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The diversity of modern lierbivorous insects and tlieir pressure on plant liosts 

generally increase with decreasing latitude. These observations imply that the 

diversity and intensity of herbivory should increase with rising temperatures at 

constant latitude. Insect damage on fossil leaves found in southwestern Wy- 

oming, from the late Paleocene-early Eocene global warming interval, dem- 

onstrates this prediction. Early Eocene plants had more types of insect damage 

per host species and higher attack frequencies than late Paleocene plants. 

Herbivory was most elevated on the most abundant group, the birch family 

(Betulaceae). Change in the composition of the herbivore fauna during the 

Paleocene-Eocene interval is also indicated. 

Terrestrial plants and insects today make up 
most of Earth's biodiversity (1), and almost 
half of insect species are herbivores (2). Con- 
sequently, understanding how plant-insect as- 
sociations respond to warming events is a 
vital component of global change studies (3). 
The fossil record offers a unique opportunity 
to examine plant-insect response to climate 
change over long time intervals through anal- 
ysis of insect damage on fossil plants (4, 5). 

In modem insect faunas, decreasing lati- 
tude is associated with increased diversity of 
insect herbivores per host plant and greater 
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Fig. 1. Sampling areas. The most northeastern 
circle for each set includes the localities for 
insect damage censusing (Figs. 3 and 4). Cray 
areas are uplifts. RSU, Rock Springs Uplift. Re- 
drawn after (9). 

herbivore pressure; the latter is expressed as 
higher attack frequency (6, 7). For this study, 
we used insect damage on fossil plants to test 
for these trends at constant latitude, in the 
context of the global warming interval that 
began in the late Paleocene and reached maxi- 
mum Cenozoic temperatures by the middle ear- 
ly Eocene, about 53 million years ago (8). We 
also examined whether the diversity of her- 
bivory and increase in attack rates was highest 
on the most abundant hosts and addressed 
whether a compositional change in the Paleo- 
cene-Eocene herbivore fauna occurred. 

The   Great   Divide,   Green   River,   and 
Washakie basins of southwestern Wyoming, 

Fig. 2. Examples of Pa- 
leocene-Eocene insect 
damage. Panels (A) and 
(C) are Paleocene and 
(B), (D), and (E) are Eo- 
cene. All scale bars 
equal 1 cm. (A) Margin 
feeding to primary vein 
on Persites argutus 
Hickey (Lauraceae), 
USNM 498036, USNM 
locality (loc.) 41292. 
Note thick reaction tis- 
sue (r). (B) Polymor- 
phic, elliptical hole 
feeding on Alnus sp. 
(Betulaceae), USNM 
498177, USNM loc. 
41339. Note reaction 
tissue bordering holes. 
(C) Broad, rectangular 
skeletonization of 
Corylites sp. (Betu- 
laceae), USNM 498176, 
USNM loc. 41270. 
Note fine detail of ex- 
posed venation. (D) 
Calls on primary and 
secondary    veins     of 

U.S.A. (Fig. 1), bear diverse and abundant 
floral assemblages containing well-preserved 
insect damage (Fig. 2 and Table 1) (9). We 
compared two floral samples from this re- 
gion, from the latest Paleocene and middle 
early Eocene (10). Both samples were origi- 
nally deposited in fine-grained sediments on 
humid, swampy floodplains (9), which al- 
lowed us to use an isotaphonomic (11) ap- 
proach that helps to factor out biases such as 
depositional regime, paleotopography, and 
past moisture levels. Previous analysis of 
these samples (9, 12) showed that, from the 
latest Paleocene to the middle early Eocene, 
(i) mean annual temperatures rose from an 
estimated 14.4° ± 2.5°C to 21.3° ± 2.2°C, 
(ii) plant species turnover exceeded 80%, (iii) 
all dominant plant species were replaced, and 
(iv) plant diversity increased significantly. 

We identified 41 types of insect damage 
(Table 1 and Fig. 2) on 39 Paleocene and 49 
Eocene species of terrestrial flowering plants 
at 49 Paleocene and 31 Eocene localities (Fig. 
1) (9, 10, 13). A database was constructed in 
which the presence or absence of each dam- 
age type was scored for each species in each 
sample (Table 1). We also quantitatively took 
field censuses of the four plant localities with 
highest diversity and best preservation (two 
Paleocene and two Eocene) for insect damage 
on dicot leaves (14). 

