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a b s t r a c t

Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds
because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs
do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for
spatial and temporal variability in land characteristics, weather, and management practices. We applied
Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration
in streams. We compared four model formulations, a basic ECM and three models with additional terms
to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal
variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM),
and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent
spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation.
We tested the modeling approach in a proof of concept using watershed characteristics and nitrate
export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake
Bay drainage. Among the four models, the DPM was the best–it had the lowest mean error, explained the
most variability (R2 ¼ 0.99), had the narrowest prediction intervals, and provided the most effective
tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any
other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its
underlying hypothesis that the main source of error in ECMs is their failure to account for parameter
variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and
instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate ex-
ports were positively related to stream flow and watershed average slope, while instream nitrate
retention was positively correlated with nitrate concentration. By quantifying spatial and temporal
variability in sources and sinks, the DPM provides new information to better target management actions
to the most effective times and places. Given the wide use of ECMs as research and management tools,
our approach can be broadly applied in other watersheds and to other materials.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The linkages between watershed nitrogen (N) loading and
export are often poorly quantified because of the complexity of N
pathways. Human activities have greatly increased N loading by
applying fertilizer, generating human and animal waste, and
and Sustainable Agriculture,
, Nanjing, 210008, China.
burning fossil fuels (Vitousek et al., 1997). The higher N loading
increases N export from terrestrial systems to streams (Jordan et al.,
1997a; Gao et al., 2004); but delivery to downstream rivers, lakes,
and estuaries is often less than terrestrial N export because N
removal in both terrestrial and aquatic systems can temporarily or
permanently reduce downstream transport of N through physical,
biological, or chemical processes (Galloway et al., 2008).

Export coefficient models are useful tools for estimating loads
and sources of nutrients. The basic export coefficient model as-
sumes that different land uses are the major sources of watershed
nutrient export (Norvell et al., 1979), and the model includes a
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calibrated export coefficient (the rate of pollutant loading per unit
of land area) for each modeled land use. Johnes (1996) developed
improved models by adding coefficients to represent nutrient ex-
ports due to plant nitrogen fixation, atmospheric deposition, live-
stock, or people. Several models have also considered nutrient
sinks. Gardner et al. (2011) modeled nitrate retention in streams
using a regression relating nitrate concentration to watershed area,
while Lu et al. (2013) used a first-order function relating nitrate loss
to water travel time. Endreny and Wood (2003) integrated maps of
watershed topography, land use, and stream channels into
spatially-weighted export coefficients that predict spatial patterns
of phosphorus loading in a watershed. To account for nutrient
removal in streamside forests and wetlands (riparian buffers),
Maillard and Santos (2008) weighted export coefficients by fixed
buffer widths. More recent models have quantified buffer preva-
lence along topographic flow paths connecting nutrient source
areas to streams, and then used that information to separate buff-
ered from unbuffered sources (Weller et al., 2011;Weller and Baker,
2014). The ability to incorporate additional processes into basic
export coefficient models has improved their applicability in
watershed nutrient management.

Even with the above enhancements, export coefficient models
do not account for the variability in nutrient sources and sinks that
result from variations in land characteristics, weather, and man-
agement practices in both space and time (e. g., variation in soils,
slopes, irrigation practices, tillage practices, rainfall volume, runoff
volume, etc.) (Lu et al., 2013; Vassiljev et al., 2008). Not accounting
for spatial and temporal variability limits the application of export
coefficient models to management and decision making because
the models do not help to identify when and where nutrient re-
leases or nutrient retention are most important (e. g., “hot spots”
and “hot moments,” McClain et al., 2003). That information is
needed to make effective decisions about when and where to
implement management practices.

Export coefficient models also typically do not account for
model uncertainty. There are two important kinds of model un-
certainty: structural and parameter uncertainty. Structural uncer-
tainty arises from inadequately representing the true processes
that control nutrient export. Much of the structural uncertainty in
export coefficient models likely arises from spatial and temporal
lumping (Ajami et al., 2007). Parameter uncertainty is the differ-
ence between the true parameters of a process and the parameters
estimated by model calibration. Parameter uncertainty arises from
using limited and uncertain calibration data, from imperfect pro-
cess understanding, and frommodel approximation. For one export
coefficient model, Khadam and Kaluarachchi (2006) found that the
export coefficient of agricultural land varied as much as 72.0%,
while the coefficients of urban and forest varied 59.1% and 58.2%,
respectively. Structural and parameter uncertainty together yield
the overall prediction uncertainty, which is often large for water-
shed models. Boomer et al. (2013) compared several watershed
export models and showed that no model consistently matched
observed discharges better than the others, and predictions
differed as much as 150% for every basin considered. Prediction
errors and unquantified uncertainty can foster poor understanding
and ineffective decisions when export coefficient models are
applied towatershedmanagement. To understand and quantify the
effects of structural and parameter uncertainties, we need methods
to assess the relative probabilities that differentmodel structures or
parameter sets provide acceptable simulations of a natural system.

Bayesian methods can provide a very effective framework
needed to handle spatial and temporal variability and model un-
certainty, as demonstrated in models relating algal blooms and
phosphate loading (Obenour et al., 2014; Wellen et al., 2012).
Therefore, to better quantify nitrate sources and sinks in
agricultural watersheds, we apply Bayesian hierarchical models to
incorporate temporally and spatially varying processes into an
export coefficient model. We examine the ability of three alterna-
tive approaches to enhance insight into model performance and
parameter uncertainty. Our results document better methods to
account for the major uncertainties of export coefficient models;
and we apply those methods to better understand and quantify the
nitrate sources and sinks that lead to observed stream nitrate
levels.

2. Methods

This study builds on a published export coefficient model (the
SERC model) that predicts average annual nitrate levels in streams
of the Chesapeake Bay watershed (Weller et al., 2011; Weller and
Baker, 2014). We modified the SERC model by adding the process
of nutrient removal in streams and weekly variation in that
removal. This extended SERC model (ESERC) predicts weekly rather
than annual nitrate levels.

