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Abstract.  The carbon use efficiency (CUE) of microbial communities partitions the flow of C 

from primary producers to the atmosphere, decomposer food webs and soil C stores.  CUE, 

usually defined as the ratio of growth to assimilation, is a critical parameter in ecosystem models, 

but is seldom measured directly in soils because of the methodological difficulty of measuring in 

situ rates of microbial growth and respiration.  Alternatively, CUE can be estimated indirectly 

from the elemental stoichiometry of organic matter and microbial biomass, and the ratios of C to 

nutrient-acquiring ecoenzymatic activities.  We used this approach to estimate and compare 

microbial CUE in >2000 soils from a broad range of ecosystems.  Mean CUE based on C:N 

stoichiometry was 0.269 ± 0.110 (SD).  A parallel calculation based on C:P stoichiometry 

yielded a mean CUE estimate of 0.252 ± 0.125 (SD).  The mean values and frequency 

distributions were similar to those from aquatic ecosystems, also calculated from stoichiometric 

models, and to those calculated from direct measurements of bacterial and fungal growth and 

respiration. CUE was directly related to microbial biomass C with a scaling exponent of 0.304 ± 

0.067 (95% CI) and inversely related to microbial biomass P with a scaling exponent of -0.234 ± 

0.055 (95% CI). Relative to CUE, biomass specific turnover time increased with a scaling 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

exponent of 0.509 ± 0.042. CUE increased weakly with mean annual temperature. CUE declined 

with increasing soil pH reaching a minimum at pH 7.0, then increased again as soil pH 

approached 9.0, a pattern consistent with pH trends in the ratio of fungal:bacteria abundance and 

growth. Structural equation models that related geographic variables to CUE component 

variables showed the strongest connections for paths linking latitude and pH to ß-glucosidase 

activity and soil C:N:P ratios. The integration of stoichiometric and metabolic models provides a 

quantitative description of the functional organization of soil microbial communities that can 

improve the representation of CUE in microbial process and ecosystem simulation models.  

Key words:  carbon use efficiency, ecological stoichiometry, microbial communities, biomass 

turnover, ecoenzymatic activity 

 

INTRODUCTION 

The carbon use efficiency (CUE) of microorganisms partitions the flow of carbon (C) 

through terrestrial ecosystems, regulating atmospheric exchanges and soil C sequestration 

(Bradford et al. 2013, Clemmensen et al. 2013). Microbial CUE is a critical parameter in 

ecosystem models, but it is seldom measured directly because of the methodological difficulty of 

measuring in situ rates of microbial growth and respiration. Models commonly assume fixed 

values based on literature syntheses even though microbial CUE varies in response to available 

resources and biomass composition (Manzoni et al. 2012, Sinsabaugh et al. 2013, 2015). This 

assumption reduces the accuracy and utility of terrestrial ecosystem models that simulate soil C 

dynamics (Bradford and Crowther 2013, Lee and Schmidt 2014). At present, however, there are 

insufficient data to establish empirical relationships between CUE and its environmental 

correlates that might improve the representation of CUE in ecosystem simulation models. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

For microorganisms, CUE is most commonly defined as the ratio of growth to 

assimilation, measured in units of C, with assimilation estimated as the sum of growth () and 

respiration (R): CUE = µ/(µ+R). In practice, there are multiple ways to estimate CUE.  Microbial 

growth can be measured as rates of biomass increase, protein synthesis, DNA replication or 

consumption of 
13

C-labeled substrates. Respiration can be measured as rates of total CO2 efflux, 

13
CO2 efflux from labeled substrates, oxygen consumption or respiratory electron transport. 

These methodological choices can lead to CUE estimates that vary by a factor of two or more. In 

general, broader measures of community growth (e.g. protein biosynthesis) and respiration (e.g. 

whole community CO2 efflux) yield lower values of CUE than estimates based on the uptake and 

respiration of specific substrates (Manzoni et al. 2012, Sinsabaugh et al. 2013). This 

methodological contingency complicates comparisons across studies and ecosystems, 

particularly for terrestrial soils because it is difficult to measure microbial growth and respiration 

in a medium with discontinuous water availability in an environment where a substantial portion 

of the microbiota live in symbiotic association with plants (Manzoni et al. 2012, Sinsabaugh et al. 

2013, Zechmeister-Boltenstern et al. 2015). As a consequence there are relatively few estimates 

of microbial CUE in soils and it is difficult to parse methodological and mechanistic 

contributions to CUE variance. 

An alternative to direct measurements of microbial respiration and growth is to estimate 

CUE from ecological stoichiometry (Sterner and Elser 2002, Cherif and Loreau 2007).  From 

this perspective, the CUE of an organism is a function of the difference between its elemental 

requirements for growth and the composition of environmental substrate.  This relationship is 

most often expressed as  

 TERC:X /BC:X = AX/CUE, or CUE = (BC:X  AX )/ TERC:X    [1] 
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where X usually represents N or P;  BC:X is the elemental C:N or C:P ratio of biomass; AX is the 

apparent assimilation efficiency for nitrogen (N) or phosphorus (P); and TERC:X is the threshold 

element ratio for C:N or C:P (Sterner and Elser 2002, Elser et al. 2003, Frost et al. 2006).  For 

osmotrophic bacteria and fungi, apparent assimilation efficiency is defined as the ratio of 

microbial substrate consumption to extracellular substrate generation (Sinsabaugh and Follstad 

Shah 2012). The TER is defined as the element ratio corresponding to balanced microbial growth, 

i.e. neither C nor nutrient limited.   

