1 Simultaneous identification of host, ectoparasite and

2 pathogen DNA via in-solution capture

- 3
- 4 Michael G. Campana^{*,1}, Melissa T. R. Hawkins^{*,1,2}, Lauren H. Henson¹, Kristin
- 5 Stewardson¹, Hillary S. Young³, Leah R. Card⁴, Justin Lock¹, Bernard
- 6 Agwanda⁵, Jory Brinkerhoff⁶, Holly D. Gaff⁷, Kristofer M. Helgen², Jesús E.
- 7 Maldonado^{1, 2}, William J. McShea⁴, Robert C. Fleischer^{1,§}
- 8 *Co-first Authors; [§]Corresponding author: fleischerr@si.edu
- 9 ¹Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute,
- 10 3001 Connecticut Avenue NW, Washington, DC 20008, USA
- ²Division of Mammals, National Museum of Natural History, MRC 108, Smithsonian Institution, P.O.
- 12 Box 37012, Washington, DC 20013-7012, USA
- 13 ³Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa
- 14 Barbara, CA 93106, USA
- 15 ⁴Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Rd., Front
- 16 Royal, VA 22630, USA
- 17 ⁵National Museums of Kenya, Box 40658-00100, Nairobi, Kenya
- ⁶Department of Biology, University of Richmond, B322 Gottwald Center for the Sciences, 28
- 19 Westhampton Way, University of Richmond, VA 23173, USA
- 20 ⁷Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
- 21
- 22 Keywords: Ectoparasite, blood meal, pathogen, in-solution capture, DNA, high-throughput
- 23 sequencing
- 24 Running Title: Host, ectoparasite and pathogen capture

25 Abstract

26 Ectoparasites frequently vector pathogens from often unknown pathogen reservoirs to 27 both human and animal populations. Simultaneous identification of the ectoparasite species, 28 the wildlife host that provided their most recent blood meal(s), and their pathogen load would 29 greatly facilitate the understanding of the complex transmission dynamics of vector-borne 30 diseases. Currently, these identifications are principally performed using multiple polymerase 31 chain reaction (PCR) assays. We developed an assay (EctoBaits) based on in-solution capture 32 paired with high-throughput sequencing to simultaneously identify ectoparasites, host blood 33 meals, and pathogens. We validated our in-solution capture results using double-blind PCR 34 assays, morphology, and collection data. The EctoBaits assay effectively and efficiently 35 identifies ectoparasites, blood meals, and pathogens in a single capture experiment, allowing 36 for high-resolution taxonomic identification while preserving the DNA sample for future 37 analyses.

38

39 Introduction

40 Nearly 30% of emerging infectious diseases of humans are vector-borne, with most of 41 these having a wildlife reservoir host (Jones et al. 2008). Ectoparasites are common vectors of 42 pathogen transmission from one host to another, involved in diseases such as Lyme disease 43 (Borrelia burgdorferi), Rocky Mountain spotted fever (Rickettsia rickettsii), malaria 44 (Plasmodium spp.) and anaplasmosis (Anaplasma phagocytophilum), among many others 45 (e.g. Pfäffle et al. 2013; Brites-Neto et al. 2015). Dynamics of disease transmissions are 46 changing at an unprecedented rate due to anthropogenic effects on ecosystems including 47 modification of landscapes, alteration of species distributions, and impacts of human-48 mediated climate change (e.g. Jones et al. 2008; Hoberg & Brooks 2015). In order to

49	understand disease dynamics and the prevalence of specific diseases, intensive field studies
50	are required to collect and screen host and ectoparasite samples for a variety of pathogens
51	(Gilbert & Jones 2000; Lynen et al. 2007; Midilli et al. 2009; Sabatini & Pinter 2010). By
52	monitoring the prevalence and distribution of pathogens across hosts, ectoparasites, and
53	habitats, we can better predict disease spread, improve our understanding of cycles of disease
54	transmission, and better document movement of pathogens through landscapes, with
55	important applications for predicting emergence of zoonoses globally.
56	Researchers exploring the dynamics of vector-borne disease in the field often face
57	multiple challenges in correctly identifying hosts, ectoparasites, and pathogens (Allan et al.
58	2010). Precise morphological identification of hosts and ectoparasites often requires
59	significant taxonomic expertise (e.g. Nadolny et al. 2011; Young et al. 2015a), while
60	molecular techniques are required for accurate and reliable screening of pathogens (Pichon et
61	al. 2003; Nadolny et al. 2011, 2014). Damage to field-collected specimens can complicate
62	taxonomic identification. Furthermore, ectoparasite samples often yield small volumes and
63	low concentrations of extracted DNA (laboratory observations, Allender et al. 2004).
64	Multiple polymerase chain reaction (PCR) assays are thus frequently needed to ensure
65	accurate host and pathogen identification, which can rapidly consume these small quantities
66	of DNA. While multiplex PCR assays can reduce the total number of reactions (e.g. Courtney
67	et al. 2004), these strategies require extensive optimization and the use of expensive reagents
68	(e.g. fluorescent probes) or additional experimental steps (e.g. bacterial cloning). Therefore,
69	efficient molecular screening methods are needed to identify DNAs corresponding to a
70	comprehensive number of potential pathogens as well as a variety of hosts and parasites.
71	DNA capture assays coupled with next generation sequencing are highly suitable for
72	the study of pathogens from a variety of low copy number sources including ectoparasite,

73 non-invasive, museum and ancient samples (Bos et al. 2014, and references therein; Hawkins 74 et al. 2015; Vuong et al. 2013). We developed a method to simultaneously enrich samples 75 from various sources for ectoparasite (primarily ixodid ticks), blood meal, and pathogen 76 DNA. Here we describe an in-solution capture assay (EctoBaits) that, paired with high-77 throughput sequencing, can simultaneously identify a range of ectoparasites, hosts, and 78 pathogen strains from a single library preparation and in-solution hybridization experiment. 79 The EctoBaits assay capitalizes on the wealth of data provided in current DNA barcoding 80 databases to provide accurate species-level taxonomic assignment. While currently limited to 81 northeastern American and East African taxa, the EctoBaits assay can be easily adapted and 82 expanded for other regions of interest.

83

84 Materials and Methods

85 Probe Design

86 With the goal of designing an in-solution capture assay for detecting ectoparasites, 87 blood meals, and pathogens simultaneously, we comprehensively searched public databases 88 (BOLD and Genbank) for sequences from a variety of taxa relevant to ongoing studies in the 89 northeastern United States and East Africa (Table S1), where we are engaged in ongoing 90 fieldwork (Card et al., in revision; Young et al. 2014, 2015a). Both regions are hotspots of 91 vector-borne disease risk (Jones et al. 2008). For ectoparasites, hosts, macroparasites, and 92 eukaryotic pathogens, we targeted mitochondrial genes due to their higher copy number per 93 cell and corresponding increased likelihood of successful enrichment compared to nuclear 94 genes. For bacterial pathogens, we targeted diagnostic regions (such as 16S rRNA, citrate 95 synthase, flagellin and IS1111 spacers) that had been identified as species-specific in previous 96 research (Bai et al. 2011, Eremeeva et al. 1994, Ghafar & Eltablawy 2011, Levin & Fish

97	2000, Mediannikov et al. 2010). The final bait targets included 111 American bird species, 47
98	American mammal species, 108 African mammal species, 84 pathogen strains (59 bacterial
99	strains, 25 eukaryotic strains), 53 hard tick (Ixodidae) species, one soft tick (Argasidae)
100	species, 10 flea species, one sucking louse (Anoplura) species, and one filiarial parasite.
101	Pathogen baits were derived from eight Anaplasma strains, five Babesia strains, seven
102	Bartonella strains, three Borrelia strains, two Coxiella strains, 21 Ehrlichia strains, 11
103	Hepatozoon strains, 17 Rickettsia strains, nine Theileria strains, and one strain of Yersinia
104	pestis (Table S1).
105	To remove overly similar redundant sequences (<10% divergence) from the probe set,
106	the identified sequences were clustered using CD-HIT-EST (Li & Godzik 2006). Clustering
107	the sequences produced a degenerate set designed to capture a wide range of species. The
108	clustered sequences were split into 100 bp pieces for probe synthesis, resulting in 3,901
109	different probe sequences after quality control (Supporting Information). Probes did not
110	overlap and were not tiled. Each probe sequence was copied approximately five times to fill a
111	20,000-probe MYbaits kit (MYcroarray, USA). The effectiveness of the probe set was
112	confirmed by spiking certified pathogen-free chicken (Gallus gallus) and rabbit (Oryctolagus
113	cuniculus) blood with known concentrations of pathogen-specific PCR products and
114	capturing these samples using EctoBaits (see Supporting Information).
115	
116	Field Collection and Sample Selection
117	Specimens were obtained from large ongoing investigations of ectoparasites and

vector-borne diseases in dry tropical savanna ecosystem of Laikipia County, Kenya (0°17'N, 118

119 36°52' E) and forest and suburban ecosystems in Virginia, USA (38°53'15.6" N, 78°9'54.6"