We incorporated the ESERC model into a set of four alternative
models that represented different hypotheses about the nature of
spatial and temporal variability in nitrate sources and sinks. The
four models were the simple ESERC model (explained above) and
the ADditive Error Model (ADEM), SpatioTemporal Parameter
Model (STPM), and (Dynamic Parameter Model) DPM models
(explained below); in which different error terms are added to the
base ESERC model. The ADEM assumes that model errors arise
mainly from unspecified nutrient sources or sinks (structural error)
that are spatially and temporally variable, and ADEM accounts for
those errors by adding temporal and spatial error terms. This
simple approach has been used tomodel disease risk (Lagazio et al.,
2001), pollution (Shaddick and Wakefield, 2002), eutrophication
(Arhonditsis et al., 2008), and hydrology (Huard and Mailhot,
2006). The STPM instead assumes that model errors come mainly
from using static export coefficients (parameter error), and seeks to
reduce model error by allowing the model parameters (export co-
efficients) to vary spatially and temporally. The STPM has been used
to model non-point source pollution (Lu et al., 2013; Zobrist and
Reichert, 2006). The DPM also assumes that parameter error in
the export coefficients is the source of model error, but the DPM
differs from the STPM in its representation of how the export co-
efficients vary temporally and spatially. The STPM assumes that
each coefficient has its own independent distribution, while the
DPM instead assumes that variations in the coefficients are corre-
lated in space and time. The DPM has also been used to characterize
ecological processes (Arhonditsis et al., 2008; Sadraddini et al.,
2011; Wellen et al., 2012). The following presents each of the four
models in greater detail.

2.1. The SERC model

The SERC model refined the basic export coefficient model
(Norvell et al., 1979) by including physiographic province as a cat-
egorical independent variable (Weller et al., 2011; Weller and
Baker, 2014). This accounts for broad regional differences in
export coefficients that arise from differences in topography, ge-
ology, and other geographic factors. SERC also fit separate export
coefficients for all cropland and for unbuffered cropland to account
for the removal of cropland nitrate in adjacent riparian buffers. To
quantify unbuffered cropland, a digital elevation model was
analyzed to identify the steepest-descent surface transport
pathway connecting each cropland pixel in awatershed to a stream.
The resulting flow paths were intersected with a land cover map to
determine what fraction of the paths do not pass through a riparian
buffer, yielding the fraction of unbuffered cropland pixels in the
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watershed (for full details see Baker et al., 2006b; Weller et al.,
2011).

The SERC model is formulated as:
Fig. 1. Directed acyclic graphs (DAGs) describing the probabilistic relationships among
variables and parameters in three alternative formulations of the Bayesian model: a)
ADEM, b) STPM, and c) DPM. Ovals represent the model variables and parameters,
rectangles represent the input data, and arrows represent the conditional de-
pendencies. Symbols are described in Sections 2.1 and 2.3.

N ¼ b0 þ b0P þ b0a|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
background

þðbc þ bcPPP þ bcaPaÞC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
cropland

þðbu þ buPPP þ buaPaÞCu|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
unbuffered cropland

þ bgG|ffl{zffl}
grassland

þ bdD|ffl{zffl}
developed land

þε (1)
where N is stream nitrate concentration; C, G, and D are the pro-
portions of all cropland, grassland, and developed land in a
watershed; b values are export coefficients; ε is error; and PP and Pa
are dummy variables representing the categorical variable phys-
iographic province. The subscript u designates the proportion of
unbuffered cropland Cu and its coefficientbu. The parameter bc
represents the rate of nitrate loss from all cropland (both buffered
and unbuffered), while bu represents an extra amount of nitrate lost
only from the unbuffered cropland. Thus, the total loss from un-
buffered cropland is bc þbu. These interpretations of the model
parameters are described in more detail with an accompanying
figure in a published paper (Fig. 2, Weller et al., 2011). When
considering a single physiographic province, Eq. (1) can be
simplified to:

N ¼ b0 þ
�
bcC þ buCu þ bdDþ bgG

�
þ ε (2)

2.2. The extended SERC model

The SERC model estimates nitrate delivery from the land to the
stream network, but some of that delivered nitrate can be removed
by in-stream processes (Gardner et al., 2011; Lu et al., 2013; Valett
et al., 1996). In-stream nitrate retention can be effectively modeled
using a first-order reaction (exponential decay) with loss rate k and
in-stream travel time t (Lu et al., 2013; Smith et al., 1997). Here, we
extend the SERC model by incorporating in-stream attenuation and
temporal variation in stream nitrate concentration and in stream
travel time:

mi;j ¼ N � exp
��kti;j

�
¼ b0 þ

�
bcC þ buCu þ bdDþ bgG

�
exp

��kti;j
�þ ε (3)

where mi,j is the nitrate concentration at watershed monitoring
station i at sampling time j. We refer to Eq. (3) as the ESERC
(Extended SERC) model. Because the in-stream travel times differ
among watersheds and through time, the ESERC model (unlike the
SERC model) can represent temporal variation in nitrate
concentration.

2.3. Bayesian hierarchical modeling and uncertainty

We used Bayesian hierarchical methods to fit models because
the Bayesian framework offers many advantages. Bayesian theory
provides a natural and principled way of combining prior infor-
mation with data, and Bayesian models produce a probability dis-
tribution for the estimate of every parameter and prediction (Gilks,
2005). Bayesian inference also safeguards against overfitting and
can provide unbiased estimates even for very small sample sizes
(Congdon, 2007).