 Sinsabaugh and Follstad Shah (2012) extended this model by proposing that the TERC:X 

/BC:X term, which is difficult to estimate directly, was proportional to the term EEAC:X / 

(BC:X/LC:X), where EEAC:X is the ratio of ecoenzymatic activities directed toward acquiring C and 

X from the environment and LC:X is elemental composition of the substrate consumed.  In this 

formulation, CUE is a function of the capacity of microbial communities, through physiological 

adaptation and population selection, to alter enzyme expression and biomass composition to 

mitigate differences between environmental resources and growth requirements, with the goal of 

maximizing growth rate.  An assumption of this approach is that indicator enzyme activities have 

steady state scaling coefficients of approximately 1.0 in relation to microbial production and 

organic matter concentration, which is supported by empirical data (Sinsabaugh et al. 2015).  An 

additional assumption is that microbial communities exhibit optimum resource allocation with 

respect to enzyme expression and environmental resources (Allison and Vitousek 2005, 

Hernandez and Hobbie 2010, Burns et al. 2013).  A meta-analysis of environmental enzyme 

activities (V) in relation to substrate availability (S) yielded a common steady state elasticity 

coefficient (ε = δ(ln V) / δ(ln S)) of approximately 0.5 for a wide variety of hydrolytic, oxidative, 

assimilatory and dissimilatory enzymes, indicating that enzyme expression is regulated at the 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

transcription level to optimize responsiveness to fluctuations in substrate availability 

(Sinsabaugh et al. 2014).   

From these relationships, CUE is calculated as: 

CUEC:X = CUEmax[SC:X/(SC:X + KX)], where SC:X = (1/EEAC:X)(BC:X / LC:X).  [2] 

SC:X is a scalar that represents the extent to which the allocation of ecoenzymatic activities 

offsets the disparity between the elemental composition of available resources and the 

composition of microbial biomass. On that basis, the half-saturation constant KX has a value of 

0.5. CUEmax is the upper limit for microbial growth efficiency (0.6) based on thermodynamic 

constraints. This formulation is consistent with Michaelis-Menten kinetics and metabolic control 

analysis (Cornish-Bowden 2012). In terms of the latter, increasing the activity or concentration 

of an enzyme at the beginning of a pathway has progressively less effect on the flux through a 

pathway. For example, an increment in the abundance of extracellular enzymes that produce 

glucose will not proportionally increase glucose uptake or flux through the glycolysis pathway.    

 Using mean values for the parameters in eq. 2, the average CUE for microbial 

communities in terrestrial soils, freshwater sediments and planktonic environments was 

estimated as 0.29, 0.27 and 0.28, respectively (Sinsabaugh and Follstad Shah 2012).  For 

comparison, a meta-analysis of bacterial and fungal CUE calculated from direct measurements of 

growth and respiration yielded mean CUE values of 0.336 ± 0.213 (SD) and 0.326 ± 0.196, 

respectively (Sinsabaugh et al. 2015). Because the distribution of these data has a negative skew 

the median values (0.281 and 0.296, respectively) more closely approximate the stoichiometric 

CUE estimates.   

 The principal advantages of estimating CUE from stoichiometric relationships are that (1) 

the component parameters can be readily measured; (2) the approach can be applied at high 
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spatial and temporal resolution; and (3) the approach is phenomenological because CUE is 

calculated from variables known to influence CUE.  Equation 2 provides a template for 

establishing empirical relationships between CUE, organic matter composition, microbial 

biomass composition, nutrient availabilities and microbial metabolism. These relationships, in 

turn, provide a foundation for improving the representation of microbial processes in ecosystem 

simulation models.   

We systematically evaluated eq. 2 by assembling stoichiometric data from studies that 

included measurements of the elemental C:N and C:P composition of soil organic matter and 

microbial biomass, and the potential activities of ß-1,4-glucosidase, ß -1,4-N-

acetylglucosaminidase, leucine (alanine) aminopeptidase and acid (alkaline) phosphatase, a total 

of 2046 cases representing approximately 200 sites that span a broad range of natural and 

managed ecosystems (Table 1). CUE values were calculated independently for C:N and C:P 

stoichiometries and compared with those reported from other studies.  

The first step in our analyses was to examine the partial regressions between CUE and 

each of its component variables. The second stage compared the correlation between CUEC:N and 

CUEC:P and the dependence of that relationship on the elemental N:P ratios of biomass and 

substrate. Next we evaluated the theoretical relationship between CUE and threshold element 

ratio (TER) by comparing TER values predicted from eq. 1 to empirical relationships between 

CUE and elemental substrate composition. From there, we determined the scaling coefficients 

for CUE and microbial biomass, i.e. the increment in CUE per increment in biomass, which in 

turn defined the relationship between CUE and biomass turnover rate. Finally, we rearranged eq. 