120 W). Ectoparasites were collected between 2010 and 2012 by standardized tick drags (Goddard

121	1992) or by direct removal from live and dead mammalian and avian hosts (methods in Card
122	et al., in revision; Young et al. 2015a, 2015b). All Kenyan ectoparasites were documented
123	photographically for later reference. Virginian ticks were not photographed as these species
124	have been well characterized both morphologically and genetically in previous studies.
125	Samples were stored in 95% ethanol until analysis. Twenty-seven ectoparasites (10 Virginian
126	ticks, 15 Kenyan ticks and two Kenyan fleas) were selected for a 'double blind' system to
127	evaluate the EctoBaits assay (Table 1). Twenty ectoparasites were removed directly from
128	hosts and seven were questing ticks. Most ectoparasite species were identified using
129	morphology and PCR assays (see below). Morphological species identifications were
130	performed with the assistance of taxonomic experts (ticks: Richard Robbins [Armed Forces
131	Pest Management Board], fleas: Katharina Dittmar [State University of New York, Buffalo]).
132	Twelve ectoparasites (KenT01-KenT10, KenF01-KenF02) were directly assessed by
133	taxonomic experts before destruction for DNA analysis, while the remaining 17 (VirT01-
134	VirT10, KenT11-KenT15) were assessed by comparison to identified material. Given
135	difficulties of morphological identification for larval ticks, two of these ectoparasites
136	(KenT07, KenT10) were identified via the strong ecological association between the vectors
137	and their hosts (Table 1). The selected tick samples represented a variety of life stages
138	(nymphal, larval, adult) and feeding conditions (engorged, unengorged but associated with a
139	host, questing on the landscape). The fleas were both adult animals removed from live rodent
140	hosts.
141	
142	Laboratory Methods

143 **DNA Extraction**

144	Prior to extraction, all ethanol was removed from the ectoparasite samples.
145	Ectoparasites were then homogenized dry using a BeadBeater (BioSpec Products, USA).
146	DNA was extracted from the homogenates using Qiagen DNA Tissue kits (Qiagen, USA)
147	following the manufacturer's instructions. An extraction negative was included with every
148	extraction set-up.
149	
150	PCR Assays
151	Ectoparasite species and pathogen infections (Anaplasma, Babesia, Bartonella,
152	Borrelia, Coxiella, Ehrlichia, Hepatozoon, Theileria) were identified using conventional PCR
153	assays. Positive controls, extraction negatives, and no-template controls (containing water
154	instead of DNA) were analyzed in each set-up. Each 25 μ l reaction contained 1× AmpliTaq
155	Gold reaction buffer (Life Technologies, USA), 2 mM MgCl ₂ , 0.2 mM dNTPs, 0.4 μ M each
156	primer, 20 µg BSA, 1U AmpliTaq Gold (Life Technologies, USA) and 2 µl DNA extract.
157	Primer sequences are listed in Table 2. For the ectoparasite cytochrome c oxidase subunit I
158	(cox1) reactions, thermocycling consisted of an initial five minute denaturation step at 95°C,
159	five cycles of 30 seconds at 95°C, 40 seconds at 45°C and one minute at 72°C, 35 cycles of
160	30 seconds at 95°C, 40 seconds at 51°C and one minute at 72°C, and a final ten minute
161	extension step at 72°C. Bartonella, Borrelia, Coxiella, Rickettsia and ectoparasite 16S rRNA
162	assay programs included an initial five minute denaturation of 95°C, 35 (Bartonella, Coxiella,
163	ectoparasite) or 40 (Borrelia, Rickettsia) cycles of one minute at 94–95°C, one minute at
164	annealing temperature (56°C for Bartonella, 60°C for Borrelia and Coxiella, 55°C for
165	<i>Rickettsia</i> , 50°C for ectoparasites) and one minute at 72°C, and a final five minute extension
166	step of 72°C. Thermocycling for the Anaplasma and Ehrlichia assays included an initial five
167	minute denaturation of 95°C, 35 cycles of 30 seconds at 94°C, 30 seconds at annealing

168	temperature (58°C for Anaplasma, 55°C for Ehrlichia), and 30 seconds at 72°C, and a final
169	five minute extension step of 72°C. The apicomplexan assays utilized an initial five minute
170	denaturation of 95°C, 35 (HepF300/HepR900 primer pair) or 40 (BTH-1F/BTH-1R primer
171	pair) of 30 seconds at 94°C, 30 seconds at 60°C, and 45 (HepF300/Hep4900) or 60 (BTH-
172	1F/BTH-1R) seconds at 72°C, and a final five minute extension step of 72°C. Representative
173	subsamples of positive PCR products were sequenced on an ABI 3130 (Life Technologies,
174	USA) following standard protocols. False positives (as assessed by sequencing PCR blanks
175	and extraction controls) were discarded.
176	
177	Library Preparation
178	Single-indexed (22 ectoparasites: VirT01-VirT10, KenT01-KenT10, KenF01-
179	KenF02) and double-indexed (5 ectoparasites: KenT11-KenT15) libraries were prepared
180	using the KAPA Library Preparation Kit – Illumina (KK8201: Kapa Biosystems, USA)
181	following the manufacturer's protocol (Table 1). We included both library and extraction
182	controls for the single-indexed library experiments. We purified products between steps using
183	carboxyl paramagnetic beads (Rohland & Reich 2012). Since 21 of 27 ectoparasite samples
184	had total input DNA of less than 500 ng, 14-16 cycles of indexing PCR were performed to
185	amplify the adapter-ligated DNA fragments.
186	
187	Capture and Sequencing
188	Single-indexed libraries were pooled in groups of eight (62.5 ng each library per
189	capture; 500 ng total library per capture pool) for in-solution hybridization following the
190	MYbaits manufacturer's (MYcroarray, USA) protocol. To test the effects of probe

191 concentration, each multiplexed single-indexed library pool was captured twice: once with a

192	1:5 MYbaits probe dilution (100 ng of probes per capture) and once with a 1:10 dilution (50
193	ng of probes). Since the results between the captures using the two probe dilutions were
194	similar (see "Probe Dilution" below), we refer to the two captures as 'replicates' for
195	simplicity, despite differing in probe concentration. After capture, single-indexed library
196	pools were amplified by 20 cycles of PCR using Illumina adapter sequences and quantified
197	via quantitative PCR. After library amplification, we size-selected library molecules (200-400
198	bp) via agarose gel purification using QIAquick Gel Extraction Kits (Qiagen, USA) following
199	the manufacturer's protocol. Library quality was ensured by visual inspection after agarose
200	gel electrophoresis and analysis using a 2100 Bioanalyzer (Agilent Technologies, USA) high
201	sensitivity DNA chip. Pools were sequenced on a HiSeq 2500 (Illumina, USA) with paired-
202	end 100 bp reads by Macrogen (South Korea).
203	Double-indexed libraries were pooled equally in a group of five (20 ng each library
204	per capture; 100 ng total library per capture pool) and captured using the EctoBaits assay
205	following the manfacturer's instructions. Double-indexed libraries were captured using only a
206	1:10 dilution of the probes since initial experiments found no significant difference between
207	the 1:5 and 1:10 MYbaits probe dilutions (see "Probe Dilution" below). Captured double-
208	indexed libraries were then reamplified by 18 cycles of PCR using Illumina adapter
209	sequences. Adapter artifacts were removed from reamplified captured libraries (keeping all
210	library molecules longer than 200 bp) using QIAEX® II Gel Extraction Kits (Qiagen, USA)
211	following the manufacturer's protocols. Pools were sequenced on a MiSeq (Illumina, USA)
212	with paired-end 150 bp reads.
213	

214 Sequence Quality Control

215	Using Trimmomatic 0.32 or 0.33 (Bolger et al. 2014), we removed adapter sequences
216	and artifacts (maximum seed mismatches 2, palindrome clip threshold 30, simple clip
217	threshold 10) and low quality leading and trailing bases (below PHRED-like quality 3).
218	Additionally, reads were scanned with 4 bp sliding windows and trimmed when average
219	PHRED-like score fell below 15 using Trimmomatic. Trimmed reads below 36 bp were
220	discarded. Paired-end reads were then merged (minimum overlap of 10 bp) using FLASH
221	1.2.11 (Magoč & Salzberg 2011). The merged, unpaired and unmerged reads were
222	concatenated. Unmerged reads were treated as independent in downstream analyses. The
223	sequences were filtered for quality (minimum base quality score 20) using the
224	QualityFilterFastQ.py script (Kircher 2012). PCR duplicates were removed using CD-HIT-
225	DUP 0.5 (Li & Godzik 2006). Final library qualities were checked using FastQC 0.11.2
226	(Andrews, no date).
227	
228	Sequence Identification and Assay Validation
229	The degenerate baits used in EctoBaits precluded identification of species by

alignment against the bait sequences. Therefore, sequences were aligned against the Genbank

231 non-redundant nucleotide database using Megablast (BLAST 2.2.30+: Zhang *et al.* 2000)

under default settings. Megablast identifications were analyzed using MEGAN 5.7 or 5.10

under default parameters (Huson et al. 2011). Empirical estimates suggest that ~2 in 1000

reads are incorrectly assigned to libraries in single-indexed, multiplex-captured Illumina

experiments due to jumping PCR (Kircher et al. 2012). Therefore, to control for jumping PCR

and laboratory contaminants, MEGAN sequence identifications that comprised less than

237 1/1000 of the total quality-control library were filtered out. Resulting pathogen and blood

238 meal DNAs are expected to be sequenced in a lower frequency than those of the ectoparasite

239	due to the composition of the original DNA extract (eg. Che Lah <i>et al.</i> 2015; Bos <i>et al.</i> 2015)
240	so the 1/1000 cut-off is a conservative limit. Additionally, since some libraries had very low
241	sequencing depth (fewer than 10,000 sequences after quality control), taxa were not identified
242	unless there were at least 10 corresponding sequences in the filtered library. Although this
243	step could exclude some true blood meal and pathogen sequences, it was necessary to avoid
244	false positives due to laboratory background and jumping PCR. After filtering, the remaining
245	taxa were cross-referenced against the DNA library and extraction controls to identify
246	suspected contaminants.
247	To validate the assay, each captured library was evaluated against the PCR and
248	ectoparasite morphological results. Putative ectoparasites, blood meal(s) and pathogens were
249	identified using MEGAN, as described below. The metabarcode results were then compared
250	to the expected species based on morphology, data collection and PCR assay data.
251	
252	Ectoparasites
253	Preliminary ectoparasite identifications were determined directly from the MEGAN
254	results. The majority ectoparasite clade (Ixodida versus Insecta in our test samples) was
255	identified for each library (Table S2). Within the majority clade, we identified the genus to
256	which the plurality of genus-specific sequences within the ectoparasite clade belonged. We
257	accepted the plurality genus as the ectoparasite genus if at least 65% of the genus-specific
258	sequences corresponded to the plurality genus (the 'genus confidence'). Similarly, we
259	identified the species to which the plurality of species-specific sequences within the identified
260	genus belonged. We calculated a 'species confidence' by multiplying the genus confidence by
261	the percentage of the sequences within the identified genus corresponding to the plurality
262	species. The species confidence was defined as zero if no sequences were identifiable to

