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Abstract Data gathered with the Dynamic Albedo of Neutron (DAN) instrument onboard rover Curiosity
were analyzed for variations in subsurface neutron flux and tested for possible correlation with local
geological context. A special DAN observation campaign was executed, in which 18 adjacent DAN active
measurements were acquired every 0.75–1.0m to search for the variations of subsurface hydrogen content
along a 15m traverse across geologic contacts between the Sheepbed and Gillespie Lake members of the
Yellowknife Bay formation. It was found that several subunits in Sheepbed and Gillespie Lake could be
characterized with different depth distributions of water-equivalent hydrogen (WEH) and different
chlorine-equivalent abundance responsible for the distribution of neutron absorption elements. The
variations of the averageWEH at the top 60 cmof the subsurface are estimated at up to 2–3%. Chlorine-equivalent
neutron absorption abundances ranged within 0.8–1.5%. The largest difference in WEH and chlorine-equivalent
neutron absorption distribution is found between Sheepbed and Gillespie Lake.

1. Introduction

Observations performed by various missions over the past decade have revealed a complex mineralogical
and aqueous history of Mars, which could be associated with habitable environments [see, for example,
Squyres et al., 2004, 2012; Bibring et al., 2006; Grotzinger, 2009; Murchie et al., 2009]. The Mars Science
Laboratory (MSL) rover Curiosity has been specially developed to determine whether Mars could ever have
had habitable environment. To do this, the MSL rover was equipped with 11 different science instruments,
which were selected to provide joint in situ studies [Grotzinger et al., 2012].

Gale Crater was chosen as the MSL landing site, because orbital observations revealed the presence of ancient,
multilayered deposits of various hydrated minerals (clays and sulfates) on the flanks of the central uplift (now
known as Mount Sharp), which could be assessed by a rover [Golombek et al., 2012; Grotzinger et al., 2012]. The
geology of Gale Crater is characterized by a mixture of alluvial fan, high thermal inertia/high-albedo stratified
deposits, and a number of stratigraphically/geomorphically distinct fluvial features [Grotzinger et al., 2012].

In situ analysis accomplished within several weeks after landing has shown that there are geological targets
of high scientific value in the vicinity of the landing site. One of them is a triple junction point located at the
Yellowknife Bay formation within 450m of the landing site, distal to the toe of the Peace Vallis alluvial fan
[Grotzinger et al., 2013; Vaniman et al., 2013]. This area presents a combination of several geological units with
different thermal inertia, stratified rocks, and the presence of clay and sulfate minerals. The decision was
made to traverse eastward and downhill, as close as possible to the triple junction, to make the MSL’s first
analysis of a drilled sample [Grotzinger et al., 2013]. This approach resulted in an ~750m traverse (measured in
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wheel odometry). Curiosity successfully accomplished sampling operations (see Anderson et al. [2012] for
details of the MSL sample acquisition system) of the aeolian deposits named Rocknest and the mudstones
located at the lowest part of the Yellowknife Bay formation [Bish et al., 2013; Blake et al., 2013; Leshin et al.,
2013; Meslin et al., 2013; Grotzinger et al., 2013; Ming et al., 2013; Vaniman et al., 2013].

Here we focus on one aspect of Curiosity’s observations in Yellowknife Bay related to the monitoring of local
variations in subsurface hydrogen/neutron absorption distributions using an active neutron spectroscopy.
We have analyzed data gathered by the Dynamic Albedo of Neutron (DAN) instrument installed on board the
rover Curiosity. DAN was selected for the mission to provide the monitoring of the distribution of hydrogen-
rich material (primarily physically adsorbed water and bound water in hydrated minerals) in the Martian
subsurface along Curiosity’s traverse [Litvak et al., 2008; Mitrofanov et al., 2012, 2013a, 2013b].

Our analysis employs the technique for the estimation of the water-equivalent hydrogen (WEH) from the
DAN active neutron spectrometry data (see overview of data reduction procedures in section 3). Mitrofanov
et al., [2013a, 2013b] have used this method to estimate the WEH abundances at each location along
Curiosity’s traverse from Bradbury Landing to the Yellowknife Bay formation and along the first portion of the
traverse to the foot of Mount Sharp (it covers the first year of operations on the Martian surface). Normally,
DAN active observations are performed each time the rover concludes a Martian solar day (sol)’s drive and
sometimes at stops in the middle of a drive. During the first 360 sols of the mission, Curiosity covered
~1850m with 190 active measurements made at intervals of ~20–40m [Mitrofanov et al., 2013b].

The data analysis presented in this paper includes a small part of rover’s route across different geological
units inside the Yellowknife Bay formation, starting from the drilling sites known as John Klein and
Cumberland and continuing up to the Gillespie Lake member of the Yellowknife Bay formation. These
measurements were accomplished within a special DAN observation campaign to test the potential
variability of hydrogen on a small horizontal scale, comparable with the DAN footprint, and determine
whether it is correlated with local variations in geology that were observed by the other MSL instruments.
Within the DAN observation campaign discussed here, the rover covered a short traverse of just ~15m, but
with 18 active measurements made at intervals of only 0.75–1m. The path for this traverse was chosen to
cross the different geological subunits inside the Yellowknife Bay formation, with a ground track
approximately perpendicular to the geologic contacts.

The measurement strategies for this DAN observation campaign are presented in section 4. Section 5
describes the results from the DAN measurements along the traverse through the Sheepbed/Gillespie Lake
contact area and the correlation with geological context. For background, we have also added short
descriptions of the DAN instrument (section 2) and an overview of the data reduction and model depended
deconvolution procedures (section 3), which are also discussed by Mitrofanov et al., 2013b.

2. DAN Instrument

The Dynamic Albedo of Neutron (DAN) instrument on MSL [Litvak et al., 2008; Mitrofanov et al., 2012] was
designed to measure the hydrogen content of the regolith to a depth of approximately 60 cm. The instrument
is located at the back of the rover together with the Multi-Mission Radioisotope Thermoelectric Generator
(MMRTG). DAN consists of two separate blocks integrated onto the two sides of the rover: a pulsed neutron
generator (DAN/PNG) and a detector element (DAN/DE). DAN may be operated both in active and in passive
modes of measurements. In active mode, the DAN/PNG produces 2 μs pulses of high-energy (14.1MeV)
neutrons (107 neutrons per pulse) emitted in 4π around the DAN/PNG. A significant fraction of these
neutrons penetrate into the subsurface under the rover and interact with soil nuclei. The neutrons lose
energy through inelastic scattering reactions with nuclei in the subsurface. Some of the moderated
neutrons leak back out of the subsurface where they are counted by the DAN/DE subsystem as a function
of time after the neutron pulse.