2 to predict microbial nutrient use efficiencies and compared the values to those reported in other 

studies. For each stage of analysis, we present empirical trends using partial regression models, 
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highlight differences between ecosystems where comparisons were possible, and compare the 

results to other representations from the literature.  

Collectively, these analyses provide a broad empirical evaluation of the relationships 

presented in equations 1 and 2 that can be applied to microbial process models. For larger scale 

comparisons, we used structural equation models to link CUE and its component parameters to 

master variables of mean annual temperature, mean annual precipitation and soil pH. These 

statistical models provide additional information for simulation models by resolving the relative 

strength of ecosystem variables on CUE variance. 

METHODS 

Data from published studies 

We searched the literature for studies of terrestrial soil and litter that included, at a 

minimum, measurements of the potential activities of ß -1,4-glucosidase (BG) and ß -1,4-N-

acetylglucosaminidase (NAG), and the elemental C and N content of organic matter. The search 

yielded a total of 66 published studies (Table S1).  Most studies (39) also included data on the 

potential activity of leucine aminopeptidase (LAP), alanine aminopeptidase (AAP) or other 

enzymatic indicators of proteolytic potential.  Only 24 studies included direct measurements of 

microbial biomass C and N content.  Five studies included data on acid (alkaline) phosphatase 

activity (AP) and soil C:P ratio, and two studies included microbial biomass C:P ratio.   

Data were extracted from tables and figures.  In almost all cases, these values were 

presented as means from multiple samples collected from specific sites, treatments, horizons or 

dates.  For studies in which we participated directly, we included full data sets when each sample 

had independent measurements of the CUE component variables. In cases where there was only 

a single estimate of organic matter C:N or C:P ratio for a site, treatment or date, but multiple 
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EEA samplings, the EEA data were averaged to create a single case for inclusion in the meta-

analyses.   

For each study, we also collected information on mean annual temperature (MAT), mean 

annual precipitation (MAP), soil pH, soil taxonomy, latitude, longitude, elevation and ecosystem 

type (Table S1).  Notes on sampling and methodology were also included. The total number of 

cases from published studies was 794. 

Data from new studies 

In addition to published studies, our meta-analysis also included previously unpublished 

data from the authors.  The largest data set, 659 cases, comes from analyses of A horizons from 

71 tropical forest sites in Panama conducted by Turner (Table S2).  These cases include 

measurements of soil and microbial biomass C, N and P, as well as ß -1,4-glucosidase, ß -1,4-N-

acetylglucosaminidase, and phosphatase.  Analytical methods are described in Turner and 

Wright (2014).   

Talbot et al. (2014) measured soil C and N and the activities of ß -1,4-glucosidase, ß -1,4-

N-acetylglucosaminidase and leucine aminopeptidase for O and A horizon samples from 27 pine 

forest sites distributed across North America, yielding 511 cases (Table S3).  Sampling strategy 

and analytical methods are described in Talbot et al. (2014).   

Kuske et al. analyzed Oe, Oa and A horizon samples collected from the Duke Forest 

FACE site (North Carolina, USA) in October 2012 for soil C and N and the activities of ß -1,4-

glucosidase, ß -1,4-N-acetylglucosaminidase and alanine aminopeptidase, yielding 36 cases 

divided between ambient and N amended plots within rings 1, 5 and 6 (Table S4). Analytical 

methods follow those presented by Finzi et al. (2006).   
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Waring et al. (2015) analyzed A horizon soils collected in October 2013 from three 

tropical dry forests in Costa Rica for soil and microbial biomass C, N and P and ß -1,4-

glucosidase, ß -1,4-N-acetylglucosaminidase, leucine aminopeptidase and phosphatase activities, 

yielding 42 cases (Table S4).  Sampling strategy and analytical methods are presented by Waring 

et al. (2015).  Metadata on latitude, longitude, MAT, MAP, altitude and soil pH are also included 

in Tables S2- S4. 

Carbon use efficiency calculation 

Microbial CUE was calculated using eq. 2. EEA values were converted to units of nmol 

per g dry mass per h, or nmol per g organic matter (OM) per h, in cases where OM 

concentrations per g dry mass were not provided.  EEAC:N was calculated as BG/(NAG+PEP), 

where PEP represents leucine or alanine aminopeptidase (LAP or AAP), or in a small number of 

cases other measures of proteolytic activity (Table S1).  For studies involving acidic soils or litter 

that did not include measures of proteolytic potential, we estimated LAP from a linear regression 

model, using data from similar studies (ln LAP = 0.65  ln BG – 0.43, R
2
=0.41, n=192).  

Peptidase activities in acidic soils were generally low, averaging 10.7% of BG and 11.6% of 

NAG, so the impact of these estimates on EEAC:N is relatively small.  However, filling these 

gaps allows EEAC:N estimates from these studies to be directly compared to those from alkaline 

soil and aquatic environments, where LAP activity is often comparable to BG in magnitude, and 

both activities are much greater than NAG (Sinsabaugh and Follstad Shah 2012).   