263	species-level. We accepted the plurality species as the ectoparasite species if the species
264	confidence exceeded 65%. We found empirically that a 65% supermajority reliably identified
265	ectoparasite species, while simultaneously excluding spurious Megablast assignments and
266	sample contaminants (Table S6).
267	To refine the preliminary ectoparasite species assignment, all ectoparasite sequences
268	were extracted from the MEGAN results. These were mapped against the cox1 barcoding
269	region (Genbank accession KC488279.1) and a consensus cox1 sequence was determined
270	using Geneious 8.1 (medium sensitivity alignment, 10 alignment iterations) (Biomatters, Ltd.
271	2015). The consensus barcode was then compared against BOLD and Genbank to determine
272	ectoparasite species (with the BOLD-default minimum accepted sequence match percent
273	identity of 97%) (Table S3). Final ectoparasite species assignments were based on a
274	combination of the intial MEGAN and barcode results (Table 3).
275	

276 Blood Meals

277 The blood meal analysis for the identification of a reservoir host is complicated by the 278 possibility that the ectoparasite may not have consumed blood prior to capture (resulting in no 279 identifiable blood meal) or that the ectoparasite may have fed on multiple hosts immediately 280 before capture (resulting in multiple blood meal signatures). In the latter case, ectoparasites 281 may also have fed on multiple closely related species, further complicating identification 282 through MEGAN analysis of Megablast searches. Nevertheless, multiple blood meal 283 signatures are unlikely in ticks since they typically only feed once per molt (Pfäffle et al. 284 2013). Moreover, public databases are biased towards species of economic importance (e.g. 285 domesticates). Blood meals taken from less-commonly analyzed non-model species will often 286 be misclassified as the better-characterized species (e.g. wild canid sequences were frequently

Molecular Ecology Resources

misidentified as domestic dog [Canis familiaris]). Precise blood meal taxonomic
identification is further complicated by nuclear mitochondrial DNA transpositions (numts),
which are common in many mammalian species and degraded DNA samples (Den Tex et al.
2010; Lopez et al. 1994).
To combat these taxonomic biases, preliminary blood meal assignments using
MEGAN were typically determined to order or family level (Table S2). A minority of the
putative blood meals were identifiable to tribe, genus, or species. Non-specific sequences (e.g.
those limited to higher taxonomic clades such as Boreoeutheria) and putative contaminants
(sequences identified in the negative controls) were disregarded as possible blood meals.
Additionally, for the blood meal analyses, we discarded libraries with fewer than 10,000
sequences after quality control since these proved unreliable between replicates.
We then identified the majority blood meal to species by extracting putative blood
meal sequences from the MEGAN results. To maximize the possibility of generating a
useable barcode, we included less informative and potential contaminant sequences that had
been initially discarded from the MEGAN assignment. The extracted sequences were mapped
against the cytochrome c oxidase I (cox1) barcoding region (Genbank accession KC488279.1)
and a consensus blood meal cox1 sequence was determined using Geneious 8.1 (medium
sensitivity alignment, 10 alignment iterations) (Biomatters, Ltd. 2015). The consensus
barcode was then compared against BOLD and Genbank to determine blood meal species
(with a minimum accepted sequence match percent identity of 97%) (Table S3). We identified
a small number of fox (<i>Vulpes vulpes</i>) cox1 sequences in the controls. We therefore discarded
a small number of fox (<i>Vulpes vulpes</i>) <i>cox1</i> sequences in the controls. We therefore discarded barcodes matching <i>Vulpes vulpes</i> unless these results were congruent with the initial MEGAN

S3), so final blood meal assignments for these individuals were based solely on thepreliminary MEGAN results (Table 3).

312

313 Pathogens

314 Pathogens were identified by simple presence/absence after MEGAN sequence 315 filtering. Putative pathogens were identified to family, genus, species or strain depending on 316 sequence specificity (Table 4). Since pathogen sequences were typically expected to be 317 infrequent, we included all pathogen taxa that exceeded the MEGAN sequence filtration 318 described above (see "Sequence Identification and Assay Validation") as putative positive 319 infections. However, we interpreted all pathogen identifications in poorly sequenced single-320 indexed libraries (<50,000 sequences) with caution since we found that these samples were 321 prone to poor sample reproducibility and therefore potentially spurious results.

322

323 **Results and Discussion**

324 EctoBaits efficiently captured target molecules, enriching the libraries for these DNAs 325 by at least 37.4-fold (see Supporting Information; Table S5). Single-indexed libraries yielded 326 between 413 and 562,081 quality-controlled sequences, with similar taxonomic composition between sample replicates (Figure 2). The single-indexed extraction and library controls 327 328 (Sequence Read Archive accessions SRS912001–SRS912002) yielded small quantities of 329 sequences (4,983 quality-controlled sequences for the extraction control using a 1:5 probe 330 dilution, 1,720 sequences for the extraction control using a 1:10 probe dilution, 395 sequences 331 for the library control) that matched common laboratory contaminants (Homo sapiens, Mus 332 *musculus*, Viridiplantae) and cross-contaminants from the other libraries including ticks 333 (Amblyomma americanum, Haemaphysalis sp., Ixodes scapularis, Rhipicephalus sp.),

334	Siphonaptera, hosts (Menetes berdmorei, Ictidomys tridecemlineatus, Vulpes vulpes, Bovidae)
335	and pathogens (Staphylococcus sp., Rickettsia sp., Proteus mirabilis). Double-indexed tick
336	libraries yielded between 12,551 and 42,110 quality-controlled sequences. Both replicate
337	libraries from three individuals (KenT08, KenT09 and KenF02) were excluded from the
338	blood meal analyses due to low sequence count (i.e., below 10,000 quality-controlled
339	sequences). Samples for which fewer than 10,000 quality-controlled sequences were
340	generated could be re-run on another sequencing lane to attempt to obtain the recommended
341	minimum sequences. However, some poor-quality samples may not hybridize as expected,
342	and thus not recover the recommended number of sequences. Composition of taxa identified
343	in each library was dependent on the sample's status rather than the probe dilution (Figure 2).
344	For instance, questing ticks (KenT03, KenT06, KenT11-KenT15) had few identifiable blood
345	meal sequences. Conversely, VirT08 was dominated by blood meal DNA, presumably due to
346	feeding immediately before collection.

348 Ectoparasites

349 The EctoBaits assay correctly identified the ectoparasite as a member of the Ixodida or 350 the Pulicidae in all but one very poor quality flea library (total sequences after quality control 351 = 413) (Table 3). The remaining three flea libraries (representing both individuals) were 352 identifiable to species (Xenopsylla humilis). The assay identified tick ectoparasites to genus in 353 24 of 25 individuals (43 of 45 libraries), which matched the expected genus in all cases (Table 354 3). In addition, 21 ticks (37 libraries) were identifiable to species. This is an improvement 355 over the PCR/morphology approach, which identified only 13 individuals to species reliably 356 (Table 1). Furthermore, the individuals unidentifiable to species by the EctoBaits assay were

357	from Kenya, an area in which ticks remain poorly genetically characterized. The unresolved
358	individuals may be better classified after further taxonomic sampling in the region.
359	In several cases, the MEGAN-based species assignment proved sensitive to the
360	taxonomic representativeness of the sequences curated in public databases. VirT04 was
361	initially identified by morphology as Ixodes scapularis and by PCR assay as Ixodes sp. The
362	MEGAN approach identified the individuals as Ixodes scapularis, in line with the
363	morphological assignment, but the EctoBaits barcode sequence matched BOLD's Ixodes
364	dentatus sequence with very high identity (99.69%). Ixodes dentatus is currently only
365	represented in Genbank by five 5.8S ribosomal RNA sequences. Since these species are
366	closely related, the VirT04 sequences are probably misclassified <i>Ixodes dentatus</i> sequences.
367	Similarly, KenT05 was identified by MEGAN assignment as Ixodes scapularis. As this
368	individual was from Kenya, which is outside the range of Ixodes scapularis, these sequences
369	probably originate from a closely related, unsequenced species.
370	

371 Blood Meals

372 We identified DNA corresponding to blood meals for 15 of 27 individuals (28 of 49 373 libraries). EctoBaits identified 12 individuals' blood meals to species level (Table 3). Of 374 these, 10 individuals were identified to species in both replicate libraries, one individual was 375 identified to genus in the replicate library and one to family in the replicate library. One 376 individual's (VirT01) blood meal was identified reliably to the order level. One questing tick 377 (KenT03) had a small quantity of bovid DNA in one replicate, and another (KenT14) had a 378 small number of sequences matching *Canis*. These may represent the remains of previous 379 blood meals or could derive from contamination (e.g. jumping PCR, laboratory reagents).

