J. Wise • M. G. Harasewych • R. T. Dillon Jr.

Population divergence in the sinistral whelks of North America, with special reference to the east Florida ecotone

Received: 8 December 2003 Accepted: 18 May 2004 Published online: 30 dune 2004
© Springer-Verlag 2004

Abstract

This study evaluated models of species renationships among sinistral whelks in the genus Busycon in the Atlantic and Gulf of Mexico. Gene Frequencies at eight polymorphic allozyme loci, shell morphology. anatomy, and partial DNA sequences for the cytochrome c oxidase $1(\mathrm{COI})$ mitochondrial gene were examined in eight populations, ranging from New Jersey to the Yucatan peninsula, and from the dextrally coiled sister taxon Busicon caria (Gmelin, 1791). Whelks were collected in 1997 and 1998. The maximum COI sequence divergence recorded among 32 sinistral individuals was 1.96%, which together with the absence of any gross or qualitative morphological differences, suggested all eight populations should be considered conspecific. High levels of divergence between the allopatric western Atlantic and Gulf of Mexico populations, as revealed by fixed or nearly fixed differences at several allozymeencoding loci were interpreted as evidence that the east Florida ecotone constitutes a significant barrier to gene How. Size trimming also revealed several significant quantitative differences in shell and radular morphology between the three pooled Atlantic populations and five pooled Gulf populations. The Yucatan sample was the most distinctive conchologically, with heavy spines and tumid ridges, possibly related to stone crab predation. Based on the evidence all lelt-handed whelks of North

[^0][^1]America should be referred to the oldest available nomen, Busy com perversum (Linnet, 1758), with three subspecies. B. perversam perversum along the Yucatan peninsula, B. perversum sinistrum (Hollister, 1958) in the northern and eastern Gulf of Mexico, and B. perversme laeostomam (Kent. 1982) in the Atlantic.

Introduction

The importance of the Florida peninsula as a biogengraphic boundary has been well documented for many clements of the coastal biota of the eastern United States (Avis 1992, 2000). Four general patterns have been recognized. In the first case (egg. eastern mud snail: Scheltema 1989; American shad: Brown et al. 1999) the combination of subtropical climate, carbonate sadimelts, mangrove-dominated ecosystems. and adverse currents encountered along the eastern Florida coast seems to have blocked migration between the Atlantic Ocean and the Gulf of Mexico entirely. More commonty. the east and west coasts of Florida are inhabited by cognate species. reproductively isolated although perhaps hybridizing in zones of overlap (e.g. stone crabs: Bert 1986; hard clams: Dillon and Manzi 1989a, 1989b; ribbed mussels: Salver et all. 1992; sill marsh killifish: Duggins et al. 1995; coquina clams: Adamkewicz and Harasewych 1996; slipper shells: Collins 2000; toadfish: Freshwater et il. 2000: polychactes: Schultze et al. 2000). In the third case, at genetic discontinuity has been detexted corresponding to the Florida peninsula, but the distinction between Atlantic and Gulf populations has not been recognized taxonomically (ecg. oysters: Hare and Avise 1996; marsh and fiddler crabs: Folder and Station 1994: croaker: Lankiord et al. 1999, red drum: Seyoum et al. 2000; snapping shrimp: McClure and Greenbaum 2000; squid: Herke and Foltz 2002). The fourth situation. where a longitudinal survey of a coastal, shallow water, or intertidal population failed to uncover evidence that the cast Florida ecotone consti-
tutes a significant barrier to gene flow (e.g. Littorina irrorata: Dayan and Dillon 1995), is quite unusual.

All previous studies of the east Florida ecotone as a potential barrier to gene flow in marine populations (including that of L. irrorata) have involved species able to disperse through the water column during at least some stage of their life history. Here, we survey genetic divergence in large carnivorous gastropods of the genus Busycon, a group that lays eggs in capsules anchored to the substratum, with young emerging as benthic juveniles. Busyconine whelks inhabit the continental shelf, ranging from Cape Cod to the Yucatan peninsula of Mexico. For such populations, with relativcly limited dispersal. one might expect the barrier effect presented by the Florida peninsula to be profound.

Systematic treatments of the busyconine wholks have been in a state of flux for many years. There are approximately ten modern species and subspecies of dextrally coiled ("right-handed") busyconine whelks, most displaying "case I" distributions. The best known are the knobbed whelk Busycon carica (Gmelin, 1791) and the channeled whelk Busycotypus canaliculatus (Limné, 1758), both ranging from Cape Cod, Massachusetts to Cape Canaveral, Florida. Three deep-water species of Busycon [B. coarctatum (Sowerby, 1825), B. candelabrum (Lamarck, 1816), and B. Iyonsi (Petuch, 1987)] and the three subspecies of Busycotypus plagosus. (Conrad. 1863) are restricted to the Gulf of Mexico. Only one species of dextral busyconine, Busycotypus spiratus (Lamarck, 1816), inhabits both the eastern coast of the United States and the Gulf of Mexico. One subspecies, Busycotypus spiratus spiratus (Lamarck, 1816) is restricted to the Yucatan peninsula, while the subspecies Busycotypus spiratus pymidoides (Say, 1822) ranges from North Carolina to Cedar Key, in northwestern Florida.

Currently, there are live recognized modern species of sinistral ("left-handed") whelks, defined entirely on the basis of shell characters, to which six names have been applied. The earliest of the sinistral whelks to be described was Busyoon perversum (Limé, 1758), a form with long, broad spines and a pronounced tumid ridge midway along the siphonal canal, from the Bay of Campeche, in western Yucatan, Mexico. Conrad (1840) described a fossil form with "poorly developed" (short) spines from the Pliocene of North Carolina as B. contrarium. The use of B. comtrarimn for living sinistral whelks dates from Smith (1939). who noted: "The proper disposition of the recent slender sinistral Busycons is full of many difficulties. For the present, it seems best to regard them as a race of Busycon contrarium (Conrad)." Hollister (1958) suggested that the nomen B. contrarium be restricted to a small extinct species, and described three new specics among the modern fama: B. sinistrum, ranging from Cape Hatteras to the Yucatan peninsula, B. aspinosum, restricted to the area around Sarasota, Florida, and B. pulleyi ranging from Louisiana to northern Mexico. Pulley (1959) argued that all recent sinistral whelks were a single species with "considerable geographic variation," perhaps warranting some
subspecific designation, although he did not elaborate. Abbott (1974) recognized only two extant left-handed species, B. perversum and B. contrarium. More recently, Kent (1983) described a new species of sinistral whelk, B. lacostomum, ranging from southern New Jersey to northern Virginia.

Surprisingly, no study has ever distinguishod the lefthanded whelks of the Atlantic coast (as a group) from those of the Gulf of Mexico. The present study had two goals. We examined traditional morphological characters of shell and soft part anatomy, as well as data from gene frequencics at allozyme loci and mitochondrial cytochrome c oxidase I (COI) gene sequences, to evaluate the several models of species relationships among the left-handed whelks of the ivestern Atlantic. We then assessed the impact of the Florida peninsula as a biogeographical boundary among these populations.