The ESERC model accommodates spatial and temporal varia-
tions in nitrate removal in streams, but not in the land sources and
sinks of nitrate. To better represent variability in those sources and
sinks, we developed and compared three alternative Bayesian
model formulations that represent different hypotheses about the
origin and structure of spatial and temporal variability. All three of



Fig. 2. Study watersheds (gray shading) and sampling stations (black circles) on
streams (dark gray lines) in Charles County, Maryland about 40 km south of Wash-
ington, DC. Several towns (black squares) are show for location reference.
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the models take the basic form:

Li;j ¼ Yi;j þ εi;j (4)

where Li,j is the measured concentration of nitrate leaving water-
shed i at time j; Yi,j is the mean stream nitrate concentration
simulated by a candidate model, and εi,j is a stochastic term rep-
resenting measurement error. We assume that measurement error
(the difference between the observed loads and the true load) εi,j is
independent and normally distributed:

Li;j � N
�
Yi;j;s

2
i;j

�
(5)

where si,j is the standard deviation of measurement error.
A second level of uncertainty is the difference between the true

load and the prediction of a candidate model:

Yi;j ¼ mi;j þ εi;j (6)

where mi,j is an unbiased estimator of the “true” load by the
candidate model and εi,j is the associated structural or parameter
error (calculated in each model as described below).
2.3.1. ADditive Error Model
The first alternative statistical formulation (Fig. 1a) assumes that

the main source of error in the ESERC model is from unrepresented
nitrate sources and sinks in the watershed (structural error). The
ADEM equation is

Yi;j ¼ mi;j þ εi;j εi;j ¼ xi þ εi þ gj þ dj i ¼ 1;/;W; j ¼ 1;/; T

(7)

where mi,j is the ESERC prediction of nitrate concentration leaving
watershed i at time j (Eq. (3)). We divided both the temporal and
spatial errors into two parts: correlated error and independent
error. Spatial (xi) and temporal ( gj) correlated error terms represent
the unspecified sources or sinks; and spatial ( εi) and temporal (dj)
independent errors terms represent measurement errors. εi and dj
are assumed to be independent and distributed normally with
mean zero and precisions s�2

ε
and

s�2
d ðεi � Nð0; s�2

ε
Þ; dj � Nð0; s�2

d ÞÞ. T is the number of water
quality observations andW is the number of study watersheds. The
priors for the s terms are represented by an uninformative prior
distribution, the gamma distribution with shape and scale param-
eters of 0.01 [Gamma (0.01, 0.01)].

Within a relatively homogenous region, the distributions of the
(xi) representing unspecified sources or sinks would be similar in
different watersheds, resulting in spatial autocorrelation. We
adopted a first-order random-walk effect to account for the spatial
correlation among model residuals (Arhonditsis et al., 2008;
Sadraddini et al., 2011; Wellen et al., 2012).

xijx�i �

8>>>>><
>>>>>:

N
�
xiþ1;4

2
�

for i ¼ 1

N
�
xi�1 þ xiþ1

2
;
42

2

�
for i ¼ 2;/;W � 1

N
�
xi�1;4

2
�

for i ¼ W

(8)

The notation x� i denotes all watersheds except watershed xi and
42 is the conditional variance of xi given x� i. The prior density of
xijx�i is based on conjugate inverse-gamma (0.01, 0.01)
distribution.

It is also likely that the unspecified sources or sinks ( gj) are
more similar between successive observations than between ob-
servations separated by longer time intervals, which would result
in temporal autocorrelation. Dynamic linear modeling (DLM) can
account for temporal autocorrelation (Congdon, 2007; Lamon et al.,
1998b) by assuming that the level of the response at each time step
is influenced by past levels (Wellen et al., 2012).We also assume the
more recent past is more influential than themore distant past, and
model this by including a discount factor in the DLM (Eq. (8)). The
discount factor is a weight representing the fraction of information
that can be obtained from the last observation period. In short, the
DLM approach in this paper posits that unspecified sources or sinks
vary with time, and that each time series is autocorrelated–the
closer in time, the more similar are parameter values.

gj � N
�
0;u2

j

�
u�2
j ¼ tj�1 � u�2

1 j ¼ 2;/; T u�2
1 � gammaða; bÞ

(9)

where gj represent unspecified sources or sinks at time j sampled
from normal distributions with zero mean and variance u2

j . t is the
discount factor. The value of the discount factor is selected by
comparing models with identical structures but different discount
factors to identify the value yielding the highest log likelihood
(Lamon et al., 1998b). Discount factors control the relative
weighting of recent observations versus older observations. Based
on recent reports (Sadraddini et al., 2011; Wellen et al., 2012), we
evaluated discounts between 0.9 and 1.0 and selected a value of
t ¼ 0.95 (Congdon, 2007; Lamon et al., 1998b). The parameter u�2

1
was assumed to follow a gamma distribution with parameters a
and b, where ab is the mean of the distribution and ab2 is the
variance. Parameters a and b in the Gamma distributions were
chosen to give the priors a high variance so that the priors are
uninformative and have little effect on the posterior distributions.
2.3.2. SpatioTemporal Parameter Model
The second statistical formulation (STPM) assumes that errors in

the model arise from using static export coefficients (parameter
error), so STPM adds spatially and temporally variable export co-
efficients to account for the discrepancies between the model
predictions and the observations (Fig. 1b). The STPM equation is
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Yi;j ¼ mi;j þ εi;j

mi;j ¼ b0 þ
�
bci;jC þ bui;jCu þ bdDþ bgG

�
exp

�� ki;jti;j
�

εi;j � N
�
0; s2

ε

�
; sε � gammaða; bÞ

(10)

where export coefficients bci,j, bui,j, and ki,j vary among watersheds i
and times j. Each parameter for a particular watershed and time
follows its own independent distribution. We did not model such
variation in bd and bg, because these coefficients were relatively
small in previous analyses (Weller et al., 2011; Weller and Baker,
2014) and in our analyses (see Results). εi,j represents the stochas-
tic error terms of the model in space and time (εi;j � Nð0; s�2

ε
Þ).

