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Abstract:  20 

Both large-wildlife loss and climatic changes can independently influence the prevalence and 21 
distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger 22 
community-level effects in low-productivity areas, we hypothesized that these perturbations 23 
would have interactive effects on disease risk. We experimentally tested this hypothesis by 24 
measuring tick abundance and prevalence of tick-borne pathogens (Coxiella burnetii and 25 
Rickettsia spp.) within long-term, size-selective large-herbivore exclosures replicated across a 26 
precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 27 
130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction 28 
of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested 29 
for a subset of months, total tick abundance increased from 170% (only mega-herbivores 30 
excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected 31 
abundance of the three dominant tick species, and this effect varied strongly over time, likely due 32 
to differences among species in their host associations, seasonality, and other ecological 33 
characteristics. Pathogen prevalence did not differ across wildlife-exclusion treatments, rainfall 34 
levels, or tick species, suggesting that exposure risk will respond to defaunation and climate 35 
change in proportion to total tick abundance. These findings demonstrate interacting effects of 36 
defaunation and aridity that increase disease risk, and they highlight the need to incorporate 37 
ecological context when predicting effects of wildlife loss on zoonotic disease dynamics. 38 

  39 
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Introduction: 40 

Zoonotic diseases are a rising concern worldwide [1–3]. Yet, amid rapidly declining wildlife 41 
populations and global climate change, there is no consensus on how these perturbations will 42 
independently and interactively affect zoonotic disease risk. Anthropogenic land-use change is 43 
likely to play a substantial role in facilitating outbreaks through a variety of mechanisms [2,4], 44 
including changes to wildlife host populations and communities [3–6]. Meanwhile, climate 45 
changes can have substantial and variable effects on zoonotic diseases [7,8], even when 46 
considered in isolation of changes to host populations. Thus, the combined effects of wildlife 47 
loss and climate change are likely to be complex [7,9], but data are lacking, especially for 48 
regions where medical resources and research efforts are low and zoonotic disease risk is highest 49 
[2]. Although there has been a widespread call for more research on the net effects of 50 
anthropogenic changes on disease and disease vectors globally [3–5], large-scale experimental 51 
tests remain scarce. 52 

Ticks and tick-borne pathogens provide a salient system for examining the effects of wildlife loss 53 
and climate changes on disease risk. Globally, ticks are considered to be the most important 54 
disease vectors for wildlife and domestic animals [10], and are second only to mosquitoes among 55 
vectors affecting humans [11]. Estimated economic costs of ticks and tick-borne disease are 56 
variable [12] and although no recent estimate has been made, one study attributed annual losses 57 
of US$ 13.9 billion worldwide to tick-borne disease in cattle alone [13].  58 

Globally, the pervasive decline in large-wildlife populations [14] is affecting a wide range of 59 
ecological functions and services, including disease control [15,16]. Ticks are also likely to be 60 
affected, considering their inextricable links to host population dynamics. While a substantial 61 
body of work demonstrates complex relationships among hosts, predators, and ticks (e.g., for the 62 
Lyme disease system in North America [17]),  few studies have experimentally investigated how 63 
size-selective defaunation, which simulates the disproportionate vulnerability of larger animals 64 
to human disturbance [14], affects tick abundance and risk of tick-borne disease (but see [18]). 65 
Size-selective defaunation can directly affect tick abundance through the loss of hosts [19], and 66 
can also indirectly affect tick survival by altering vegetation structure [20–23] and the abundance 67 
and composition of small-vertebrate hosts [22,24]. Large-mammal loss often accompanies small-68 
mammal abundance increases [22,24,25], leading to changes in host availability for different tick 69 
species. The relative importance of these sometimes opposing factors is poorly understood for 70 
most systems, and likely depends on vector life cycles and host associations. 71 

Climate can also affect the prevalence and distribution of zoonotic pathogens, particularly those 72 
limited by climate-sensitive vectors [7,26–28]. This topic has become increasingly relevant in the 73 
context of global climate changes [7,9,29]. As tick survival can depend on factors such as rainfall 74 
and temperature [21,30,31], several models have predicted shifting tick ranges that result in net 75 
range expansions under climate change scenarios, although this varies among tick species [32]. 76 
This experiment is one of few field studies that consider climatic effects on multiple tick species 77 
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simultaneously, and is situated in a region where climate changes are already pervasive and will 78 
be challenging to mitigate [33]. 79 