Materials and methods

Sampling

Eight populations of sinistral whelks, spanning the geographic range of the group (Fig. 1), were sampled in 1997 and 1998 by collecting in the intertidal, trapping, or trawling (Table i). All of the specimens were freshly collected, and either dissected alive, with tissue samples immediately frozen, or frozen whole while living, transported to the laboratory on dry ice, and maintained at $-80^{\circ} \mathrm{C}$ until tissues were sampled for DNA extraction and allozyme analysis. The remaining tissues, radulae, and shells were then subjected to morphological examination. Collecting localities and their

Fig. 1 Busyeon spp. Sample sites for sinisimal whelks. B. curicu (N) was collected together with population SC. Arroms indicate limits of the range of sinistral whelks (site abbreviations, see Table D)

Table 1 Buspom spp. Locality data, voucher material, sequenced specimens, and sequence accession numbers for taxa used in this study (HMNS Houston Museum of Natural Science: USNM National Museum of Natural History, Smithsonian Institution: N B. Caricu)

Population abbreviation	N	Collection site and period	Voucher material	Specimens secpuenced	GenBank accession number
NJ 2	26	Delaware Bay, Off Cape May. New Jersey ($39^{\circ} 03.4^{\prime} \mathrm{N}: 74^{\circ} 45.9^{\prime} \mathrm{W}$), trapped, $6-15 \mathrm{~m}$. Aug 1998	USNM 1012273; HMNS 52423	3	AY194561-AY194563
SC 3	34	Bewween Georgetown and Charlesion, primarily Debidue Island, South Carolina ($33^{\circ} 22^{\prime} \mathrm{N}$: $79^{\circ} 21.3^{\prime} \mathrm{W}$). commercial trawlers. Feb 1998	USNM 1021631: HMNS 52424	5	AY194565-AY194569
GA 30	30	St. Simons Sound, near Brunswick. Georgia ($31^{\circ} 07^{\prime} \mathrm{N} ; 81^{\circ} 19^{\prime} \mathrm{W}$). commercial trawler, Mar 1998	USNM 1021632: HMNS 52425	8	AY194570-AY194577
KY 40	40	Marvin Key (ofl Sugarloaf Key, Florida ($24^{\circ} 38.9^{\prime} \mathrm{N} ; 81^{\circ} 34.2^{\prime} \mathrm{W}$), intertidal sand flats, Feb 1997	USNM 1021633; HMNS 52426	4	AY194578-AY194581
CS 3	33	Blind Pass, between Sanibel and Captiva Islands, Florida ($26^{\circ} 31^{\prime} \mathrm{N} ; 82^{\circ} 1 \mathrm{I}^{\prime} \mathrm{W}$). intertidal sand flats, Feb 1997	USNM 1021634; HMNS 52427	2	AY'194582-AY194583
SA 30	30	Longboat Key, W of Sarasota, Florida ($27^{\circ} 20^{\prime} \mathrm{N}$; $82^{\circ} 33^{\prime}$ W), intertidal sand llats. Feb 1997	USNM 1021635: HMNS 52428	2	AY194584-AY194585
TX 3	31	N side of Christmas Bay. Texas ($29^{\circ} 05^{\prime} \mathrm{N}$: $95^{\circ} 10^{\prime} \mathrm{W}$), intertidal sand flats. Nov 1997	USNM 1021636: HMNS 52429	5	AY194586-AY194590
YU 2	21	Celestun, Yucatan, Mexico ($20^{\circ} 40^{\circ} \mathrm{N} ; 90^{\circ} 33^{\prime} \mathrm{W}$). adults in 5-8 m, juveniles in 0-1 m, May 1997	USNM 854842; HMNS 52430	3	AY194591~AY194593
N	40	Between Georgetown and Charleston. primarily Debidue Island, Sounh Carolina ($33^{\circ} 22^{\prime} \mathrm{N}$: $79^{\circ} 21.3^{\prime} \mathrm{W}$), commercial trawlers, Feb 1998	USNM 1009402: HMNS 52431	1	AY578710
		Woods Hole, Massachusetts. USA	USNM 1021638	1	AY 194560
Busycon carica Busicon caricaf		Cape Henlopen. Delaware, USA	USNM 888705	1	U86306
Busycolypus canaliculatusi		Cape Henlopen. Delaware, USA	USNM 888706	1	U86307
Melongeraa melonserfa		Celestun, Yucatan, Mexico, 0-1 m	USNM 1021639	1	AY194558
Melongenur coroma		Sanibel, Florida, USA. 0-1 m	USNM 1021639	1	AY194559

"Data from Harasewych et al. 1997b
designations, sample sizes, voucher information, number of individuals sequenced for COI, and GenBank accession numbers for each of the sampled populations is provided (Table 1). The table also includes data on outgroup taxa used in DNA sequence-based phylogenetic amalyses.

COI sequences

Snippets of red buccal muscle from 32 individual specimens of sinistral whelks (3 NJ, 5 SC, 8 GA. 4 KY, 2 CS, 2 SA, 5 TX, 3 YU), 2 specimens of Busycon carica (Gmelin, 1791) (1 from South Carolina and 1 from Massachusets) and single specimens of Melongena melongena (Linné, 1758) and M. corona (Gmelin, 1791) were subjected to DNA extractions using a modified CTAB technique, following the protocol of Adamkewicz and Harasewych (1996), as modified by Harasewych el al. (1997a) (Table 1). Small shreds of muscle were ground in CTAB buffer at $60^{\circ} \mathrm{C}$; the DNA was extracted twice with chloroform/isoamyl alcohol $24: 1$ and precipitated in a sodium acetate ethyl alcohol solution. The DNA pellet was washed in 70% ethyl alcohol, dried, and dissolved in TE buffer.

A fragment of the mitochondrial COI gene was amplified using the "universal" COI primers of Folner et al. (1994). Typical amplification reactions of $50 \mu \mathrm{l}$ contained 200-500 ng of genomic DNA (determined empirically), 1.25 U of Amplitaq Gold polymerase (Perkin-Elmer), $10 \mu \mathrm{I}$ of dNTP, $0.25 \mu \mathrm{M}$ of each primer, $1.5 \mathrm{mM} \mathrm{MgCl} 2_{2}$, and 5μ of $10 \times$ Perkin-Elmer PCR reaction buffer. Our thermal cycler parameters were 10 min a1 $95^{\circ} \mathrm{C}$, followed by 30 cycles of 45 s al $94^{\circ} \mathrm{C}$, 45 s at $50^{\circ} \mathrm{C}$, and 90 sat $72^{\circ} \mathrm{C}$. A 5 min final extension at $72^{\circ} \mathrm{C}$ followed the 30 cycles. Amplification of fragments of the expected size was verified by agarose gel electrophoresis. The PCR-amplified DNA samples were washed with isopropanol, concentrated with a microconcentrator, and sequenced on an Applied Biosystems 377A automated DNA sequencer using fluorescence dye terminator sequencing kits.