STPM adapts an approach used in published load apportionment
models (Gardner et al., 2011; Lu et al., 2013).
2.3.3. Dynamic Parameter Model
The third alternative statistical formulation (DPM) follows

STPM, but does not assume that each cropland parameter has its
own independent distribution. Assuming complete independence
may cause low model efficiency if watershed processes are similar
among watersheds and times. Nearby watersheds could have
similar parameters because they are more alike in soils, land use, or
nutrient management than distant watersheds. Likewise, as ob-
servations become closer in time, model parameter values become
more similar becausemajor environmental drivers (like rainfall and
temperature) that affect the parameters are more similar. There-
fore, we assume that variations in the parameters of DPM are
correlated in space and time (Fig. 1c). The DPM equation is

Li;j � N
�
Yi;j;s

2
�

Yi;j ¼ mi;j þ εi;j

mi;j ¼ b0 þ
�
bci;jC þ bui;jCu þ bdDþ bgG

�
exp

��ki;jt
� (11)

To effectively accommodate the correlations among parameters,
we use a first-order random walk to represent spatial variability
and a DLM to represent temporal variability (as described above),
but replace both xi in Eq. (8) and gj in Eq. (9) with q, which can
represent any of three parameters bc, bu, or k.
Nnobuf ¼ b0 þ bdDþ bgG|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Non�cropland source

þ bcC|{z}
Buffer leakage

þ buCu|fflffl{zfflffl}
Possible removal in restored buffer gaps

þ buðC � CuÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Removal in existing buffers

þ
�
b0 þ bcC þ buCu þ bdDþ bgG

��
1� exp

��kti;j
��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
in�stream removal

þε (13)
2.4. Bayesian calibration

A Markov chain Monte Carlo (MCMC) algorithm was applied to
obtain the predictive uncertainty and summaries of targeted pa-
rameters and predictions for each of the four models. We used the
general Gibbs sampler algorithm implemented in the WinBUGS
software (Lunn et al., 2000). We used three chains of 15,000 iter-
ations, and samples were taken after the MCMC simulation
converged to the true posterior distribution. Convergence was
assessed using the modified Gelman-Rubin convergence statistic
(Brooks and Gelman, 1998). The sequences converged very rapidly
(z1000 iterations). The summary statistics reported in this study
were based on the last 10,000 draws by keeping every 20th
iteration (thin ¼ 20) to avoid serial correlation.

2.5. Model evaluation

To compare overall model strength among the four models and
to identify the best model, we used three metrics: the coefficient of
determination (R2), root mean squared error (RMSE), and the
deviance information criterion (DIC). R2 is a common and intuitive
measure of predictive skill that can be interpreted as the fraction of
variance among the observations that can be explained by a model.
RMSE is a frequently-used measure of the differences between
predicted and observed values, and RMSE aggregates those errors
across time and space into a single measure of predictive power.
DIC balances the tradeoff between goodness of fit and model
complexity with two components: a Bayesian term that measures
goodness of fit and a penalty term for increasing model complexity.

DIC ¼ DðqÞ þ pD (12)

where (DðqÞ) is ameasure ofmodel fit that attains smaller values for
better models and pD measures model complexity as the effective
number of parameters (Spiegelhalter et al., 2002). DIC is the
Bayesian analog of Akaike's Information Criterion (Burnham and
Anderson, 2002), and a smaller DIC value indicates a better
model than a larger DIC value (Spiegelhalter et al., 2002).

2.6. Model application

We analyzed the best of the four calibrated models to predict
stream nitrate levels and to quantify nitrate sources and sinks. The
parameters and predictions of the model can be manipulated to
quantify the sources and sinks within a watershed, including: non-
cropland sources, buffer leakage, possible removal in restored
buffer gaps, removal in existing buffers, and in-stream removal
(Weller et al., 2011; Weller and Baker, 2014). This can be done by
rearranging Eq. (3) and adding a term to represent the nitrate
removed by existing buffers to produce an equation that predicts
Nnobuf, the expected stream nitrate concentration from current land
cover if there were no buffers on cropland (Weller et al., 2011) and
no in-stream removal.
We applied this equation to estimate these components of the
nitrate budget. Weller et al. (2011) provide more details on the
derivation of this equation.

2.7. Proof of concept

2.7.1. Study watersheds
We used a subset of sampling stations from the SERC Ches-

apeake Baywatershed study (Jordan et al., 1997a,1997b;Weller and
Baker, 2014; Jordan et al., 1997b, c; Liu et al., 2000) to fit and
compare the ESERC, ADEM, STPM and DPM models. The nine
selected watersheds (numbers 147, 153, 154, 155, 156, 157.5, 162.5,
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163, and 167) were in the Mattawoman Creek drainage within the
Coastal Plain physiographic province (Fig. 2 in Jordan et al., 2000).
The studywatersheds have differing proportions of agricultural and
non-agricultural land; differing stream network configurations;
and no sewage outfalls, reservoirs, or lakes.
2.7.2. Water sampling
Wemeasured water and nutrient discharges in a previous study

using automated samplers to ensure adequate sampling of partic-
ulate fractions in storm flow (Jordan et al., 1997b). The samplers
monitored stream depth and calculated water flow from rating
curves of flow versus depth (Jordan et al., 1997b). The automated
samplers used Campbell CR10 data loggers to record depth, calcu-
late flow, and control pumps to take samples of streamwater after a
set amount of flow had occurred. Water samples were collected
from the middle of stream. Samples were pumped more frequently
at higher flow rates, up to once every 5 min during storm flow, and
composited for one week to yield weekly volume-integrated water
samples (Jordan et al., 1997b). The nine watersheds were sampled
concurrently for 68 weeks (17 months) from April 20 1998 through
August 2 1999. Nitratewas analyzed by cadmium reductionmethod
(Jordan et al., 1997b).
Table 2
Prior distributions of the parameters. The same prior distributions were used for all
four models (ESERC, ADEM, STPM, and DMP).

