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Abstract
Many studies have overestimated species’ range shifts under climate change because

they treat climate as the only determinant while ignoring biotic factors. To assess the

response of giant pandas to climate change, we incorporated spatial effects in model-

ing bamboo distributions, which in turn was incorporated to represent giant panda–

bamboo biotic interactions in predicting giant panda distribution. Our study revealed

potential tolerance of giant pandas to climate change. We found significant residual

spatial correlation in the bamboo models. The biotic interactions with bamboo under-

stories and anthropogenic activities had large effects on panda distribution, which

lowered the relative importance of climatic variables. Our results are fundamentally

different from previous studies that used climate-only and nonspatial approaches,

which may have overestimated the effects of climate change on panda and lead to

inappropriate conservation recommendations. We strongly advocate that giant panda

conservation planning continues to focus on protecting bamboo forest and reducing

anthropogenic interferences.
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1 INTRODUCTION

Climate change is challenging the conservation planning of

governments and natural resource organizations (Bernazzani,

Bradley, & Opperman, 2012). However, forecasts based on

species distribution models (SDMs) are often criticized for

being too simplistic if they assume that climate and few abi-

otic factors are the only determinants of a species’ geograph-

ical range (Harris et al., 2014). Biotic interactions such as

resource–consumer interactions and interspecific competition

are also essential factors that drive species’ distributions, and

incorporating these factors can improve forecasts of the eco-
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logical consequences of climate change on species (Wisz

et al., 2013). However, most studies have adopted a climate-

only modeling approach and ignored important biotic factors,

even when such information was available (Dormann, 2007;

Pacifici et al., 2015).

Another critical but often-ignored issue is spatial auto-

correlation (SAC). SAC can derive from biotic interactions,

biotic traits such as dispersal limits and narrow ecophysical

niche (e.g., certain soil type), and other specialized habitat use

(Merckx, Steyaert, Vanreusel, Vincx, & Vanaverbeke, 2011).

While incorporating biotic traits such as slow migration

can improve the performance of SDMs in mapping species’
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realized niche spaces (Botkin et al., 2007), data representing

biotic interactions and biotic traits may not always be avail-

able, and residual SAC needs to be accounted for. Failure to

account for SAC can lead to overstated predictions of species’

habitat loss when extrapolated to future conditions (Crase,

Liedloff, Vesk, Fukuda, & Wintle, 2014; Zhao, Boomer,

Silverman, & Fleming, 2017).

Because the giant panda (Ailuropoda melanoleuca) is

specialized to feed on bamboo, it is important to consider

its biotic interaction with bamboo for conservation planning.

Recent studies that directly connected giant panda distribu-

tions with climatic metrics predicted a severe habitat loss

of 37–62% (Fan et al., 2014), 60% (Songer, Delion, Biggs,

& Huang, 2012), or 53–71% (Li et al., 2015). However,

ingoring giant panda's interaction with bamboo as well as

other habitat preferences may result in overrated importance

of climatic variables. Some studies have included biotic

interactions (e.g., bamboo distributions) in their models,

but did not consider bamboo's dispersal limit caused by its

unique clustered distribution pattern and/or ignored the effect

of critical anthropogenic variables. The recommendations

from most of these studies is to establish new nature reserves

outside of the current network to mitigate the threats of

climate change (Fan et al., 2014; Songer et al., 2012; Tuanmu

et al., 2013). These recommendations can be costly and risky,

however, if the models used in these studies overestimated

shifts in giant panda or bamboo distributions under climate

change.

The goal of our study is to evaluate the response of giant

pandas to future climate change. Our objectives are to: (1)

examine the effects of climate on bamboo distributions while

accounting for residual SAC; (2) identify the relative con-

tributions of biotic interactions, anthropogenic disturbances,

and climate in driving giant panda distributions; (3) predict

future distributions of bamboos and giant panda under climate

change, and (4) provide recommendations for conservation

strategies. This study has strong implications to the conserva-

tion of giant panda, as well as other species that are predicted

to experience a significant shift in their critical resources as a

result of climate change.