These newly produced sequences and previously determined sequences for Bussicon catica and Busycotypus canalicalanus (Limé, 1758), both from Delaware Bay (Table 1), were aligned using CLUSTAL W (Thompson et al. 1994), with minimal manual modification. The aligned sequences were subjected to maximum-parsimony analyses (branch and bound) using PAUP version 4.0 b 10 (Swofford 1998), with characters equally weighted.

Bootstrap and jackknile analyses (1.00) replicates) were performed using the "fast" step-wise addition option.

Allozymes

For analysis of allozyme polymorphism, samples of foot muscle were homogenized in 0.05 M Tris tissue buffer (pH 7.5) and centrifuged. and the supernatant wats subjeeted to horizontal starch gel electrophoresis (Dillon 1985. 1992). The 14% gels were a $1: 1$ mixture of Electrostarch (Otto Hillar, Madison. Wisconsin) and Sigma starch (Sigma Chemical, St. Louis. Missouri). Initially. we compared the allozyme phenotypes of small samples from 3 disparate populations [SC. SA, and B. carica (N)] resolved using 5 buffer systems and stained to provide 18 enzymes. The following combinations yielded cleax polymorphisms interpretable as the products of codominam Mendelian alleles. The AP6 buffer ol Clayton and Tretiak (1072) wass used to resolve glucose-6-phosphate isomeatse (Gpi), mannose-6-phosphate isomerase ($M p i$). phosphoglacomutasc (two loci. $P_{g} m^{2} F$ and $P_{g} m S$). leucine aminopeptidase (Lap), hexanol dehydrogenase (Hexdlh), and 6 -phosphogluconate dehydrogenase (6 Pgd). As Busscon spp. 6 Pgd apparently carries a positive charge at pH 6 . adequate resolution required reversal of the normal gel polarity. The discontinuons bulfer of Poulik (1957) wats also used for Hexdh. as well as for octopine dehydrogenase (O / h). A tris-EDTA-borate buffer (pH 8.111 ol Shaw and Prasad 1970) was used 10 resolve Mpi and $O d h$.

The allele encoding the most common allozyme hand at each of the eight putative loci analyzed for B. carica was named " 100 ." and all other alleles were named by the mobility of their products relative to this standard, measured in millimeters. Where a polymorphism was apparent in one sel of bulfering conditions but obscured in another, alleles were designated F ("fast") and S ("slow"). Genc lrequencies. fits to Hardy-Weinberg expectation (pooling rare alleles), values of Neis (1978) unbiased genetic identity, and Cavalli-Sforza and Edwards" (1967) chord distances were calculated using Biosys-1 (release 1.7. Swofford and Selander 1981). Nei's distance assumes equal evolutionary rates of change among lineages, while chord distances do not (Weins and Servedio 1998). We used step "cluster" of Biosys-I to analyze symmetric matrices of both these statistics using the unweighted pair group (UPGMA) method.

Morphology

Each snail was blotted dry, weighed. and its standard shell length measured from apex to tip of siphon. The number of spines on the hinal whorl was counted, and the length of the penultimate spine was measured with calipers. Shells were scored for presence or absence of apertural lirate and a lumid ridge. The color of the siphonal canal, parietal callus. and aperture were
characterized as white, yellow, palc orange, orange. purple, brown, or multicolored.

Several individuals (male and female) from each population were dissected in 1oto. and structures of the alimentary and reproductive tracts were examined using a dissecting microscope. The busyconine whelks produce three teeth per radular row, a central rachidian looth manked by a pair of lateral iceth (Fig. 2A C). The length and number of looth rows on the radular ribbon were recorded. as was the number of tooth cusps in rows 10 , 50. and 75 for 20 individuals per population. Our preliminary observations revealed substamtial variation (both within single radular ribbons and among individtats) in cusp patterns on lateral tecth. but negligible variation within radular ribbons in cusp patterns on rachidian tecth. For each individual, the cusps counted on the three pairs of lateral teeth were added to produce a single variable, while the modal cusp count on a single rachidian looth was recorded.

Morphological analysis was based on both qualitative anatomical observations and datal on 13 quantitalive characters per individual: live weight. 2 measurements and 1 count taken on the shell, 1 measurement and 3 counts taken on the radula. and 5 nominally scaled shell characters (2 binary and 3 with 8 states). Sample sizes were approximately 30 individuals per population for the shell characters, but loss or breakage reduced the radula data sets to 12-20 per population.

None of these variables were expected to be normally distributed. Even the continuously distributed variables were recorded from populations truncated by the sampling process. and hence were expected to be skewed. Nonparametric statistics were therefore employed throughout the analyses. Initial observations snggested that much variation in shell morphology might be correlated with overall individual size. As mean shell lengeths and wet weights differed strikingly among the cight sinistral populations (partially as a consequence of the diverse sampling methods), it was necessary to examine each morphological variable for elfects attributable to overall size using median lests. Individuals were pooled across populations, divided into two groups at their combined median shell length (142.5 mm), and each of the remaining 12 variables tested for a significant difference using chi-square statistics, with Yates correction in 2×2 calses.

The combined sample of three Atlantic populations had significantly greater shell length than the combined sample of five Gulf populations. In order to facilitate a comparison between these two combined groups for the 12 other variables, the wo groups were plotted in $20-$ mm shell-length categories. overlain, and trimmed. Cases were excluded hirst on the basis of the completeness of their data record, then randomly. After trimming, Mann Whitney l^{\prime}-tests were used to compare Alantic and Gull samples for the seven variables of ordinal or interval scale, and chi-square tests were used for the five variables of nominal scale.

Fig. 2A-H Buxycon sp. Scamning electron micrographs of radulat: A-C overall: D. E rachidian tooth detail: $\mathbf{F - H}$ lateral tooth detail. A, E. F and G - population CS:
B-population TX: C. D, and H -popuation YU

Results

The sample of 32 sinistral whelks yiched 20) different COI sequences (presumed hapfotypes) of 561 base pairs (bp). The maximum sequence divergence recorded between two individuals (KY23 and GA3) was 11 bp (1.96%). The minimum sequence divergence between an individual of Buscon carica [specimens from Delaware (DE) and South Carolina (SC) were equatly divergent in tree 1] and the most similar sinistral whelk (TX17) was 21 bp (3.74%). Phylogenetic analysis yielded two mostparsimonious trees (differing only in the resolution among the three specimens of B. carica) of 208 steps (Fig. 3). The sinistral whelks grouped into a Yucatian clade, an Atlantic clade. and a clade from the Gull coast of Florida. while the Texas snails lacked a unifying apomorphy to distinguish them as a clade. or to unite them with either the Atlantic clade or the Gulf Coast of Florida clade.