Molar ratios of soil organic C: total N (SOC:TN) were used as estimates of LC:N.  

Microbial biomass C:N was also calculated as molar ratios.  For studies that lacked direct 

estimates of microbial biomass C and N (Tables S1-S4), we used a mean molar BC:N ratio of 8.6 

based on the meta-analysis by Cleveland and Liptzin (2007). 
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Five published studies plus the tropical ecosystem studies by Turner (Table S2) and 

Waring et al. (2015) included data for calculating microbial CUE from both C:P and C:N 

stoichiometry (n=694). For these cases, EEAC:P was calculated as the ratio of ß -1,4-glucosidase: 

acid (alkaline) phosphatase activity (BG/AP).  LC:P was calculated as the molar ratio of soil 

organic C: soil organic P.  Total P was used when SOP was not available (about 30 cases), which 

increases the corresponding CUEC:P estimates.  Three of the published studies lacked direct 

measurements of microbial biomass C and P.  For those cases (n=37), we used a mean molar 

BC:P ratio of 60 (Cleveland and Liptzin 2007) in the CUE calculations.  

 The data and resulting CUE calculations were also used to estimate values for two other 

parameters that appear in equation 1: apparent assimilation efficiencies for N and P (AN and AP) 

and the threshold element ratios (TER) for C:N and C:P.  For our data, AN and AP estimates were 

calculated as: 

AX = CUEC:X / SC:X = [CUEC:X / BC:X]  LC:X  EEAC:X   [3] 

The threshold element ratios (TER) for C:N and C:P were calculated as: 

TERC:X = [AX  BC:X] / CUEC:X = LC:X  EEAC:X   [4] 

Statistical analysis 

Partial regressions were used to examine the relationships between CUE and its 

component and cognate variables (StatPlus ver. 5.9.5). The regressions highlight the relative 

strength and residual distributions of various associations based on observed data. These 

relationships are intrinsically autocorrelated through equations 1 and 2; no causality is assumed. 

The intent was to identify ecological trends and provide empirical relationships for process 

models. 
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At larger scale, the relationships between CUE, its components and geographic variables 

were investigated using recursive structural equation models (SEM, nyx, ver. 1.06).  Our a 

priori C:N model included four observed exogenous variables (latitude, MAT, MAP, and soil 

pH) and five observed endogenous variables (BG, NAG+LAP, LC:N, BC:N, CUEC:N). All variables 

were standardized using z-transformation to homogenize the variances.  There were fixed 

covariance paths among each exogenous variable, and each exogenous variable was connected to 

each CUEC:N component variable by a free directional pathway.  The four CUEC:N component 

variables were interconnected by fixed covariance paths (disturbance correlations) and each of 

the four variables was linked to CUEC:N by a free directional path. The fixed covariance values 

were taken from a covariance matrix generated for the entire data set (n=1827, litter bag studies 

were excluded from the SEM).  The same a priori design was used for the C:P model, 

substituting AP, LC:P and BC:P and using covariance values specific to the data set. The a priori 

models were used to diagram the relative strength of the directional connections among variables.  

Nested post hoc models were created by progressively deleting weak connections between 

exogenous and endogenous variables until a likelihood ratio threshold of p=0.05 was approached.  

RESULTS 

Carbon use efficiency and ecological stoichiometry 

For the data set as a whole (n=2046), the arithmetic mean LC:N, BC:N and EEAC:N ratios 

were 22.2 ± 14.9 (SD), 7.91 ± 2.42 and 1.316 ± 1.214, respectively (Table 2).  The CUEC:N 

estimates were normally distributed with an arithmetic mean of 0.269 ± 0.110 (Table 2, Fig. 1).  

The arithmetic means for AN and TERC:N were 0.658 ± 0.213 and 28.8 ± 34.9, respectively 

(Table 2).  For the subset of wet tropical forest sites (Turner, Table S2), the arithmetic means 

were LC:N 13.8 ± 2.1, BC:N 5.97 ± 1.54, EEAC:N 1.095 ± 0.478 and CUEC:N 0.278 ± 0.077.  For 
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the subset of North American conifer sites (Talbot et al., Table S3), the arithmetic means were 

LC:N 30.5 ± 12.2,  EEAC:N 1.422 ± 1.017 and CUEC:N 0.218 ± 0.096.   

For studies that included data on C:P stoichiometry (n=713), the arithmetic mean LC:P 

and BC:P ratios were 1211 ± 1074 (SD) and 42.2 ± 49.6, respectively (Table 2).  The arithmetic 

mean EEAC:P ratio was 0.180 ± 0.198, indicating strong P limitation.  The arithmetic mean 

CUEC:P was 0.252 ± 0.125. The CUEC:P distribution showed a slight positive skew (0.08) with a 

median value of 0.242 (Table 2, Fig. 1).  The arithmetic means for AP and TERC:P were 0.687 ± 

0.240 and 138 ± 235, respectively (Table 2). 