2 METHODS

2.1 Study area
We used the distribution of giant pandas in the Qinling Moun-

tains (hereafter referred to as Qinling) with a 10 km buffer

zone as our study area. Two species, wood bamboo (Basha-
nia fargesii) and arrow bamboo (Fargesia qinlingensis), are

the main diet of giant pandas in Qinling. Both bamboo species

have long flowering intervals and, between flowering events,

they use asexual reproduction to spread outward along rhi-

zomes at a rate of approximately <10 m per year (Sun, 2011).

2.2 Species data
For giant pandas, we obtained distribution information

from the Shaanxi Forestry Department (SFD). The SFD

recorded giant panda signs along 424 transects (approxi-

mately 1,360 km total length) distributed across both pro-

tected and unprotected habitat in Shaanxi Province during

2010–2012 (SFD, 2017). The study area covered all exist-

ing or potential habitat for giant pandas and included forests

inside and outside of eighteen nature reserves (Figure 1).

Giant pandas were labeled “present” if giant panda signs (e.g.,

fecal and foraging site) were recorded.

For arrow and wood bamboo, 5,998 vegetation plots were

surveyed across the Qinling. The plot locations were along the

giant panda transects and regularly spaced across the entire

potential range of giant pandas (Figure 1). Field staff recorded

a bamboo species as present when it occupied an area larger

than 10 m × 10 m (SFD, 2017).

Because both the giant panda and bamboo surveys yielded

presence-only data, in order to use statistical algorithms

requiring both presence and absence values, we generated

random pseudo-absent locations (Iturbide et al., 2015).

Pseudo-absent locations for giant panda were randomly

generated at 2 km from the presence points according to its

home range size (approximately 5 km2; Pan et al., 2014). Due

to the relatively low dispersal ability of bamboos, pseudo-

absence sites for bamboos were randomly selected without

distance limitation from presence sites. We acknowledge

that such presence–absence data represent indices of giant

panda or bamboo distributions rather than true occupancy

status.

2.3 Climate data
We constructed models using current climatic conditions

(average for 1950–2000, Supporting Information Table S1)

and projected to the future (given by WorldClim for the range

2061–2080, hereafter referred to as future). We selected two

widely used Representative Concentration Pathways (RCP)

scenarios for our study: RCP4.5, an optimistic scenario where

carbon emissions peak around 2040, resulting in 4.5 W/m2

radiative forcing by 2100; and RCP8.5, a pessimistic scenario,

which reflects high carbon, resulting in 8.5 W/m2 radiative

forcing by 2100 (Moss et al., 2010). We used three global cli-

mate models (hereafter referred to as GCM) for future climatic

conditions: ACCESS1.0, CCSM4, and HadGEM2-AO (here-

after referred to as AC, CC, and HD, respectively (Hijmans,

Cameron, Parra, Jones, & Jarvis, 2005).

2.4 Environment data
We reviewed previous studies for the giant panda and the

two bamboo species (Hull et al., 2014; Pan et al. 2014; Wang

et al., 2014; Zhang et al., 2011, 2017), and identified abiotic
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F I G U R E 1 Sampling design for giant panda and bamboo species distribution in the Qinling Mountains. Government staff conducted 424 line

transects across 18 nature reserves across the Qinling Mountains, covering the known giant panda distribution area with an approximate 10 km buffer.

See methods for transect details. Known distribution of giant pandas is indicated in insert map

(e.g., elevation and slope), biotic (e.g., bamboo presence

for giant panda), and anthropogenic (e.g., road transporta-

tion and construction for giant panda) variables that have

been shown to affect their occupancy (Supporting Informa-

tion Table S2). We used a 30-m resolution digital elevation

model (Global ASTER, 2009) to delineate the slope, aspect,

and terrain ruggedness using ArcToolbox in ArcGIS 10.2

(ESRI, 2011). Georeferenced data of nature reserves, human

residences roads, and mining locations were obtained from

the SFD. All the layers (Table S2) were finally standardized

to 500 m × 500 m spatial resolution using ArcToolbox in

ArcGIS 10.2.

2.5 Modeling current and future bamboo
distributions
Prior to modeling bamboo and giant panda distribution, we

conducted a four-step variable selection to reduce the mul-

ticollinearity of remaining climatic and nonclimatic candi-

date variables (see details in Supporting Information 1) using

a Variance Inflation Factor (VIF) method (García, García,

López Martín, & Salmerón, 2015). We excluded any vari-

able that had a VIF value greater than 5 from further analyses

(Shiu, 2006).