The DAN/DE consists of two proportional counters filled with 3He gas at a pressure of three
atmospheres. The 3He nucleus has a large cross section for capture of low-energy neutrons in the
reaction n + 3He→ 3H + p + 764 keV. The released energy of the reaction is distributed between a triton
3H and a proton with 191 keV and 573 keV energies, respectively, in inverse proportion to their masses.
The shape of pulse height spectrum measured in 3He detector does not depend on the energy of

Journal of Geophysical Research: Planets 10.1002/2013JE004556

LITVAK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1260



incident neutron but depends on the kinematic of the reaction process and selection of amplifier time
constant [see, for example, Crane and Baker, 1991]. The typical shape of the spectrum has a main
peak, which corresponds to the maximum energy deposited in the detector if both the proton and the
triton are stopped in the detector’s volume (764 keV). The other cases when proton or triton reaches
detector’s wall produce low-energy tail in the spectrum (not all released energy is deposited in the
detector volume). The selection of amplifier time constant can significantly change the typical shape of
the spectrum because it determines the degree of charge collection in the detector. Large values of
the amplifier time constant provide complete charge collection and produce the shape of the pulse
height spectrum with a distinct peak at 764 keV as described above. Vice versa, too short-time constant
causes complete loss of the primary peak but decreases dead time of the detector system and allows
to achieve more higher counting rates [see, for example, Crane and Baker, 1991]. As a preparation to
DAN active measurements (requirement to detect high counting rate in time bins following PNG
neutron pulse), we have tried to find a compromise between good resolution of pulse height spectrum
and ability to detect higher counting rates. We have performed a set of ground tests with DAN
proportional counters using different amplifier time constants. On Figure 1 (top), we have illustrated the
results of these tests by showing spectra measured for time constant equal to 1 μs (red), 3 μs (black),
and 6 μs (blue). The optimal spectra resolution and classic shape of pulse height spectrum is achieved at
6 μs time constant (blue), 1 μs time corresponds to full loss of total deposition peak, and 3 μs causes
intermediate results. The last case was considered as a base option (final value of time constant was
selected as 2.5 μs) to get reasonable compromise between requirements to keep more or less the shape
of the spectrum and to provide the detection of higher counting rate. Final digitization of the pulse
height spectrum in DAN flight model was done as linear 16 channels. It is enough to represent selected
shape of the pulse height spectrum and monitor it during surface operations. On Figure 1 (bottom),
we have shown two DAN spectra measured at the beginning of the surface operation (right after
landing) and at the end of the primary mission (>1.5 years later) to illustrate both the shape of the DAN
pulse height spectrum and its stability with time.

The first DAN/DE proportional counter is wrapped in a lead enclosure (to protect detector from X-rays
generated by the DAN/PNG) and is sensitive to thermal neutrons and epithermal neutrons with energies up to
1 keV (detection efficiency drops more than 100 times for the neutrons at such energies) [see Mitrofanov et al.,
2012, Figure 6]. The second proportional counter is wrapped in a cadmium enclosure with a thickness of about

Figure 1. (top) The pulse height spectra measured in ground tests with DAN proportional counters with different amplifier
time constants equal to 1μs (red), 3μs (black), and 6μs (blue). (bottom) The examples of 16-channel pulse height spectra
measured by the DAN/DE flight unit onboardMSL rover Curiosity at the beginning of the surface operation (dash-dot line) and
at the end of the MSL primary mission (solid line).
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1mm. It helps to cut off X-rays from the DAN/PNG, but specifically, it is done to absorb thermal neutrons. The
difference in counting rates between the two detectors provides an estimation of the counting rate associated
with thermal neutrons.

The counts in the detectors are recorded as a function of time after each DAN/PNG neutron pulse. This
time history of neutrons that have scattered in the subsurface is known as a “die-away” curve. The total
duration of a die-away curve lasts from tens of microseconds (for epithermal neutrons) up to hundreds of
microseconds (for the thermal neutrons) after each pulse. Typically, the die-away curves from thousands of
individual pulses in a single location are coadded to improve counting statistics. The duration, shape, and
amplitude of die-away curves provide information about the time history of the moderation of fast neutrons
and strongly depend on the subsurface structure and distribution of hydrogen (the most efficient
moderation element). Other elements in the subsurface also influence die-away curves. In particular, the
presence of elements with high thermal neutron absorption cross sections can depress the population of
thermal neutrons that leak out of the surface [Hardgrove et al., 2011, 2013]. Several elements (for example,
Cl, Fe, Ti, Mn, and Gd) have large cross section for thermal neutron absorption. In our analysis, for simplicity,
we use the content of chlorine as a variable parameter of modeling DAN data and fix abundance of other
absorbing elements at the average level. It may be considering as “chlorine-equivalent” parameter for
accounting of all absorbers of thermal neutrons (see also for details section 3 and Mitrofanov et al. [2013b]).

DAN can operate in both active (measurement of die-away curves) and passive modes. Active observations
provide many details about the distribution of hydrogen, but they are resource intensive and limited by the
DAN/PNG lifetime. In passive mode, DAN/PNG is off, and DAN/DE measures only the neutron radiation
background produced by the MMRTG and galactic cosmic rays (GCRs). Passive measurements are
complimentary to active measurements and can be used for monitoring the bulk subsurface hydrogen
content during the rover’s drives and continuous monitoring of radiation background while the rover is
stationary. The analysis of passive observations is not the goal of the paper, but some details are presented
by Jun et al. [2013a, 2013b] and Tate et al. [2013]. Passive mode observations are also very useful for making
direct comparisons with orbital observations [Litvak et al., 2013] to search for simultaneous background
radiation variations on orbit and at the surface.

Details of DAN design, principles of operations, and main science tasks are also presented by Litvak et al.
[2008] and Mitrofanov et al. [2012].

3. DAN Data Reduction Procedures
3.1. Numerical Modeling

DANmeasures variations in the neutron flux from the subsurface that are affected by many factors, including
hydrogen distribution, subsurface structure, the presence of neutron absorbing elements, and soil density
variations. To describe the variations of neutron flux in terms of these physical parameters, most importantly
in terms of water abundance, model-dependent data deconvolution must be used. In this approach, we
postulate a model of the subsurface with unknown parameters and find best estimates of these parameters
through the comparison of numerical prediction of neutron flux for the given model with experimental
data. To implement it, one should create numerical models of DAN/DE and DAN/PNG, MSL rover structure,
and Martian regolith with different distribution of water and elemental composition. In our study for the
numerical modeling of neutron interactions, we have used the well known and commonly accepted Monte
Carlo N-Particle eXtended (MCNPX) code developed at the Los Alamos National Laboratory [see, for example,
Pelowitz, 2011].