 Among its component variables, CUEC:N was most closely associated with EEAC:N and 

LC:N. Excluding cases that lacked direct measures of peptidase activity, CUEC:N declined as 

EEAC:N (R
2
 = 0.79, Fig. 2a) and LC:N (R

2
 = 0.23, Fig. 2b) increased.  Excluding cases that lacked 

direct measures of biomass C and N, CUEC:N increased with BC:N (R
2
 = 0.20, Fig. 2c) and BC:N / 

LC:N (R
2
 = 0.24, Fig. 2d).  The regression model [CUEC:N = -0.09612(ln LC:N) – 0.12145(ln 

EEAC:N) + 0.5525] accounted for 88.5% of the variance in CUEC:N (F=7887, n=2046).  

In contrast, CUEC:P was most closely associated with BC:P (R
2
 = 0.60, Fig. 3c) and 

EEAC:P (R
2
 = 0.38, Fig. 3a) and only weakly correlated with LC:P (R

2
=0.01, Fig. 3b) and BC:P / 

LC:P (R
2
=0.17, Fig. 3d).  The poor relationship with LC:P and CUEC:P suggests that the SOC:SOP 

ratio was not a good indicator of P bioavailability.  The regression model [CUEC:P = 0.1246(ln 

BC:P) – 0.0569(ln EEAC:P) – 0.3109] accounted for 73.2% of the variance in CUEC:P (F=945, 

n=694).  

 The CUE estimates calculated independently from C:N and C:P stoichiometry were 

weakly correlated (R
2
 = 0.16, Fig 4a) because N:P ratios varied among samples. The regression 

slope (0.57 ± 0.10, 95% CI) was equal to the product of mean EEAN:P (0.105) and mean BN:P 
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(5.441) and the intercept was equal to 1/LN:P.  The two values converge when normalized to LN:P 

(R
2
 = 0.79, Fig. 4b).  

The CUE estimates for C:N and C:P stoichiometry can also be linked through threshold 

element ratios (Fig. 5a,c). The two values were equal only when the ratio of TERC:P to TERC:N 

corresponded to the mean N:P ratio of microbial biomass (BC:P /BC:N = 42.1/6.4 = 6.6).  

For the data set as a whole, the C:N ratio of soils often overlapped with the TERC:N with 

peak CUEC:N occurring at LC:N ratios somewhat greater than the estimated TERC:N (LC:N – 

TERC:N ≈ 10-30, Fig. 5b). But for tropical systems, the C:P ratios of organic matter were on 

average 10x greater than the TERC:P.  As a result, there was no trend between [LC:P – TERC:P] 

and CUEC:P (Fig 5d), consistent with the weak relationship between LC:P and CUEC:P shown in 

Fig. 3b.   

 Sinsabaugh and Follstad Shah (2012) suggested that the square root of the product 

CUEC:NCUEC:P might be a better estimate of microbial community CUE given the 

methodological problems intrinsic to measurements of microbial biomass composition and 

ecoenzymatic potential, and the tenuous connection between the bulk elemental composition of 

organic matter and the labile substrate consumption of microbial communities. This calculation 

yielded an average CUE of 0.255 ± 0.092 (SD, n=692) for our tropical data sets (Tables S2, S4).  

This composite CUE increased as microbial biomass C increased with a scaling coefficient ( 

ln(CUE)/  ln(MBC)) of 0.302 ± 0.057 (95% CI, R
2
 = 0.144, n=641, F=108, Fig. 6a).  A parallel 

regression showed that CUE decreased as microbial biomass P increased with a scaling 

coefficient of -0.254 ± 0.042 (95% CI, R
2
 = 0.174, n=653, F=137, Fig. 6b). The relationship 

between CUE and microbial biomass N was weak with a scaling coefficient of 0.069 (R
2
 = 0.01, 

n=620, F = 4.3, p = 0.038) that was not significantly different from zero.  
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Carbon use efficiency and fertilization 

Our meta-analysis included data from agricultural sites as well as results from natural 

systems that were experimentally manipulated with nutrient additions. For the data set as a whole, 

the mean CUEC:N for fertilized soils (agricultural systems and experimental nutrient 

manipulations) did not differ from that of unfertilized soils (fertilized CUE 0.285, n=199, 

unfertilized CUE 0.278, n=183, F=0.50).  Fertilization may have affected growth rates, but 

physiological adaptation and population selection appeared to stabilize CUEC:N. 

Carbon use efficiency and biomass turnover 

Three studies included estimates of respiration rate per unit biomass (R/B also known as 

qCO2).  From these values, biomass turnover rate (/B) was calculated as qCO2 CUEC:N/(1-

CUEC:N), where CUE in this case was defined as µ/(µ+R).  Biomass turnover time (TB) 

decreased with increasing CUE (R
2
=0.40) with a mean value of 58 d (Fig. 7a).  Extrapolating 

this regression to the full data set yielded a mean microbial biomass turnover time of 67 ± 22 d 

(SD).  