Parameter Description Prior distribution

bc Export coefficient for all cropland N(0.56, 3.04)
bu Export coefficient for unbuffered cropland N(10.12, 4.30)
bd Export coefficient for developed land N(0.02, 0.32)
bg Export coefficient for grassland N(0.02 0.26)
k River attenuation coefficient N(0.58, 3.96)
2.7.3. Geographic analysis
Watershed boundaries of the study catchments were delineated

within the ArcGIS 10.2 geographic information system (ESRI, 2011)
by topographic analysis of digital elevation data (30 m National
Elevation Dataset [NED], Gesch et al., 2002) reconciled with digital
stream maps (1:24,000 National Hydrography Dataset [NHD],
Simley and Carswell, 2009) by stream burning with DEM recon-
ditioning. Full details of the watershed delineation are previously
published (Baker et al., 2006b). Land cover proportions (cropland,
developed land, grassland, forest, and wetland) within the study
watersheds (Table 1) were obtained by intersecting the watershed
boundaries with the circa 1990 National Land Cover Dataset (called
NLCD 1992, USEPA, 2007; Vogelmann et al., 1998a, 1998b) within
ArcGIS. Cropland in each watershed was divided into buffered and
unbuffered cropland using flow path analysis of riparian buffer
prevalence (Baker et al., 2006a); an analysis which quantifies buffer
prevalence along the flow paths linking source areas (here crop-
lands) to streams. Briefly, for every cropland pixel (NLCD 1992), we
used the digital elevation model (30 m NED, Gesch et al., 2002) to
identify the steepest descent surface pathway (O'Callaghan and
Mark, 1984) connecting that cropland pixel to a stream (1:24,000
NHD, Simley and Carswell, 2009). We then determined whether or
not each path went through a riparian buffer, which was defined as
forest or wetland land cover (NLCD 1992) overlaying or contiguous
with the stream. The fraction of flow paths that do not pass through
a riparian buffer is the fraction of unbuffered cropland pixels in the
watershed (Table 1). Full details of the flow path analysis as
implemented within ArcGIS are previously published (Baker et al.,
Table 1
Total areas and percentages of land cover types in nine study watersheds. Wetlands (not

Watershed Land area km2 Cropland (%) Unbu

147 2.5 11.2 5.5
153 7.24 1.2 0.1
154 3.67 1.0 0
155 7.49 0 0
156 7.82 3.6 0.8
157.5 7.21 0.7 0
162.5 7.30 2.7 1.0
163 12.51 12.3 2.4
167 5.11 18.9 5.8
2006a; Weller et al., 2011).
2.7.4. In-stream travel time
The in-stream travel times for individual streams were calcu-

lated from weekly average water velocity and flow-path length in
the stream. Weekly velocities (meters/second) were estimated
from drainage area, dimensionless drainage area, slope, flow vol-
ume, and a dimensionless relative flow using a published empirical
relationship fitted to 980 time-of-travel studies in 90 U.S. streams
and rivers that represent a range of sizes, slopes, and channel ge-
ometries (Jobson, 1996):

V ¼ 0:094þ 0:0143�D0 0:919
w *Q

0�0:469
w *slope0:159*Q=Dw

D
0
w ¼

�
D1:25
w *g0:5

�.
Qw

Q
0
w ¼ Q=Qw

(14)

where V is weekly meanwater velocity (m/s), Q is flow (m3/s), Qw is
mean weekly flow (m3/s), Q

0
w is dimensionless relative discharge,

Dw is drainage area (m2), g is the acceleration of gravity (9.8 m/s2),
and D

0
w is dimensionless relative drainage area. The travel time of

pollutant loads to the downstream outlet is calculated as T ¼ L
V

where L is the length of the stream in the watershed. As in other
publishedmodels, we assumed that nitrate entering a stream reach
is subject to loss along half of the stream length on average, cor-
responding to in-stream travel time of T/2 (Lu et al., 2013;
Alexander et al., 2006).
2.7.5. Prior distributions of model parameters
The independent prior distributions of land use export co-

efficients were based on published studies in Chesapeake Bay
drainage (Weller et al., 2011). The prior distribution of the stream
attenuation coefficient (k) was previously compiled from the
worldwide literature (Lu et al., 2013). Because that compilation
included k values from streams with widely different climatic and
physical characteristics, we set the prior boundsmuch broader than
the range of literature values, so that the posterior distributions
were more strongly influenced by the new data than by the priors.
The same prior distributionswere used for all fourmodels (Table 2).
shown) are less than 1% of each watershed, and the remainder is forest (not shown).

ffered cropland (%) Developed land (%) Grassland (%)

31.8 11.3
20.0 6.5
32.4 6.8
8.0 4.0
4.9 4.1
0.3 4.5
54.5 10.0
7.7 19.5
0.7 26.9



Table 3
Posterior parameter means and standard deviations (SD) of the four models.

Parameters ESERC ADEM STPM DPM

Mean SD Mean SD Mean SD Mean SD

bc 0.38 0.17 0.45 0.44 0.56 0.14 1.13 1.65
bu 9.08 0.43 7.83 1.19 10.12 1.87 7.69 4.32
bd 0.22 0.07 0.41 0.19 0.47 0.06 0.52 0.07
bg 0.11 0.16 �0.12 0.21 0.40 0.13 0.47 0.90
k 0.34 0.09 1.22 0.51 0.76 0.46 0.72 1.87

Fig. 3. Predicted versus observed nitrate concentrations for the

Fig. 4. Time series predictions of stream nitrate concentration from four models: a) ESERC;
from April 20, 1998 through August 2, 1999.
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3. Results

3.1. Model comparison and assessment

The posterior parameter means and standard deviations
differed among the models (Table 3). The reported values of the
temporally- and spatially-varying parameters are averages of the
mean and standard deviation values across all simulated water-
sheds and weeks, so the values in Table 3 are comparable among
four models: a) ESERC; b) ADEM; c) STPM; and d) DPM.

b) ADEM; c) STPM; and d) DPM. Each watershed time series shows 68 weeks of data



Table 4
Measures of skill for the four models.