The DAN/PNG was modeled as a simple point source of monoenergetic (14.1MeV) neutrons emitted
isotropically and having Gaussian type of time profile with full width at half maximum equal to ~2μs. The
DAN/DE numerical model has been created from the instrument engineering drawings. Its main part contains
two 3He proportional neutron detectors with three atmosphere gas pressure: counter of thermal neutrons
(CTN) and counter of epithermal neutrons (CETN). For more details, efficiency curves of these detectors could
be found in Mitrofanov et al. [2012].

The detailed information about the rover mechanical structures and chemical composition is not available,
but the main properties of the rover could be adjusted from the ground tests and functional measurements
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where DAN was integrated onboard
Curiosity. Here we continue to develop a
simplified model of the rover presented
in Jun et al. [2013b] using DAN active
measurements made at the MSL
prelaunch tests at the Kennedy Space
Center (assembly, test, and launch
operations or ATLO tests). We have
modeled rover position, orientation, and
test environment including concrete
floor, walls, and ceiling in accordance
with the testing facility geometry. The
model of the rover included main
chassis (dimensions
120 cm×162 cm×44 cm), wheels, and a
detailed model of the MMRTG—a
nuclear power source for MSL [see for
more details Jun et al., 2013b]. MMRTG
generates electrical power using
plutonium isotopes (primarily of 238Pu
with half-life of 86.4 years) in the PuO2

fuel and produces a continuous flux of
neutrons with broad-energy spectrum.
We have achieved reasonable statistical
agreement between ATLO measured
data and numerical simulations adjusting
the parameters of rover model (Figure 2).
Final model of the rover structure has a
total mass of about 900 kg and contains
uniformly distributed material with
density 0.95 g/cm3 and composition:
0.4 wt % of hydrogen, 3.2 wt % of

carbon, 16.0 wt % of oxygen, 39.13wt % of aluminum, 7.83wt % of nitrogen, 31.30wt % of titanium, and
2.14wt % of copper.

The rover body may contribute additional background in DAN active measurements, because large rover
mass efficiently scatters neutrons escaping from the regolith. To take the rover into account, we have
modeled CTN and CETN die-away curves Ftn(t) and Fetn(t) with and without rover presence in our
numerical model. We have tried to find convolution function R(t) for each DAN detector describing
difference between measurements caused with rover presence: Wtn,etn(t) = Ftn,etn(t) · Rtn,etn(t). This
approach helps to save computational time during modeling of active measurements on the Martian
surface and at the same time simplifies updating the rover model. When the next rover model will be
available, we will change the correction factors R(t) without needing to reproduce a large set of
MCNPX calculations.

The Martian atmosphere for all the DAN active measurements has been modeled as a uniform gas layer with
density 1.6 × 10�5 g/cm3, temperature 213 K, and fixed composition (major elements: C, O, N, and Ar).

The average regolith composition at Gusev and Meridiani measured by the MERs [see Bell, 2008] has been
used as our representative regolith model. In the next data reduction interaction, we plan to update it with
the measurements of elemental composition performed onboard Curiosity. The common difficulties with
adjustment of elemental composition for DAN data analysis are related with a significant difference in the
instruments footprints. Instruments, which are providing subsurface composition, analyze only small spot on
the surface or process a tiny soil sample taken from the very top of the subsurface. DAN collects information
about a large volume (~1.5m radius × ~60 cm in depth) of regolith directly below the DAN instrument.

Figure 2. The measured (blue line) and numerically simulated (red line)
DAN die-away time profiles for the ATLO prelaunch tests.
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Average properties of this regolith volume may be significantly different from a small surface spot or soil
sample studied by another instruments.

The production, moderation, and loss of neutrons in the regolith depend on the amount of chemical
elements with large neutron interaction cross sections. So the presence of such abundant elements as iron,
chlorine, and hydrogen is important for DAN numerical modeling [see, for example, Hardgrove et al., 2011].
It is necessary to analyze the presence of iron and chlorine, because it influences the shape of die-away curve
and can impede the estimation of hydrogen content. The chlorine has a significantly higher cross section
to capture thermal neutrons than iron [see, for example, Hardgrove et al., 2011]. The Alpha-Particle X-ray
Spectrometer (APXS) data show that relative variations of the chlorine from one Curiosity location to
another are quite large (it could be as large as 2–3 times) [see, for example, Gellert et al., 2014; Berger et al.,
2014]. From other side, it looks like that in many cases, iron does not show so large relative variations along
the traverse [Gellert et al., 2014]. That is why for simplicity, we have used the chlorine content in the form
of a chlorine-equivalent parameter to account for all thermal neutron absorbing elements. That means
that the content nequ corresponds to the contribution of all absorbing nuclei, as

nequ ¼ nCl þ ∑A nA � nAoð Þ�S Að Þð Þ
S Clð Þ

� �
; (1)

where S(A) are the absorption cross sections of nuclei A for thermal neutrons (except chlorine), nA are their
concentrations, nAo are their base concentrations in average regolith composition used for the modeling,
S(Cl) is the absorption cross section of chlorine nuclei, and nCl is the chlorine concentration. If the value
of nequ will be estimated from the modeling of DAN data, the relationship (equation (1)) provides the
observational requirement for the content of all other neutron absorbers. To simulate by numerical modeling
the variability of chlorine and other neutron absorbers, we admit the variations of chlorine concentration
from 0.5 to 1.75wt % in numerical modeling.

The regolith density was a free parameter during initial modeling, where it was allowed to vary from 1.2 to
2.5 g/cm3. It was found that a regolith density of 1.8 g/cm3 is a good approximation of the average regolith
density at the first ~60 locations, where DAN active measurements were performed [Mitrofanov et al.,
2013b]. Accordingly, the density of the regolith has been fixed at 1.8 g/cm3 to reduce the number of free
parameters of the regolith model.