Gene frequencies at cight putative loci encoding allozyme polymorphisms are given in Table 2. Fits to Hardy-Weinberg expectation within populations were excellent in most cases. With pooling into three classes
(homozygotes for the most common allele. common rare heterozygotes. and other) a total of 53 goodness-of-lit chi-square tests were possible within populations. Only three of these tests returned values of chi-square nominally significant at the 0.05 level ($L(i p$ in populations KY and YU. (gpi in population NJ). a result we attribute to type istatistical error. The genetic divergence among the cight simistral populations was highly signilicant. Even the most similar pair of populations. SC and GA, differed significantly at three loci (Fisher's exact lests for Gipi and Mpi, pooling fare alleles, a chi-square test for 6Pgd, with $3(f)$. Most strikingly. there was a fixed dirference between the three Atlantic populations and the five populations from the Gull of Mexico at the $P g m F^{*}$ locus. and differences were nearly fixed at the Gipi and Mpi loci (Table 2).

Our UPGMA celuster analyses of Nei's genetic similarity and of Cavalli-Sforza and Edwards chord distance returned a pair of dendrograms.s identical in topology. The result of the analysis according to Nei is shown in Fig. 4. with a percent standard deviation of 10.7 and a cophenetic correlation of 0.975 . The three south Florida populations in the Gulf of Mexico (sep-

Fig. 3 Sinistral whelks. Two most-parsimonious Irees resuling from maximum-parsimony analyses of partial cytochrome c oxidase 1 sequences of 32 sinistral whelks, and representatives of the outgroup genus (Busycon carica), genus, (Busycotypus canaliculatus). and sublamily (Melongenu spp.). The two trees differed only in the resolution of the three specimens of B. carica (Iree 2 inset)
arated by about 400 linear km) seem to constitute a fairly discrete group, as do the three Atlantic populations, separated by approximately 1,000 linear km . The Texas and Yucatan populations were more genetically distinctive, separated by 1,500 and $2,000 \mathrm{~km}$ from their Gulf of Mexico neighbors, respectively. Sinistral whelk populations from the Atlantie were more similar in their allozyme phenotype to the dextral B. curica population from the Atlantic than to sinistral whelk populations from the Gulf of Mexico. This phenomenon was noticeable at the Gpi, Mpi, PgmF, and Lap loci. Only a single fixed difference at the Hexdlh locus was apparent between B. carica and Atlantic populations NJ, SC, and GA.

Anatomical observations revealed no gross differences in external morphology or in the alimentary and reproductive tracts within or between populations (Fig. 5). Summary statistics are given for the nine morphological variables of the shell and body in Tables 3 and 4 , and four radular variables in Table 5. There was a striking diversity in the average size of the individuals among populations, from a median shell length of 98 mm (wet weight 58 g) in Texas to $178 \mathrm{~mm}(400 \mathrm{~g})$ in New Jersey. The Texas whelks also seemed to show an unusually large number of spines per whorl and a high frequency of apertural lirae, while the New Jersey shells
were distinguished by the absence of tumid ridges and apertural lirae. The Sarasota snails had exceptionally small spines (1.0 mm). while the Yucatan whelks were distinguished by a low count of strikingly long spines, and a higher frequency of individuals with a tumid ridge (Fig. 6).

Siphonal colors were primarily purple and brown. with pale orange and white in lesser frequencies, and others rare. The most common apertural colors were yellow and pale orange, with substantial fractions white, purple, and brown (Table 5). About half of the parietal callus observations were white, with multicolored the second most common and single colors (of any sort) more rare. Elongate ("lightning strike") stripes were present on all the shells of all five Gulf of Mexico populations. Stripes were somewhat less commonly observed on the shells of the Atlantic whelks -44% of the NJ, 89% of the GA, and 100% of the SC.

Laboratory rearing studies have suggested that B. carica develop first as males and that most individuals change sex after several years (Castagna and Kraeuter 1994). In addition, whelks from natural populations are expected to show strong sexual dimorphism in body size. In our study, the population with the smallest mean body size (TX) was 100% male, while the much larger (in size) Sarasota population was 79% female.

Median tests across all populations pooled showed strong relationships between shell length and 10 of the 12 other morphological variables. In addition to having greater body weight $\left(\%^{2}=62.7^{* * *}\right)$, larger snails had fewer spines per whorl ($x^{2}=12.2^{* * *}$), bore larger penultimate spines $\left(\%^{2}=8.57^{* *}\right)$ and more rarely displayed apertural lirae ($x^{2}=74.6^{* * *}$). They tended to have longer radular ribbons $\left(\chi^{2}=56.5^{* * *}\right)$, with more rows of teeth $\left(\chi^{2}=7.73^{* *}\right)$ and more cusps on the lateral teeth $\left(\chi^{2}=24.1^{* * *}\right)$. Larger snails tended to have more white and pale orange siphonal canals and apertures, while those of smaller individuals tended to be more purple or brown ($\chi^{2}=39.6^{* * *}$ and $\chi^{2}=74.6^{* * *}$, respectively). The parietal callus of larger whelks tended to be white, while that of smaller whelks was more likely to be colored. especially multicolored ($\chi^{2}=19.0^{* * *}$).

Regardless of whether these trends are a function of sexual dimorphism or simply correlated with it, the effect of body size bias must be removed before a meaningful comparison of morphological variance can be made among populations. Figure 7 shows two combined groups from the Atlantic ($N=87$, three populations) and from the Gulf ($N=158$, five populations), plotted by shell length (SL). The Atlantic sample, collected by commercial gear, contained no snails with $\mathrm{SL}<100 \mathrm{~mm}$, while the mode of the hand-collected, intertidal Gulf group fell in this range. The central tendency of the SL of the Allantic sample was significantly greater than that of the Gulf (Mann-Whitney $U=4552, \quad P<0.001$). Trimming as shown (Fig. 7) removed 11 individuals from the Atlantic sample and 82 cases from the Gulf sample. Those Atlantic individuals remaining were approximately equally distributed among NJ, SC, and

Table 2 Busycom spp. Gene lrequencies at eight enzyme-encoding loci in nine populations of whelks