Measure ESERC ADEM STPM DPM

D 815 240.0 165.7 52.2
pD 4.6 77.5 186.7 219.4
DIC 819.6 317.5 352.4 271.6
RMSE 0.245 0.185 0.057 0.028
R2 0.265 0.574 0.972 0.992

Note: D is the posterior mean of deviance, pD is the effective number of parameters,
and DIC is the deviance information criterion.
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models. For all the models, the export coefficient for unbuffered
cropland was much larger than the coefficients for other land uses
(Table 3). The model coefficients for all cropland are much lower
than for unbuffered cropland but greater than the coefficients for
developed land and grassland. The low coefficients of developed
land and grassland indicate minor contributions of these land types
to stream nitrate concentration. Compared to the other models, the
DPM had smallest coefficient for unbuffered cropland, but had the
largest coefficients for the other land types. Allowing model pa-
rameters to vary spatially and temporally substantially changed the
posterior mean values compared to models with static parameters.

Measures of model accuracy indicate that the simple ESERC
model is the poorest model and the DPM is the best. We assessed
model accuracy using plots of observed versus predicted values
(Fig. 3), the R2 statistic, and time-series plots of the data versus the
95% prediction intervals of themodels (Fig. 4). The base ESERC has a
low R2 value (26%) and the 95% prediction interval includes only a
few observations (Fig. 4a). The ADEM explains more than half of the
variability (R2¼ 57%), and the 95% prediction interval includesmost
of the observations (Fig. 4b). The STPM and the DPM explained even
more of the variation (R2 values of 97% and 99%, respectively, Fig. 3);
and most of the observations were within the 95% prediction in-
tervals (Fig. 4c, d). The DPM seems superior to the STPM for three
reasons: the 95% prediction interval of the DPM is much narrower
(Fig. 4c, d), the plot of predictions versus observations (Fig. 3c, d) is
closer to a 1:1 line (slope of 0.95 for the DPM, 0.87 for the STPM),
and the intercept is smaller (0.01 for the DPM, 0.03 for the STPM).

The DPM is also the best model according to the Deviance In-
formation Criterion (DIC, Table 4). Across the series from ESERC
through ADEM to STPM, the effective number of parameters (model
complexity) increased and goodness of fit improved (lower DðqÞ
and higher pD) at each step (Table 4). However, the DIC actually
increased in stepping from the ADEM to the STPM. Although the
STPM fits better than the ADEM (lower RMSE, higher R2), the ADEM
has a lower DIC, suggesting that it may be superior because it is
more parsimonious (lower pD). All the metrics agree that the ESERC
model is the poorest model and the DPM is the best. The weight of
evidence favoring the DPM is overwhelmingdthe DIC difference
between the DIC and the next best model is 45.9, and differences
greater than 10 suggest essentially no empirical support for the
weaker model (Spiegelhalter et al., 2002; Burnham and Anderson,
2002). The DPM is superior despite the additional complexity
introduced by allowing the export coefficients to vary in time and
space (highest pD).
3.2. Spatial and temporal variations of nitrate sources and sinks

We analyzed the results from the best of the alternative models
(the DPM) to understand its implications for quantifying nitrate
sources and sinks and for understanding spatial and temporal
variations in sources and sinks. The model parameters (as esti-
mated by the mean values of their posterior distributions) for in-
stream attenuation (k), all cropland (bc) and unbuffered cropland
(bu) varied greatly among watersheds and among weeks (Fig. 5).
Four watersheds (153, 154, 156, 162.5, and 163) have a strong peak
in the all cropland export coefficient aroundweek number 40 in the
month of January, suggesting a synchronous period of high nitrate
export (Fig. 5a). On the other hand, the cropland coefficient can be
negative, (especially in watersheds 147, 162.5, and 167) suggesting
that cropland sometimes acts as a nitrate sink. The all cropland
coefficients of two watersheds (147 and 156) are less variable than
the coefficients of other watersheds. Across all the watersheds,
values of the all cropland export coefficient are related to stream
flow (R2 ¼ 0.45, P < 0.01, Fig. 6a), suggesting that almost half of the
temporal variability results from variability in weekly stream flow.
Much of the spatial variability (differences among watersheds) in
all cropland coefficients (R2 ¼ 0.73, P < 0.01) and some of the
variability in unbuffered cropland coefficients (R2 ¼ 0.12, P ¼ 0.03)
may be related to the average slope of a watershed (Fig. 7).

The export coefficients of unbuffered cropland (bu) are larger
and less variable than the all cropland coefficients (Fig. 5b). The
temporal and spatial patterns of variation in the unbuffered crop-
land coefficients are similar to the patterns for all cropland co-
efficients, except in watershed 147, which has the lowest and most
temporally variable bu coefficient (Fig. 5b). Stream flow can explain
36% of temporal variability in bu (Fig. 6b, P < 0.01), and the average
watershed slope can explain 73% of spatial variability among wa-
tersheds (Fig. 7, P < 0.01).

The patterns of variability of in-stream attenuation coefficients
(k) are different from the patterns for bc and bu (Fig. 5c). The values
of k ranged from �0.11 to 1.04 across all watersheds and weeks.
Negative values are possible when mineralization exceeds uptake
rate so that the stream becomes a source of nitrate (Seitzinger,
1994). Among the nine watersheds, watershed 147 and 153 have
the smallest in-stream attenuation coefficients, averaging 0.01 and
0.37 d�1, respectively. Amongwatersheds, the average of weekly in-
stream attenuation coefficients has a statistically significant posi-
tive correlation with the average of weekly nitrate concentrations
(R2 ¼ 14%, P ¼ 0.03, Fig. 6b).