While the independent effects of climate change and biodiversity loss on zoonotic disease have 80 
received considerable recent attention, their potential interaction has not been well explored. For 81 
tick-borne diseases, prior studies  have been largely correlative, yielding mixed results on the 82 
relative importance of various climate metrics, host abundance, and their interaction in 83 
determining tick abundance [34–37], emphasizing the need for more data describing a range of 84 
interacting forces on tick biology. The indirect effects of large herbivores on other small 85 
consumers, from insects to birds and small mammals, are highly sensitive to variation in climate 86 
and productivity [22,38,39], but it is not known whether these results can be generalized to 87 
disease risk in particular.  88 

East African savannas are hotspots of tick and tick-borne pathogen diversity [40], and tick-borne 89 
pathogens such as Rickettsia, Coxiella, and Anaplasma are major regional economic and human 90 
health concerns [41–43]. For example, a recent study in Tanzania found that bacterial zoonoses 91 
caused 26% of acute fever cases; of these, 20% were Q Fever, caused by Coxiella burnetii, and 92 
30% were Rickettsiosis, caused by spotted fever group Rickettsia [44]. Accordingly, African 93 
savannas offer an ideal system for testing the effects of varying degrees of defaunation on tick 94 
abundance, as hosts are diverse and abundant, ranging over six orders-of-magnitude in size and 95 
occupying diverse functional roles [22,45]. However, large wildlife are experiencing widespread 96 
and precipitous declines in many parts of this region [46,47], underscoring the importance of 97 
predicting effects across ecological communities. Furthermore, climate change is also likely to 98 
affect tick-borne disease in East Africa, due in part to shifting rainfall patterns [31]. While large-99 
scale predictions for future rainfall regimes are mixed [33], much of the region has been affected 100 
by persistent reductions in the critical ‘long rains’ since 1970 [48], and localized rainfall 101 
prediction models indicate that this trend is likely to continue [49].  102 

We used a replicated series of experimental large-herbivore exclosures to quantify the effects of 103 
size-selective defaunation, climatic context, and their interaction on tick abundance and 104 
prevalence of tick-borne pathogens. In light of evidence that other consumer groups respond both 105 
numerically and behaviorally to an interaction between defaunation and primary productivity 106 
[38,39,50,51], we hypothesized that: (1) large-herbivore removal has strong effects on ticks and 107 
their associated pathogens; (2) tick species that utilize small mammal hosts will increase in 108 
abundance when large mammals are excluded (and small-mammal densities increase); and (3) 109 
the strength of these effects are contingent on climatic context and are strongest in more arid, 110 
low-productivity areas.  111 

Methods 112 

Survey Site and Exclosures 113 
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Research was conducted in the Ungulate Herbivory Under Rainfall Uncertainty (UHURU) 114 
experimental plots [22,52,53], established in 2008 at Mpala Research Centre (MRC) in Laikipia 115 
County, Kenya (0º17’ N, 37º52’ E, 1600m elevation). MRC supports robust populations of 116 
wildlife including elephants (Loxodonta africana), giraffe (Giraffa camelopardalis), zebra 117 
(Equus grevyi and Equus quagga), impala (Aepyceros melampus), and dik-dik (Madoqua kirkii), 118 
among others. The UHURU plots consist of four 1-ha exclosure treatments replicated three times 119 
at each of three ‘levels’ of a rainfall and productivity gradient created by the rain shadow of Mt. 120 
Kenya (i.e., 9 total replicates of each treatment, 36 total plots; Table S1). The four treatments 121 
simulate different scenarios of size-selective species losses using different combinations of 122 
fencing. The treatments are as follows: (1) total exclusion of all ungulate herbivores (‘Total 123 
exclosure’); (2) exclusion of all herbivores >15kg (‘Meso exclosure’); (3) exclusion of only 124 
mega-herbivores (i.e., giraffe and elephant; ‘Mega exclosure’), and 4) unfenced open plots 125 
(‘Control’) [22]. Mean annual precipitation increases ~45% from the arid northern sites (440mm 126 
year-1), to the mesic southern sites (640mm year-1), with central sites intermediate (580mm year-127 
1). Seasonal rains typically fall from March – May (‘long rains’) and October – December (‘short 128 
rains’) [54]. As in other semi-arid savannas, primary productivity is tightly linked to 129 
precipitation across this gradient [22]. Although the Normalized Difference Vegetation Index 130 
(NDVI) has been used previously in studies of tick abundance [21], we used mean annual rainfall 131 
as the primary climatic variable in our analyses, both because NDVI  increases in exclosure 132 
treatments due to decreased herbivory and trampling by large mammals [22] (and thus would not 133 
isolate climatic factors), and because climatic factors tend to outperform NDVI in predicting 134 
African tick distributions [31]. We also present a complementary analysis using a categorical 135 
‘climatic level’ variable in lieu of the continuous precipitation variable; results are qualitatively 136 
similar (Tables S2, S3).  137 