Locus	Allele	B. colica			Busycon sp					
		N	NJ	SC	GA	KY	CS	SA	TX	$Y U$
Gipi	(N)	39	24	34	30	38	33	30	31	21
	108	0.000	0.000	0.000	0.000	0.000	0.000	0.050	0.000	0.296
	106	0.112	0.365	0.103	0.333	0.075	0.04 .5	0.233	0.000	0.167
	101	0.000	0.000	0.029	0.000	0.925	0.939	0.717	1.00	0.548
	100	0.850	0.635	0.868	0.667	0.000	0.000	0.000	0.000	0.000
	97	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	95	0.000	0.000	0.000	0.000	0.000	0.015	0.000	0.000	0.000
Mpi	(N)	40	26	34	30	40	33	30	31	20
	1104	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	101)	0.500	1.00	0.971	0.867	0.000	0.000	0.033	$0.000)$	0.025
	96 F	0.475	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	96.5	0.000	0.000	0.029	0.083	0.688	0.606	0.383	0.177	0.425
	94	0.000	0.000	0.000	0.050	0.237	0.227	0.367	0.000	0.000
	92	0.000	0.000	0.000	0.000	0.025	0.061	0.083	0.048	0. 000
	90	0.000	0.000	0.000	0.000	0.038	0.106	0.083	0.387	0.550
	89	0.000	0.000	0.000	0.000	0.013	0.000	0.050	0.145	0.000
	86	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.242	0.000
6 Pgd	(N)	39	24	34	30	38	33	30	31	21
	1106	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.339	0.143
	103	0.000	0.125	0.221	0.367	0.000	0.061	0.083	0.000	0.000
	100	0.923	0.563	0.382	0.517	0.842	0.864	0.900	0.661	0.786
	97	0.077	0.000	0.206	0.017	0.000	0.000	0.000	0.000	0.000
	95	0.000	0.313	0.191	0.100	0.158	0.076	0.017	0.000	0.071
$O d h$	(N)	39	26	34	30	40	33	28	31	21
	106	0.000	0.000	0.000	0.000	0.000	0.015	0.018	0.000	0.000
	103	0.487	1.00	1.00	1.00	1.00	0.939	0.982	1.00	1.00
	100	0.513	0.000	0.000	0.000	0.000	0.045	0.000	0.000	0.000
PgmF	(N)	39	26	34	30	38	33	3)	31	21
	108	0.000	0.000	0.000	0.000	0.184	0.015	0.000	0.000	0.000
	106	0.000	0.000	0.000	0.000	0.079	0.030	0.000	0.387	0.000
	103	0.500	1.00	0.971	0.950	0.000	0.000	0.000	0.000	0.000
	102	0.000	0.000	0.000	0.000	0.737	0.955	1.00	0.613	1.00
	100	0.500	0.000	0.029	0.050	0.000	0.000	0.000	0.000	0.000
PgmS	(N)	40	26	34	30	40	33	30	31	21
	103	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.032	0.000
	100	1.00	1.00	1.00	1.00	1.00	0.955	1.00	0.903	1.00
	97	0.000	0.000	0.000	0.000	0.000	0.045	0.000	0.065	0.000
Lap	(N)	40	26	34	30	39	33	29	31	
	100	1.00	0.712	0.441	0.383	0.000	0.000	0.000	0.000	0.000
	98	0.000	0.212	0.559	0.550	0.154	0.106	0.138	0.000	0.000
	96	0.000	0.077	0.000	0.067	0.205	0.167	0.328	0.694	0.048
	93	0.000	0.000	0.000	0.000	0.641	0.682	0.448	0.306	0.571
	91	0.000	0.000	0.000	0.000	0.000	0.045	0.086	0.000	0.167
	90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.214
Hexdh	(N)	40	26	34	30	37	3.3	30	31	
	103	0.175	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	100	0.825	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	98	0.000	0.019	0.015	0.050	0.081	0.015	0.033	0.000	0.000
	94	0.000	0.942	0.971	0.917	0.703	0.758	0.517	0.226	0.143
	91	0.000	0.038	0.015	0.033	0.176	0.197	0.450	0.435	0.857
	88	0.000	0.000	0.000	0.000	0.041	0.030	0.000	0.339	0.000

GA, but the TX population was somewhat under-represented among the trimmed Gulf sample.

The Atlantic and Gulf samples, after trimming by shell length, were compared on the basis of the eight variables of ordinal or interval scale. The lack of a significant difference in wet weight between the two samples offered some independent reassurance that the effects of overall body size had in fact been mitigated by shell length trimming. Yet very significant differences remained. Atlantic snails still had significantly larger
shell spines and larger radulae, measured either as ribbon length or as number of tooth rows.

All the nominal shell variables differed significantly between the combined and trimmed Atlantic and Gulf samples. In the Atlantic, siphonal canal color was primarily (56%) purple, while in the Gulf only 10% of canals were purple, with brown (37%) the most common alternative ($\chi^{2}=38.0^{* * *}$). A multicolored parietal callus (as opposed to white or single-colored) was relatively more common in the Gulf (32%) than in the Atlantic

Fig. 4 Busycon spp. UPGMA cluster analysis according to Nei's (1978) unbiased genetic identity among eight populations of sinistral Busteon sp. and a Buspeon carica outgroup. The clustering identity is given al each node
$\left(\%^{2}=8.3^{* *}\right)$, and apertures tended to be pale orange (31%) or brown (22%) in the Gulf, while purple apertures (32%) were more common in the Atlantic $\left(\%^{2}=40.0^{* * *}\right)$. Both apertural lirate (64%) and tumid ridges (31%) were significantly more common in the Gull sample ($\chi^{2}=22.2^{* * *}$ and $\chi^{2}=5.4^{* *}$, respectively).

Discussion

The level of COI sequence variation found in these lefthanded whelks was surprisingly low. Atlantic populations were distinguished from Gulf of Mexico populations by a single unique nucleotide substitution. By comparison, sequence divergence within the Atlantic samples ranged up to nine nucleotides, and that within the northern Gulf ranged up to eight. The maximum divergence recorded between any pair of sinistral whelks was II nucleotides or $<2.0 \%$.

Our COI data are consistent with the levels of sequence divergence recorded among conspecific populations of the marine gastropods Notoacmaea fascicularis (Simison and Lindberg 1999), Crepidula plana (Collin 2000), Littorina spp. (Wilding et al. 2000), and Hydrobia spp. (Wilke and Davis 2000), as well as the marine bivalves Mytilus spp. (Geller et al. 1993), Mercenaria spp. (O'Foighil ct al. 1996), Crassostrea spp. (O'Foighil et al. 1998), and vesicomyid clams (Baco et al. 1999). Our data are inconsistent with models, suggesting that the living left-handed whelk populations of the western Atlantic represent multiple species. Levels of mitochondrial sequence divergence among even closely related species of marine mollusks are typically 3% or greater (O'Foighil et al. 1995; Jozefowicz and O'Foighil 1998; Baco et al. 1999; Collin 2000), a figure confirmed by the minimum 3.7%
sequence divergence we measured between any sinistral individual and Buspeon carica.

Our allozyme data do reflect substantial regional differentiation, however. The level of interpopulation divergence at enzyme-encoding was strikingly greater than those obtained at similar loci for populations of Crassostrea virginica (Buroker 1983), Mercenaria spp. (Dillon and Manzi 1987, 1989a, 1992), or Littorina irrorata (Dayan and Dillon 1995), surveyed over similar geographic ranges. We do not interpret these data as evidence of reproductive isolation. Rather, we suggest that divergence of this magnitude is to be expected among gastropod populations ranging over 20° of latitude, given dispersal occurs via benthic crawling.

The fixed or nearly fixed differences we recorded at the PgmF, Gpi, and Mpi loci between the three Atlantic populations and the five Gulf of Mexico populations are attributable to the well-documented biogeographic boundary on the east Florida coast. Whelks of all species are rarely reported between Cape Canaveral and the Florida Keys. The adverse currents, altered substrate, changing climate, and salt marsh/mangrove ecotone apparently combine to present a $500-\mathrm{km}$ barrier to dispersal through which sinistral whelks ratrely penetrate.