380	We noted only one discrepancy between the EctoBaits and the expected results. One
381	tick (VirT10) obtained from a red-tailed hawk (Buteo jamaicensis) was found to have fed on
382	white-tailed deer (Odocoileus virginianus) blood rather than hawk blood. As VirT10 is a
383	black-legged tick (Ixodes scapularis), which commonly feed on deer, this is probably a true
384	result rather than a false positive. Moreover, the swamping out of a hawk blood meal DNA
385	signature by contaminant deer DNA is unlikely since birds have nucleated erythrocytes, while
386	mammals do not. The VirT10 result may be derived from a tick that had recently fed on deer
387	blood and incidentally became associated with a red-tailed hawk before sample collection or
388	from a laboratory error.
389	
390	Pathogens

391 The EctoBaits assay produced highly consistent pathogen results between the 392 EctoBaits sample replicates (Figure 4; Table 5). Pathogen-detection replicability decreased in 393 poorly sequenced single-indexed libraries (< 50,000 quality-controlled sequences) due to 394 reduced power to detect pathogens as well as to exclude contaminant sequences and spurious 395 Genbank assignments (Figures 4 and S2). Ignoring sequencing depth and excluding the five 396 non-replicated double-indexed libraries, EctoBaits identified 42 putative infections to genus 397 level, of which 24 (57%) of were identified in both sample replicates (Tables 4-5). This 398 replication rate is highly biased by *Proteus mirabilis* (see below), which was present in small 399 quantities in the majority of the poorly sequenced Kenyan ectoparasites (Table 4; Figure 4). 400 Moreover, Proteus mirabilis was found to be present in one of the extraction controls, 401 suggesting that some of these may be false positives. Discounting Proteus mirabilis, 22 of 31 402 (71%) of putative infections were confirmed between the two sample replicates (Table 5).

Page 18 of 42

403	The EctoBaits assay's detection ability was comparable to PCR assays for most
404	pathogens (Tables 4-5). Notably, the EctoBaits assay identified more instances of Rickettsia
405	(15 versus seven individuals for the EctoBaits and PCR-assays respectively) and Coxiella
406	(eight versus six individuals) infections compared to the PCR assays (Table 5). However,
407	some Rickettsia results may be false positives given the pathogen's presence in one of the
408	extraction controls and in one of the spiked-blood libraries (Supporting Information).
409	EctoBaits could distinguish between non-pathogenic Coxiella endosymbionts and potentially
410	pathogenic Coxiella strains, which the short (<160 bp) PCR-derived sequences could not
411	(Table 4). Conversely, the EctoBaits assay had reduced ability to detect Ehrlichiaceae
412	(Anaplasma and Ehrlichia) and Hepatozoon infections. EctoBaits detected no Ehrlichiaceae
413	infections, while the PCR assays detected two Anaplasma infections and one Ehrlichia
414	infection. This is presumably due to an insufficient number of high-affinity Ehrlichiaceae-
415	specific baits currently included in the EctoBaits assay. EctoBaits identified two individuals
416	infected with Hepatozoon, while the PCR-assays identified seven individuals (Tables 4-5). In
417	this case, the PCR assays provided species-level taxonomic resolution, while EctoBaits did
418	not (Table 4). Additionally, individual PCR assays may have greater detection sensitivity than
419	EctoBaits for low-level infections (see Supporting Information).
420	We identified several pathogens and a macroparasite in the EctoBaits assay that we
421	had not previously assayed by PCR (Table 4). These included two instances of Francisella
422	tularensis (the causative agent of tularemia), 11 instances of Proteus mirabilis and one
423	Staphylococcus pseudintermedius infection. Francisella tularensis is a well-known tick-borne
424	pathogen (e.g. Pfäffle et al. 2013). Proteus mirabilis has been isolated from African ticks
425	(Omoya et al. 2013). We also identified three instances of the onchocercid filiarial nematode,
426	Onchocerca ochengi, which we include here due to its vector-based transmission and

Molecular Ecology Resources

427	pathogenicity. Onchocercid infections have been previously reported in North American
428	ixodid ticks (Namrata et al. 2014). Furthermore, all Francisella and Staphylococcus instances
429	were replicated between the two dilutions of the libraries, strongly supporting their
430	authenticity. Two each of the Proteus and onchocercid instances were replicated between the
431	two dilutions of the libraries.
432	Since these infections were unexpected, it was necessary to confirm their authenticity
433	in order to rule out the possibility that they were derived from artifacts of the EctoBaits assay.
434	To confirm these newly identified pathogens, we subjected the putatively infected samples
435	(with additional samples included as negative controls) to PCR amplification following
436	previously published protocols (Versage et al. 2003; Bannoehr et al. 2009; Zhang et al. 2013;
437	Namrata et al. 2014). We were able to confirm the three pathogens (Francisella tularensis,
438	Proteus mirabilis and Staphylococcus pseudintermedius) using these PCR assays. The PCR
439	assays for onchocercid filiarial disease exhibited non-specific amplification using published
440	primer sets. Further investigation would be required to confirm the onchocercid assay results.
441	The novel infections probably hybridized with non-specific probes from related
442	organisms included in the assay. This is not unexpected, as some studies have noted
443	hybridization with up to 19% divergence from probe sequences (Hawkins et al. 2015) and
444	hybridization arrays designed from modern strains can capture divergent ancient pathogen
445	genomes (e.g. Bos et al. 2015).
446	

447 Assay Validation and Optimization

448 Library Sequence Depths

449 There was a significant, but non-linear, relationship between single-indexed library 450 sequence-depth and identification confidence (Spearman's $\rho = 0.642$, two-tailed $p = 2.68 \times$

451	10^{-5} for genus; $\rho = 0.554$, $p = 9.62 \times 10^{-5}$ for species). However, we observed a pattern of
452	diminishing returns of phylogenetic information with increasing sample sequence depth.
453	Therefore, in order to maximize cost and time efficiency, it is critical to optimize the sample
454	sequence depth. We plotted species and genus confidence versus sequence depth (Figure 3)
455	and fit logarithmic regression curves to these data. We excluded the double-indexed libraries
456	from these comparisons due to their differing library construction and sequencing chemistry.
457	For a minimum 65% species confidence (84% genus confidence), our model predicted that
458	88,429 sequences were required. Increasing the sequence depth beyond this point produced
459	minimal benefit. For instance, 399,308 sequences were required to obtain an 80% species
460	confidence. Conversely, we found that libraries that had fewer than 10,000 and 50,000
461	sequences after quality control were difficult to analyze for blood meals and pathogens
462	respectively due to background noise and capture stochasticity. Caution is therefore required
463	to ensure erroneous calls are not made when analyzing low-depth libraries. We recommend a
464	target sequence depth of ~90,000 sequences per sample to ensure high-quality identifications
465	and maximize sample throughput. Additionally, replicating each library helps ensure
466	identification reliability and sensitivity. Samples which yielded fewer than 10,000 sequences
467	may require a second enrichment without multiplexing in order to remove competition for
468	bait sequences. We recommend that EctoBaits budgets include an additional 20-30% to cover
469	the samples that require individual enrichment.

471 **Probe Dilution**

472 Increasing the probe concentration did not improve capture of identifiable sequences.

473 There were no differences in terms of sequence yield, ectoparasite genus confidence or

474 ectoparasite species confidence (two-tailed paired t-tests, p > 0.05 in all cases). The two

475	dilutions identified putative blood meals equally accurately (Table S2, Figure 3). We
476	therefore recommend that 1:10 dilution of probes be used for future capture assays to
477	minimize laboratory costs.
478	
479	EctoBaits Cost Comparison
480	The EctoBaits assay permits a higher throughput of samples, with a lower per-sample
481	cost, than traditional PCR and Sanger sequencing strategies. A single PCR assay (including
482	Sanger sequencing) costs ~\$20 per sample. Thus, the 12 PCR assays used here (including the
483	pathogens identified initially via EctoBaits) costs ~\$240 per sample. The in-solution capture
484	costs ~\$50 per sample (based on 1:10 dilution of the probes and 200,000 paired-end reads on
485	an Illumina MiSeq) and is completed within a single experiment.
486	
487	Future Improvements of the EctoBaits Assay
488	Currently, the EctoBaits assay is primarily restricted to the analysis of ixodid ticks and
489	a limited sampling of flea taxa. For future improvements of the EctoBaits design, we propose
490	to add probes for increased ectoparasite taxonomic coverage (such as argasid ticks, additional
491	fleas, mites, lice, and mosquitoes). The assay currently omits viral diseases (such as tick-
492	borne encephalitis) and only includes one filarial disease. Future revisions of the assay will
493	increase the probe density for anaplasmosis and ehrlichiosis, which we found to be poorly
494	captured by the current assay. Additional species-specific Hepatozoon probes will also
495	improve Hepatozoon detection and taxonomic resolution.
496	Jumping PCR artifacts complicated identification of blood meals and pathogens in
496 497	Jumping PCR artifacts complicated identification of blood meals and pathogens in low-sequencing-depth libraries (<10,000 and <50,000 sequences for blood meals and
496 497 498	Jumping PCR artifacts complicated identification of blood meals and pathogens in low-sequencing-depth libraries (<10,000 and <50,000 sequences for blood meals and pathogens, respectively). Jumping PCR occurs when molecules of two independent origins

499	switch templates during PCR and create a chimeric molecule of hybrid origin. In the low-
500	coverage libraries, we identified sequences that clearly derived from other libraries even after
501	sequence filtration. Additionally, background laboratory contamination in the low-coverage
502	libraries was difficult to exclude since contamination levels were relatively constant across
503	the libraries (rather than proportional to sequence depth). Other studies have found jumping
504	PCR to be a problem for multiplexed high-throughput sequencing experiments, particularly
505	with single-indexed libraries (Kircher et al. 2012; Hawkins et al. 2015). To mitigate jumping-
506	PCR artifacts, we recommend double-indexed sequencing in the future usage of the assay and
507	increased sequence sequence depth to ensure that any remaining sequences are filtered out of
508	the final dataset.
509	Increasing numbers of sequences deriving from non-model organisms in public
510	databases such as Genbank and BOLD will also improve the genetic identification of
511	ectoparasites and blood meals. Genetic data are limited for many of the taxa included in this
512	study. Currently, EctoBaits more accurately identifies North American than African taxa,
513	mostly due to bias in genomic sampling (ticks identified to species: 90% of Virginian ticks
514	versus 67% of Kenyan ticks; blood meals identified to species: 80% of Virginian ticks versus
515	44% of Kenyan non-questing ticks; Table 3). Furthermore, due to stochasticity during DNA
516	extraction, library preparation, and in-solution capture, we recommend that researchers
517	replicate and validate putative positive pathogen results from the current version of the
518	EctoBaits assay.
519	Finally, little is known about blood meal DNA taphonomy. Research is needed to test
520	how long after feeding EctoBaits can detect a blood meal and whether EctoBaits can detect
521	previous blood in ectoparasites that feed only once per life stage. We also have yet to

stablish whether there are differences in pathogen and blood meal detectability acrossdevelopmental stages of ectoparasites.