3.2. DAN Depth Sensitivity

It was found that for many purposes, it is necessary to know the maximal sensitivity depth of DAN active
observations. We have estimated this limit based on numerical simulations and ground tests. DAN active
measurements were modeled for a double layer regolith structure with a dry layer on the top and pure water
ice at the bottom. The water ice layer was placed at depths in range 5–300 cm below dry regolith layer with
1.7wt % of H2O and density of 1.8 g/cm3. It was found that the instrument could not detect a presence of
water at depths below about 60 cm. Therefore, the water/ice depth of 60 cm could be used as DAN depth
sensitivity limit in the analysis of hydrogen/water distribution in the subsurface. The results of numerical
simulations have been validated with DAN ground calibrations, where double layered structure of regolith
has been modeled with silicon bricks on the top (with ~2.5wt % of water) and polyethylene as a replacement
of water layer located at the bottom at different depths. This method also concluded depth of ~60 cm as a
limit of instrument sensitivity.

3.3. Background Subtraction

In addition to neutron pulsing emission from DAN/PNG, there are two other sources of neutrons. They are
the neutrons produced with MSL MMRTG and neutrons produced in the Martian subsurface high-energy
charge particles of the galactic cosmic rays (GCRs). The GCR flux and correspondingly produced subsurface
neutron flux vary in time modulated by solar activity. The MMRTG neutron flux is continuous and almost
omnidirectional. The total number of neutrons emitted by the MMRTG is significantly larger than the number
of GCR generated neutrons. The GCR and MMRTG neutrons propagate into the detectors after interacting in
regolith and/or in the rover structure. These neutrons create a flux, which is constant on the time scale of DAN
active measurements at 10Hz pulsing frequency of the neutron generator and should be removed as a
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background. The background counting
rate Btn,etn (where tn and etn mean the
CTN and CETN detectors here and below)
can be estimated separately for DAN
detectors using following equation

Btn;etn ¼
∑β2i¼β1

Ntn;etn tið Þ�ΔT tið Þ
∑β2i¼β1

ΔT tið Þ
; (2)

where Ntn,etn(ti) is the raw counting rate
measured by thermal (tn) and epithermal
neutron (etn) detectors at time bin ti with
a duration ΔT(ti) in range of instrument
time bins with indexes from β1 to β2. The
range of instrument time bins selected for
the background estimation corresponds
to time period 104–105μs after a neutron

pulse. The procedure Ctn,etn(ti) = Ntn,etn(ti) � Btn,etn removes background and leaves only dynamic albedo of
neutrons counting rates (see Figure 3).

3.4. Normalization Procedure

The amplitude of die-away curves measured by CTN and CETN detectors depends on several instrument
factors. Thus, the DAN/PNG tritium-rich target is degrading under the bombardment by deuterium ions
(during DAN/PNG pulsing) and due to the natural radioactive decay of tritium in the target. Another factor is
the aging (due to multiple triggering) of ion source inside DAN/PNG, which may influence on the stability and
intensity of neutron output. All these factors lead to the decrease of the neutron pulse intensity with time and
corresponding corrections should be included in the data reduction. Figure 4 presents the decrease of DAN/
PNG neutron production with surface operational time as measured in the time interval from 10–50μs after
the neutron pulse. Numerical simulations have shown that during this time interval, DAN/DE counting rate
does not significantly depend on Martian regolith properties but is dominated by neutrons backscattered
inside rover mechanical structures close to the detectors and/or neutron generator. The normalization factor
is calculated independently for each DAN active measurement using following equation:

Mtn;etn ¼ ∑γ2i¼γ1
Ctn;etn tið Þ (3)

where Ctn,etn(ti) is the counting rates observed at CTN and CETN detectors at ti time bin after background
subtraction and γ1 to γ2 is the instrument time bin indexes corresponding to the time range 10–50μs after the
neutron pulse. The normalized counting rates Ath,etn are estimated as

Atn;etn tið Þ ¼ Ctn;etn tið Þ
Mtn;etn

: (4)

3.5. The Estimation of
Regolith Parameters

The main goal of the numerical modeling
is to test that the hypothesis that
measured the DAN die-away curves can
be produced by a given distribution of
hydrogen/water in the Martian regolith.
The best fit hydrogen concentration, its
depth distribution, and other regolith
properties could be derived from such
test. To enhance sensitivity of this
method, it is important to define the
optimal time intervals for the
comparison between modeled and

Figure 3. A die-away curve measured by the CTN detector shown
before (blue line) and after (red line) background subtraction.

Figure 4. Decrease of DAN/DE counting rate (from start of the MSL sur-
face operations) due to the degradation of DAN/PNG neutron output.
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measured die-away curves. The earliest
time bins of die-away curves are
mostly populated with the neutrons
scattered only in the rover body and do
not bring much information about the
subsurface properties under the rover.
In the later time bins, we observe fewer
counts due to the smaller number of
neutrons that arrive at the DAN
detectors from remote vicinity around
the rover position. At such distances,
subsurface properties could be
significantly different from the
footprint right under the rover. The
middle time bins show best counting
statistic and are mostly populated with
neutrons thermalized in the subsurface
under the rover. In order to select these
optimal time bins and increase
sensitivity to hydrogen distribution, we
have compared different DAN
measurements. According to DAN
observations, it is clearly seen that most
dry subsurface is observed at Rocknest
area, while most hydrogen-rich areas
are discovered at Yellowknife Bay (see
for example Figure 5). These
observations are indirectly supported
with sampling analysis accomplished
both at the Rocknest dunes and the
Yellowknife mudstones, which
discovered the presence of hydrated
minerals at Yellowknife [see, for

example, Grotzinger et al., 2013; Ming et al., 2013]. In our analysis, we have determined time bins showing
most contrast between these measurements. Thus, we have selected time interval 478–1135 μs for the
thermal neutron detector CTN and time interval 122–249 μs for the epithermal neutron detector CETN (see
illustration at Figure 5).

To estimate the regolith model parameters at a particular rover location, a comparison of measurements and
numerical model predictions has been accomplished. It was based on the Pearson χ2 statistical criterion that
measured die-away curves are consistent with numerical model predictions for a regolith with given
hydrogen water-equivalent (WEH) distribution and chlorine-equivalent concentration ξCl, see equation (5).