Ticks 138 

The density of infected vectors is a common metric of vector-borne zoonotic disease risk 139 
[15,55,56] and is directly related to both vector density and pathogen infection rate. Thus, 140 
changes in tick density, infection rate, or a combination of the two can affect disease risk. To 141 
measure disease risk, we used tick drags and pathogen screening to quantify the density and 142 
infection rate of ticks. 143 

Tick Drags 144 

Ticks were collected in Total exclosure and Control plots each month for 13 months between 145 
October 2013 and November 2014. For each survey, a standard white canvas cloth was dragged 146 
throughout all passable portions of each plot, but areas of dense thicket areas were not sampled. 147 
Because exclosure plots often featured thick, thorny vegetation that precluded drags over fixed 148 
linear distances, we conducted drags for a 1-hour period, with ticks collected every 5 minutes. 149 
We also surveyed the Mega and Meso exclosure plots for five months in 2014 (Jan, July, Aug, 150 
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Sept, Nov). To ensure that drags accurately estimated the tick species composition of each plot, 151 
the drags were complemented with CO2 traps [57] for two months.  152 

Ticks were subsequently identified to species using microscopy and descriptions from [58]. We 153 
focused all analyses on three congeneric tick species—Rhipicephalus pravus, R. praetextatus, 154 
and R. pulchellus—that dominated the tick community. These tick species vary considerably in 155 
typical host preferences for each of their three distinct life stages (Figure S1). In general, 156 
immature stages of R. pravus and R. praetextatus feed upon small mammals (particularly 157 
rodents), which roughly double in abundance within total exclosures [22,53], whereas all stages 158 
of R. pulchellus feed on larger mammals [58,59]. Thus, the UHURU exclosure design alters the 159 
dominant host availability for each of these tick species (Figure S1; [22,53,58,59]). 160 

Pathogen Screening  161 

We extracted DNA and prepared double-indexed libraries for 136 ticks following [60]. Tick 162 
sample size was calculated to detect a 10% variation in pathogen prevalence across treatments 163 
while sampling across multiple species, treatments, and levels. Ticks with insufficient read data 164 
were excluded. Libraries were captured in pools of eight individuals (12.5ng each library per 165 
capture; 100ng total library per pool) using the Ectobaits protocol [60]. Double-indexed libraries 166 
were then amplified post capture with Illumina adapters by 18 cycles of PCR. Adapter multimers 167 
were removed prior to sequencing using QIAEX II Gel Extraction Kits (Qiagen). Captured 168 
products were sequenced on a MiSeq (Illumina, USA) using paired-end 150 bp reads. MiSeq 169 
library sequences underwent quality control as described in [60], except that minimum average 170 
base quality score was 25. We differentiated between Coxiella burnetii and Coxiella-like 171 
endosymbionts, as these groups are genetically similar, but endosymbionts are non-pathogenic 172 
and often have high infection rates [61]. We reanalyzed five libraries (KenT11b-KenT15b) 173 
included in [60]. For a subset of ticks (n=20), we confirmed Rickettsia, Coxiella, Ehrlichia, and 174 
Anaplasma infection and tick species using PCR assays following [60]. Positive PCR products 175 
were sequenced with an ABI 3130xl (Thermo Fisher Scientific, USA). 176 