We used the DPM to predict the time series of stream nitrate
concentration for each watershed, then we applied Eq. (13) to
quantify the nitrate sources and sinks that lead to the predicted
stream concentration at each watershed in each week (Fig. 8a).
Among the nitrate sinks, in-stream removal is always small,
ranging from 0.01 to 0.27 mg N L�1, while removal in existing
buffers ranges to higher values from 0.01 to 1.29 mg N L�1. Among
the nine watersheds, watersheds 163 and 167 have the greatest
buffer removals (averaging 0.84 and 1.12 mg N L�1, respectively),
largely because they have high cropland and much of that is buff-
ered. The potential for creating additional nitrate removal by
restoring missing buffers between croplands and streams is also
substantial in many watersheds, but generally less than the
removal by existing buffers. Watershed 167 has greatest potential
for additional removal through buffer restoration (0.50 ± 0.12 mg N
L�1). Cropland in watersheds 147 (0.18 ± 0.05 mg N L�1), 163
(0.40± 0.11mg N L�1), and 167 (0.44± 0.18mgN L�1) releasesmore
nitrate than do grassland and developed land. The amounts of ni-
trate released from grassland and developed land in watersheds
153,154,155, and 162.5 aremuchmore than from cropland because
of the high amounts of developed land and grassland in these
watersheds.

Multiplying the predicted concentrations by the measured
weekly water discharge produces estimates of stream nitrate yield
(g N ha�1 week�1). The dominant hydrological signal is the late
winter-early spring flow peak that occurs when evapotranspiration
is low. The high nitrate discharge also coincides with low temper-
atures so that nitrate removal processes are slower. Peaks from
individual storms are superimposed on this dominant seasonal



Fig. 5. Time series of the means of the posterior distributions of bc, bu, and k from the DPM for each study week in each watershed. Each watershed time series shows 68 weeks of
data from April 20, 1998 through August 2, 1999.
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pattern. In the summer, nitrate discharge into streams is low
(Fig. 8b), because flow is low and riparian buffers havemore time to
absorb nitrate when water flow rate is lower. Moreover, high
temperatures can increase denitrification rates in riparian soils and
in riverbeds (Li et al., 2013). In watersheds where non-cropland
dominates nitrate concentrations (watershed 153,154, 155, and
157.5), nitrate yields were also reduced by low water discharge.
Although nitrate concentrationwas also relatively low inwatershed
162.5, nitrate yield was enhanced by higher water discharge.
4. Discussion

4.1. Performance of alternate Bayesian formulations

In interpretingmodel results, we explicitly considered two types
of model error: the observed variability that is not explained by the
model and the uncertainty arising from the model parameters and
the possible misspecification of the model structure (Arhonditsis
et al., 2008; Stow et al., 2007). We compared alternate Bayesian
formulations that can accommodate rigorous and complete error
analysis. Presenting the model output as a probability distribution

y
附注
No unbuffered cropland

y
附注
No unbufferred cropland

y
附注
No unbuffered cropland



Fig. 6. Relationships of parameters bc, bu, and k from the DPM to stream flow and nitrate concentration.

Fig. 7. Relationships of parameters bc and bu from the DPM to average watershed
slope.
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of possible nutrient loads permits the direct estimate of the prob-
ability of exceeding any particular load value. Such a probabilistic
assessment of water quality conveys significantly more information
than a single deterministic prediction. The probabilistic assessment
also supports the percentile-based standards proposed by the U. S.
Environmental Protection Agency (Office of Water, (1997)).

Different representations of the variability and uncertainty
among our models led to different parameter estimates and
different confidence intervals for the same underlying conceptual
model (Table 3). Other Bayesian analyses have also reported such
differences. For example, Arhonditsis et al. (2008) compared three
ways of including multiple error sources in eutrophication models
and reported that the posterior parameter values can be quite
different depending on the assumptions made. Including a
temporally-varying discrepancy term represented by a Gaussian
first-order random-walk process gave relatively narrow credible
intervals and was more informative than the other two ways of
accommodating errors. Wellen et al. (2012) compared two ap-
proaches to accommodating interannual variability of phosphate
loading in the SPARROW model, and they found that DLM tech-
niques had much lower model structural error than a constant
model error variance technique. On the other hand, Gronewold
et al. (2009) presented three different approaches to modeling
variability in two different bacteriawater qualitymodels, and found
that hierarchical models including an additive noise term did not
outperform simple linear models with only an additive noise term.

We used Bayesian analysis to develop probabilistic solutions for
four alternative model formulations. The base ESERC model is an
effective choice for modeling the effects of riparian buffers on ni-
trate concentrations (Weller et al., 2011; Weller and Baker, 2014).
However, the ESERC model does not capture spatial variation in
model parameters among watersheds or temporal variation among



Fig. 8. Time series of the components of predicted nitrate sources and sinks lead to the stream nitrate a) concentration and b) discharge at each watershed in each week. Each
watershed time series shows 68 weeks of data from April 20, 1998 through August 2, 1999.
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weeks of observation. Compared to the ESERC model, the ADEM
achieved higher model accuracy by adding spatial and temporal
variability terms to accommodate structural error in the model. It
was not the best the method in this study, probably because
structural error is not the main cause of uncertainty in the ESERC
model. Structural uncertainty also accounts for a relatively small
component of uncertainty in some hydrological models (Huard and
Mailhot, 2006). The strong performance of the STPM suggests that
parameter uncertainty is the most important source of uncertainty
of the ESERC model. The STPM performed well by representing
spatial and temporal variations in parameters as the main source of
uncertainty, as reported for other models of non-point source
pollution (Lu et al., 2013; Zobrist and Reichert, 2006). The assumed
correlations among parameters in the STPM foster computational
efficiency, so solution times would be much less if the parameters
were independently distributed (Sadraddini et al., 2011; Wellen
et al., 2012).

