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Introduction

The supporting text, figure, and table provide further details on the elastic dislocation
modeling using COULOMB to model two widely separated, opposite dipping thrust faults.

1. Elastic Dislocation Model
Deformation over thrust faults that propagates upward toward the surface are simulated

using elastic dislocation modeling [Lin and Stein, 2004; Toda et al., 2005]. The magnitude and
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sense of slip is specified, and the stresses and material displacements are determined using
the stress functions for an elastic half-space [Okada, 1992]. The fault surface is defined as a
rectangular plane having a fault plane dip and vertical depth of faulting. An elastic half-space
may not account for the effects of a weaker lower lithosphere, however, results obtained
modeling deeply rooted terrestrial thrust faults [see Stein et al., 1994] suggest it is a
reasonable approximation when its frictional stability is considered. A linear fault geometry is
approximated by a single plane with a dip of 15¢. A listric fault geometry is approximated by
linear connecting fault segments with varying dips and lengths [Watters, 2004]. The dips of the
fault segments are 40¢, 30, 20¢, and 15¢. Both fault geometries have a nearly flat (0.01¢) final
segment. Although the thrust faults are likely surface breaking, they are assumed to be blind.
The upper tip of the near-surface thrust fault segment is fixed near the edge of the vergent
side of the lobate scarp and the lower tip is fixed near the edge of the back-scarp slope, where
the fault flattens (Figure S1). The length L, depth T, and dip 6 of the fault segments are free
parameters, as is the amount of displacement or slip D on the fault segments (Table S1, S2).

An elastic modulus E of 80 GPa and Poisson’s ratio v of 0.25 are assumed for Mercury’s
lithosphere. A full discussion of the sensitivity of the model parameters is given in Watters et
al. [2002] and Watters [2004]. The flat segment (décollement) is assumed to extend for a
distance at least several times the width of the scarps. The amount of slip on the flat segment
were chosen to approximate the depths of the back-scarp troughs. The décollement may be
regional in extent, but the predicted horizontal displacements are only significantly influenced
if the terminus of the flat segment is near the edge of the back-scarp slope. In this case, a
pronounced back-scarp syncline is predicted that is not observed in the topographic data.
The amount of slip on the fault segments were selected to approximate the maximum relief of

Enterprise Rupes and the Belgica Rupes--high-relief ridge.
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Figure S1. Cross-section showing a distorted grid resulting from displacements on two
opposite dipping linear thrust faults. The two thrust faults are separated by a distance of ~400

km. The model parameters for the linear and listric fault geometries are given in Table S1 and

S2. The vertical distance and displacement exaggeration is ~12:1.

Parameters for the Two-Fault System, Linear Model

Segment L, km 0 T, km D, km
Number
1 220.2 15° 60.0 4.050
2 573.0 0.01° 60.2 1.250
3 220.2 15° 60.0 6.500
4 573.0 0.01° 60.2 2.700

TABLE S1. Parameters for the two-fault linear COULOMB model. L is the along-
dip length of the fault segment, 6 is the dip of segment, T is the maximum depth
of the segment and D is the specified slip on the segment. Segment numbers 1-2

are for the Belgica Rupes fault and segment numbers 3-4 are for the Enterprise

Rupes fault.

Parameters for the Two-Fault System, Listric Model

Segment L, km 0 T, km D, km

Number
1 3.1 40° 6.0 3.025
2 4.0 30° 8.0 3.025
3 11.7 20° 12.0 3.025
4 185.4 15° 60.0 3.025
5 573.0 0.01° 60.2 1.000
6 3.1 40° 6.0 4.750
7 4.0 30° 8.0 4.750
8 11.7 20° 12.0 4.750
9 185.4 15° 60.0 4.750
10 573.0 0.01° 60.2 2.250

TABLE S2. Parameters for the two-fault listric COULOMB model. L is the along-
dip length of the fault segment, 0 is the dip of segment, T is the maximum depth
of the segment and D is the specified slip on the segment. Segment numbers 1-5
are for the Belgica Rupes fault and segment numbers 6-10 are for the Enterprise

Rupes fault.
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