Statistical Analyses 177 

We analyzed the tick drag data with generalized linear mixed models (GLMM), using counts of 178 
adult ticks per plot as our response variable [62]. Fixed effects included treatment (Total 179 
exclosure and Control for all months; all treatments for a subset of months), mean annual 180 
precipitation, and the treatment × rainfall interaction; random effects included replicate plot 181 
identity (3 plots within each of 3 rainfall levels; n=9) and time period (month; n = 12 for Total 182 
exclosure vs. Control, n=5 for all treatments). We ran two separate sets of GLMMs, one for Total 183 
exclosure and Control plots across all months, and another for all plots for the subset of five 184 
months. Candidate-model sets included all possible combinations of the two main effects and 185 
their interaction (the “full model”), along with a null model; all models included the random 186 
effects (Table 1, Table S4). We analyzed the combined total of all tick species and each species 187 
separately. As data were overdispersed and zero-inflated for individual tick species, we used 188 
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zero-inflated negative-binomial distributions with log link functions in our GLMMs. For the two 189 
datasets that combined the three tick species, we used negative-binomial distributions with log 190 
link functions. All models were constructed using the glmmADMB package in R [63,64].  191 

All model combinations for each tick species and the combined total of ticks were ranked using 192 
the second-order Akaike’s information criterion (AICc) [62] using the MuMIn package [65]. We 193 
investigated all models (reported in S5 and S6), and present the 95% confidence interval set with 194 
individual parameter estimates and Akaike weights (wi) in Tables 1 and 2.  195 

Coxiella burnetii and Rickettsia spp. were the only pathogens sufficiently prevalent to permit 196 
robust statistical analysis. We analyzed the likelihood of infection using binomial GLMMs with 197 
logit link functions, with infection status of each tick (infected/uninfected) as the response. 198 
Experimental treatment, tick species, rainfall, and treatment × rainfall were fixed effects and plot 199 
replicate was a random effect.  200 

All analyses were performed in R version 3.3.0 [66]. Descriptive statistics are reported as mean 201 
number of ticks per ha ± 1 standard error.   202 

Results 203 

In total, we captured 5677 ticks across all plots, including 4180 via tick drags and 1497 via traps. 204 
Of these, >95% were adults of just three species: R. pravus (43%), R. praetextatus (36%), and R. 205 
pulchellus (17%). Adults were substantially more abundant than other life stages in both drag 206 
and trap collections, despite efforts to avoid under-sampling juvenile ticks. Fewer than 3% of the 207 
ticks captured were nymphs, and no larvae were collected. Tick traps did not capture additional 208 
tick species; therefore, we used only drag data for all subsequent analyses (S1, Table S4, and 209 
Figures S2 and S3) and focused all analyses on adults of the three dominant species. 210 

Total abundance of the three dominant tick species 211 

Total tick abundance varied seasonally over the 13-month sampling period and the scale and 212 
timing of fluctuations differed among tick species (Figure 1A). However, on average, total tick 213 
abundance doubled in Total exclosures (18.3±1.9) relative to Control plots (9.9±1.0) (Figure 1A, 214 
B, Table 1).  Low-rainfall plots had 225% more ticks on average (17.8±2.3) than did mesic plots 215 
(7.9±1.0). Total tick abundance was best explained by the GLMM that included exclosure 216 
treatment, precipitation, and their interaction (Tables 1, S5) (wi = 0.75).  The interaction (z = -217 
2.3, P=0.02; Table 1) reflected the increasing effect of wildlife exclusion on tick abundance as 218 
aridity increased (Figure 1C; Tables 1, S5). We found some support (wi = 0.16) for a model with 219 
no interaction and a marginally-negative relationship between rainfall and tick abundance (z = -220 
1.96, P=0.05). Net results were similar in the analysis that considered all four wildlife-exclusion 221 
treatments for a subset of months: total tick abundance increased from 170% (only 222 
megaherbivores excluded) to 360% (all large wildlife excluded) (Figure 1D). The full model was 223 
again the best fit (wi = 0.99), with significant interactions between rainfall and the Total and 224 
Meso exclosure treatments (z = -3.61, P=0.001, Total; z = -3.38, P=0.001, Meso; Tables 2, S6). 225 
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Species-specific responses 226 