Census data were analyzed for all leaves 
and separately for Betulaceae and all non- 
betulaceous taxa. A single species of Betu- 
laceae was a dominant component of the veg- 
etation in both the Paleocene (Corylites sp.) and 

Stillingia casca Hickey (Euphorbiaceae), USNM 498175, USNM loc. 41341. (E) Serpentine mine (type E) 
on new dicot sp. RR37, USNM 498091, USNM loc. 41353. The mine crosses tertiary and higher order 
veins. The oviposition site (o) and the site of the pupation chamber (p) are both preserved. 
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Table 1. Insect damage types. The presence (+) or absence (•) of each type in the Paleocene (Pal) and 
Eocene (Eoc) samples is indicated and their relative degree of specialization (Spec): 1 = most generalized, 
3 = most specialized. Terminology modified from {26). Genus names or morphotype numbers of host 
plant species are listed for the most specialized damage types and those that exhibit turnover (9). 
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Fig. 3. Damage census data. From bottom to 
top: leaves with any insect damage, leaves ex- 
ternally fed, and the percentage of damaged 
leaves bearing more than one damage type 
(Table 1). These categories are each analyzed 
separately for all leaves (All), Betulaceae only 
(Bet), and non-Betulaceae only (NBet). Error 
bars are one standard deviation of binomial 
sampling error (27). Sample sizes for Paleocene 
and Eocene, respectively: All (749, 791); Bet 
(524, 285); and NBet (225, 506). Total leaf area 
examined in censuses, derived from Webb leaf- 
area categories (28): 2.26 m^ (Paleocene) and 
2.12 m^ (Eocene). Paleocene = USNM Iocs. 
41270 and 41300 combined; Eocene = USNM 
Iocs. 41342 and 41352 combined. 

the Eocene (Alnus sp.) (15). These two 
species fit the traditional model of "appar- 
ent" plants in that they were abundant, 
conspicuous hosts that formed significant 
ecological islands (16). Like all modern 
Betulaceae, whose leaves are heavily con- 
sumed by insects (17, 18), Corylites and 
Alnus (alder) were thin-leaved and decidu- 
ous, adding to their presumed palatability 
(7, 19). We hypothesized that these taxa 
were frequently consumed by a high diver- 
sity of herbivores. 

The census data show that, overall, damage 
frequency is significantly higher in the Eocene 
sample, indicating elevated levels of herbivory 
(Fig. 3) (20). Betulaceous leaves were attacked 
significantly more often than nonbetulaceous 
leaves within both sampling levels, and their 
damage frequency (Fig. 3), multiple damage 
frequency (Fig. 3), and damage diversity (Figs. 
4 and 5) increased markedly from the Paleo- 
cene to the Eocene (21). Alnus palatability was 
probably enhanced by elevated leaf nitrogen 
content resulting from an actinorhizal associa- 
tion with nitrogen-fixing symbionts, as in all 
modem Alnus (18, 22). 

Bootstrap curves derived from the census 
data (Fig. 4) show increased minimum and 
maximum damage diversity at a local scale 
during the Eocene. All of the Paleocene taxa 

Damage type Pal   Eoc   Spec Damage type Pal Eoc Spec 

External feeding SIceletonization (cont.) 
Constant width, elongate. + + 2 Ovoidal, adjacent to midvein + + 2 

branching Multiple, subparallel, curvilinear + + 3 
Strip-feeding between secondary - + 3 tracks (Corylites, new dicot 

veins (Zingiberopsis) sp. RR31) 
Window feeding, generalized + + 1 raining 
Hole feeding Blotch, central chamber (Persites, + + 3 

Generalized, unpatterned + + 1 Magnoliales sp., aff. Sloanea) 
Bud feeding (Alnus, • + 2 Blotch, large (>2 cm diam.), no + • 3 

Hovenia, Schoepfia) central chamber ("Ampélopsis") 
Curvilinear + + 2 Circular, with case (Corylites) + - 3 
Elliptical + + 1 Serpentine A: long, undulatory; frass + + 3 
Elongated slot + + 2 particulate (Corylites, Alnus, 
Large, ovoidal or circular + + 1 Cinnamomophyllum, new dicot sp. 
Large, polylobate + + 1 RR20) 
Exceptionally thick necrotic + + 1 Serpentine B: length medium, width + - 3 

tissue rapidly increasing, margin 
Polymorphic, generally + + 2 irregular (Corylites) 

elliptical Serpentine C: length short, frass trail - + 3 
Ring (aff. Ocotea) + - 1 solid ("Dombeya", cf. Magnoliales 
Small, ovoidal or circular + + 1 sp. RRM, Alnus) 
Small, polylobate + + 1 Serpentine D: long, frass tightly - + 3 