The DPM emerged as the best model because it realistically
characterized uncertainty and achieved high predictive skill. The
Gaussian first-order random walk model well represents correla-
tions among the error terms of spatial parameters, and its appli-
cation is conceptually similar to a hierarchical DLM (Lamon et al.,
1998a) or a Kalman filter (Meinhold and Singpurwalla, 1983). The
DLM model with a discount factor explicitly recognizes temporal
correlation within the time series of parameters. Gaussian first-
order random walk models and data-driven priors have been
used previously to characterize ecological process (Arhonditsis
et al., 2008; Sadraddini et al., 2011; Wellen et al., 2012). Our
study is the first study to combine the random walk and DLM to
simultaneously characterize spatial and temporal parameter vari-
ability in a water quality model.
4.2. New understanding for nitrate sources and sinks

We compared our DPM results with published results from the
original SERC model in the Coastal Plain province (Weller et al.,
2011; Weller and Baker, 2014). We found similar strong effects of
cropland and riparian buffers on stream nitrate concentrations. The
DPM estimates of developed and grass land exports are low but
slightly higher than the SERC model. This difference may arise
because the SERC model did not accommodate differences in co-
efficients among watersheds within a physiographic province and
used one temporally averaged nitrate concentration value for each
watershed rather than the weekly nitrate time series (Weller et al.,
2011). Our study extended the understanding from the SERC model
by quantifying spatial and temporal variations in nitrate sources
and sinks (Fig. 8).

We found that the nitrate export coefficients for all cropland and
unbuffered cropland rise steeply with increasing stream flow at low
flow rates, but level off at higher flow rates (Fig. 6). Pionke et al.
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(1996) report a similar pattern for other agricultural watersheds in
the Chesapeake drainage. Our results indicate that buffer removal
increased at low stream flow rates and decreased during high flows,
probably because of buffer retention is less effective during the
high flows of storm events. We also found statistically significant
relationships betweenwatershed average slope and the coefficients
for nitrate export from all cropland and from unbuffered cropland
(Fig. 6). Higher slopes may result in higher subsurface flow rates
and in greater amounts of overland flow, which could both reduce
opportunities for uptake and denitrification (Preston and Brakebill,
1999). In-stream attenuation coefficients were quite variable in
space and time (Fig. 5) Stream denitrification, which is the main
mechanism of in-stream attenuation, is known to vary with tem-
perature and with the exchange between the water column and
sediment (Zhao et al., 2015; Burgin and Hamilton, 2007). We found
a statistically significant positive correlation between in-stream
attenuation and nitrate concentration (Fig. 7), which is consistent
with the kinetics of denitrification (Seitzinger, 1988) and with
tracer experiments reporting increasing denitrification with higher
nitrate concentration (Mulholland et al., 2008).

4.3. Directions for future model development and application

We focused initially on cropland because it is the dominant
source of nitrate to streams (Weller et al., 2003), but future appli-
cations could explicitly model spatial and temporal variations in
the developed land coefficient. Such an analysis should include
more watersheds with higher proportions of developed land than
in our proof of concept study here.

We found statistically significant relationships in post hoc ana-
lyses relating model parameters to environmental factors like
watershed slope, stream flow, and nitrate concentration. Future
models could seek to directly incorporate those environmental
variables into the Bayesian hierarchical framework as predictors of
model parameters.

Our analysis quantified prediction uncertainty within the cali-
bration dataset (Fig. 4), but it is also important to understand how
models perform in predicting novel cases outside the training data.
A recent study reports that current approaches to quantifying
predictive model uncertainty remain unsatisfying, but cross vali-
dation or adjustments based on the Watanabe-Akaike information
criterion (WAIC) have some value (Gelman et al., 2014). Future
analysis applying our models (or other Bayesian loading models) in
predictive mode should consider applying these methods.

Finally, we must acknowledge that Bayesian methods are diffi-
cult to learn and are less accessible to many researchers and
environmental managers. Widespread adoption of Bayesian
modeling in water quality management may require training op-
portunities and the development of more user-friendly tools for
developing and applying Bayesian models.

4.4. Management implications

We have demonstrated that including parameter uncertainty
greatly improves model performance; so we suggest that tempo-
rally and spatially variable parameters should be included in export
coefficient models used for management decisions. Our proof of
concept study demonstrated how our best model (DPM) can pro-
vide knowledge to help guide nitrogen management for reducing
stream nitrate levels and nitrate delivery to receiving waters like
Chesapeake Bay. Five of the study watersheds (147, 156, 162.5, 163,
and 167) have relatively high cropland export coefficients (Fig. 5),
so reducing N input in these watersheds will have greater leverage
to reduce overall nitrate delivery.

Our results can also help guide buffer management. Previously,
(Weller et al., 2011; Weller and Baker, 2014) compared buffer ef-
fects on annual average N discharge from watersheds in different
physiographic provinces and suggested that widespread restora-
tion of Coastal Plain buffers could result in significant reductions in
N discharge. Our new results reveal important differences in buffer
effects amongwatersheds within the Coastal Plain. Five watersheds
(147, 156, 162.5, 163 and 167) were very efficient at absorbing ni-
trate (Fig. 6a) due to the effects of buffers. Watershed 147 and 167
also have the greatest potential for further improvement with
buffer restoration, suggesting that buffer restoration there should
have high priority. However, buffer restoration in four watersheds
(153, 154, 155, and 157.5) should have lower priority because of low
nitrate delivery, buffer capacity, and lack of cropland (Fig. 8).

5. Conclusion

We developed and tested a Bayesian hierarchical framework
that accounts for uncertainties in model structure and parameters
and quantifies how they affect the prediction uncertainty of export
coefficient models. The Dynamic Parameter Model (DPM), which
incorporates a first-order random walk to represent spatial corre-
lation among parameters and a dynamic linear model to accom-
modate temporal correlation, was the best of the alternative
models we tested The DPM provided a far better fit, much narrower
prediction intervals, and amuchmore effective tradeoff between fit
and complexity than the alternative models we tested. The DPM
resolves the problems with the basic export coefficient that we
sought to address. We also demonstrated that incorporating
temporally and spatially variability in model parameters can
improve understanding of the nitrate sources and sinks. In partic-
ular, the variability in cropland export coefficients was logically
related to stream flow and watershed slope, while instream
retention coefficients were related to nitrate concentrations. In
management applications, the models can help identify which
watersheds should have priority for buffer restoration efforts and
which watersheds and times are the strongest sources of nitrate
exports. The methods developed here can be broadly applied to
other materials and other watersheds where pollutant sources and
sinks vary spatially and temporally.
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