 A more comprehensive approach to linking CUE and biomass turnover is to describe how 

each changes in response to biomass increments. Sinsabaugh et al. (2015) found that growth 

increased with biomass with an exponent of approximately 0.75 (R
2
 ≈ 0.6) for both bacteria and 

fungi.  To estimate growth (µ) from biomass, we normalized this regression to our data (i.e. 

shifted the intercept) by assuming a specific growth rate of 0.001/h at mean biomass 

concentration , based on a mean qCO2 of 0.003/h for soil microbes (Spohn 

2015) and a mean CUE of 0.25. Because production rate scales sublinearly (~0.75) with biomass, 

biomass turnover time increases as biomass increases. CUE also increases with biomass but the 

scaling coefficient is smaller (~0.30, Fig. 6a).  When directly compared, the net effect is that 
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biomass specific turnover time and biomass specific CUE have a scaling coefficient of 0.509 ± 

0.041 (δ(ln TB) / δ(ln CUE), Fig. 7b).  

A coefficient of about 0.5 is implicit in the regression models presented by Sinsabaugh et 

al. (2015) because production rate was proportional to B
0.75

 and CUE was proportional to B
0.25

.  

But unlike the earlier study, the CUE values in the current study (Fig. 7b) are independent of the 

biomass turnover estimates because CUE was calculated from stoichiometric parameters (eq. 2) 

while the biomass turnover rates were generated from a growth vs. biomass regression.  

Nutrient use efficiency 

 An inverse relationship between CUE and nutrient use efficiency is intrinsic to the 

stochiometric model presented in equation 2. Because C supplies both the energy and the mass 

for growth, the upper limit for CUE is about 0.6.  This constraint does not apply to N or P use 

efficiency (NUE, PUE).  If NUE or PUE can range to 1.0, then eq. 2 can be rearranged as: 

XUEX:C = XUEmax[SX:C/(SX:C + KC)], where SX:C = (1/EEAX:C)(BX:C / LX:C)  [5] 

where X represents N or P, KC = 0.5 and XUEmax = 1.0.  From eq. 5, the mean NUE and PUE 

values for our data were 0.804 ± 0.137 (SD) and 0.814 ± 0.145, respectively (Table 2, Fig. 8). 

Carbon use efficiency and geographic variables 

We used structural equation models to assess whether the local variables used to calculate 

CUE were correlated with a broader set of geographic variables.  For the full data set, latitude, 

MAT and MAP were highly correlated (latitude and MAT r = -0.94, latitude and MAP r = -0.71, 

MAT and MAP r = 0.66) with much weaker correlations with soil pH (r < 0.1) (Fig. 9).  None 

of these variables had strong direct links to CUEC:N (R
2
 < 0.05). The CUE component variables 

were also highly correlated as presented above.  For the standardized variables in the SEM, the 

strongest correlations were between BG and NAG+LAP (r=0.88) and BC:N and LC:N (r=0.40). 
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The post hoc SEM (Fig. 8) deleted three paths relative to the a priori model (latitude  

NAG+LAP, MAT  LC:N , pH  BC:N, Likelihood Ratio for nested post hoc model p=0.14, 2 

= 666, df = 19, n=1827, p<0.001).  The strongest regression coefficients for the ecosystem to 

enzyme paths were latitude  BG (-0.20) and MAT  BG (-0.35, Table 3).  The strongest paths 

from geographic variables to elemental ratios were latitude  LC:N (0.39) and latitude  BC:N 

(0.27). In turn, the direct linear paths linking the four CUEC:N component variables to CUEC:N 

captured 16% of the variance in CUEC:N.  The actual relationships between these variables and 

CUEC:N are  defined by equation 2 and described by the non-linear correlations presented in Fig. 

2.  

 The a priori SEMs for the subset of tropical forest A horizon soils (Turner, Table S2) did 

not include MAT as a variable because all sites had a MAT of 26C.   The strongest correlation 

among ecosystem variables was between latitude and MAP (r = 0.88). The correlations among 

the CUEC:N component variables were weaker than those in the global model, with the greatest 

correlation between BG and NAG+LAP (r=0.54).  The reduced post hoc model deleted four 

paths (pH  NAG+LAP, MAP  LC:N, Latitude  LC:N, pH  BC:N, Likelihood Ratio for 

nested post hoc model p=0.115, 2 = 64.7, df = 24, n=657, p<0.005).  The three geographic 

variables had moderate to strong path coefficients for all of the CUEC:N component variables 

(0.13 -0.38, Table 3).  In turn, the direct linear paths linking the four CUEC:N component 

variables to CUEC:N captured 86% of the variance in CUEC:N (Fig. S1).  

For the same subset of tropical forest A horizon soils (Turner, Table S2), the strongest 

correlation among the CUEC:P component variables was between phosphatase activity and LC:P (r 

= 0.74). The post hoc SEM deleted three paths (latitude  BC:P, MAP  BG, latitude  LC:P, 

latitude  phosphatase, Likelihood Ratio for nested post hoc model p=0.137, 2 = 136.6, df = 
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15, n=613, p<0.001, Fig. S2). Soil pH had moderate to strong path links to each of the four 

CUEC:P component variables (0.17 – 0.50).  MAP had strong links to three CUEC:P component 

variables (AP, BC:P and LC:P,  0.24 – 0.48, Table 3). In turn, the direct linear paths linking the 

four CUEC:P component variables to CUEC:P captured 76% of the variance in CUEC:P.  