Although R. pravus and R. praetextatus, two tick species that often parasitize smaller mammals, 227 
increased with large mammal loss, only R. pravus abundance showed clear evidence of an 228 
interaction between exclosure and aridity. For the full 13 months of data, the best model for R. 229 
pravus included treatment, rainfall, and their interaction (wi = 0.99), whereas the best model for 230 
R. praetextatus included only treatment (wi = 0.47) and a second model (wi = 0.37) included the 231 
non-significant effect of rainfall (Table 1). Both tick species increased in Total exclosures 232 
relative to Controls (z = 8.40, P<0.001, R. pravus; z = 3.74, P<0.001, R. praetextatus), and this 233 
effect was stronger in drier sites for R. pravus only (z = -3.37, P<0.001). By contrast, rainfall had 234 
no detectable effect on tick abundance in Control plots (z = -1.02, P=0.31). For the subset of data 235 
collected in all four wildlife exclusion treatments, the full model was the best fit for both tick 236 
species (wi = 0.93, wi = 0.78, R. pravus and R. praetextatus respectively). Both tick species 237 
increased in all exclosure treatments relative to Controls, and both increased significantly in 238 
Total exclosures (z = 7.22, P<0.001; z = 4.07, P<0.001) (Table 2). This effect was more 239 
pronounced in drier sites for both species, although this was only significant for R. praetextatus 240 
in Meso exclosures (z = -2.26, P=0.02) and R. pravus in Total exclosures (z = -3.26, P<0.001) 241 
(Table 2,). A second model for R. praetextatus that included only treatment (wi = 0.13) received 242 
considerably less support. 243 

For R. pulchellus, which often parasitize larger-bodied mammals, the best model for all months 244 
included only exclosure treatment (wi = 0.48), and a second model (wi = 0.39) included the non-245 
significant effect of rainfall; but here Total wildlife exclusion caused a 43% decrease in 246 
abundance relative to Controls (z = -1.95, P=0.05; Table 1, Figure 1B). For the subset of data 247 
including all four treatments, the best model (wi = 0.46) again included only exclosure treatment, 248 
while a second model (wi = 0.37) included the non-significant effect of rainfall. However, this 249 
secondary analysis revealed that partial wildlife exclusion caused increases in tick abundance 250 
relative to controls (z = 4.72, P<0.001, Meso; z = 2.44, P=0.02, Mega; Tables 2, S6, Figure 1D), 251 
but total exclusion had no significant effect (z = -0.57, P=0.57).   252 

Pathogens 253 

Prevalence of C. burnetii isolates was 43% (n=58 of 136 ticks screened), and prevalence of 254 
Rickettsia spp. was 5% (n=7 of 136 ticks; 4 of these were from the spotted fever group). We 255 
detected Ehrlichia in 1 adult tick and Anaplasma in 1 nymph (nymphs were not analyzed due to 256 
small sample size). We found a high prevalence of non-pathogenic Coxiella-like endosymbionts 257 
(57%; 46% of these were also present in ticks with confirmed C. burnetii isolates). Therefore, 258 
our analyses excluded ticks for which only a Coxiella-like endosymbiont was detected, but 259 
included ticks with both C. burnetii and Coxiella-like endosymbionts. 260 

For the GLMM for C. burnetii, no combination of our predictors outperformed the null model 261 
(Table 3). For Rickettsia spp., the best model included tick species and rainfall; however, neither 262 
estimate was significant (although rainfall marginally increased infection probability; Table 3). 263 
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In sum, there were no pronounced effects of treatment, tick species, or rainfall on pathogen 264 
prevalence (Figure 2, Tables 3, S7, Figure S4).  265 

Discussion 266 

Our results support our hypothesis that defaunation and climate can interact to markedly affect 267 
the abundance of ticks and thus the risk of tick-borne disease exposure (although not necessarily 268 
the prevalence of these pathogens). Total exclusion of all large wildlife increased total tick 269 
abundance by 130% (mesic sites)-225% (arid sites), showing a significant interaction with 270 
aridity. Tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all 271 
large wildlife excluded) during the five-month period in which all exclosure plots were surveyed. 272 
We found no significant variation in pathogen prevalence across plots or tick species, suggesting 273 
that the risk of tick-borne pathogen exposure reflects observed tick abundance patterns.  274 