S ¼ ∑
εtn2
i¼εtn1

Atn tið Þ �Wtn tið Þð Þ2
σtn tið Þð Þ2 þ ωtn tið Þð Þ2 þ∑

εetn2
k¼εetn1

Aetn tkð Þ �Wetn tkð Þð Þ2
σetn tkð Þð Þ2 þ ωetn tkð Þð Þ2; (5)

where Atn,etn(ti) and σtn,etn(ti) are the normalized measured count rates (see relationship (4)) and statistical
uncertainty of the measurement at time bin ti of a CTN and CETN die-away curves;Wtn,etn(ti) and ωtn,etn(ti) are
the count rates and uncertainty (produced in MCNPX Monte Carlo simulation process) at the same bin ti
predicted by a numerical modeling for selected regolith parameters; and εetn2 ; εetn1 ; εtn2 ; ε

tn
1 are the time bins

indexes corresponding to the optimal time intervals for each detector. We have used numerical library with
different regolith models to select value Smin showing minimal discrepancy between data and model
predictions. If selected regolith parameters fit the measurements within given statistical uncertainties the Smin

value should belong toχ2DOF distributionwith degrees of freedomequal toDOF ¼ εtn2 � εtn1
� �þ εetn2 � εetn1

� �� λ.
The λ here is a number of free parameters of the selected regolith model. In this method, it is necessary to

Figure 5. Examples of die-away curves measured by (a) CTN and (b) CETN
at H-poor and H-rich sites along MSL traverse. The time intervals selected
for the analysis of water abundance are shown by dashed vertical lines.
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postulate confidence probability α and find critical value of Smin when tested hypothesis with given parameters
should be rejected. The confidence probability α calculated as

α ¼ ∫∞χ2DOF αð Þf χ2
� �

dχ2; (6)

where f(χ2) is the probability density of the χ2 distribution. Usually the confidence probability level α= 1% is
selected. It means that the given regolith model shall be rejected if Smin > χ2DOF 0:01ð Þ.

3.6. Estimation of Uncertainties of Model Parameters

The estimation of the model parameter uncertainties is based on a Monte Carlo simulation. Standard
recommendations for this approach could be found in various descriptions of numerical methods [see, for
example, Press et al., 2007, section 15.6]. The suggested method required multiple Monte Carlo simulations of

the measured die-away curves Asimtn;etn tið Þ according to the statistical uncertainties of measurements σtn,etn(ti).

Then the simulated data have been subjected to the standard process of the regolith parameter estimation
described above. In our case, we have repeated this simulation 256 times to get the appropriate distributions
of the best fit parameters and use a standard deviation of the sample created for each parameter to take it as
the parameter uncertainty.

3.7. Model Selection

Mitrofanov et al. [2013b] have analyzed a set of different models of regolith, starting with homogeneous
models and concluding with double-layered models. For these models, the water depth distribution, average
content of water, chlorine abundance, and density were considered and studied as free parameters. The first
analyses of DAN active data have shown that the average content of water measured during surface
operations was 2%, the average content of chlorine was 1.1%, and the average density was estimated as high
as 1.8 g/cm3 [Mitrofanov et al., 2013a]. This analysis has also revealed that there are significant regional
variations in water distribution and chlorine-equivalent abundance along Curiosity’s traverse. In our analysis,
we have used the two-layer model proposed byMitrofanov et al. [2013b]. It includes the variable amounts of
hydrogen in the upper and lower layers, variable upper layer thickness, and variable chlorine content
(homogenously distributed as a function of depth, see illustration on Figure 6). We find that 99% of rover
stops (where DAN active data were acquired) are well fitted with this model [Mitrofanov et al., 2013b].

4. The Description of the DAN Observation Campaign in Yellowknife Bay Area

The Yellowknife Bay formation is a topographic low point bounded by exposed, stratified bedrock which
consists of four members named Shaler, Point Lake, Gillespie Lake, and Sheepbed. The highest member of
this stratigraphy, Shaler, is found at the intersection of three units observed in orbital images: The hummocky
plains, the bedded fractured unit, and a heavily cratered surface [see, for example, Grotzinger et al., 2013]. The
topographically lowest members, Gillespie Lake and Sheepbed, consist of well-exposed, apparently resistant
lithologies that are more continuous than Shaler and Point Lake. The Gillespie Lake member consists of
decimeter-thick beds of uniformly smooth weathering sandstone, whereas Sheepbed consists of fine-
grained sedimentary rock suggested to be fluvio-lacustrine siltstones/mudstones cut by light-toned veins
[Grotzinger et al., 2013; Vaniman et al., 2013]. The majority of Curiosity’s observations in the Yellowknife Bay
formation (including drilling and sampling activities) were completed at the Sheepbed member.

Figure 6. Illustration of two-layer subsurface model selected for DAN data analysis.

Journal of Geophysical Research: Planets 10.1002/2013JE004556

LITVAK ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1267



It was found that the elemental composition of the Sheepbed is similar to the average Martian upper crust
[McLennan et al., 2013]. The APXS and ChemCam instruments detected the presence of Ca and S in rock veins
cutting this member, leading to the interpretation that the veins are filled with Ca-sulfates [McLennan et al.,
2013]. This interpretation was supported by Mastcam near-IR observations, which are sensitive to the
presence of some hydrated minerals [Bell et al., 2013; Rice et al., 2010; Rice and Bell, 2011].

The first drilling operations were also done at Sheepbed at sites named as John Klein and Cumberland [Ming
et al., 2013]. The drilled samples were analyzed by Chemistry and Mineralogy (CheMin) X-ray diffraction (XRD)
and X-ray fluorescence instrument [Blake et al., 2012] and the Sample Analysis at Mars quadrupole mass
spectrometer/gas chromatograph/tunable laser spectrometer suite of instruments [Mahaffy et al., 2012].

The sampling operations were also supported bymultiband observation with Curiosity’s cameras [Malin et al.,
2010] and remote elemental composition analysis provided by laser-induced breakdown spectroscopy
(ChemCam instrument) [Wiens et al., 2012] and the Alpha-Particle X-ray Spectrometer (APXS instrument)
[Campbell et al., 2012].

The CheMin data have revealed a significant amount of clays in the drill samples. At both the John Klein and
Cumberland drilling sites, ChemMin XRD data indicate a ~20% wt abundance of phyllosilicates [see Vaniman
et al., 2013]. It is thought that these phyllosilicates were formed in an aqueous environment, possibly
involving two or more episodes of water moving through the Yellowknife Bay members [Grotzinger et al.,
2013; Vaniman et al., 2013].

The joint multi-instrument analysis has shown that the aqueous environment in Sheepbed can be
characterized as being lacustrine, neutral in pH, and low in salinity. Variable redox states of both iron and
sulfur species are found, and the presence of the key biogenic elements C, H, O, S, and P is indicated
[Grotzinger et al., 2013; Mclennan et al., 2013; Ming et al., 2013; Vaniman et al., 2013]. It has been concluded
that during the late Noachian/earlier Amazonian periods, this area constituted a habitability environment
[Grotzinger et al., 2013].

Up to sol 295, DAN has made 12 measurements of the Sheepbed member and detected distinctive local
variations of water and chlorine content within it ([Mitrofanov et al., 2013b] odometry 640–727m). In some
cases, these variations may correlate with geological context.