The high levels of interpopulation divergence we have uncovered at allozyme loci, especially striking at the east Florida ecotone, seem incongruent with the low levels of CO sequence divergence. This discordance is somewhat reminiscent of the situation in oysters, where high levels of DNA sequence divergence are associated with low divergence at allozyme loci (Karl and Avise 1992). Such findings prompted Karl and Avise to hypothesize that allozyme frequencies in Atlantic and Gulf of Mexico oyster populations might be held constant by balancing selection. The situation in sinistral whelks could be interpreted to imply diversifying selection at allozyme loci by a reversal of this logic. But it is perhaps more likely that the well-studied region of the COI gene we chose to sequence is abnormally conservative in our sample of whelks and that other genes might reflect greater divergence.

We detected no gross differences in shell, radula, or soft-part anatomy, supporting the older model that North American populations of sinistral Busycon spp. comprise multiple species. We were, however, able to document extensive quantitative morphological diversity both within and among populations, as has been reported for B. carica (Edwards and Humphrey 1981; Edwards 1988: Anderson et al. 1989). The morphological difference between our size-trimmed pools of Athantic and Gulf populations was subtle; snails of the Former group have larger radulae and shells with longer spines, less ridging, and more purple coloration. Whelk shells from the west coast of Florida were nearly spineless and more diverse in coloration. Elongate stripes were less commonly observed on the shells of Atlantic whelks, although these stripes were not entirely absent, as reported by Kent (1983).

Fig. 5A, B Busycon sp. Diagrams of external anatomy of male and female sinistra! wholks representative of the eight populations examined in this study: A male (a anus: amm anterior mantle edge: bon buccal mass; of ctenidium: dg digestive gland: ecye: floot: g gonad: h heart: hg hypobranchial gland; k kidney: $u p$ nephridio pore: op operculum: os osplradium: pen penis; pro proboscis; r rectum: s siphon: ton tentacle: wh vals delerens) and \mathbf{B} temale (d anus; $u g$ albumen gland: $h m$ buccal mass; cog capsule gland: ct etenidium: ds digestive gland: e eye; f foot: fo female opening: h heart: $h \mathrm{~g}$ hypobranchial gland; os osphradium; or ovary; pro proboscis: r rectum:
s siphon; sr seminal receptacle: $($ tentacle)

Table 3 Bustrom sp. Shell and body measurements or counts for eight populations. Statistics reported are medians (lower (fuartile-upper quartile)

Pop.	N	Shell lengh (mm)	Wet weight (g)	Spine count	Spine length (mm)
NJ	23	$178(153-205)$	$400(230-531)$	$12(12-14)$	$6.2(4.6-7.1)$
SC	34	$142(126-186)$	$205(149-496)$	$13(12-15)$	$7.1(6.0-. .3)$
GA	30	$168(14-184)$	$435(223-60.3)$	$13(12-14)$	$9.4(8.0-10.8)$
KY	46	$117(92-147)$	$94(45197)$	$13(11-14)$	$2.5(1.5-5.0)$
CS	33	$140(113-184)$	$156(88-431)$	$13(12-14)$	$2.9(1.55 .0)$
SA	30	$173(143-247)$	$294(180-992)$	$13(12-15)$	$1.0(0.5-1.5)$
TX	31	$98189-128)$	$58(43-138)$	$16(14-18)$	$2.5(2.1-3.5)$
YU	21	$145(123-175)$	$229(110-371)$	$11(9-13)$	$15.0(8.5-19.6)$

Shells of the Yucatan snails were the most distinctive among the eight populations. They had a very small number of exceptionally large spines and a high frequency of tumid ridges. Field observations suggested to us that this morphology might be a response to stone crab predation, as has been documented in previous studies of many other gastropods (Vermeij 1987). Heavy spines and tumid ridges were not noticeable in the
smaller, younger individuals collected by wading in the shallow, perhaps somewhat brackish waters at the mouth of an estuary. Such traits were found only in the larger, older whelks collected offshore at depths of 5 8 m by divers ordinarily employed by the stone erab fishery.

The shells of the Yucatan whelks collected by diving were marked with repaired breaks from multiple altacks.

Table 4 Busycon sp. Nominally scaled shell variables recorded for eight populations

Table 5 Busycon sp. Radular variables for eight populations. Unless otherwise stated. statistics reported are medians (lower quartile-upper quartile)

Pop.	N	Aperture ridges $(\%, S D)$	Tumid ridges $(\%, S D)$	Modal siphonal canal color	Modal parietal callus color	Modal aperture color
NJ	23	0.0	0.0	Orange	Multicolor	Yellow
SC	34	$45.5(0.09)$	$21.2(0.07)$	Purple	White	Purple
GA	30	$10.0(0.06)$	$16.7(0.07)$	Purple	White	White
KY	46	$86.7(0.05)$	$13.3(0.05)$	Brown	White	Brown
CS	3.3	$45.0(0.09)$	$10.0(0.05)$	White	Multicolor	Whice
SA	30	$43.3(0.09)$	$13.3(0.06)$	Brown	White	Pale orange
TX	31	$93.5(0.04)$	$16.1(0.07)$	Purple	Multicolor	Yellow
YU	21	$81.0(0.09)$	$71.4(0.10)$	Pale orange	Pale orange	Pale orange

Pop.	N	Radula length (mm)	Radula rows	Cusps on six laterals	Modal rachidian cusps (range)
NJ	19	$69(62-72)$	$120(114-133)$	$36(30-36)$	$5(3-8)$
SC	19	$61(52-74)$	$123(115-131)$	$36(30-36)$	$5(3-6)$
GA	20	$74(61-82)$	$130(123-141)$	$37(36-39)$	$5(4-6)$
KY	14	$33(30-43)$	$101(84-120)$	$30(28-30)$	$4(4-5)$
CS	20	$53(41-65)$	$109(106-119)$	$36(31-36)$	$5(3-6)$
SA	12	$58(47-77)$	$111(105-123)$	$36(34-40)$	$5(2-6)$
TX	20	$24(23-30)$	$103(92-15)$	$33(30-36)$	$5(3-6)$
YU	20	$52(37-65)$	$119(110-129)$	$33(30-36)$	$5(4-7)$

Fig. 6A-H Busycon spp. Representative shells from populations used in our study, with collection locations: A B. carica (N), B B. perversum lacostomum (NJ), C B. perversum lacostomum (SC), D B. perversum luenstomum (GA). E B. perversum sinistrum (KY), F B. perversum sinistrum (CS). G B. perversum sinistrum (SA). H B , perversum sinistrum (TX). and I B. perversum perversum (YU). All specimens to same scale

Fig. 7 Busveon spp. Shell lengths of sinistral whelks, pooled across populations, divided by the Florida peninsula. Length categories are minima. Fractions in the filled regions were analyzed for differences with respect to 12 other morphological variables; fractions in open regions. were excluded
by crushing predators, almosi certainly stone crabs, while those from the shallows were not. We subsequently examined a second sample of 58 individuals from varying depths off the Yucatan Peninsula (shell only) to test for a relationship between heavy spines and evidence of attack by crushing predators. Although 25 of the 42 shells bearing heavy spines and tumid ridges did in fact display observable shell damage. the trend was not significant (Fisher's exact test, $P=0.36$).