However, this overall pattern masks strong differences in the magnitude and direction of effects 275 
of wildlife exclusion across tick species and over time. Tick species-specific responses show 276 
some overlap with expectations based on tick host associations. Patterns in total tick abundance 277 
were driven by two dominant tick species, R. pravus and R. praetextatus, whose immature stages 278 
frequently feed upon small hosts, which also increase strongly following wildlife exclusion 279 
[22,50,51]. Although we do not expect changes in adult tick abundance to directly correlate with 280 
fluctuations in rodent abundance in these plots over time,  a comparison of long-term rodent 281 
abundance and tick abundance within each plot produces positive correlations for R. pravus and 282 
R. praetextatus (z = 6.59, P<0.001 and z = 3.17, P<0.01, respectively; Table S8). In contrast, the 283 
third common tick species, R. pulchellus, whose adult stages primarily parasitize  vertebrates 284 
larger than 15kg [58], and whose immature stages are not found on rodents [59], decreased with 285 
the total absence of large wildlife for the 13-month dataset. However, for the five months for 286 
which all four exclosure treatments were surveyed, abundance of this tick species in total 287 
exclosures was no different from that in controls, but we observed marked increases in 288 
abundance within partial wildlife exclosures (see Figure S1 for tick/host associations in 289 
exclosure plots).This discrepancy highlights temporal variation in exclosure effects: strong 290 
changes occur during months of peak tick abundance, which were not captured by the five-291 
month dataset. 292 

Other factors beyond the release of intermediate hosts may have also influenced the marked 293 
differences in adult tick abundance among experimental plots. Increases in small carnivores 294 
(potential hosts for all three tick species) in response to elevated rodent density in exclosure plots 295 
may increase total tick abundance [18]. Likewise, increases in understory vegetation cover 296 
following large wildlife loss may increase tick survivorship (via lowered risk of desiccation) 297 
[22]. The relative importance of these factors may vary among tick species depending on their 298 
life histories. The complex pathways by which wildlife loss may affect the abundance of 299 
different tick species likely explains why the few previous studies on the effects of large wildlife 300 
exclosure on tick abundance have produced mixed results  [18,67]. 301 
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Total tick abundance was greater in drier areas, although this pattern was largely driven by the 302 
most common tick species, R. pravus. Rhipicephalus praetextatus and R. pulchellus only 303 
increased modestly in these areas, and annual rainfall was not a major explanatory factor in 304 
models of their abundance. This is consistent with previous observations of climate preferences 305 
for these species, as R. pravus may particularly favor areas with extended dry seasons [61]. 306 
Notably, tick community composition varied considerably over seasons, and the most significant 307 
responses to exclosures occurred at months of peak abundance (Figure 1A). These months of 308 
peak abundance drove overall patterns for each species, and are likely to be a result of strong 309 
differences in tick phenology and responsiveness to rainfall.  310 

Rhipicephalus pravus also drove an interaction between wildlife-exclosure treatment and aridity 311 
on tick abundance, despite variation among tick species. This interaction and its variation are 312 
consistent with prior studies of the effects of defaunation on consumer communities, including a 313 
recent meta-analysis that found these effects are often context-dependent and mediated by site 314 
productivity [39,50,68]. In this region, rodent-borne pathogens have shown a similar response: 315 
anthropogenic disturbance tends to cause stronger increases in rodent-borne disease in drier 316 
climates with lower productivity [69]. However, consistent with our findings here, responses are 317 
variable across specific hosts and pathogens [69]. 318 

Both pathogens analyzed in this study are globally important. C. burnetii, the causative agent of 319 
Q Fever, is considered to be an emerging zoonotic disease [70], while rickettsial pathogens are 320 
responsible for a variety of spotted fevers—including African tick-bite fever (caused by 321 
Rickettsia africae) in our study location [42]. We observed no significant differences in 322 
prevalence of either C. burnetii or Rickettsia spp. due to wildlife exclosure treatment, rainfall, or 323 
tick species. Larger sample sizes and screening over many seasons might reveal finer-scale 324 
dynamics; however, on a coarse level, this result suggests that tick-borne disease risk is likely to 325 
be well-approximated by estimates of total tick abundance (Figure 2). Coxiella burnetii 326 
prevalence was surprisingly high. Although we excluded ticks for which only an endosymbiont 327 
was detected, 67% of the ticks infected with C. burnetii were also positive for the Coxiella-like 328 
endosymbiont. Endosymbionts may benefit some ticks [61], and recent work suggests that C. 329 
burnetii recently emerged from this group [71]. Thus, the genetic similarity between C. burnetii 330 
and Coxiella-like endosymbionts may have yielded some false positives given that the full 331 
Coxiella phylogeny is incomplete. However, we do not expect this to bias our results, given that 332 
the likelihood of false positives is consistent across all predictors. 333 