Based on the observed diversity, a special set of observations was acquired, named the “DAN campaign.” The
purpose of this campaign was to determine whether DAN-determined variations in hydrogen/chlorine bulk
composition were correlated with easily observed geological context (exposed strata) using measurement
intervals comparable in scale to the horizontal sensing “footprint” of DAN. The DAN footprint is estimated as a
circle area with a radius of about 1.5m, centered at the backside of the rover, and equidistant between the
DAN/PNG and DAN/DE components. Based on these assumptions, Curiosity was commanded to make DAN
18 active measurements every 0.75–1m along the ~15m traverse (odometry 751–765m) to provide
oversampling of the DAN footprint between successive measurements.

The Sheepbed and Gillespie Lake are the most continuous members of the Yellowknife Bay formation. The
contact between these units is expressed at the surface as a distinct, step-like boundary with a height of
about 40 cm. Several options for the drive were considered to take into account science requests to cross
several boundaries between different geological units (including primary contact between Sheepbed and
Gillespie Lake), long-term planning tasks (i.e., placing the rover in a desirable location for other objectives at
the end of the traverse), and rover mechanical limitations related to climbing and wheel slippage (there is a
restriction against rover tilt angles ≥15°). At each stop along traverse route, DAN made high signal-to-noise
measurement in its active mode, with a duration of 15min at 10 Hz (i.e., 9000 emitted neutron pulses per
stop). The area of the Curiosity/DAN traverse (for sol 299 which is the major part of the traverse) is presented
in Figure 7. This figure shows the DAN footprints for each observation and three boundaries separating the
geological subunits inside the Sheepbed and Gillespie Lake, extending roughly perpendicular to the rover
traverse. It includes two secondary boundaries between subunits inside the Sheepbed and Gillespie Lake and
one primary contact area between the Sheepbed and Gillespie Lake members. Their more detailed
description is presented below.

The boundary #1 (see Figure 7) is located inside the Sheepbed and separates the upper and lower subunits of
the clay-rich Sheepbed unit.
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The boundary #2 (see Figure 7) is the primary contact between the Sheepbed and Gillespie Lake units.

The boundary #3 (see Figure 7) is located inside the Gillespie Lake and delineates a distinctive structural
heterogeneity inside the Gillespie Lake unit, in the form of a linear, shallow trough filled with debris of from
unit fragmentation mixed with loose material.

These boundaries distinguish four different subunits: Sheepbed subunit #1 (area prior boundary #1),
Sheepbed subunit #2 (area between boundary #1 and boundary #2), Gillespie Lake subunit #1 (area between
boundary #2 and boundary #3) and Gillespie Lake subunit #2 (area past boundary #3).

The DAN campaign began with two measurements of the drilling sites, and then the traverse continued
across the Sheepbed/Gillespie Lake contact area.

5. DAN Measurements Along Sheepbed/Gillespie Lake Traverse

The DAN campaign was initiated after drilling and sample analysis operations at the Cumberland site. On sol
295, Curiosity executed 180° turn in place to make DAN high signal-to-noise ratio (SNR) measurements with
the instrument directly above the John Klein and then Cumberland drilling sites.Mitrofanov et al. [2013b] has
shown that drilling sites can be characterized with two-layer model with 1.1–1.4% of WEH in the top layer
with thickness ~20 cm, 2.6–3.0% of WEH at the bottom layer, and chlorine-equivalent abundance ranged
within 0.8–1.1%. It relatively well corresponds to the results of sampling analysis [Ming et al., 2013; Vaniman
et al., 2013].

Figure 7. (a) Mastcammosaic of the Yellowknife Bay formation. Boundaries between different subunits inside Sheepbed
and Gillespie are shown in white. The middle one corresponds to the primary Sheepbed/Gillespie contact. (b) Major
part of the DAN campaign (sol 299, stops #4–14, shown by blue). The white dashed lines show the DAN footprints for
each observation.
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All the DAN measurements during the campaign have been documented with images acquired by the
Curiosity Rear Hazard Cameras (RHazCam) [see Maki et al., 2012]. For example, Figure 8 show two photos
taken from the RHazCam, which document the position of Curiosity’s aft end, with the DAN instrument above
the drill holes at John Klein and Cumberland.

On sol 297, Curiosity drove from the drilling area to a start point for the DAN traverse andmade the first three
stops with DAN active measurements commanded at 1m intervals. Camera images obtained at these stops
were used to assess navigation over this initial part of the traverse and take into account corrections (e.g., due
to wheel slippage) for the remainder of the DAN traverse. The primary part of the DAN traverse started on sol
299, 5m away from the Sheeped/Gillespie Lake contact (boundary #2) and 1.5m away from the boundary #1
between the clay-bearing Sheepbed upper (Selwyn section) and lower subunits (see Figure 7). On sol 299,
Curiosity made 11 stops along the traverse (see Figure 7), all of them with high SNR DAN active
measurements supported by RHazCam images for documentation. During this traverse, rover crossed the
boundary #2 (Sheepbed/Gillespie Lake contact, see Figure 7). The last stop in this sequence was completed at
the top of the Gillespie Lake member, near the boundary #3 (see Figure 7). During the planning of sol 301, it
was found that rover resources were available to continue the DAN traverse. Four additional stops were
made, separated by 0.75m. In total, the DAN campaign with short-interval measurements lasted for 5 sols. It
was completed at the end of sol 301 and included 18 separate stops.

In Figure 9, we present two profiles of epithermal and thermal neutron fluxes measured by DAN in active
mode for the different rover stops along the traverse. The variations of epithermal neutron flux are most

Figure 8. (a) RHazCam image of the DAN footprint area taken at the John Klein drilling area. The borehole of John Klein is
shown by arrows. (b) RHazCam image of the DAN footprint area taken at the Cumberland drilling area. The borehole of
Cumberland is shown by an arrow. (c) Mastcam mosaic of the Yellowknife Bay formation showing the DAN footprints for
the observations of the drilling sites.
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sensitive to the variation of subsurface hydrogen content, while the variations of thermal flux may be caused
by both variations in hydrogen and the presence of neutron absorbing elements. The most prominent and
significant feature on both plots is the rise of the neutron flux between stops #5 and #10. In statistical terms,
the significance of the difference between these stops corresponds to more than 20σ for the thermal
neutrons and more than 5σ for the epithermal neutrons. In both cases, the probability that observed effect
has arisen due to random fluctuations is negligible. Another one statistically significant variation of thermal
neutron flux is found between stops #14 and #15. The revealed differences correlate well with the previously
mapped geologic boundaries presented in Figure 7. They are shown on Figure 9 by dashed lines. The
most significant effect is related with boundary #2 (Sheepbed/Gillespie Lake contact area). The observed

variations of thermal and epithermal
neutrons may indicate both changes of
average content of water and the
abundance of thermal neutron-
absorbing elements.