524

525 **Conclusions**

526 The EctoBaits assay is an accurate, efficient and effective method to identify 527 northeastern American and east African ectoparasites and their most recent blood meals while 528 simultaneously screening them for various pathogens. It provides data comparable to a 529 multitude of PCR assays while consuming only a fraction of the DNA samples that can be 530 utilized for many more assays and future analyses. EctoBaits can also identify unknown 531 pathogens that would otherwise be overlooked using a targeted PCR-based approach. 532 However, EctoBaits is prone to false positives (especially for *Rickettsia* sp. and *Proteus* 533 *mirabilis*) and is currently limited to ixodid ticks and several flea taxa. Furthermore, its ability 534 to identify remnant blood meals in unengorged questing ticks is limited. We demonstrate the 535 utility of EctoBaits for studies dealing with disease transmission in the eastern United States 536 and East Africa using a single enrichment for identification of the host, parasite and pathogen. 537 The assay's power will only improve with the increased comprehensiveness of sequence 538 databases. The time and cost required to identify the same (and in some cases more) 539 pathogens are much lower using EctoBaits than multiple PCRs. Finally, EctoBaits allows for 540 the documentation of multiple hosts and mixed infections of pathogens. 541

542 Acknowledgements

543 MY croarray assisted with quality control steps for the bait production (J-M Rouillard).
544 Logistical support and testing of these probes occurred in the Center for Conservation and
545 Evolutionary Genetics with assistance from Nancy McInerney. Brian Allan, Lorenza Beatti,

546 Katharina Dittmar, Ralph Eckerlin, Ashley Hintz, John Montinieri, Richard Robbins, and

- 547 Serena Zhao helped in collection, preparation and identification of the ectoparasites. We are
- 548 grateful for the assistance of Patrick Jansen, Margaret Kinnaird, Allen Richards, and Chelsea
- 549 Wright throughout this project. We thank the Smithsonian Grand Challenges Biodiversity
- 550 Consortium, the Smithsonian DNA Barcode Network, the Morris Animal Foundation
- 551 (D14ZO-308), the National Geographic Society (8846-10), the Smithsonian Institution
- 552 Women's Committee (SWC 22 and SWC 44), and the Center for Conservation and
- 553 Evolutionary Genetics for funding. We thank the Kenya Wildlife Service, National Museums
- 554 Kenya, and Mpala Research Centre for logistical support and permission to conduct this
- 555 research.
- 556

557 **References**

730-4.

Allan BF, Goessling LS, Storch GA, Thach RE (2010) Blood meal analysis to identify
reservoir hosts for *Amblyomma americanum* ticks. *Emerging Infectious Diseases*, 16, 433–40.
Allender C, Easterday WR, Van Ert MN, Wagner DM, Keim P (2004) High-throughput
extraction of arthropod vector and pathogen DNA using bead milling. *BioTechniques*, 37,

- 563
- 564

Andrews S (n.d.) FastQC: a quality control tool for high throughput sequence data. Version 0.11.2. (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Downloaded December 2014.

- 567 568 Bai V Ka
- Bai Y, Kosoy M, Recuenco S *et al.* (2011) *Bartonella* spp. in bats, Guatemala. *Emerging Infectious Diseases*, 17, 1269–72.
- Bannoehr J, Franco A, Iurescia M, Battisti A, Fitzgerald JR (2009) Molecular diagnostic
 identification of *Staphylococcus pseudintermedius*. *Journal of Clinical Microbiology*, 47,
 469–71.
- 574

576

- 575 Biomatters, Ltd. (2015) Geneious 8.1.
- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina
 sequence data. *Bioinformatics*, **30**, 2114–20.
- 580 Bos KI, Jäger G, Schuenemann VJ *et al.* (2015) Parallel detection of ancient pathogens via
- array-based DNA capture. Philosophical Transactions of the Royal Society B Biological
- 582 *Sciences*, **370**, 20130375.

583	
584	Brites-Neto I Roncato Duarte KM Fernandes Martins T (2015) Tick-borne infections in
585	human and animal population worldwide Veteringry World 8 301_15
505	numan and animal population worldwide. <i>Vetermary World</i> , 6 , 501–15.
500	Cond LD McShoo WI Colohness IM at al (in novision) Manning the interaction naturally for
587	Card LR, McShea w J, Calabrese JM <i>et al.</i> (in revision) Mapping the interaction network for
588	pathogen-tick-host interactions in Virginia. <i>Journal of Medical Entomology</i> .
589	
590	Che Lah EF, Yaakop S, Ahamad M, Md Nor S (2015) Molecular identification of blood meal
591	sources of ticks (Acari, Ixodidae) using cytochrome b gene as a genetic marker. ZooKeys,
592	478 , 27–43.
593	
594	Courtney JW, Kostelnik LM, Zeidner NS, Massung RF (2004) Multiplex real-time PCR for
595	detection of Anaplasma phagocytophilum and Borrelia burgdorferi. Journal of Clinical
596	<i>Microbiology</i> , 42 , 3164–8.
597	
598	Criado-Fornelio A. Martinez-Marcos A. Buling-Saraña A. Barba-Carretero JC (2003)
599	Molecular studies on <i>Babesia Theileria</i> and <i>Hepatozoon</i> in southern Europe Part I
600	Enizontiological aspects Veterinary Parasitology 113 189–201
601	Epizootological aspects. <i>Fotol mary 1 al astrology</i> , 110 , 109–201.
602	Den Tex RI Maldonado IF. Thorington R. Leonard IA (2010) Nuclear copies of
602	mitochondrial ganas: another problem for ancient DNA <i>Genetica</i> 138 070 84
604	intochondrial genes, another problem for ancient DNA. <i>Genetica</i> , 136 , <i>373</i> –64.
004 605	Framerica M. V. V. Decult D. (1004) Differentiation among an attach favor aroun rightettaine
605	Eremeeva M, Yu X, Raout D. (1994) Differentiation among spotted lever group ficketistae
606	species by analysis of restriction fragment length polymorphism of PCR-amplified DNA.
607	Journal of Clinical Microbiology, 32 , 803–10.
608	
609	Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of
610	mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.
611	<i>Molecular Marine Biology and Biotechnology</i> , 3 , 294–9.
612	
613	Ghafar MW, Eltablawy NA (2011) Molecular survey of five tick-borne pathogens (Ehrlichia
614	chaffeensis, Ehrlichia ewingii, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato
615	and Babesia microti) in Egyptian farmers. Global Veterinaria, 7, 249–55.
616	
617	Gilbert L, Jones LD, Hudson PJ, Gould EA, Reid HW (2000) Role of small mammals in the
618	persistence of Louping-ill virus; field survey and tick co-feeding studies. <i>Medical and</i>
619	Veterinary Entomology, 14, 277–82.
620	
621	Goddard I (1992) Ecological studies of adult <i>Ixodes scapularis</i> in central Mississippi
622	questing activity in relation to time of year, vegetation type, and meteorologic conditions
622	Journal of Medical Entomology 29 501–506
624	Journal of medical Entomology, 27, 301–300.
024 625	Hawking MTR Hofman CA Callierate T at al (2015) In solution hybridization for
626	mammalian mitoganama anriahmant: prog. and shallangag associated with multiplaying
020	harmanan mitogenome emicinient, pros, cons, and chanenges associated with multiplexing
627	degraded DINA. Molecular Ecology Resources, DOI: <u>http://dx.doi.org/10.1111/1/55-</u>
628	<u>0998.12448</u> .

630 Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: 631 DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes 632 fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 633 **101**, 14812–7. 634 635 Hoberg EP, Brooks DR (2015) Evolution in action: climate change, biodiversity dynamics 636 and emerging infectious disease. Philosophical Transactions of the Royal Society of London 637 B: Biological Sciences, 370. 638 639 Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of 640 environmental sequences using MEGAN4. Genome Research, 21, 1552-60. 641 642 Jones KE, Patel NG, Levy MA et al. (2008) Global trends in emerging infectious diseases. 643 Nature, 451, 990-3. 644 645 Kircher M (2012) Analysis of high-throughput ancient DNA sequencing data. Methods in 646 *Molecular Biology*, **80**, 197–228. 647 648 Kircher M, Sawyer S, Meyer M (2012) Double indexing overcomes inaccuracies in multiplex 649 sequencing on the Illumina platform. *Nucleic Acids Research*, **40**, e3. 650 651 Levin ML, Fish D (2000) Acquisition of coinfection and simultaneous transmission of 652 Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis ticks. Infections and 653 Immunity, 68, 2183-6. 654 655 Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of 656 protein or nucleotide sequences. Bioinformatics, 22, 1658-9. 657 658 Lopez JV, Yuhki N, Masuda R, Modi W, O'Brien SJ (1994) Numt, a recent transfer and 659 tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. 660 Journal of Molecular Evolution, **39**, 174–90. 661 662 Lynen G, Zeman P, Bakuname C et al. (2007) Cattle ticks of the genera Rhipicephalus and 663 Amblyomma of economic importance in Tanzania: distribution assessed with GIS based on an 664 extensive field survey. Experimental and Applied Acarology, 43, 303-19. 665 666 Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve 667 genome assemblies. Bioinformatics, 27, 2957-63. 668 669 Mediannikov O, Fenollar F, Socolovschi C et al. (2010) Coxiella burnetii in humans and ticks 670 in rural Senegal. PLoS Neglected Tropical Diseases, 4, e654. 671 672 Midilli K, Gargili A, Ergonul O et al. (2009) The first clinical case due to AP92 like strain of 673 Crimean-Congo hemorrhagic fever virus and a field survey. BMC Infectious Diseases, 9, 90. 674 675 Nadolny RM, Wright CL, Hynes WL, Sonenshine DE, Gaff HD (2001) Ixodes affinis (Acari: 676 Ixodidae) in southeastern Virginia and implications for the spread of *Borrelia burgdorferi*, the

agent of Lyme disease. *Journal of Vector Ecology*, **36**, 464–7.

