresponding to Vinti's (1959)
assumption; then the term with cos 2g in the
present approximation vanishes, irrespective of
the value of the eccentricity. This is a case
of revolution, and the question of libration
does not arise. If B2<C.-zBif then libration

o
changes into revolution, and revolution into
libration.

Risumi.—To sum up the situation: The
pericenter makes a libration about the ascend-
ing or the descending node when the orbital
inclination is near the critical inclination
/~63?4 or /~116?6. The position of the
pericenter at either of the nodes is stable. The
position of the pericenter at the middle point
between the two nodes is unstable. The
motion of the pericenter is retrograde for

and is direct for

and is stationary for

=26?6.

The situation is illustrated in figure 3, where the
Roman numerals along the curves correspond
to the value of C illustrated in figure 2.
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As G is restricted between two limits, -jl—e2

is restricted between two limits. Thus the
eccentricity oscillates between two limits and
the oscillation has the same period as G or /
and g, that is, the period of the libration.

The motion of the node,

is retrograde for cos / > 0 and direct for cos
/ < 0 . The absolute value of the mean motion
of the node is equal to

25 V5 LW*

for the critical inclination. It has a maximum
* for an equatorial orbit.

Effect of the neglected terms

If we take further terms A3F2 and A5F2 of
Brouwer into our discussion, the situation is
somewhat different. With the transformation
x—^G cos g, y=^G sin g, I have worked out
the computations to a certain stage. The
double points at <7=0 and g=ir are modified
to be not exactly on the x-axis and we have, as
before, the double points g=ir/2 and g=Sr/2, but
libration may still occur about the double
points near g—0 and g=v on the critical circle,
if the coefficients of the terms containing
Brouwer's ^30 and Aw, together with those of
the terms considered in the present paper,
satisfy certain relations. The term containing
Am is the cause of the modification of the
double points for g=0 and g=ir, because the
term vanishes at the critical points. But the
question of libration is discussed by the term

Let

« a = l
2W 1875

V5

Then the motion of the pericenter is determined
by the equation

^=-a i [ (c 2 -2& 2 )±e 2 T/ 2 ) - (e 2 +3/ 2 ) sin g

+262 sin2 0+4/2 sin3 g]1'*,

depending on whether the double point cor-
responds to g=ir/2 or <7=3ir/2. The behavior
of the motion near g=0 or g=ir is discussed by
the equations

-j-=—ai [(c2—b2)—e2 sin g

+262 sin2 y - / 2 sin Sg]1/2,
dg
dt

= — ai [(c2—362)—e2 sin g

+262 sin2 g-j2 sin 3g]1/2,

depending on whether g «0 or g ~v. A detailed
discussion with explicit expressions appears
in the succeeding article by Kozai (p. 53).

The author wishes to thank Dr. Kozai for
information on the present state of research
on the orbits of earth satellites, and for the
discussions relating to the present problem.
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Abstract

Brouwer (1959) has noted that for the orbit of an earth satellite with inclination 63?4 with reference to the earth's
equator, his solution based on Delaunay's method fails because of the appearance of a factor G*-5H* in the denominator.
The present paper shows that this critical inclination corresponds to a case of libration in the ordinary perturbation
theory, as an application of the author's general theory of libration in the motion of asteroids and natural satellites.
The pericenter of the orbit of an earth satellite having an orbital inclination nearly 63?4 can librate about either of its
nodes, ascending or descending, which correspond to the double points of the Hamiltonian function. The motion
near the other double points situated at the middle points between the two nodes is one of revolution, and the motion
is asymptotic at the double point. For an orbit with this critical inclination, the pericenter is stationary but the node
rotates in the retrograde sense when cos / > 0 and in the direct sense when cos J<0. However, the libration may change
to revolution for an orbit with vanishingly small eccentricity. A polar orbit always remains polar, and the node is
stationary but the pericenter moves in a retrograde sense.





Motion of a Particle With Critical
Inclination in the Gravitational Field

of a Spheroid
By YOSHIHIDE KOZAI *

The long-periodic terms in the motion of a
particle moving around a spheroid cannot be
derived by the usual method of successive
approximations if the inclination of the orbit
to the equator of the spheroid has the critical
value. In this paper the problem is studied
by the use of elliptic functions.

The equations of motion
Consider a small particle moving in the gravi-
tational field of a spheroid whose gravitational
potential U at a point (r,5) is expanded into the
series of spherical harmonics,

3 5 . 2
~ S i n

35 . 4

where /x is the gravitational constant multiplied
by the mass of the spheroid and R is the equa-
torial radius of the spheroid. In this potential
J2R

2 is assumed to be a small quantity of the
second order, and J3R? and JtR* are of the
fourth order.

With Delaunay's canonical variables,

G=LTJI=?,

H= G cos i,

Z=mean anomaly,
> Smithsonian Astrophyslcal Observatory.

g=argument of pericenter,

h=longitude of ascending node,

the equations of motion of the particle are
expressed in canonical form. In this case the
Hamiltonian F depends neither on time ex-
plicitly nor on h.

