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1 INTRODUCTION
In 1975, a research program was initiated at the University of
Maryland to develop an analytical procedure capable of

predicting the effects of various environmental actions on”’

fabric-supported oil paintings. The basic concept applied'_was
that the behavior and response of a typical fabric-supported
painting to external agents depends on the interaction of all
components of the composite system, that is, stretcher, fabric,
size, ground and paint film.

It was recognized that the success of the project depended
on the completion of the two following major tasks:

1 the development of a mathematical model to evaluate
accurately deformations and stresses in the composite
system;

2 the accurate quantification of pertinent mechanical
properties of the constituent materials.

The overall purpose of the work undertaken was to
contribute to a better understanding of the mechanisms of
deterioration of paint-film surfaces, thereby providing a
means of evaluating current and proposed conservation
treatments.

Obviously, the magnitude of the task compared with the
limited resources available prevented a comprehensive
consideration of all aspects of the problem. However, it is
believed that the work completed to date provides for the first
time a sufficient basis for the rational evaluation of the
principal agents and mechanisms of deterioration.

This presentation concentrates on the numerical procedures
developed. The equally important complementary work
related to the material properties of the constituent materials
has been presented by Mecklenburg [1].

2 MATHEMATICAL MODEL

The stress analysis of complex continua has developed rapidly
in recent years due to the advent of the high-speed electronic
digital computer. Thus it is now possible to employ numerical
discretization techniques to obtain approximate solutions to
previously insoluble problems. The most powerful of these
numerical techniques is the finite element method (FEM).
Originally developed intuitively, the technique has been
generalized using variational principles of mathematical
physics and has been applied successfully to such fields as
seepage, heatflow, hydrodynamics, soil and rock mechanics,
and bio-engineering.

In general, problems of mathematical physics may be
specified in one of two ways:

| differential equations governing the behavior of a

typical infinitesimal region are given;

2 avariational or extremum principle valid over the entire

region of interest is postulated.

These two approaches are mathematically equivalent, and
the finite element method is based on the second approach [2].
The appropriate variational theorem relating to static
problems of structural analysis is the well known theorem of
minimum potential energy which may be derived from the
principle of virtual work.

* ‘Orthotropic’ describes materials whose elastic properties vary in
different directions, e.g. canvas.

Exact mathematical solutions of the governing differential
equations are only possible for relatively simple problems. As
a result, approximate solutions must suffice. Two general
methodologies are as follows: a) an approximate solution of
the mathematical equations governing the actual problem; or
b) an exact solution of the mathematical equations governing a
simplified problem.

This latter approach forms the basis of the finite element
method. Thus, the actual problem is replaced by a simplified
problem for which an exact solution is obtained. Provided the
simplified problem does not differ significantly from the
actual problem, the solution may be considered valid. The
concept is illustrated in Figure 1, in which a value for the
circumference of a circle is sought. Numerical solutions may
be obtained by using straight line segments to model the curved
geometry. Note that the accuracy of the approximation
increases as the number of segments used increases. The
approximation is, therefore, of a physical nature. There is,
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Fig. 1 Simplified finite element model.




however, no approximation in the mathematical analysis of
the modified structure. Provided that the solution of the
modified problem is approximately equal to that of the actual
problem, this approach has tremendous potential. Substantial
experience in solving a wide variety of complex problems has
identified three general criteria which, if satisfied, will
guarantee that the method yields a known bound of the correct
answer and that if the number of elements is increased, the
accuracy of the solution is increased.

The steps involved in a finite element analysis may be
summarized briefly as follows: =

5
2.1 Discretization of the Continuum (Structure)
In this step, the body is subdivided into a system of component
elements. In many cases, good results may be obtained with
relatively crude divisions and this is therefore not a difficult or
crucial step in the procedure.

2.2 Selection of Element Displacement Model

This is the crucial step in the analysis procedure, and the
selection of an appropriate function to represent the
displacement within each element determines to a considerable
extent the validity and the accuracy of the final solution.

For simplicity, polynomial functions are usually selected
and rules have been established for selecting the proper
number of terms in order to guarantee accuracy of the
solution.

2.3 Determination of Element Stiffness* B
Using the appropriate variational theorem, the element
stiffness can be determined. The basic parameters affecting
element stiffness are the displacement model previously
selected, the element geometry, and the element material
properties and strain-displacement relations. Appropriate
strain-displacement may be obtained from mechanics. With
respect to the analysis of oil paintings the stress-strain
relationships of the constitutive materials are of paramount
importance.

2.4 Assembly of Governing Equations

The equations governing the response of the discretized
structure may be assembled by appropriate merging of the
element stiffnesses and forces applied to the structure using a
standard procedure known as the direct stiffness method. This
step in the analysis procedure is well standardized, and appli-
cation to oil paintings does not introduce any complexities 10
the process.