Margin feeding sinusoidal, frass trail narrow 
Generalized, usually cuspate + + 1 (Cinnamomophyllum) 
Apex feeding + + 1 Serpentine E: length medium. - + 3 
Free feeding (Platycarya, - + 2 margin irregular, oviposition site 

Populus) and terminus well defined (new 
To primary vein + + 1 dicot sp. RR37) 
Trenched (deeply incised) + + 2 Calling 

SIceletonization On blade, other than major veins + + 2 
General, reaction rim weak + + 1 On primary vein(s) only + + 2 
General, reaction rim + + 1 On secondary veins only + + 2 

well developed Piercing and sucking 
Broad, with rectangular + • 2 Scale or puncture, circular + + 3 

pattern (Corylites) depression (Magnoliaceae sp. 
Curvilinear (Persites) + - 2 FW07, palm leaf, new dicot sp. 
Highest order venation - + 2 RR48) 

removed (Platycarya) Scale or puncture, elliptical + - 3 
Linear pattern (Alnus) • + 2 depression (palm leaf) 

except one (aff. Ocotea) have nearly identical 
bootstrap curves. Four Eocene species have 
bootstrapped values higher than all of the 
Paleocene taxa (Alnus, Cinnamomophyllum, 
"Dombeya", and Populus). Three other Eo- 
cene species have bootstrap values that are 
lower than the Paleocene mode represented 
by Corylites (Allophylus, Apocynaceae sp., 
and aff. Sloanea) but still higher than the 
Paleocene minimum (aff. Ocotea). 

The diversity of insect damage per host 
species increases with the percentage of lo- 
calities where a given host occurred because 
increased sampling raises the probability of 
discovering damage types (Fig. 5). However, 
when comparison is made at equal frequency 
of occurrence, greater herbivore diversity per 
host plant is again found in the Eocene than 
in the Paleocene. The Eocene slope in Fig. 5 
is higher, even though 37% fewer localities 
are in the Eocene sample and less geologic 
time is represented (10). Also, the five largest 
positive residuals are all Eocene species. Fi- 

nally, the single abundant monocot (Eocene 
Zingiberopsis) has a large effect. If dicots 
alone are considered, the Eocene slope in- 
creases another 15% (23). 

A change in the composition of the her- 
bivore fauna is indicated (Table 1). In all, 
17% of damage types only occur in the Pa- 
leocene sample, whereas 20% of damage 
types are only found in the Eocene sample. 
Each of the generalized damage types (scores 
of 1 in Table 1) may have been caused by 
several groups of distantly related insects. If 
only the 27 specialized damage types are 
counted (scores of 2 or 3 in Table 1), Paleo- 
cene-only types are 22% and Eocene-only 
types 30% (24). 

This study demonstrates that the effects of 
global warming on plant-insect interactions 
are detectable in the fossil record. Climate 
change also provides a largely unexplored 
context for related areas of inquiry, such as 
the histories of plant-pollinator relations and 
insect diversification. 
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Fig. 4. Bootstrapped 
damage diversity, de- 
rived from the census 
data, for species with 
>15 specimens in to- 
tal census counts. For 
each positive integers 
along the horizontal 
axis up to the total 
number of specimens 
for a species (N), 5000 
subsamples of n spec- 
imens were taken at 
random and the mean i 
number of damage 
types calculated (ver- 
tical axis). The line 
graphs connect the N 
mean values for each 
species. Shown only to 
n s 100 for greater detai 
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(vjaximum CT = 1.8 {for Alnus, n = 80). Family or generic names only 
are shown; see (9) for complete nomenclature, "aff." = morphological affinity to indicated genus, 
a qualified identification. 
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Fig. 5. Diversity of in- 
sect damage per plant 
host species (vertical 
axis), plotted against 
the percentage of lo- 
calities (49 Paleocene, 
31 Eocene) at which 
the species occurs. 
Each data point is one 
species; many data 
points overlap at the 
lower left; survivors 
are plotted twice. 
Gray lines show diver- 
gence of 1CT (68%) 
confidence intervals 
for the two regres- 
sions. Paleocene re- 
gression: y = 22.3X + 0 10 20 30 40 50 
0 545 r^ = 0 775 P < Frequency (% of localities) 