Our study demonstrates the significant potential for size-selective defaunation to alter the risk of 334 
tick-borne disease. Substantial variation in tick abundance and species composition over time 335 
reflect the inherent complexity of a system that depends on host, environmental, and vector 336 
variables, but total effects suggest long-term patterns, especially when ticks peak in abundance. 337 
On average, when all large wildlife were excluded, the total number of ticks nearly doubled; and, 338 
when only Mega wildlife and Meso wildlife were excluded (perhaps a more realistic short-term 339 
defaunation scenario for much of the world), ticks of all three major species increased, 340 
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suggesting that large-wildlife loss can contribute to an increased tick-borne disease risk that may 341 
be mitigated by conservation in many contexts. Furthermore, the costs of wildlife loss on tick-342 
borne disease in this region may be intensified in drier, less productive areas that are likely to 343 
worsen with a changing climate [48], demonstrating interacting effects of wildlife loss and 344 
climate change on tick-borne disease risk. On a more global scale, our study highlights the 345 
challenge of predicting the effects of either biodiversity loss or climate change in isolation of 346 
other stressors on vector ecologies and infectious disease dynamics. 347 
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Figure 1: (A) Tick abundance varied over time, across rainfall levels, among species, and 
between treatments for the full 13-month dataset. (B) While total tick abundance increased in 
Total exclosures, the magnitude and direction of this effect varied by tick species for the 13-
month dataset. (C) For all tick species summed together, exclusion interacted with annual 
rainfall, with stronger effects of exclusion in drier environments. (D) When all exclosures were 
surveyed for the 5-month subset of data, tick species responded differently to varied wildlife loss 
levels. Asterisks indicate significant (P<0.05) differences from Control plots (green); dots 
indicate non-significant trends (P<0.1). 

 



Figure 2: The estimated number of infected and uninfected ticks increased in plots where large 
wildlife had been removed (Exclosure), and this was further increased in arid sites, regardless of 
tick-borne pathogen infection.   

 

 



Model Intercept Exclosure Rainfall Exclosure × Rainfall 
     
All Ticks  
wi = 0.75 

2.117 ± 0.200 
10.61 

<0.001 0.587 ± 0.130 
4.53 

<0.001 
-0.092 ± 0.142 

-0.65 
0.52 -0.295 ± 0.128 

-2.30 
0.02 

         
         
R. pravus  
wi = 0.99 

-0.173 ± 0.388 
-0.44 
0.66 1.452 ± 0.173 

8.40 
<0.001 

-0.304 ± 0.297 
-1.02 
0.31 -0.596 ± 0.177 

-3.37 
<0.001 

         
         
R. praetextatus  
wi = 0.47 
 

1.157 ± 0.441 
2.63 

0.009 0.431 ± 0.115 
3.74 

<0.001 
 

 

Legend:       
         
R. pulchellus  
wi = 0.47 

0.896 ± 0.312 
2.87 

0.004 -0.441 ± 0.227 
-1.95 
0.05 

 
 Estimate ± SE 

z-score 
P-value 

         
 

Table 1: Effects of exclosure treatment, rainfall, and their interaction for all months (Control and 
Total exclosure plots only) from four GLMMs. Control plots are designated as the reference, and 
rainfall (mm) is scaled by standard error (84 mm) and centered at the mean (533 mm) for ease of 
interpretation. Significant relationships (P<0.05) are bolded.  Positive relationships are shaded in 
blue; negative relationships are shaded yellow. All estimates are shown with standard errors, z-
score (upper right), and P-value (lower right). Full model sets and parameters are shown in Table 
S5. 