In Figure 10, we present a scatterplot
showing the correlation between the
thermal and epithermal neutron fluxes
measured in active mode at different
stops during DAN campaign. The dots
on this plot are specially shown with
different color in accordance with
previously mapped geologic context.
The whole traverse may be split into four
subunits located between boundaries #1
and #3 (see also definition in section 4).
Violet is used for the first Sheepbed
subunit #1 (before boundary #1), cyan
for the upper Sheepbed subunit #2
(between boundary #1 and boundary
#2), yellow for the lower subunit #1 at

Figure 9. (top) Profile of the thermal neutron flux measured by DAN/DE in active mode along the Curiosity traverse during
the DAN campaign (sols 297–301). (bottom) Profile of the epithermal neutron flux measured by DAN/DE in active mode
along the Curiosity traverse during the DAN campaign (sols 297–301).

Figure 10. Scatterplot showing the correlation between thermal and
epithermal neutron fluxes measured in active mode during the DAN
campaign. The measurements are combined in geologic context groups
shown by different colors: violet for the Sheepbed subunit #1, cyan for
the Sheepbed subunit #2, yellow for the Gillespie Lake subunit #1, and
finally red for the Gillespie Lake subunit #2.
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the Gillespie Lake unit before the lineal shallow trough that cuts the unit (between boundaries #2 and #3),
and finally, red for the upper Gillespie Lake subunit #2, after the trough (past boundary #3). It is seen that the
distribution of points in Figure 10 is not random and some of them are combined in groups by color (geologic
context). This association supports the suggestion that there is some correlation between geologic context
derived from the visual observations (both from rover cameras and from high-resolution orbital images) of
the overlaying surface and DAN measurements. The most significant difference is observed between
Sheepbed upper subunit #2 (cyan symbols) and Gillespie Lake subunit #1 (yellow symbols). They are two
successive subunits separated by the contact area between Sheepbed and Gillespie Lake. This corresponds
well with the variations in neutron fluxes along traverse, which we have presented and discussed in Figure 9.
Qualitatively, one may say that Gillespie Lake subunit #1 has more water, because epithermal neutron flux
decreased when rover moved from Sheepbed upper subunit #2 to Gillespie Lake subunit #1. We also may
expect a significantly higher abundance of neutron-absorbing elements at the Gillespie Lake subunit #1,
because thermal neutron flux also significantly decreases (instead of the increasing as one could expect in
case of only water content variation).

We have compared each DAN observation during traverse with a two-layer model of the subsurface (see
Figure 6), with a variable distribution of water and variable content of chlorine (the same type of model as was
applied to the previous observations).

In Table 1 and Figure 11, several profiles of best fit model parameters are shown which have been averaged
for the different DAN measurements within the Sheepbed and Gillespie Lake subunits and subunit contacts.
They include variations of the upper layer water abundance, bottom layer water abundance, depth of the

interface between the layers, bulk
equivalent chlorine abundance, and bulk
water abundance (estimated within
60 cm depth).

Stops #1–4 are at the beginning of the
DAN traverse. The analysis of these
measurements has revealed that bulk
water distribution does not significantly
change among them, and it is similar to
the distribution observed at the drilling
sites. We combined stops #1–4 in one
group because they belong to the same
subunit (Sheepbed subunit #1, prior
boundary #1) and could be fitted with
one subsurface model (probability to fit
these measurements as one ensemble is
more than 50%, see Table 1). The top
water abundance is 1.40 ± 0.14%, and
the depth to the bottom layer is
20 ± 3 cm. The water abundance in the
bottom layer is 2.9 ± 0.3%, and the

Table 1. DAN Model Parameters of Regolith for Different Sheepbed and Gillespie Lake Members of Yellowknife Bay Formation

Name
Start
(m)

Stop
(m)

Top Water
(%)

Depth
(cm)

BottomWater
(%)

Chlorine
(%)

Average Water
Within 60 cm (%) Comments

Sheepbed subunit #1 751.4 754.8 1.40 ± 0.14 20± 3 2.9 ± 0.3 1.05 ± 0.07 2.40 ± 0.17 Group#1: Probability to accept
two-layer model is equal to 53%.

Sheepbed subunit #2 756.27 757.8 1.50 ± 0.12 30± 5 2.8 ± 0.3 0.80 ± 0.05 2.15 ± 0.15 Group#2: Probability to accept
two-layer model is equal to 68%.

Gillespie Lake subunit #1 760.02 762.3 1.70 ± 0.16 20± 4 2.9 ± 0.4 1.5 ± 0.1 2.50 ± 0.19 Group#3: Probability to accept
two-layer model is equal to 91%.

Gillespie Lake subunit #2 763.02 765.3 1.4 ± 0.3 10 ± 7 2.4 ± 0.3 1.3 ± 0.1 2.23 ± 0.14 Group#4: Probability to accept
two-layer model is equal to 15%.

Figure 11. Profiles of the average water-equivalent hydrogen (blue) and
chlorine-equivalent neutron absorption (red) within 60 cm depth. All the
profiles are averaged for different subunits (including measurements for
boundaries #1 and #2) along Curiosity traverse during the DAN campaign
(see Table 2). The boundaries #1–#3 are shown by dashed lines.
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average chlorine abundance is 1.05 ± 0.07%. The bulk water content in the 60 cm of subsurface is estimated
to be 2.40 ± 0.17% WEH (see Table 1).

At stop #5, Curiosity crossed an area of loose soil corresponding to the boundary #1 between the upper and
lower subunits 1 and 2 inside the Sheepbed. Modeling of the DAN data shows that it contains less WEH
(about 1%) at the very top of the subsurface, in comparison with the previous stops (#1–4), where fractured
rock outcrops are dominant in the DAN footprint. But the thickness of this layer is very thin at ~5 cm. A
plausible interpretation of these results is that the water distribution at this spot is close to homogeneous. It
could be characterized just by one parameter such as the average content of water in a single-layer model.
This content is estimated to be about 2.0 ± 0.2wt %.