10~^^ (r^ is the coefficient of determination). Eocene regression: y = 30.1x + 0.117, r^ = 0.538, 
P < 10~®. Family or generic names are shown for plant species that are abundant, plot with large 
residuals, or appear in Fig. 4. 
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On the Weakening Relationship 
Between the Indian Monsoon 

and ENSO 
K. Krishna Kumar.^^t Balaji Rajagopalan,^ Mark A. Cane^ 

Analysis of the 140-year historical record suggests that the inverse relationship 
between the El Nino-Southern Oscillation (ENSO) and the Indian summer 
monsoon (weak monsoon arising from warm ENSO event) has broken down in 
recent decades. Two possible reasons emerge from the analyses. A southeast- 
ward shift in the Walker circulation anomalies associated with ENSO events 
may lead to a reduced subsidence over the Indian region, thus favoring normal 
monsoon conditions. Additionally, increased surface temperatures over Eurasia 
in winter and spring, which are a part of the midlatitude continental warming 
trend, may favor the enhanced land-ocean thermal gradient conducive to a 
strong monsoon. These observations raise the possibility that the Eurasian 
warming in recent decades helps to sustain the monsoon rainfall at a normal 
level despite strong ENSO events. 

Most parts of India receive a major propor- 
tion of their annual rainfall during the sum- 
mer (June to September) monsoon season. 
Extreme departures from normal seasonal 
rainfall, such as large-scale droughts and 
floods, seriously affect agricultural output 
and regional economies. By the early 1900s, 
investigators had identified the two large- 
scale forcings still thought to be most impor- 
tant for predicting monsoon anomalies: Hi- 
malayan/Eurasian snow extent (1) and the 
ENSO cycle (2). The former is generally 
believed to provide an indication of the pre- 
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monsoon thermal condition over the Asian 
land mass. Warmer conditions are thought to 
aid the buildup of a strong land-sea thermal 
gradient during the summer (3, 4). ENSO, the 
largest known climatic forcing of interannual 
monsoon variability, acts through the east- 
west displacement of large-scale heat sources 
in the tropics (5). Numerous studies {6) have 
shown a significant simultaneous association 
between the monsoon rainfall over India and 
ENSO indices. However, secular variations 
in the relationships between monsoon rainfall 
and its predictors have also been noted (7). 
These variations have been found to be linked 
to changes in ENSO characteristics such as 
amplitude and period {8). 

Almost all the statistical seasonal predic- 
tion schemes of monsoon rainfall rely heavily 
on the change in magnitude in various ENSO 
indices (8, 9) from winter [December to Eeb- 
ruary (DJF)] to spring [March to May 
(MAM)]. Numerical general circulation mod- 
els (GCMs) are also used for seasonal rainfall 
prediction. The monsoon simulated in these 

GCMs is more sensitive to the sea surface 
temperatures (SSTs) specified in the Pacific 
(70) than to other external boundary forcings. 
Hence, the success of seasonal forecasts of 
monsoon rainfall depends on the stationarity 
of the monsoon-ENSO relationship. 

We used data on Indian monsoon rainfall, 
SST, velocity potential fields, and global sur- 
face temperatures (11) to examine the simulta- 
neous relationship between the monsoon and 
ENSO during the last 142 years, and to explore 
possible roles for other climatic forcings. 

Low-frequency variations in the monsoon 
rainfall and a widely used measure of ENSO, 
the NIN03 index (11), show a clear resem- 
blance until the late 1970s (Fig. lA), but 
diverge thereafter. This change refiects the 
recent modest increase in the monsoon rain- 
fall despite an increase in the magnitude and 
frequency of ENSO warm events. Sliding 
correlations on a 21-year moving window 
between monsoon rainfall and the NIN03 
index are strong during the entire data period 
with the exception of the recent two to three 
decades (Fig. IB), not withstanding the con- 
siderable impact of the 1982 and 1987-88 
ENSO events on the monsoon. The drop in 
correlations in the recent decades is found to 
be significant on the basis of bootstrap con- 
fidence limits (12). The loss of monsoon- 
ENSO correlation is not particular to NIN03, 
but appears with any ENSO index. Correla- 
tion patterns of monsoon rainfall with SSTs 
in the Pacific show a coherent region of 
strong correlations in the central and eastern 
equatorial Pacific before 1980 and no region 
with statistically significant correlations 
thereafter. 

The conventional description of the 
ENSO-induced teleconnection response in 
the monsoon is through the large-scale east- 
west shifts in the tropical Walker circulation. 
During an El Niño event, the tropical convec- 
tion and the associated rising limb of the 
Walker circulation normally located in the 
western Pacific shift toward the anomalously 

2156 25 JUNE 1999    VOL 284    SCIENCE    www.sciencemag.org 