The shells of the Texas whelks also appeared morphologically distinctive in several respects, most notably in the larger number of spines per whorl and shorter radular ribbon. We were concerned, however, that these differences might be a consequence of the smaller mean shell length of our Texas sample. Twenty larger Texas shells from the collection at the Housion Museum of Natural Science, with a median shell length of 174.5 mm , had a median spine count of just 12.0 mm . This is not different from similar values obtained in other populations (Table 3), suggesting that the Texas shell form is not distinctive.

In summary, our data suggest that all sinistral whelks of the west Atlantic are conspecific. Busycon perversum (Linné. 1758) being the oldest available nomen. The morphological and genetic diversity displayed by these populations is best modeled at the subspecies level: B. perversum perversum (L) inhabiting the coast of the

Yucatan peninsula, B. perversim sinistrum (Hollister 1958) inhabiting the northern Gull of Mexico, and B. perversum lacostomum (Kent 1983) on the Attantic coast. Our allozyme data further suggest that Allantic populations of B. perversum laeostomum are more similar to the (dextral) populations of B. carica with which they co-occur than 10 Gulf populations of B. perversum sinistrum.

The earliest sinistral whelks (assigned to the genus Sinistrofulgur Hollister, 1958 by Petuch 1994) appeared in the early Pliocene fossil record of the Carolinas, and, during the Pliocene. radiated north, south. and west across Florida and into the Gulf of Mexico (Leidy 1889; Grabau 1903; Puffer and Emerson 1954; Petuch 1994. 2003). There are at leasi 20 nominal PliocenePleistocene fossil sinistral Busycon species from Florida and the Carolinas (Conrad 1845; Hollister 1958; Petuch 1994, 2003). The evolution of sinistrality in the busyconine whelks will be a challenging subject for future studies.

Acknowledgements For help with obtaining whelks we thank B. Anderson, D. Barges. G. Boone, W. Frank. J. Gaull. R. Haggerty, D. Ingral. J. Leal, H. Lee, H. Murphy, J. Nace, H. Nash, Parricio of Celestun. H. and F. White, P. Williams, M. Yianopolous. Laboratory assistance was provided by H. Agger. R. Adams, M. Adams, B. McClintock, D. McMillan, and R. Rowe. Illustrations of sinistral whelks were drawn by S. Ryan. We thank M. Rice, S. Reed and the Smithsonian Station al Fort Pierce for hosting us in Florida. This is Smithsonian Marine Station at Fort Pierce contribution number 558. This paper is dedicated to Constance E. Boone for her many years of devotion to teaching others about mollusks. The research was supported by the Sterling Turner Research Grant, Houston Museum of Natural Science, Houston. Texas and the Visiting Scientist Award, Smithsonian Marine Station at Fort Pierce to J.W. and M.G.H.

References

Abboll RT (1974) American seashells, 2nd cdn. Van Nostrand Reinhold, New York
Adankewicz LS, Harasewych MG (1996) Systematics and biogeography of the genus Donax (Bivaivia: Donacidae) in eastern North America. Am Malacol Bull 13:97-103
Anderson B. Eversole A. Anderson W (1989) Variations in shell and radula morphologies of knobbed whelks. J Shellish Res 8:213-218
Avise J (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62-76
Avise J (2000) Phylogeography, Harvard University Press. Cambridge, Mass., USA
Baco A, Smith C. Peek A. Roderick G, Vrijenhoek R (1999) The phylogenetic relationships of whate-fall vesicomyid clams based on mitochondrial COI DNA sequences. Mar Ecol Prog Ser 182:137-147
Bert T (1986) Speciation in western Atlatic stone crabs (genus Menippe): the role of geological processes and climatic events in the formation and distribution of species. Mar Biol 93:157-170 Brown B, Smouse P, Epifania J, Kobak C (1999) Mitochondrial DNA mixed-stock analysis of American shad: coastal harvests are dynamic and variable. Trans An Fish Soc 128:977-994
Buroker N (1983) Population genetics of the American oyster Crassostrea virginica along the Atlantic coast and the Gulf of Mexico. Mar Biol 75:99-112

Castagna M. Kracuter J (1994) Age, growth rate, sexual dimorphism and fecundity or knobbed whelk Busyen curica (Gmelin. 1791) in a western mid-Atlantic lagoon system. Virginia. J Shellfish Res 13:581-585
Cavalli-Sforza LL. Edwards AWF (1967) Phylogenctic analysis: models and estimation, procedures. Evolution 21:550-570
Clayton IW, Tretiak DN (1972) Amine-citrate buffers for pH control in starch gel electrophoresis. J Fish Res Board Can 29:1164) 1172
Collin R (2000) Phylogeny of the Crepidula plant (Gasiropoda: Calyptraedace) eryptic species complex in North America. Cam J Zool 78:1500-1514
Conrad T (1840) Fossils of the medial tertiary of the United States. part 1. Privately published, Philadelphia
Conrad T (1845) Descriptions of eight new fossil shells of the United States. Proc Acad Natl Sci USA 2:173-175
Dayan N, Dillon Ir RT (1995) Florida as a hiogeographic boundary: evidence from the population genetics of Lithorina irrorata. Natulilus 108:49-54
Dillon Jr RT (1985) Correspondence between the buffer systems suitable for electrophoretic resolution of bivalve and gastropod isozymes. Comp Biochem Physiol B Comp Biochem 82:643-645
Dillon Jr RT (1992) Electrophoresis IV, nuts and bolts. J World Aguac Soc 23:48-51
Ditlon Jr RT, Manzi J (1987) Hard cham (Mercenaria mercenaria) broodstocks: genetic drift and loss of rare alleles without reduction in heterozygosity. Aquaculture 60:99-105
Dillon Ir RT, Manzi I (1989 in) Genetics and shell morphology in a hybrid zone between the hard clams. Merconaria mercenaria and M. compechiensis. Mar Biol 100:217-222