For the subset of North American conifer forest soils (Talbot et al., Table S3), the a 

priori SEM did not include BC:N because these values were not directly measured.  The 

correlations among climatic variables were similar to those for the global model, but the 

connections between climate variables and soil pH were stronger (0.37 - 0.45).  Among the 

CUEC:N component variables only BG and NAG+LAP were strongly correlated (r=0.85). The 

post hoc model deleted five paths (MAT  BG, MAP  BG, pH  NAG+LAP, MAP  

NAG+LAP, MAT  NAG+LAP, Likelihood Ratio p=0.218, 2 = 390.6, df = 26, n=493, 

p<0.001, Fig. S3), LC:N was linked to all of the ecosystem variables by strong negative regression 

coefficients (-0.73 to -0.31, Table 3). In turn, the direct linear paths linking the three CUEC:N 

component variables to CUEC:N captured only 6% of the variance in CUEC:N, likely because of 

the lack of case specific BC:N values (Fig. S3).   

Horizon specific SEMs had stronger connections between the geographic and CUEC:N 

component variables and between the three CUEC:N component variables and CUEC:N (Table 3). 

The SEM for the O horizon deleted two paths (MAP  NAG+LAP, pH  BG, Likelihood 

Ratio p=0.218, 2 = 72.9, df = 23, n=228, p<0.005, Fig. S4) and captured 31% of the variance in 

CUEC:N. The SEM for the A horizon deleted two paths (MAP  NAG+LAP, MAP  BG, 

Likelihood Ratio p=0.247, 2 = 68.9, df = 23, n=265, p<0.005, Fig. S5) and captured 18% of the 

variance in CUEC:N. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Across the six SEMs, all post hoc models included paths from latitude to BG, and pH to 

LC:N or LC:P (Table 3). Five SEMs included paths from pH to BG and MAP to LC:N (or LC:P). The 

regression coefficients for the pH to LC:N (or LC:P) paths were all negative. The coefficients for 

the MAP to LC:N paths were negative; the MAP to LC:P coefficient was positive (0.32). BC:N and 

BC:P had the fewest connections to the geographic variables.  As expected from eq. 2, all BG to 

CUE and L to CUE paths had negative coefficients, and all NAG+LAP (or AP) paths to CUE 

and BC:N (or BC:P) to CUE paths had positive coefficients. 

 There were weak macroscale trends between CUE and both pH and MAT.  The 

relationship between soil pH and CUE was mediated by significant correlations between pH, 

LC:N, LC:P and BG as shown by the structural equation models. CUE generally declined with pH 

for both conifer and tropical forest soils (for conifer forest CUEC:N: -0.0246pH + 0.3432, 

R
2
=0.041; for tropical forest CUEC:N: -0.0197pH + 0.4001, R

2
=0.065; for tropical forest 

CUEC:P:  -0.0472pH + 0.5066, R
2
=0.142) (Fig. 10a). When these data sets were excluded, the 

pH trend for the remaining data reversed, pulled by Aridisols with high pH and high CUE.  As a 

result, the global data showed a CUE minimum at pH 7 (Fig. 10b). 

 The association between MAT and CUE was more diffuse. While some direct paths 

between MAT and CUE component variables were significant, it appeared that indirect paths 

through latitude and MAP to LC:N, LC:P and BG were at least as influential. Within the conifer 

forest data set, ln(CUE) increased with MAT (0.0154/degC ± 0.0075 (95% CI), corresponding to 

an apparent activation energy of 0.101 ± 0.51 eV as estimated by the Arrhenius equation, Fig. 

11).  The broader data set showed a similar trend (0.0150/degC ± 0.0053, apparent activation 

energy of 0.119 ± 0.036 eV).  The tropical forest data were excluded from these analyses 

because all sites had the same MAT of 26C.   
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DISCUSSION 

Stoichiometric comparisons 

Several measures included in our data have been the subject of other meta-analyses. Our 

mean biomass C:N ratio of 7.91 ± 0.05 (SE) for soil microbiota approximated the values of 8.6 ± 

0.3 (SE) calculated by Cleveland and Liptzin (2007) and 7.6 (no error estimate provided) 

reported by Xu et al. (2013).  For 45 taxa of Ascomycota, Basidiomycota and Zygomycota 

isolated from grassland litter, the mean C:N ratio was 8.3 ± 1.1 (95% CI); for 42 cultures of 

Actinobacteria, Proteobacteria and Bacteriodetes from the same litter the C:N ratio was 6.1 ± 0.6 

(Mouginot et al. 2014). The mean EEAC:N ratio for our data set (1.335 ± 0.053, 95% CI) was 

similar to that reported for terrestrial soils by Sinsabaugh and Follstad Shah (2012) (1.434 ± 

0.220, 95% CI). Mean estimates for the ratio of SOC:TN (14.3 from Cleveland and Liptzin 

(2007) and 16.4 from Xu et al. (2013)) were lower than the LC:N mean of 19.6 for our data, which 

combined measurements from both mineral and organic horizons.  