678	
679	Nadolny RM Wright CL Sonenshine DE Hynes WL Gaff HD (2014) Ticks and spotted
680	fever group rickettsiae of southeastern Virginia <i>Ticks and Tick-Borne Diseases</i> 5 53–7
681	
682	Namrata P. Miller I. Shilpa M et al. (2014) Filarial nematode infection in Ixodes scanularis
683	ticks collected from southern Connecticut Veteringry Sciences 1 5-15
601	ticks concered from southern connecticut. <i>Veter mary Sciences</i> , 1, 5–15.
60 4	Omore OF Kally DA Algingarya FA (2012) Impact of algotromagnetic field on the
005	onloya, OF, Keny DA, Akinyosoye FA (2013) impact of electronagnetic field on the
000	(<i>Dhinisenhalua decelerature</i>) African Journal of Distochusless, 12 , 4682, 00
007	(<i>Rnipicephalus aecoloralus</i>). African Journal of Biolechnology, 12 , 4083–90.
688	$DC^{*}CI = M + L^{*} + L^{*} + M + M + L^{*} + CV + D + (2012) + T + L^{*} + CV + L + L^{*} $
689	Prartie M, Littwin N, Muders SV, Petney TN (2013) The ecology of tick-borne diseases.
690	International Journal of Parasitology, 43, 1059–77.
691	
692	Pichon B, Egan D, Rogers M, Gray J (2003) Detection and identification of pathogens and
693	host DNA in unfed host-seeking <i>Ixodes ricinus</i> L. (Acari: Ixodidae). <i>Journal of Medical</i>
694	<i>Entomology</i> , 40 , 723–31.
695	
696	Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for
697	multiplexed target capture. Genome Research, 22, 939–46.
698	
699	Sabatini GD, Pinter A, Nieri-Bastos FA, Marcili A, Labruna MA (2010) Survey of ticks
700	(Acari: Ixodidae) and their Rickettsia in an Atlantic rain forest reserve in the State of São
701	Paulo, Brazil. Journal of Medical Entomology, 47, 913–6.
702	
703	Ujvari B, Madsen T, Olsson M (2004) High prevalence of <i>Hepatozoon</i> spp. (Apicomplexa,
704	Hepatozoidae) infection in water pythons (<i>Liasis fuscus</i>) from tropical Australia. Journal of
705	Parasitology, 90, 670–2.
706	
707	Versage JL, Severin DDM, Chu MC, Petersen JM (2003) Development of a multitarget real-
708	time TagMan PCR assay for enhanced detection of <i>Francisella tularensis</i> in complex
709	specimens Journal of Clinical Microbiology 41 5492–9
710	
711	Vuong N-M Villemur R Payment P <i>et al.</i> (2013) Fecal source tracking in water using a
712	mitochondrial DNA microarray Water Research 47 16–30
713	intoenondruu Divit interodituy. <i>Pruter Research</i> , 47, 10-50.
714	Voung HS, Dirzo R, Helgen KM at al. (2014) Declines in large wildlife increase landscape-
715	level prevalence of rodent horne disease. Proceedings of the National Academy of Sciences of
715	the United States of America 111, 7036 A1
710	the Onlied States of America, 111, 7050-41.
/1/ 710	Voung US Dirzo P. McCoulay DL at al. (2015a) Drivers of intensity and provalence of flee
/10 710	roung HS, Dirzo K, McCauley DJ et al. (2013a) Dirvers of Intensity and prevalence of free
719	parasitism on small mammals in East African savanna ecosystems. <i>Journal of Parasitology</i> ,
720	101, 327–35.
/21	
122	roung HS, McCauley DJ, Dirzo K <i>et al.</i> (2015b) Context-dependent effects of large wildlife
123	declines on small-mammal communities in central Kenya. <i>Ecological Applications</i> , 25, 348–
/24	ου.
725	

- 726 Zhang W, Niu Z, Yin K, Liu P, Chen L (2013) Quick identification and quantification of
- 727 Proteus mirabilis by polymerase chain reaction (PCR) assays. Annals of Microbiology, 63,
- **728** 683–9.
- 729
- 730 Zhang Z, Schwartz S, Wagner L Miller W (2000) A greedy algorithm for aligning DNA
- 731 sequences. Journal of Computational Biology, 7, 203–14.
- 732

733 Data Accessibility

- 734 Sanger DNA sequences: Genbank accessions KR262473-KR262493, KR262495-
- 735 KR262508, KR262510–KR262515, KT956186–KT956194
- 736 Illumina DNA sequences: BioProject PRJNA281123
- 737 EctoBaits probe sequences: online supporting information (SuppInfo_EctoBaits_Probes.fa)

 Tables and Figure Captions

 Table 1: Ectoparasites selected to evaluate the EctoBaits capture assay. Parasites identified by their strong ecological association with their hosts (rather than morphology) are denoted with an asterisk (*). Sequence Read Archive accession numbers are given for each sample.

Ectoparasite	Source	Morphology/Ecology	PCR Species	Life Stage	Source	Accession
VirT01	Virginia	Ixodes brunneus	Ixodes scapularis/dammini	Adult/Nymph	Thryothorus ludovicianus	SRS911751
VirT02	Virginia	Dermacentor variabilis		Adult	Didelphis virginiana	SRS911765
VirT03	Virginia	Amblyomma americanum	Amblyomma americanum	Nymph	Vulpes vulpes	SRS911766
VirT04	Virginia	Ixodes scapularis	Ixodes minor/affinis	Adult	Sylvilagus floridanus	SRS911768
VirT05	Virginia	Amblyomma americanum	Amblyomma americanum	Nymph	Odocoileus virginianus	SRS911769
VirT06	Virginia	Dermacentor variabilis	Dermacentor variabilis	Adult	Vulpes vulpes	SRS911770
VirT07	Virginia		Ixodes cookei/banksi	Larva	Marmota monax	SRS911850
VirT08	Virginia	Dermacentor variabilis	Dermacentor variabilis	Adult	Vulpes vulpes	SRS911851
VirT09	Virginia	Ambylomma americanum	Amblyomma americanum	Adult	Odocoileus virginianus	SRS911852
VirT10	Virginia	Ixodes brunneus	Ixodes scapularis/dammini	Nymph	Buteo jamaicensis	SRS911933
KenT01	Kenya	Rhipicephalus sp.	Rhipicephalus sp.	Adult	Lycaon pictus	SRS911935
KenT02	Kenya	Rhipicephalus sp.	Rhipicephalus sp.	Adult	Lycaon pictus	SRS911936
KenT03	Kenya	Rhipicephalus pulchellus	Rhipicephalus pulchellus	Adult	Questing Tick	SRS911939
KenT04	Kenya	<i>Ixodes</i> sp.	<i>Ixodes</i> sp.	Nymph	Elephantulus rufescens	SRS911941
KenT05	Kenya	<i>Ixodes</i> sp.	<i>Ixodes</i> sp.	Nypmh	Elephantulus rufescens	SRS911942
KenT06	Kenya	Rhipicephalus pulchellus	Rhipicephalus pulchellus	Adult	Questing Tick	SRS911957
KenT07	Kenya	Haemophysalis leachii*	Ixodidae	Nymph	Mastomys natalensis	SRS911983
KenT08	Kenya		Rhipicephalus sp.	Nymph	Aethomys hindei	SRS911984
KenT09	Kenya	Rhipicephalus pravus	Rhipicephalus sp.	Nymph	Elephantulus rufescens	SRS911994
KenT10	Kenya	Haemophysalis leachii*		Nymph	Acomys percivali	SRS911996
KenT11	Kenya	Rhipicephalus pravus		Adult	Questing Tick	SRS1133052
KenT12	Kenya	Rhipicephalus pulchellus	Rhipicephalus sp.	Adult	Questing Tick	SRS1133057
KenT13	Kenya	Rhipicephalus praetextatus	Rhipicephalus pravus	Adult	Questing Tick	SRS1133060
KenT14	Kenya	Rhipicephalus praetextatus		Adult	Questing Tick	SRS1133069
KenT15	Kenya	Rhipicephalus praetextatus	Rhipicephalus pulchellus	Adult	Questing Tick	SRS1133099
KenF01	Kenya	Xenopsylla sp.	Pulicidae	Adult	Gerbilliscus robustus	SRS911999
KenF02	Kenya	Xenopsylla sp.	Pulicidae	Adult	Gerbilliscus robustus	SRS912000

743 **Table 2:** Polymerase chain reaction assay primers. Primer names are listed with the sequences.