To model the current bamboo distribution, we first com-

pared the discriminative performance of an environmental-

only model (hereafter ENV) that do not account for residual

SAC, and a residual autocovariated model (hereafter RAC),

which included an autocovariate term derived from the resid-

uals of the ENV model (Crase et al., 2014). We used an ensem-

ble modeling approach (Pliscoff, Luebert, Hilger, & Guisan,

2014), in which six modeling algorithms were used: artifi-

cial neural network (ANN), generalized linear model (GLM),

boosted regression tree (BRT), maximum entropy model-

ing (MAXENT), multivariate adaptive regression splines

(MARS), and random forest (RF). Discriminative perfor-

mance was assessed under a 10-fold process using two cross-

validated performance metrics, the AUC (area under curve of

the receiver operating characteristic [ROC]; Fawcett, 2006)

and the TSS (true skill statistic; de Oliveira, Rangel, Lima-

Ribeiro, Terribile, & Diniz-Filho, 2014). We plotted Moran's

I correlogram (Legendre & Legendre, 2012) to further quan-

tify the remaining spatial autocorrelation in model residuals

and validate the model performance.

To forecast future bamboo distributions, we modeled bam-

boo distributions using three GCMs and two RCPs (IPCC,

2012). Since the asexual reproductive dispersal for our focal

bamboo species was relatively low, we used the current
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autocovariate in the predictive functions for RAC models. To

better demonstrate the species’ distribution change, we used

a threshold that maximized the sum of modeling sensitivity

and specificity to transform the species occurrence probabil-

ities to binary presences/absences predictions (Cantor, Sun,

Tortolero-Luna, Richards-Kortum, & Follen, 1999).

2.6 Modeling current and future giant panda
distributions
With the bamboo model outputs, we used the same ensemble

modeling method, and constructed three modeling approaches

to predict current giant panda habitat: climate-only models

that connect giant panda distribution with only climatic vari-

ables; bamboo-ENV model that incorporates ENV bamboo

model output as well as other critical habitat preferences; and

bamboo-RAC model in which RAC bamboo model output

and other habitat preferences were added. To predict future

giant panda distributions, we used the same three GCMs and

two RCPs.

3 RESULTS

3.1 Bamboo–environment relationship
Five climate variables and three nonclimate environmental

variables were included in bamboo models after the collinear-

ity test (Supporting Information Table S1). The correlogram

and map of model residuals revealed a significant nonrandom

pattern for arrow and wood bamboo ENV models (Sup-

porting Information Figure S1). The Moran's I (p < 0.01)

indicated higher similarities among survey locations within

20 km for arrow bamboo and 25 km for wooden bamboo

(Supporting Information Figure S2). Incorporating the RAC

term significantly improved the model's discriminative ability

(Figure 2), and reduced residual SAC (Supporting Informa-

tion Figure S2).

For both arrow and wood bamboo, BIO13 (precipitation of

the wettest month) had the highest contribution in modeling

species distribution (Table 1), followed by BIO1 (annual mean

temperature) and BIO6 (min temperature of coldest month)

for arrow bamboo and BIO6 and BIO15 (precipitation season-

ality) for wood bamboo. Though the species–climate associa-

tions were similar between the ENV and RAC models, includ-

ing RAC reduced the importance of climatic variables for both

bamboo species (Table 1).

3.2 Current and future bamboo distribution
Both modeling approaches estimated a similar expected

number of occupied cells for current bamboo distributions

(Figure 3). However, the occurrence probability under cli-

mate change scenarios diverged (Figure 3). For the wood

bamboo, the ENV model predicted a 36–85% loss (RCP4.5:

36–85%, RCP8.5: 46–88%) in its distribution under cli-

mate change, while the RAC model predicted less decrease

(RCP4.5: 0%; RCP8.5: 0–31%) than the ENV model. For the

arrow bamboo, the ENV model predicted more habitat loss

under both climate change scenarios (RCP4.5: 52–70% and

RCP8.5: 62–85%) than the RAC model (RCP4.5: 0–39% and

RCP8.5: 24–51%). According to RAC models, bamboo cov-

erage in the central Qinling where the four most important

nature reserves are located remains primarily bamboo covered

(>85%).