Dillon Jr RT, Manzi J (1989b) Genetics and shell morphology of hard clams (Mercemerie) from Liguna Madre. Texas. Nautilus 103:73-77
Dillon Jr RT. Manzi J (1992) Population genetics of the hard clam, Mercenariumercenuria, at the uorthern limit of its range. Can J Fish Aquat Sci. 49:2574-2578
Duggins C, Karlin AA. Mousseau T'. Relyea K (1995) Analysis of a hybrid zone in Fimhlulus majalis in a notheastern Florida ecotone. Heredily 74:117-128
Elwards A (1988) Latitudinal clines in shell morphologies of Busscon (arica (Gmelin, 1791). J Shellish Res 7:461-466
Edwards A. Humphrey C (1981) An electrophoretic and morphological survey of Busycun occurring in Wassaw Sound. Georgia. Natilus 95:144-150
Felder D, Staton If (IV94) Genctic differentiation in trans-Floridian species complexes of Sesarma and Lea (Decapoda: Brachyum) . Crusticc Biol 14:|91-209
Folmer O, Black M, Hooh W, Lut\% R. Vrijenhock R (1994) DNA primers for amplification of mitochondrial cytochome a oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294-299
Freshwater D. Khyn-Hansen C. Sarver S, Walsh P (2000) PhyJogeny of Opsames spp. (Batrachiodidac) inferred from multiple mitochondrial-DNA sequences. Mar Biol 136:961-968
Geller J. Cartion J. Powers D (1993) Interspecific and intrapopulation variation in mitochondrial ribosomal DNA sequences of Mytilus spp. (Bivalvia: Mollusea). Mol Mar Biol Biotedinol 2:44 50
Grabau A (1903) Studies of Gistropoda. II. Futgur and Syeotrpus. Am Nill. 36:917-945
Harasewych MG. Adamkewiok S. Blake J. Saudek D. Spriggs T, Bull C (1997a) Phytogeny and relationships of pleurotomariid gastropods (Mollusai: Gastropoda): an assessment based on partial 18 S rIDNA and cylochrome coxidase i sequences. Mol Mar Biol Biotechnol 6:1. 20
Harasewyeh MG. Adamkewie\% SL. Blake JA. Saudek D. Spriggs T. Bult CJ (1997h) Neogastropod phylogeny: a molecular perspective. J Molluscan Stud 6.3:327.351
Hare M, Avise I (1990) Molecular genetic analysis of a stepped multilocus cline in the Amerie:in oyster (Crassostrea virginien). Evolution 50:2305-2315

Herke S. Foltz D (2002) Phylogeography of two squid (Loligo pealer and L. plei) in the Gulf of Mexico and northwestern Atlantic Ocean. Mar Biol 140:103-115
Hollister S (1958) A review of the genus Busyem and its allies. part I. Paleontogr Am 4:59-126
Jozefowicz C, OFoighil D (1998) Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochondrial 16 s rDNA gene sequences. Mol Phylogenct Evol I(1:426 435
Karl S, Avise J (1992) Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science 256: 100-102
Kent B (1983) An overlooked Buycom whelk (Melongenidac) From the castern United States. Nautilus 96:99-104
Lankford T, Target T. Galfncy P (1999) Mitochondrial DNA analysis of population structure in the Atantic croaker, Micropogonias undulutus (Perciformes: Sciacnidae). Fish Bull (Wish DC.) 97:884 890

Leidy J (1889) Remarks on the nature of organic species. Trans Wagner Free Inst Sci 2:51-53
McClure M. Greenbaum I (2000) Allozymic variation and biogeography of smapping shrimp (Alpheus) From the Cull of Mexico and northwestern Adantic coass. Southest Nat 44:462-469
Nei M (1978) Estimation of average heterozygosity and genctic distance from a small number of individuals. Geneties 89:583590
O'Foighil D, Gaffney P, Hilbish T (1995) Diflerences in mitochondrial 16 S ribosomal gene sequences allow discrimination among American [C'rassustren virginicu (Gmelin)] and Asian [C'. gigas (Thunberg). C. ariukensis Wikiyal] oyster species. I Exp Mar 13iol Ecol 192:211-220
O'Foighil D. Hilbish T. Showman R (1996) Mitochondrial gene variation in Merconaria clam sibling species reveals a relict secondary contact zone in the western Gulf of Mexico. Mar 13iol 126:675-683
O’Foighil D. Gaffiney P. Wilhur A. Hilbish T (1998) Mitochondrial cytochrome oxidase 1 gene sequences support in Asian origin lor the Portuguese oyster Crusovitrer angulatu. Mar Biol 131:497-50.3
Petuch E (1994) Atlas of Floridal fossil shells (Pliocenc and Pleistocene marine gastropods). Chicago Spectrum Press and Graves Museum of Archacology and Natural History, Chicago
Petuch EJ (2003) Cenozoic seas: the view from castern North America. CRC Press, Boca Raton, Fla., USA
Poulik M (1957) Starch gel elcetrophoresis in a discontinuous system of bulfers. Nature 180:1477-1479
Pulfer E. Emerson W (1954) Citalogue und notes on the gastropol genus Busscom. Proc Biol Soc Warsh 67:115-147
Pulley T (1959) Busycon perversum (L) and some related species. Rice hast Pam 46;70) 89
Surver S. Landrum M. Folt, D (1992) Genetics and laxonomy of ribbed mussels (Geukenvia spp.). Mar Biol 113:385 390)
Scheltema R (1989) Planktonic and non-planktonic development among prosobranch gastropods and its relationship to the geographic range of species, In: Ryland J. Taylor P (eds) Reproduction. genctics and distributions of marine organisms. Olsen and Olsen, Fredensberg, Demmark. pp 183-188
Schultze S. Rice S. Simon J. Karl S (2000) Evolution of poccilogony and the biogeography of North American populations of the polychate Sireblospio. Evolution 54:1247-1259
Seyoum S. Tringali M. Bert T. McElroy D, Stokes R (2000) An analysis of genetic population structure in red drum. Secianops acellaths. based on mtDNA control region sequences. Fish Bull (Wash1DC) 98:127-138
Shaw CR. Prasad R (1970) Starch gel electrophoresis of enzymes a compilation of recipes. Biochem Genet 4:297-320
Simison W. Lindherg D (1999) Morphological and molecular resolution of a putative eryptic species complex: a case staly of Noboremed fuscicularis (Menkc, 1851) (Gastropoda: Patellogatiropoda). J Molluscan Stud 65:99-109
Smith 13 (1939) Type specimen ol Busyon perrersum (Warex perrepsus Linné). Nautilus 53:23 26
Swollord D (1998) PAUP. phylogenetic analysis using parsimony, version 4.0bl0. Sinamer. Sunderland. Masis., USA

Swofford DL. Selander RB (1981) BrOSYS-I: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281283
Thompson JD. Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting. position specific gap penalties, weight matrix choice. Nucleic Acids Res 22:46734680
Vermeif G (1987) Evolution and escalation: an ccological history of life. Princeton University Press, Princeton, N.J.. USA

Weins J. Servedio M (1908) Phylogenetic amalysis and intraspecific variation: performance of parsimony, likelihood, and distance methods. Syst Biol 47:228-253
Wilding C. Grahame J, Mill P (2000) Mitochondrial DNA COl haplotype variation in sibling species of rough periwinkles. Heredity 85:62-74
Wilke T. Ditis G (2000) Infraspecific mitochondrial sequence diversity in Hydrobia whae and Hydrobia ventrosa (Hydrobiidae: Rissooidea: Gastropoda): do their different life histories affect biogeographic patterns and gene flow? Biol J Linn Soc. 70:89-105

[^0]: Communicated by J.P. Grassle. New Brunswick

[^1]: d. Wisc (区)

 Houston Museum of Natural Science.
 1 Hermann Circle Drive. Houston.
 TX 77030-1799. USA
 Email: jwise \langle hmns.org
 Field: + 1-713-6394767
 M. G. Hamasewy

 Department of Systematic Biology. National Museum of Natural History. Smithsonian Institution, Washington. DC 20560-0118. USA
 R. T. Dillon Jr.

 Department of Biology. College of Charleston. Charleston. SC 29424. USA