Model Intercept Exclosure Rainfall Exclosure × Rainfall 
     

All Ticks  
wi = 0.99 

1.424 ± 0.232 
6.14 

<0.001 

TOTAL 
1.161 ± 0.168 

 

6.92 
<0.001 

0.219 ± 0.162 
1.35 

0.176 

TOTAL 
-0.62 ± 0.2 

-3.61 
<0.001 

MESO 
0.698 ± 0.170 

 

4.11 
<0.001 

MESO 
-0.585 ±  0.173 

-3.38 
<0.001 

MEGA 
0.511 ± 0.170 

 

3.01 
0.003 

MEGA 
-0.150 ± 0.173   

-0.87 
0.39 

         
         

R. pravus  
wi = 0.93 

-0.511 ± 0.520 
-0.98 
0.33 

TOTAL 
1.904 ± 0.264 

 

7.22 
<0.001 

-0.228 ± 0.365 
-0.62 
0.53 

TOTAL 
-0.874 ± 0.268 

-3.26 
0.001 

MESO 
0.627 ± 0.282 

 

2.23 
0.03 

MESO 
-0.428 ±  0.288 

-1.49 
0.14 

MEGA 
0.537 ± 0.283 

 

1.89 
0.06 

MEGA 
-0.267 ± 0.295   

-0.91 
0.37 

         
         

R. praetextatus 
wi = 0.78 

0.159 ± 0.516 
0.31 
0.76 

TOTAL 
1.050 ± 0.258 

 

4.07 
<0.001 

0.499 ± 0.268 
1.86 

0.062 

TOTAL 
-0.350 ± 0.278 

-1.26 
0.208 

MESO 
0.448 ± 0.263 

 

1.70 
0.09 

MESO 
-0.628 ±  0.278 

-2.26 
0.024 

MEGA 
0.292 ± 0.266 

 

1.10 
0.27 

MEGA 
-0.030 ± 0.286   

-0.10 
0.92 

         
         

R. pulchellus  
wi = 0.46 

0.463 ± 0.200 
2.32 

0.021 

TOTAL 
-0.155 ± 0.273 

 

-0.57 
0.57 

  

  

MESO 
1.184 ± 0.251 

 

4.72 
<0.001 

Legend: 
MEGA 

0.630 ± 0.258 
 

2.44 
0.015 Estimate ± SE 

z-score 
P-value 

         
Table 2: Effects of all exclosure treatments on tick abundance (for a subset of months) from four 
GLMMs.  Exclosure compares Control plots (all wildlife allowed), the reference, to plots that 
selectively exclude mega herbivores (MEGA), mega and meso herbivores (MESO), and all 
herbivores greater than 5kg (TOTAL). Rainfall (mm) is scaled by standard error (84 mm) and 
centered at the mean (533 mm) for ease of interpretation. Significant relationships (P<0.05) are 
bolded, marginally significant relationships (P<0.1) are bordered by a broken line, positive 
relationships are shaded blue, and negative relationships are yellow.  All estimates are shown 
with standard errors, z-score (upper right), and P-value (lower right). Full model sets and 
parameters are shown in Table S6. 



 
Intercept Species Exclosure Rain 

Exclosure x 
Rain 

C. burnetii      
Model 1 

wi = 0.26 -0.42 ±  0.2 
-2.38 
0.02 

 
     

Rickettsia sp.         
Model 1 

wi = 0.35 
-2.44 ± 0.7 

-3.48 
<0.001 

RHPU 
-14.8 ± 799 

-0.02 
0.99 

 
1.16 ± 0.6 

1.87 
0.06   

RHPV 
-1.25 ± 0.8 

-1.53 
0.13 

 

Model 2 
wi = 0.18 

Δ AICc = 1.36 
-3.37 ± 0.6 

-5.74 
<0.001 

 
 1.09 ± 0.6 

1.87 
0.06   

 

Table 3: Results of GLMMs for Coxiella burnetii and Rickettsia sp. ‘Species’ compares the 
probability of tick infection with each pathogen for each tick species (R. pravus – RHPV, and R. 
pulchellus – RHPU, as compared to R. praetextatus – RHPR). Marginally significant 
relationships (P<0.1) are bordered by a broken line. All estimates are shown with standard errors, 
z-score (upper right), and P-value (lower right).   

 


	We extracted DNA and prepared double-indexed libraries for 136 ticks following [60]. Tick sample size was calculated to detect a 10% variation in pathogen prevalence across treatments while sampling across multiple species, treatments, and levels. Ti...