3.3 Biotic interactions in giant panda models
Seven nonclimatic variables, five climatic variables, and a

bamboo layer were included in giant panda models (Sup-

porting Information Table S2). The biotic interactions intro-

duced into the giant panda models significantly improved the

model's discriminative ability (p < 0.01; Figure 2).

According to both biotic models, four predictors besides

climatic variables (i.e., bamboo distribution, distance to road,

distance to large residences, and distance to nature reserves)

had a model weight higher than 0.1 (Table 1). The occupancy

probabilities of giant pandas were higher in areas with bam-

boo understory in or adjacent to nature reserves. Being close

to residential areas and major roads significantly reduced the

occupancy probabilities of giant pandas, which suggested the

negative associations between giant panda and human infras-

tructure. Including bamboo distributions and other noncli-

mate variables lowered the importance of climate variables in

explaining giant panda distributions, despite that these noncli-

mate variables are not highly correlated to climate variables

(Table S1 and S2).

3.4 Future giant panda distribution
Climate-only models of giant panda distribution predicted

results similar to previous studies that giant pandas would

lose 49–85% of their current habitat under a range of cli-

mate change scenarios (Figure 4). By contrast, the biotic mod-

els predicted less habitat loss (bamboo-ENV model: mean

42%, range 33–65%; bamboo-RAC model: mean 16%, range

12–34%). Though the results diverged, all three modeling

approaches predicted major habitat loss in eastern Qinling

Mountains.

4 DISCUSSION

Our study revealed potential tolerance of giant pandas to

future climate change. . Previous studies either used climate-

only models (Fan et al., 2014; Songer et al., 2012) or non-

spatially modeled bamboo distributions and climate variables
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F I G U R E 2 The cross-validation results using AUC and TSS to compare the performance of different modeling approaches. Each cross indicates

the mean and SD of AUC and TSS tests for giant panda (A: climate-only model; B: bamboo-ENV and bamboo-RAC models), arrow bamboo (C: ENV

model; D: RAC model), and wood bamboo (E: ENV model; F: RAC model) bamboo modeling. Higher values for both tests represent improved model

performance when biological traits and a spatial term was incorporated in the modeling

(Li et al., 2015; Tuanmu et al., 2013) to model giant panda

distributions. Both these methods produced dire forecasts and

emphasized the effects of climate. Our climate-only giant

panda models and ENV bamboo models predicted similar

species’ distribution changes to these previous studies. How-

ever, given their relatively poor discriminative performance

and ignorance of important biotic interactions and residual

SAC, we believe that they have overemphasized the effects

of climate change on giant panda distribution, and may lead

to inappropriate recommendations for conservation actions.

We found that accounting for consumer–resource biotic

interactions and residual SAC improved model performance

and changed the forecasts. We acknowledge that our results

are fundamentally different from previous studies (Fan et al.,

2014; Li et al., 2015; Tuanmu et al., 2013), including some

of the present authors (Songer et al., 2012). We found that
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T A B L E 1 The relative importance of the climatic and nonclimatic variables in modeling bamboo and giant panda distribution. Bold numbers

indicate variables had a relative importance >0.1

Arrow bamboo Wood bamboo Giant panda
Variable type Variable ENV RAC ENV RAC Climate-only Bamboo-ENV Bamboo-RAC
Climate Bio1 0.21 0.15 0.06 0.04 0.26 0.05 0.04

Bio6 0.14 0.10 0.19 0.10 0.05 0.01 0.01

Bio11 0.11 0.09 0.14 0.06 0.03 0.03 0.03

Bio13 0.32 0.25 0.39 0.19 0.36 0.05 0.04

Bio15 0.11 0.08 0.16 0.08 0.32 0.09 0.08

Land feature Aspect 0.02 0.01 0.03 0.02 – 0.00 0.00

Slope 0.06 0.04 0.02 0.02 – 0.01 0.01

Ruggedness 0.01 0.00 0.00 0.00 – 0.00 0.00

Biotic Bamboo – – – – – 0.36 0.38
Anthropogenic Residential area – – – – – 0.11 0.11