Target	Locus	Forward $(5' \rightarrow 3')$	Reverse (5'→3')	Reference
	Cytochrome c	HC02198: TAA CTT CAG GGT	LC01490: GGT CAA CAA	
Ectoparasite	oxidase subunit I	GAC CAA AAA TCA	ATC ATA AAG ATA TTG G	Folmer et al. 1994
	Cytochrome c	LEPF1: ATT CAA CCA ATC	LEPR1: TAA ACT TCT GGA	
Ectoparasite	oxidase subunit I	ATA AAG ATA TTG G	TGT CCA AAA ATC A	Hebert et al. 2004
		16s+1: CTG CTC AAT GAT	16s-1: GTC TGA ACT CAG	
Ectoparasite	16S rRNA	TTT TTA AAT TGC TGT	ATC AAG T	Nadolny et al. 2011
		E1: GGC ATG TAG GCG GTT	E2: CCC CCA CAT TCA	
Anaplasma	16S rRNA	CGG TAA GTT	GCA CTC ATC GTT TA	Ghafar & Eltablawy 2011
		BhCS871.p: GGG GAC CAG	BhC1137.n: AAT GCA AAA	
Bartonella	Citrate synthase	CTC ATG GTG G	AGA ACA GTA AAC A	Bai et al. 2011
	-	FLA297: CGG CAC ATA TTC	FLA652: CCT GTT GAA	
Borrelia	Flagellin	AGA TGC AGA CAG	CAC CCT CTT GAA CC	Levin & Fish 2000
	-	CbISF: CAA GAA ACG TAT	CbISR: CAC AGA GCC ACC	
Coxiella	IS1111 spacers	CGC TGT GGC	GTA TGA ATC	Mediannikov et al. 2010
	-	HE1F: CAA TTG CTT ATA	HE3R: TAT AGG TAC CGT	
Ehrlichia	16S rRNA	ACC TTT TGG TTA TAA AT	CAT TAT CTT CCC TAT	Ghafar & Eltablawy 2011
	Insertion		ISFTu2R: TGA GTT TTA	-
	element-like	ISFTu2F: TTG GTA GAT CAG	CCT TCT GAC AAC AAT	
Francisella	sequence	TTG GTG GGA TAA C	ATT TC	Versage et al. 2003
		ureRF1: GGT GAG ATT TGT	ureRR1: ATA ATC TGG	
Proteus	ureR gene	ATT AAT GG	AAG ATG ACG AG	Zhang <i>et al.</i> 2013
	120-kDa protein	BG1-21: GGC AAT TAA TAT	BG2-20: GCA TCT GCA	
Rickettsia	antigen gene	CGC TGA CGG	CTA GCA CTT TC	Eremeeva et al. 1994
		pta fl: AAA GAC AAA CTT	pta r1: GCA TAA ACA AGC	
Staphylococcus	pta gene	TCĀ GGT AA	ATT GTA CCG	Bannoehr et al. 2009
		HepF300: GTT TCT GAC CTA	HepR900: CAA ATC AAG	
Apicomplexa	18S rRNA	TCA GCT TTC GAC G	AAT TTC ACC TCT GAC	Ujvari <i>et al</i> . 2004
		BTH-1F: CCT GMG ARA CGG	BTH-1R: TTG CGA CCA	Criado-Fornelio et al.
Apicomplexa	18S rRNA	CTA CCA CAT CT	TAC TCC CCC CA	2003
	18S rRNA, 5.8S	FL1: TTC CGT AGG TGA ACC	ITSR: ACC CTC AAC CAG	
Filariae	rRNA, internal	TGC	ACG TAC	Namrata et al. 2014

		transcribed			
		spacer			
			Oncho12SF: TGA CTG ACT	Oncho12SR: AAT TAC TTT	
	Onchocercidae	12S rRNA	TTA GAT TTT TCT TTG G	CTT TTC CAA TTT CAC A	Namrata et al. 2014
744					

Table 3: Comparison of final EctoBaits ectoparasite and blood meal identifications compared to those expected from morphology and PCR

assays. The 'Sequences' column lists the total number of quality-controlled sequences analyzed for each library. Samples that either had
 too few sequences for reliable blood meal identification or had no identifiable blood meal are noted. Sample replicates are clustered

too few sequences for reliable blood meal identification or had no identifiable blood meal are noted. Sample replicates are clu together with the varying probe dilutions distinguished by a terminal 'a' (1:5 probe dilution) or 'b' (1:10 probe dilution).

Library	Source	Sequences	EctoBaits Ectoparasite	Expected Ectoparasite	EctoBaits Blood Meal	Expected Blood Meal
VirT01a	Virginia	243,731	Ixodes scapularis	Ixodes sp.	Passeriformes	Thryothorus ludovicianus
VirT01b	Virginia	181,457	Ixodes scapularis	<i>Ixodes</i> sp.	Passeriformes	Thryothorus ludovicianus
VirT02a	Virginia	152,120	Dermacentor variabilis	Dermacentor variabilis	Didelphis virginiana	Didelphis virginiana
VirT02b	Virginia	342,360	Dermacentor variabilis	Dermacentor variabilis	Didelphis virginiana	Didelphis virginiana
VirT03a	Virginia	142,216	Amblyomma americanum	Amblyomma americanum	Vulpes vulpes	Vulpes vulpes
VirT03b	Virginia	226,975	Amblyomma americanum	Amblyomma americanum	Vulpes vulpes	Vulpes vulpes
VirT04a	Virginia	235,996	Ixodes scapularis/dentatus	<i>Ixodes</i> sp.	Sylvilagus floridanus	Sylvilagus floridanus
VirT04b	Virginia	177,000	Ixodes scapularis/dentatus	Ixodes sp.	Leporidae	Sylvilagus floridanus
VirT05a	Virginia	417,318	Amblyomma americanum	Amblyomma americanum	Odocoileus virginianus	Odocoileus virginianus
VirT05b	Virginia	562,081	Amblyomma americanum	Amblyomma americanum	Odocoileus virginianus	Odocoileus virginianus
VirT06a	Virginia	186,779	Dermacentor variabilis	Dermacentor variabilis	Not identified	Vulpes vulpes
VirT06b	Virginia	308,458	Dermacentor variabilis	Dermacentor variabilis	Not identified	Vulpes vulpes
VirT07a	Virginia	232,105	Ixodes cookei	Ixodes sp.	Marmota monax	Marmota monax
VirT07b	Virginia	240,719	Ixodes cookei	Ixodes sp.	Marmota monax	Marmota monax
VirT08a	Virginia	242,625	Dermacentor variabilis	Dermacentor variabilis	Vulpes vulpes	Vulpes vulpes
VirT08b	Virginia	337,021	Dermacentor variabilis	Dermacentor variabilis	Vulpes vulpes	Vulpes vulpes
VirT09a	Virginia	246,820	Amblyomma americanum	Amblyomma americanum	Odocoileus virginianus	Odocoileus virginianus
VirT09b	Virginia	109,877	Amblyomma americanum	Amblyomma americanum	Odocoileus virginianus	Odocoileus virginianus
VirT10a	Virginia	128,272	Ixodes scapularis	Ixodes sp.	Odocoileus virginianus	Buteo jamaicensis
VirT10b	Virginia	41,957	Ixodes scapularis	Ixodes sp.	Odocoileus virginianus	Buteo jamaicensis
KenT01a	Kenya	186,228	Rhipicephalus sp.	Rhipicephalus sp.	Not identified	Lycaon pictus
KenT01b	Kenya	73,134	Rhipicephalus sp.	Rhipicephalus sp.	Not identified	Lycaon pictus
KenT02a	Kenya	400,268	Rhipicephalus muhsamae	Rhipicephalus sp.	Lycaon pictus	Lycaon pictus
KenT02b	Kenya	137,654	Rhipicephalus muhsamae	Rhipicephalus sp.	Lycaon pictus	Lycaon pictus

KenT03a	Kenya	51,949	Rhipicephalus pulchellus	Rhipicephalus pulchellus	Not identified	Questing Tick
KenT03b	Kenya	36,905	Rhipicephalus pulchellus	Rhipicephalus pulchellus	Bovidae	Questing Tick
KenT04a	Kenya	65,822	<i>Ixodes</i> sp.	Ixodes sp.	Not identified	Elephantulus rufescens
KenT04b	Kenya	20,381	<i>Ixodes</i> sp.	Ixodes sp.	Not identified	Elephantulus rufescens
KenT05a	Kenya	182,811	Ixodes scapularis	Ixodes sp.	Elephantulus rufescens	Elephantulus rufescens
KenT05b	Kenya	73,620	Ixodes scapularis	Ixodes sp.	Elephantulus sp.	Elephantulus rufescens
KenT06a	Kenya	43,962	Rhipicephalus pulchellus	Rhipicephalus pulchellus	Not identified	Questing Tick
KenT06b	Kenya	13,475	Rhipicephalus pulchellus	Rhipicephalus pulchellus	Not identified	Questing Tick
KenT07a	Kenya	62,305	Haemaphysalis leachii	Haemophysalis leachii	Mastomys natalensis	Mastomys natalensis
KenT07b	Kenya	67,800	Haemaphysalis leachii	Haemophysalis leachii	Mastomys natalensis	Mastomys natalensis
KenT08a	Kenya	1,626	Rhipicephalus sp.	Rhipicephalus sp.	Too few sequences	Aethomys hindei
KenT08b	Kenya	3,836	Rhipicephalus sp.	Rhipicephalus sp.	Too few sequences	Aethomys hindei
KenT09a	Kenya	5,724	Rhipicephalus pravus	Rhipicephalus sp.	Too few sequences	Elephantulus rufescens
KenT09b	Kenya	1,467	Rhipicephalus pravus	Rhipicephalus sp.	Too few sequences	Elephantulus rufescens
KenT10a	Kenya	37,413	Haemaphysalis/Ixodes sp.	Haemophysalis leachii	Acomys percivali	Acomys percivali
KenT10b	Kenya	65,247	Haemaphysalis/Ixodes sp.	Haemophysalis leachii	Acomys percivali	Acomys percivali
KenT11b	Kenya	14,567	Rhipicephalus pravus	Rhipicephalus pravus	Not identified	Questing Tick
KenT12b	Kenya	12,551	Rhipicephalus pulchellus	Rhipicephalus sp.	Not identified	Questing Tick
KenT13b	Kenya	42,110	Rhipicephalus praetextatus	Rhipicephalus sp.	Not identified	Questing Tick
				Rhipicephalus		
KenT14b	Kenya	19,188	Rhipicephalus praetextatus	praetextatus	Canis sp.	Questing Tick
KenT15b	Kenya	15,752	Rhipicephalus praetextatus	<i>Rhipicephalus</i> sp.	Not identified	Questing Tick
KenF01a	Kenya	30,236	Xenopsylla humilis	<i>Xenopsylla</i> sp.	Not identified	Gerbilliscus robustus
KenF01b	Kenya	43,596	Xenopsylla humilis	Xenopsylla sp.	Not identified	Gerbilliscus robustus
KenF02a	Kenya	1,772	Xenopsylla humilis	Xenopsylla sp.	Too few sequences	Gerbilliscus robustus
KenF02b	Kenya	413	Not identified	<i>Xenopsylla</i> sp.	Too few sequences	Gerbilliscus robustus