2.5 Solution for Unknown Displacements

Once the governing equations have been generated, standard
procedures for solving large systems of equations may be used
to evaluate the displacements of the structural system.
Depending on whether or not the material stress-strain
relations are linear or non-linear, the solution process may
require an iterative solution procedure which must be
continued until a convergent solution is obtained.

2.6 Computation of Element Stresses
From the element displacements, element strains and
subsequently element stresses may be obtained without
difficulty.

The basic advantage of the FEM outlined above is that the
method can consider without major difficulty complex

* Stiffness may here be defined as resistance to deformation.

variations in the following four significant factors: 1) structure
geometry; 2) support conditions; 3) loadings or stimuli; 4)
material properties.

Thus, irregular-shaped structures with complex supports
subjected to variable external actions can be readily analyzed
in a typical FEM computer program. In addition, structures
composed of elements with highly variable material properties
can also be included without excessive computational
difficulties.

3 DESCRIPTION OF THE IDEALIZED SYSTEM

A fabric-supported oil painting will be considered herein as a
thin multi-layered orthotropic membrane possessing no
flexural rigidity. Lateral loadings and displacements are not
considered herein and a two-dimensional plane stress
condition is, therefore, assumed. The basic concept of the
structural behavior and response is that all components of the
painting contribute to the overall resistance to deformation. It
is assumed that there is no relative movement along the layer
interfaces. Each material layer may have different material
property values, with variable humidity conditions possible
over the continuum surface but constant through the thickness
of the structure. At any given point in time, the materials are
considered to possess unique linear elastic properties.

Recent clinical tests [3] along with previous information
available [4, 5] have established that relative humidity, rather
than the normal range of temperature variation, significantly
affects the physical properties of the component layers. Thus,
a major parameter considered in the problem formulation is
relative humidity.

4 SOLUTION PROCEDURE

Details of the solution procedure are presented in [6].
However, a brief synopsis of the methodology is summarized
below.

The solution procedure initiates with the consideration of a
totally uncracked structure. The stiffness matrix is formulated
for the entire structure, using material property values assoc-
iated with the initial known continuum humidity condition.
The applied force vector is computed, and the specified
displacement boundary conditions imposed. A solution of the
equilibrium equations is obtained using the Choleski decom-
position procedure [2] yielding the nodal displacements.
Stresses within each layer, element and subregion of the system
are then computed. A comparison of these stresses with the
tensile rupture stress values will indicate whether cracking has
taken place.

The effect of cracking is considered by imaginary, or
pseudo, loads applied at the nodal points of the cracked
element. The force vector is adjusted to allow for this pseudo
loading and the equilibrium equations resolved, stresses
recomputed and the entire pseudo-load procedure repeated
until satisfactory convergence is achieved. In this way, a
convergent solution considering cracking is obtained for the
initial humidity condition. In other words, the first iterative
cycle is performed assuming no humidity variation.

Prior to determining the effects of changes in the initially
specified humidity state throughout the continuum, it is
necessary to consider that once any portion of the structure has
cracked, it can no longer offer any tensile resistance across the
crack and the solution procedure must therefore recognize and
permit this condition. For this reason, any subregion cracked
within an element is identified in the problem and further
analysis of the cracked structure, for modified humidity
conditions, proceeds using a structure stiffness matrix




modified to account for cracking. A humidity force vector is
also computed and merged with the applied load vector. To
allow for material property changes, both the modified
stiffness matrix and the humidity force vector, arising from the
humidity variation, are formulated using material property
values for the new humidity condition. Specified displacement
boundary conditions are again imposed and a second series of
iterations performed in which further cracking is again
handled using the pseudo-load procedure.

This entire process is repeated for each desired change in
humidity conditions over the structure. In this way, a stress
history of the continuum is developed due to a set of applied
loads, or displacements, and a desired cycling of continuum
humidity variations.

5 APPLICATIONS

Three application problems are presented for a 30in (fill) by
36in (warp) painting. Due to symmetry only one quadrant of
the painting is modeled, using a 30-element mesh. The painting
is considered to consist of the following layers: layer 1 — linen
fabric, 0.0033in thick; layer 2 — rabbitskin glue size, 0.0001in
thick; layer 3 — white lead ground paint, 0.01in thick; layer 4
— titanium dioxide paint, 0.005in thick. Properties for these
materials, including modulus of elasticity, E, and tensile
rupture stress, f,, obtained from Meckenburg [1] are given in
Tables 1 through 4. The model is shown in Figure 2.