Road – – – – – 0.14 0.15
Mining site – – – – – 0.02 0.01

Nature reserve – – – – – 0.15 0.15

F I G U R E 3 The occurrence probability for the arrow and wood bamboo under climate change scenarios. The ENV model forecasts a major

decrease in both arrow and wood bamboo distribution under different GCMs and RCPs (indicated in right; see Methods for details). Combining the

wood and arrow bamboo, the RAC model forecasts a more stable distribution
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F I G U R E 4 The occurrence probability of giant pandas under climate change predicted by climate-only, bamboo-ENV, and bamboo-RAC mod-

eling approach. Climate-only models predicted similar results to previous studies under different three GCMs (AC, CC, and HD) and two RCPs (RCP

4.5 and 8.5), with giant pandas losing 49–85% of its current habitat under various climate change scenarios. The bamboo-ENV model predicted a mean

habitat loss of 44% (33–65%), and the bamboo-RAC model predicted a habitat loss of 16% (12–34%), with new habitat patches located in northern

Qinling Mountains

species environmental envelop (niche breadth) to be wider

than the projected temperature/precipitation changes, so the

species can potentially persist under the projected climatic

conditions.

An advantage of our RAC approach is that the RAC term is

calculated from the residuals of nonspatial models, and thus

represents factors other than the covariates already included in

the models such as land facet (Brost & Beier 2012; Wessels,

Freitag, & Van Jaarsveld, 1999), tourism, and species interac-

tions (e.g., livestock grazing) (Wang, McShea, Wang, & Li,

2015; Zhang et al., 2017), for which data are not available

for the current study. In addition, the underground rhizome

system of bamboos (He et al., 2000) may also cause residual

SAC in the models, but such effects are difficult to quantify

and need to be accounted for using the RAC term. In contrast

to the stems and leaves that might be more vulnerable to tem-

perature change, the rhizome system is belowground, enabling

the lateral buds to produce either canes or new rhizomes with

less impact from aboveground temperatures. The asexual dis-

persal characteristics of bamboos may provide resilience of

these species against unsuitable climatic conditions, a pattern

that is consistent with the forecast of our RAC models. Due

to the complex characteristics of the RAC term, future studies

that focus on the effects of anthropogenic factors such as agri-

culture, livestock grazing and tourism on bamboo and giant

panda distributions are warranted.
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One of the most important principals in climate change

mitigation is that the decision-making process should be

based on the most comprehensive data and robust models

(Nicholson & Possingham 2007). Other than proposing new

nature reserves and planting bamboos in areas without cur-

rent giant panda distributions, we suggest that the future con-

servation plans focus on reinforcing current strategy, with

special emphasize on the adaptive management of fast devel-

oping tourism and other anthropogenic activities (e.g., farm-

ing and livestock grazing) in bamboo forest. For example,

though the current habitats at lower elevations may remain

suitable for giant panda if bamboo and forests remain, farm-

land moves up under warmer environment could be an emerg-

ing threat which warrants further attention. A great opportu-

nity to better target our results in conservation practices lies

in the Overall Plan of Ecological Civilization Systems Reform

recently announced by Chinese government. This plan intro-

duced major changes in the way natural resources are man-

aged, including nationwide transfer payment for ecosystem

service (PES), key ecological function regions zoning, and

the establishment of three huge giant panda national parks

(Ouyang et al., 2016). We strongly advocate that the newly

proposed national parks as well as existing national reserves

establish a comprehensive, adaptive framework of monitor-

ing, modeling, and managing natural resources and human

activities (including proposed tourism projects) (Xu et al.,

2017). In addition, areas that are predicted suitable for giant

panda and bamboo species, for example, the northern Qin-

ling Mountains, should be identified as key ecological func-

tion regions with higher PES rates (Yang et al., 2018). We

feel that these efforts would bear more positive results for

climate change mitigation, for vulnerable giant pandas and

beyond.

Despite the fast development of SDMs, many scientists

and conservation practitioners still estimate species’ range

shifts based on the assumption that climate and few abiotic

factors are the only determinants. We believe that this study

has strong implications to establish a better understanding of

climate-mediated range shifts for many other species around

the world. Armed with such knowledge, scientists and con-

servation practitioners may be able to better identify conser-

vation priorities to ensure the long-term survival of wildlife

species.
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