Stops #6–9 are combined in the second group. They are located on eroded, fractured outcrops between
boundary #1 and boundary #2 and belong to the Sheepbed subunit #2. According to the best fit model
estimations (these measurements are fitted as one group with probability equal to 68%), the upper layer at
stops #6–9 contains about 1.50 ± 0.12% WEH, with an upper layer thickness of 30 ± 5 cm. This is deeper than
the best fit model of the subsurface found at stops #1–4. At the bottom of this layer, the regolith is enriched
with ~2.8 ± 0.3%WEH. The net effect is a difference in bulk water abundances with 2.40 ± 0.17%WEH at stops
#1–4 and 2.15 ± 0.15% WEH at stops #6–9. The best fit chlorine-equivalent abundance also displays a
relatively prominent difference between the first (stops #1–4) and the second part (stops #6–9) of the DAN
traverse within the Sheepbed member. It smoothly drops from the values of 1.05 ± 0.07% at the beginning of
the DAN traverse to ~0.80 ± 0.05% (see also Table 1).

Stop #10 is an intermediate stop, which could be addressed to boundary #2. It corresponds to the crossing
through the contact area between Sheepbed and Gillespie Lake. It is described by the following parameters:
upper layer water abundance is 1.20 ± 0.17%, thickness of the upper layer is about 20 ± 3 cm, water
abundance in the lower layer is 4.4 ± 0.5%, and chlorine abundance�1.25 ± 0.10%. It is significantly different
from the previous group, especially by the higher abundance of equivalent chlorine and WEH in the
lower layer.

Stops #11–18 are the locations on the surface where the DAN signal was collected from the Gillespie Lake
member. They may be divided into two parts: #11–14 (third group, Gillespie Lake subunit #1) and #15–18
(fourth group, Gillespie Lake subunit #2), separated by the boundary #3, linear shallow trough cutting the
Gillespie Lake.

In the case of third group (the measurements included in this group are fitted with probability equal to 91%),
the major difference with previous groups is a significant increase in chlorine-equivalent abundance from
0.80 ± 0.05% (second group) up to 1.5 ± 0.1%. The water distribution at the first stops on the Gillespie Lake
member can be characterized with ~1.70 ± 0.16% of H2O, the upper layer down to a depth of about 20 ± 4 cm,
where it changes to 2.9 ± 0.4%. The best fit bulk water content is 2.5 ± 0.2%.

Stops #15–18 are combined into fourth group as belonged to Gillespie Lake subunit #2 (they are fitted
together with probability equal to 15%). They are also enriched in chlorine up to 1.3 ± 0.1%, but water
distribution is significantly changed to ~1.4 ± 0.3% of H2O in the upper layer, with a depth of only about
10 ± 7 cm and ~2.4 ± 0.3% of H2O in the lower layer. Here more water is available close to the surface level,
but bulk water (within 60 cm) is similar to second group (see Table 1 and Figure 11) and equal to 2.23 ± 0.14%.

6. Conclusions

The DAN campaign was the first attempt to use the targeted DAN observations and to search for possible
correlations between the DAN measurements of bulk composition of water and chlorine with independently
assessed geologic context on a local scale. It was based on the special selection of the rover’s route through
the visually distinguished different geologic subunits and contact areas between them.

It was revealed that thermal and epithermal neutron fluxes measured in the DAN active mode have
statistically significant variations along the traverse. These variations correlate well with contacts between
different subunits. The largest difference is observed at the contact between the two members of the
Yellowknife Bay formation: Sheepbed and Gillespie Lake. Other distinguished subunits also show
inhomogeneity of neutron flux from the subsurface. They can be characterized by both different absolute
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values of neutron flux and different ratio between the measured fluxes of epithermal and thermal neutrons.
This indicates that the distribution of hydrogen-rich materials and neutron-absorbing elements is
nonhomogeneous on the small scale (<20m) traversed by the rover during the DAN
observational campaign.

In our analysis, we have divided the DAN measurements into four groups in accordance with geologic
context (Sheepbed subunits #1 and 2 and Gillespie Lake subunits #1 and 2, see Table 1) and supported them
with the estimations of WEH and сhlorine-equivalent subsurface distributions. To make such estimations, we
have used a two-layer model with a variable distribution of water as a function of depth and variable content
of chlorine. The implementation of this model has revealed that both water and chlorine vary along the
traverse, showing some correlations with the traversed subunits. The variations in both average water and
average chlorine between different groups are significant. The probability of explaining these variations
(presented on Figure 11) as statistical noise around a constant value is negligible (below 0.1% according
Pearson chi-square test criterion). This means that the difference found corresponds to more than 3σ of
statistical significance.

The bulk abundance of water measured within 60 cm below surface changes from 2.15±0.15% at the subunit
#2 inside Sheepbed (right before Sheepbed/Gillespie Lake contact boundary area, boundary #2 on Figure 7)
up to 2.5± 0.2% at the beginning of the Gillespie Lake subunit #1 (afterward boundary #2 on Figure 7). The
variations of neutron absorption elements measured as chlorine-equivalent concentration are even higher. For
the same subunits, it changes from 0.80±0.05% (inside Sheepbed) up to 1.5± 0.1% on the top of Gillespie Lake.

The distribution of water as a function of depth also slightly changes for different subunits. The water
abundance in the upper subsurface layer is approximately the same, showing nonsignificant variations within
1.4–1.7% for all the four subunits (see Table 1). But the thickness of the upper layer may change from 10 cm
(Gillespie Lake subunit #2) down to 30 cm (Sheepbed subunit #2). The water content in the lower layer ranges
between 2.4% and 2.9% for different subunits. The primary contact area (boundary #2) between the
Sheepbed and Gillespie Lake members is the most hydrogen-rich area (average water >3%), is significantly
nonhomogeneous (~1% in the upper layer and ~4% in the lower layer), and characterized with an
intermediate content of equivalent chlorine (~1.25%)

DAN has a large footprint area with a radius of about 1.5m under the aft end of the rover. It is significantly
larger than the footprint of the contact and remotemeasurements of elemental composition provided by the
other science instruments onboard Curiosity. DAN provides a unique capability to look below the surface as
deep as 60 cm and study the depth distribution of water and neutron-absorbing elements. Thus, DAN
measurements are complementary to other Curiosity observations. A good example of this is the observation
of the Curiosity’s drilling sites in the Sheepbed mudstones, which were completed as a part of the DAN
observation campaign. The drilling holes themselves are much smaller than the DAN footprint, but DAN
measures neutron flux originated at larger depths than was achieved during the drilling operations. The
comparison between DAN average bulk composition of water and chlorine with “pinpoint” sampling and
contact measurements suggests that there is compositional heterogeneity in the Sheepbed member at a
scale of tens of cubic centimeter.
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