TABLE 1 Material Properties for Fabric Used in Application
Problems: Ulster no. 8800 Linen (Orthotropic)

Relative humidity E Epy I
(psff (psi) (psi)
90% 3.55% 104 12.50 x 104 50,000
50% 0.56% 104 9.50x 104 50,000
20% 0.45% 104 6.75x% 104 50,000

TABLE 2 Material Properties for Size Used in Application
Problems: Rabbitskin Glue Size (Isotropic)

Relative humidity E a i
(psi) (in/in/%RH) (psi)
90% 1.75x 104 20x104 40,000
50% 28.5%x 104 2.0x 104 40,000
20% 47.5x 104 3.0x 10+ 40,000

n.b. a=0in all cases

TABLE 3 Material Properties for Ground Used in Application
Problems: White Lead Ground (lsotropic)

Relative humidity E a S
(psi) (in/in/%RH) (psi)
9007, 0.6 104 1.7x10-3 175
50% 2.4x104 1.7x10-3 360
20% 3.7x104 1.7%10-5 400

TABLE 4 Material Properties for Paint Used in Application
Problems: Titanium Dioxide Paint — Aged 24 Months

(Isotropic)
_;;{e!arive humidity E a o
(psi) (in/in/%RH) (psi)
90 1.2x104  1.25x104 275
50%, 2.8x104 1.25x 10—+ 400
1.25x 104 500

20% - 3.95x 104
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Fig. 2 Finite element model of north-east quadrant.

5.1 Uniform Expansion with Differentiql Humidity

This application assumes the following sequence of events.
The stress-free 30in x 36in painting at 90% relative humidity is
subjected to a uniform expansion due to swelling of the
stretcher bars. Expansions of 0.0%n in the fill direction and
0.18in in the warp direction are imposed. Subsequently, the
relative humidity of the central portion of the painting is
reduced to 50%, simulating differential drying. The resulting
displacements of the north-east quadrant of the painting and
the magnitudes and directions of the maximum principal
stresses in each element are shown in Figure 3.
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Fig. 3 Displacements and principal stresses for problem 5.1,

5.2 Keying Out with Changes in Relative Humidity

This problem investigates stresses induced by keying out
0.06in along all stretcher bars at a relative humidity of 90%.
Following this, the relative humidity is reduced to 50% and
finally 20%. The computed displacements and corresponding
stresses due to the keying out operation are shown in Figure 4.
Note that the high initial tension stress in the corner of the
painting causes cracking. Stress magnitudes and extension of
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Fig. 4 Displacements and principal stresses for problem 5.2 (30%
RH).
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Fig. 5 Cracking and principal stresses for problem 5.2 (50% RH).

cracking following the specified reductions in relative
humidity are shown in Figures 5 and 6.

5.3 Tacking Edge Effect with Changes in Relative Humidity
In the previous applications, a continuous attachment of the
canvas to the stretcher bar wasassumed. In order toinvestigate
the local effect of tacking, element no. 5 (Fig. 2) is analyzed in
more detail by subdividing it into 16 elements, each 0.75in
square, as shown in Figure 7. It is assumed that the nodal
points along the bottom edge are fixed in the y-direction but
free to slide horizontally, and the left-hand side is fixed in the
x-direction but free to slide vertically. The right-hand side of
the configuration is displaced 0.015in, an amount which is
consistent with, and proportional to, the displacements
imposed in problem 5.1. The nodal points 5 and 25 are given
vertical displacements of 0.006in, an amount which is again
consistent with previous displacements. Thus, the painting is
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Fig. 6 Cracking and principal stresses for problem 5.2 (20% RH).
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Fig. 7 Boundary conditions for problem 5.3.

modeled as if it were under an initial tensioning influence. The
ensuing results may then be compared to those for problem
5.1, since one element is essentially being replaced by a finer
mesh of 16 elements.

The computed displacements for the tacking edge effect at
conditions of 90% RH are plotted, to an exaggerated scale, on
Figure 8. Also shown are the magnitude and direction of the
maximum principal stresses in each element. The displaced
configuration shows that considerable distortion occurs in the
elements adjacent to the tacking points (i.e., elements 4 and
16). When the humidity is reduced to 20% over the entire area,
the distortion is magnified.

6 COMPARISON WITH ACTUAL PAINTINGS
The application problems studied here have been limited to a
number of common influences to which a fabric-supported
painting could be subjected. It is important to note that the
analyses used typical dimensions, thicknesses and material
property values obtained from ongoing research [3].
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Fig. 8 Displacements for problem 5.3 (90% RH).

Interpretation of the results of the computer analyses leads
to the prediction of potential cracking configurations on the
entire painting as shown diagrammatically on Figure 9. Keck
has reported [5] that fabric-supported oil paintings show a
marked similarity in cracking configurations and that these -
cracks take the general patterns as depicted on Figure 10.

A comparison’ of the predicted and actual cracking
configurations indicates that a reasonable correlation exists
for the cases studied here.
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Fig. 9 Summary of predicted crack patterns.
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7 CONCLUSIONS

Many current practices in conservation and restoration are
performed without adequate knowledge or consideration of
the mechanical stresses they induce. Thus it is possible for
treatments to aggravate deterioration and damage to the paint
layer.

Fig. 10 Simplified diagram of observed crack patterns.

Based on the work performed and reported on briefly in this

_paper, itis concluded that, provided realistic data are available

on material properties, the finite element model developed
possesses the capability of predicting the magnitude and
distribution of stresses in oil paintings caused by common
stimuli.
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