ERRATA

R. T. Brumfield, R. W. Jernigan, D. B. McDonald, and M. J. Braun. 2001. Evolutionary implications of divergent clines in a manakin (Manacus; Aves) hybrid zone. Evolution 55:2070-2087.

Two sentences in the Material and Methods section of this article suggest that a majority of genetic samples used in the paper were collected by the authors. In fact, about 125 of 215 genetic samples used were collected by Thomas J. Parsons and Storrs L. Olson, former collaborators on the project, and another 20 were collected when Drs. Parsons, Olson, Braun, and Judy Blake were working in the field together. The inaccuracies were introduced inadvertently late in the revision process when one coauthor suggested replacing all passive voice sentences with
active voice, resulting in conversion of sentences such as " 173 specimens were collected" to "we collected 173 specimens."

The following two sentences should be added to the beginning of the Acknowledgments section: 'T. J. Parsons and S. L. Olson led the early field work on this project in the years 1989-1991. J. P. Angle, R. I. Crombie, J. P. Dean, F. M. Greenwell, E. S. Morton, M. Varn, and D. A. Wiedenfield also assisted in those years."

In Table 1, the columns of values (mean, SD, n) for mass, culmen length, bill depth, bill width, and tarsus-length were inverted with respect to the columns for population number and distance. A corrected Table 1 appears below. None of these errors were present in the analyzed datasets, and the conclusions of the paper are unaffected.

Table 1. Summary of morphological measurements that differ significantly across the hybrid zone transect. Mean, standard deviation (SD), and number of individuals measured (n) are presented for each population. Population 1 is the reference sample for candei and population 12 is the reference sample for vitellinus. See Figure 1 and Appendix for detailed locality information. Measurements for collar color in population 9 excluding the aberrant white specimen (USNM 608981) are presented in parentheses.

Pop. no.	$\mathrm{x}(\mathrm{km})$	Mass (g)			Wing length (mm)			Culmen length (mm)			Bill depth (mm)		
		mean	SD	n									
1	0	17.7	1.15	3	53.3	1.04	22	10.1	0.46	20	4.0	0.20	19
2	138.25	19.4	0.66	4	52.6	0.79	4	10.2	0.35	2	3.4	0.35	2
3	151.75	20.0	0.76	16	52.6	0.52	9	10.0	0.64	7	3.3	0.21	7
4	159.2	18.9	0.74	13	52.9	0.90	9	10.0	0.49	9	3.2	0.13	9
5	182.25	19.7	1.14	14	53.6	1.00	15	9.6	0.53	14	3.4	0.17	15
6	188.25	20.5	0.75	5	53.5	0.38	5	9.7	0.18	5	3.2	0.19	4
7	198.5	20.0	1.2	12	53.1	0.71	11	9.5	0.60	11	3.4	0.28	11
8	201.25	19.6	1.21	18	52.6	0.77	20	9.9	0.35	17	3.6	0.17	12
9	210.0	19.8	0.78	21	52.2	0.86	19	9.6	0.31	15	3.4	0.17	15
10	230.75	18.7	1.18	11	51.1	0.62	10	9.3	0.31	10	3.4	0.25	9
11	319.5	19.4	0.42	5	51.2	0.80	5	9.5	0.45	5	3.4	0.13	5
12	569.5	18.2	0.88	21	51.6	0.81	21	9.6	0.49	20	3.6	0.22	22

Table 1. Continued.

Pop. no.	x (km)	Bill width (mm)			Tail length (mm)			Tarsus length (mm)			Epaulet width (mm)		
		mean	SD	n									
1	0	6.2	0.29	20	35.0	0.67	22	20.9	0.52	21	11.4	1.66	22
2	138.25	5.8	0.12	3	35.6	0.54	4	21.0	0.76	3	11.25	0.96	4
3	151.75	5.7	0.26	9	35.1	0.78	17	20.8	0.74	9	11.0	1.77	17
4	159.5	5.6	0.29	9	35.2	0.54	12	20.4	0.26	7	10.25	2.73	12
5	182.25	5.7	0.21	15	35.9	0.99	14	20.3	0.51	14	8.9	1.33	15
6	188.25	5.2	0.12	5	35.0	0.51	5	20.9	0.51	5	8.2	0.57	5
7	198.5	5.3	0.25	11	34.9	0.60	10	20.5	0.89	11	8.2	1.44	11
8	201.25	5.4	0.28	18	34.6	1.15	20	20.9	0.40	20	8.75	0.99	20
9	210.0	5.7	0.27	17	31.3	1.9	20	20.1	0.43	19	6.0	1.49	20
10	230.75	6.0	0.25	10	29.7	0.70	10	19.8	0.60	10	5.15	0.88	10
11	319.5	5.7	0.05	5	29.7	0.93	5	20.2	0.43	5	4.9	0.74	5
12	569.5	6.0	0.36	21	29.5	0.92	21	20.2	0.63	19	5.0	0.91	22

Table 1. Continued.

Pop. no.	x (km)	Beard length (mm)			Collar color $\%$ reflectance of 490 nm			Belly color \% reflectance at 665 nm			PCl		
		mean	SD	n									
1	0	12.4	0.90	21	57.2	5.14	22	67.7	5.79	22	0.75	0.16	20
2	138.25	11.75	0.96	4	67.2	7.59	4	81.5	1.90	4	0.77	0.10	3
3	151.75	11.9	0.81	9	64.3	6.25	17	78.4	4.63	17	0.71	0.16	9
4	159.5	12.2	0.83	9	11.4	3.59	13	44.7	11.76	13	0.62	0.12	9
5	182.25	13.2	0.98	15	9.8	3.93	15	36.2	9.45	15	0.73	0.15	15
6	188.25	12.5	0.5	5	6.3	1.39	5	29.2	7.03	5	0.81	0.06	5
7	198.5	12.7	1.80	11	5.7	1.55	11	25.5	3.35	9	0.71	0.19	11
8	201.25	12.2	1.22	20	6.3	2.16	20	26.9	4.27	20	0.69	0.11	20
9	210.0	16.3	2.30	21	7.8 (5.0)	12.77 (2.54)	21 (20)	25.8	5.04	21	0.47	0.15	19
10	230.75	17.4	1.26	10	3.9	1.60	10	23.4	3.27	10	0.23	0.14	10
11	319.5	18.8	1.92	5	3.4	1.23	5	23.2	3.49	5	0.34	0.12	5
12	569.5	18.7	1.61	22	3.4	1.09	22	25.2	2.70	22	0.31	0.15	21