Table 4: Comparison of pathogen and macroparasite identifications between EctoBaits and PCR assays. Sample replicates are clustered
 together with the varying probe dilutions distinguished by a terminal 'a' (1:5 probe dilution) or 'b' (1:10 probe dilution). The *Francisella*

tularensis, *Proteus mirabilis*, and *Staphylococcus pseuditermedius* PCR assays were performed after their initial discovery in the EctoBaits

assay results. None of the tested primer sets amplified the *Onchocerca ochengi* DNA we observed in the VirT05 and VirT10 EctoBaits
 results.

Library	Sequences	EctoBaits Pathogens/Macroparasites	PCR Pathogens/Macroparasites
VirT01a	243,731	Borrelia burgdorferi	Borrelia burgdorferi
VirT01b	181,457	Borrelia burgdorferi	Borrelia burgdorferi
VirT02a	152,120	Francisella tularensis	Francisella tularensis
VirT02b	342,360	Francisella tularensis	Francisella tularensis
VirT03a	142,216	Hepatozoon sp., Rickettsia sp.	Hepatozoon canis
VirT03b	226,975	Adeleorina	Hepatozoon canis
VirT04a	235,996	None	Anaplasma phagocytophilum
VirT04b	177,000	None	Anaplasma phagocytophilum
VirT05a	417,318	<i>Onchocerca ochengi, Rickettsia</i> sp. (Spotted Fever Group), <i>Theileria</i> sp.	Rickettsia sp., Theileria sp.
VirT05b	562,081	Onchocerca ochengi, Rickettsia sp. (Spotted Fever Group), Theileria sp.	Rickettsia sp., Theileria sp.
VirT06a	186,779	Francisella sp., Rickettsia montanensis	Francisella tularensis, Rickettsia montanensis
VirT06b	308,458	Francisella sp., Rickettsia montanensis	Francisella tularensis, Rickettsia montanensis
VirT07a	232,105	None	None
VirT07b	240,719	None	None
VirT08a	242,625	Staphylococcus pseudintermedius	Ehrlichia chaffeensis, Hepatozoon canis, Staphylococcus pseudintermedius
VirT08b	337,021	Staphylococcus pseudintermedius	Ehrlichia chaffeensis, Hepatozoon canis, Staphylococcus pseudintermedius
VirT09a	246,820	<i>Coxiella burnetii</i> (endosymbiont of <i>Amblyomma americanum</i>), <i>Rickettsia</i> sp. (Spotted Fever Group)	Coxiella burnetii, Hepatozoon felis
VirT09b	109,877	<i>Coxiella burnetii</i> (endosymbiont of <i>Amblyomma americanum</i>), <i>Rickettsia</i> sp. (Spotted Fever Group)	Coxiella burnetii, Hepatozoon felis

VirT10a	128,272	Onchocerca ochengi, Proteus mirabilis, Rickettsia sp. (Spotted Faver Group)	Proteus mirabilis, Rickettsia sp. Piroplasmida
VirT10b	41,957	Onchocerca ochengi, Rickettsia sp.	Proteus mirabilis, Rickettsia sp., Piroplasmida
KenT01a	186,228	Proteus mirabilis, Rickettsia conorii	Hepatozoon canis, Rickettsia conorii
KenT01b	73,134	Adeleorina, Rickettsia conorii	Hepatozoon canis, Rickettsia conorii
KenT02a	400,268	Coxiella burnetii, Hepatozoon sp., Proteus mirabilis, Rickettsia sp.	Coxiella burnetii, Hepatozoon canis, Proteus mirabilis
KenT02b	137,654	Coxiella burnetii, Hepatozoon sp., Proteus mirabilis	Coxiella burnetii, Hepatozoon canis, Proteus mirabilis
KenT03a	51,949	Proteus mirabilis, Rickettsia sp. (Spotted Fever Group)	Anaplasma phagocytophilum
KenT03b	36,905	Onchocerca ochengi	Anaplasma phagocytophilum
KenT04a	65,822	Proteus mirabilis, Rickettsia sp. (Spotted Fever Group)	Rickettsia sp.
KenT04b	20,381	Rickettsia sp. (Spotted Fever Group)	Rickettsia sp.
KenT05a	182,811	Proteus mirabilis, Rickettsia sp. (Spotted Fever Group)	Rickettsia sp.
KenT05b	73,620	Rickettsia sp. (Spotted Fever Group)	Rickettsia sp.
KenT06a	43,962	<i>Coxiella burnetii</i> , <i>Proteus mirabilis</i> , <i>Rickettsia</i> sp. (Spotted Fever Group)	None
KenT06b	13,475	<i>Coxiella burnetii</i> , <i>Proteus mirabilis</i> , <i>Rickettsia</i> sp. (Spotted Fever Group)	None
KenT07a	62,305	Bartonella sp., Rickettsia sp. (Spotted Fever Group)	Bartonella sp., Rickettsia sp.
KenT07b	67,800	Bartonella sp., Rickettsia sp. (Spotted Fever Group)	Bartonella sp., Rickettsia sp.
KenT08a	1,626	Rickettsiaceae	Hepatozoon sp.
KenT08b	3,836	Coxiellaceae, Rickettsiaceae	Hepatozoon sp.
KenT09a	5,724	Proteus mirabilis, Rickettsia sp. (Spotted Fever Group)	Borrelia burgdorferi, Proteus mirabilis
KenT09b	1,467	Rickettsia sp. (Spotted Fever Group)	Borrelia burgdorferi, Proteus mirabilis
KenT10a	37,413	Coxiella burnetii, Proteus mirabilis, Rickettsiaceae	Proteus mirabilis
KenT10b	65,247	None	Proteus mirabilis
KenT11b	14,567	Coxiella burnetii	Coxiella burnetii, Hepatozoon canis
KenT12b	12,551	Coxiellaceae	Coxiella burnetii, Rickettsia sp.

KenT13b	42,110	Coxiella burnetii	Coxiella burnetii
KenT14b	19,188	Coxiella burnetii	None
KenT15b	15,752	Coxiella burnetii	Coxiella burnetii, Rickettsia sp.
KenF01a	30,236	Bartonella sp., Proteus mirabilis, Rickettsia sp.	None
KenF01b	43,596	None	None
KenF02a	1,772	Proteus mirabilis, Rickettsia sp.	None
KenF02b	413	None	None

Table 5: Summary of EctoBaits and polymerase chain reaction pathogen/macroparasite screens' relative sensitivities. This table only

rectored and PCR identifications. Values are frequency counts out of the 27 ectoparasite individuals included in this

study. Diagnostic pathogen sequences that were identified in both EctoBaits sample replicates are included in the 'Replicated EctoBaits'

column. Positive pathogen results that were positive in both the EctoBaits and polymerase chain reaction assays are included in the

763 'Confirmed' column.

764

Pathogen/	Polymerase		Replicated	
Macroparasite	Chain Reaction	EctoBaits	EctoBaits	Confirmed
Anaplasma	2	0	(0 0
Bartonella	1	2		1 1
Borrelia	2	1		1 1
Coxiella	6	8		3 5
Ehrlichia	1	0	(0 0
Francisella	2	2		2 2
Hepatozoon	7	2		1 2
Onchocerca	0	3	,	2 0
Proteus	4	11	,	2 4
Rickettsia	9	15	1	1 7
Staphylococcus	1	1		1 1
Theileria	1	1	(0 1

- **Figure 1:** Flowchart outlining the analysis pipeline of the EctoBaits assay.
- 767

768 Figure 2: Total library compositions based on MEGAN analysis. Sample replicates (probe 769 dilutions) are plotted next to each other with labels ending in 'a' or 'b' indicating 1:5 and 1:10 770 probe dilutions respectively. Library sequence depths and compositions varied greatly 771 between samples. All pathogen/macroparasite sequences are clustered together for figure 772 clarity. All 'Non-specific' sequences were unidentifiable by MEGAN analysis since they 773 were either unassigned or assigned to a very high taxonomic rank (such as 'Metazoa'). 774 'Others' include laboratory contaminants, environmental and microbiomic sequences, and 775 sequences of uncertain origin.

776

Figure 3: Total single-indexed library sequence depth versus EctoBaits ectoparasite identification genus and species confidences. The fit logarithmic models and their corresponding R^2 values are also given.

780

781 Figure 4: Composition of library pathogen and macroparasite sequences identified by

782 MEGAN analysis. The pathogen/macroparsite sequences have been broken down by

783 diagnostic pathogen family/suborder. To facilitate comparison and account for differing

784 library sequence depths, the sequence counts are scaled by the total number of

pathogen/macroparasite sequences in each library. Sample replicates (probe dilutions) are

plotted next to each other with labels ending in 'a' or 'b' indicating 1:5 and 1:10 probe

787 dilutions respectively. Pathogen/macroparasite identifications are highly replicable in high-

depth libraries (more than 50,000 sequences after quality control).