By von Zeipel's (1916) transformation from
L, G, H, I, g, and h to L', G', Hf, V, g', and
h\ V can be eliminated from the new Hamil-
tonian F* (Brouwer, 1959). Brouwer's expres-
sions of F* up to terms of the fourth order are
the following:

* M2 , M 4 ^^ 8 / 1 . 3 Hl
~2U~* L3G3 \ 4"l"4 G2

_15_
+ 1 2 8128 L10

6

V A _18 & , H
G5\ 5 G2 + G*

9
128
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where primes to be attached to the variables
are omitted for simplicity.

As F* depends neither on h nor on /, there
exist the following integrals, in addition to an
energy integral F*=constant;

H— constant,

L=constant.
(2)

Then the Hamiltonian F* is a function of
only two variables, Q and g, which satisfy the
following equations;

dG bF*
17=-?^==2Q s i n 29+S c o s 9,

dg bF* bP bQ _ bS-^g cos 2g—^ sin g,
(3)

where P, Q, and S are functions depending
only on Q.

By the usual method we integrate these
equations approximately by regarding Q as
a constant and gr as a known linear function of
time t in the right-hand members.

However, if £P/G2=l/5, the mean motion of
g becomes a small quantity of the fourth
order, and the amplitudes of periodic terms in
solutions of 0 and g are of the zero-th order.
This means that g and O in the right-hand
members cannot be regarded as known func-
tions.

The condition H2/G2=l/5 is satisfied if the
inclination is about 63 ?4, which is called a
critical inclination.

Equilibrium points
To study the motion of a particle with an in-
clination very near to the critical one, we may
write

(4)

thus P, Q, and S are expanded into power
series of x, which is regarded as a first order
quantity. Expressions of P, Q, and S up to
terms of the fifth order are:

S(x)=S1x,

where P2 and P3 are of the second order and the
other coefficients except for Po are of the
fourth order. A constant coefficient Po will
not appear in the following discussion. Pt is of
the second order unless P(x) is expanded
around x=0. It is remarkable that So vanishes.

Full expressions of Pu Qu and Si are as fol-
lows:

where

a=—

at?
Here, a and e correspond respectively to the
semimajor axis and the eccentricity, but are not
equal to the osculating values.

Now the equations to be solved are written as:

sin g+Six}cos g,

^9-=2±(Pi+2P2x+3P3x*-Q1cos2g+S1 sin y).
(5)

As the Hamiltonian F* does not depend on
time t explicitly, an equation,

F*=-C, (6)

with a constant C, represents a trajectory in the
foi7)-plane, where £= (H/G)2cos g, i=(Hf6)*
sin g. If derivatives of both G and g with
respect to time vanish at a certain point, this
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is an equilibrium point where the motion in
the (£,i7)-plane is stationary.

There are four equilibrium points of equation
(6) in the (f,7j)-plane, and their coordinates
correspond to;

i) 1=JC Xl-
 Pl~Ql

' 2P2

ii) 02=18O°—*

iii) 03=90°,
2P2

iv) 04=27OO, x4= —

where K and Xi are of the second order and

sin K=SI

Trajectories in the (£, ij)-plane

Assume that at a certain epoch t = t0 a trajectory
F*=—C passes through a point corresponding
to x=8 and 0=0O; then the energy integral is
written as:

P(x)-Q(x) cos 2g+S(x) sin g

=P(8) — Q(8) cos 20O+S(5) sin g0. (7)

Here 8 is assumed to be of the second order.
From this integral g is solved as a function of

x as follows:

sin 0=—'"* 4O()—~^^—~^~^' ®
where

A(x,8)=P(x)-P(8) + Q(x) cos 20O

~S(8) sin go-Q(x).

Then from the right-hand member of the differ-
ential equation,

-77=—T~(4Q(X) s i n 0+5'(x)}cOS 0,

g can be eliminated so that the equation con-
tains x as the only variable, and the equations
become of the following form;

(9)

If terms of higher order are omitted, /i(x)
and/2(x) are written as:

/i(x)=P2x2-2Q0sin2fir0, (10)

Here/i(x)=0 corresponds to g=K or 180°—K,
and/2(x)=0 corresponds to 20=180°.

If J2 is positive, P2 is also positive. There-
fore in this case/2(x) or/^x) is positive definite,
depending on whether Qo is positive or negative.

Then there are two kinds of solutions, both
expressed by Jacobi's elliptic functions. If Qo
is positive, one has

l2Q0 .x = = V ~ P ~ s m ô cn{/3(<—10), sin 0O},

sin 0=s in gQ sn{p(t—t0), sin 0o},

and if Qo is negative,

(11)

x=-
!cos 0o cn{/3'(<—10), cos 0O},

(12)
cos y=cos g0 sn{j8'(/—10), cos g0},

where ff and /S' are of the third order and
is of the first order, and

where the signs correspond to those of cos g.

(13)

If Qo is positive, maxima and minima of x
occur at g=K and 0=180°—K, and x vanishes at
0=0o- On the other hand, if Qo is negative, the
maxima and minima occur at 0=90° and —90°.

Trajectories F*= — C are given in figure 1
for two cases, Q<K>0 and Q0<C0. If QO is positive
and 8 is of the second order, 0 cannot make
a complete revolution but has a motion of
libration around the equilibrium point near the
£-axis, unless 0O is very near to 90° or —90°.
However, even though 8 is of the first order,
0 has a motion of libration, if 0O is very near
to K or 180°—K. A trajectory with 0O=±9O°
corresponds to an asymptotic solution.
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FIGURE 1.—Trajectories in the (£,ij)-plane. Top: when Qa is positive; bottom, when Qo is negative.
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Trajectories near the equilibrium points
The solutions discussed in the previous section
will fail if (i) |cos 2<7O±1| is a very small quan-
tity of the second order or if (ii)

is of the sixth order. In these cases x must be
regarded as a quantity of the second order. The
condition (ii) means that the trajectory passes
very near to one of the four equilibrium points.

Let us assume that |cos 2g0—1| is very small.
In this case, expressions of j\(x) and/ 2 0*0 are:

fi(.x)=2Q0

Mx)=P2X
2-P2f?-2Q0 sin2 g0, (14)

where

2P,

6=e — 2P2

If Qo is positive,/i(x) cannot vanish, that is,
g cannot reach either to +90° or to —90°.
And solutions of the equations (9) are,

IP2e
2+2Q0sin~g~0

2Q cos0(i t0), (15)

where g0 is K or 180° —K depending on whether
cos g is positive or negative. The angular
velocity /S has the same expression as that
in (13).

If |cos 2<7o+l I is very small, then

cos2 go, (16)

where

x=Y l - ^ -» + . . . sin 0>O

*=U-t™^- -...sin<K0

Then, if

P2U
2-2Q0 cos2

12{x) has two real roots, and by assuming that
<2o is positive, one has

e o s ^ ^ ^ o c o s ^ ^ ^ , ^ ( 1 7 )

In this case any trajectory will cut the {-axis,
and tends to make a complete revolution around
the origin. On the other hand, if

U2—-^ cos2 go<O,

the trajectory cannot cut the {-axis, and

cos g= cosh P(t-t0). (18)

The solutions (17) and (18) containing
hypertrigonometric terms are valid only if the
distance to one of the equilibrium points is of
the second order.

Solutions when Qo is negative should be
derived in a similar way.

Small eccentricity

If Qo is very small the problem becomes very
complicated, because in this case J\, J3J3, and
JvJi terms must be added to the Hamiltonian.
However, if Qo is very small because of a factor
e2, similar coefficients in the J\, JaJz, and J2J4
terms are also very small, due to the same
factor e2, and are neglected.

In this case K is of the first order, and

-2(Q0+Q1S) sin2 g0,

2
+2(Qo+Ql8) cos2 g0. • (19)

The discriminants Dx and D2 of the quadratic
equations/i(x)=0 a.ndJ2(x)=0 are;

D1=(Pl-Ql+2P28)2-\-8Pi(Q0+QlS) sin2 g0,

D2=(Pl+Ql+2P28)2-8P2(Q0

«) cos2 flro.(2O)

Therefore, at least one of Dx and D2 is positive.
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If A is positive and D2 is negative, g has a
motion of libration around the equilibrium
point near the £-axis, and the amplitude of x
is of the second order. If Dx is negative and
D2 is positive, the libration will occur around
the equilibrium point on the 17-axis.

However, if both Dx and D2 are positive, g
has a motion of libration around one of the
equilibrium points, if the two roots of one
equation/i(z)=0 are both larger than or both
less than the two roots of/2(a;)=0. Otherwise,
g can make one complete revolution, and x is
periodic with an amplitude of the second order.

Node and mean anomaly

The longitude of the node is derived by the
equation,

dh 3 1 / , , 5

If Qo is positive and x is expressed by equation
(11), then

(22)

where h, is the secular part of h.
If Qo is negative, sin g0 in equation (22) must

be replaced by cos g0.
Similar results are obtained for the mean

anomaly. If Qo is positive, the solution is:

(23)

where lt is the secular part of I and E is an
elliptic integral of the second kind.

The solutions in the present paper are similar
to those for the commensurable case for the
characteristic asteroids (Hagihara, 1944), but
are more simple than the asteroidal case.

The author is grateful to Prof. Y. Hagihara
for helpful discussions.

NOTE ADDED IN PROOF: After this manuscript
had been sent to the printer, G. Hori's paper
entitled "The Motion of an Artificial Satellite
in the Vicinity of the Critical Inclination" was
published in the Astronomical Journal (vol. 65,
pp. 291-300, 1960). His theory also is based
on Brouwer's (1959) expression of F*; however,
he follows rather different procedures.
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Abstract

The motion of a particle with a critical inclination is treated on the basis of Brouwer's expression of the trans-
formed Hamiltonian F*. In the potential of the central spheroid, it is assumed that the second harmonic is of the
second order, and that the third and the fourth harmonics are of the fourth order. The solutions are classified into
three types: the case of libration around one of four equilibrium points, the case of a complete revolution, and the
asymptotic case.
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