 The mean microbial biomass C:P ratio (42.2 ± 1.9, SE) for our largely tropical forest data 

was lower than the mean of 59.5 ± 3.6 (SE) reported by Cleveland and Liptzin (2007) but similar 

to the mean of 42 reported by Xu et al. (2013). The EEAC:P ratio of 0.180 ± 0.015 (95% CI) was 

lower than the mean of 0.617 ± 0.045 reported by Sinsabaugh and Follstad Shah (2012) for a 

data set dominated by temperate and boreal systems, but similar to the ratio of 0.21 ± 0.05 (95% 

CI) ratio reported for tropical systems by Waring et al. (2013).  The mean ratio of SOC:TP for 

our tropical sites was 278 ± 20 (95% CI) compared to values of 186 and 287 calculated by 

Cleveland and Liptzin (2007) and Xu et al. (2013), respectively.  However, for the CUEC:P 

calculations we defined LC:P as the ratio of SOC:SOP. For tropical soils, SOP is approximately 

25% of total P (Turner and Engelbrecht 2011). Our mean SOC:SOP value of 1211 and yielded a 
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mean CUEC:P estimate of 0.252, which approximated the mean CUEC:N estimate of 0.287 for 

these sites (Table 2).  For reference, inflating the apparent bioavailability of P by substituting 

SOC:TP for LC:P yields a mean CUEC:P value of 0.38, which is inconsistent with the low EEAC:P 

ratios observed and the generally low bioavailability of P in tropical soils (Vitousek et al. 2010). 

The exercise highlights the difficulty of estimating bioavailable P from chemical 

measures. Our assumption is that much of the organic P is potentially available, which is 

supported by its chemical composition and apparent dynamic nature over relatively short 

timescales in tropical forests (Vincent et al. 2010; Turner and Engelbrecht 2011; Turner et al. 

2015).  This limitation, along with a broader range of biomass C:P composition and uncoupled 

pathways for C and P uptake, produces greater heteroscedasticity among the CUEC:P component 

variables, relative to CUEC:N (Figs. 2-3).  Despite these problems, the often contrasting values for 

CUEC:N and CUEC:P converge when normalizing to the N:P ratio of available resources (LN:P, Fig. 

4).  

Frequency distributions of CUE 

The frequency distribution of CUE estimates for soil microbial communities was similar 

to that for freshwater sediments calculated with the same stoichiometric model (Fig. 12).  The 

arithmetic mean CUE for freshwater sediments (0.267 ± 0.087, SD, median also 0.267, n = 2100, 

Hill et al. 2012) is nearly identical to the mean CUE of terrestrial soil and litter (0.269 ± 0.110, 

n=2046, median = 0.267, Table 2).  A meta-analysis of the CUE of bacterial and fungal 

dominated communities, calculated from direct measures of microbial growth and respiration, 

averaged 0.336 ± 0.213 (median 0.281, n=932) for bacteria and 0.326 ± 0.196 for fungi (median 

0.296, n=398) (Sinsabaugh et al. 2015).  Compared to the stoichiometric CUE estimates, which 

were normally distributed, the distributions of the direct CUE measures have a negative skew 
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(Fig. 12).  The stoichiometric estimates are based on a saturating Michaelis-Menten formulation 

with a fixed maximum CUE of 0.60, based on thermodynamic constraints. Direct estimates of 

microbial community CUE are unconstrained and vary with methodology, which can lead to 

apparent CUE values greater than 0.60 (Manzoni et al. 2012, Sinsabaugh et al. 2013). 

Threshold element ratio and CUE 

Carbon use efficiency and the threshold element ratio are inversely related through 

biomass composition and apparent assimilation efficiency (eq. 1).  Consequently, the TER should 

decrease as microbial CUE increases unless there are compensatory changes in BC:X and AX (Fig. 

5).  In our study, the C:N ratio of soils (LC:N) spanned the range of TERC:N estimates, but 

contrary to theoretical predictions the maximal values for CUEC:N did not occur when LC:N = 

TERC:N.  Maximum CUE coincided with LC:N ratios that exceeded the TERC:N by 5-20 (Fig. 5b).  

One plausible explanation is that the bioavailability of N is greater than indicated by the bulk 

C:N ratio, given that some organic matter fractions are chemically or physically shielded from 

microbial access (Fanin et al. 2013, Wagai et al. 2013, Kaiser et al. 2014).   

Another consideration is that within the stoichiometric model, CUE is a function of 

enzyme allocation, which is assumed to reflect the bioavailability of resources, as well as the 

C:N ratios of biomass and substrate.  Conceptually, CUE is maximal when the unit costs of 

obtaining C and N are minimal (Moorhead et al. 2012).  These costs vary with organic matter 

composition as well as element ratio.  The rapid decline in CUEC:N as soil C:N decreases below 

the TER indicates that the cost of obtaining C from chemically protected soil organic matter 

(Cotrufo et al. 2013) increasingly exceeds the value of its greater N concentration (Moorhead et 

al. 2013).  Conversely, the cost of obtaining N at C:N ratios in excess of the TER may be 

mitigated when N (and C) are available in more accessible forms. 
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Within our tropical forest data set, soil C:P ratio did not overlap with the TERC:P and 

there was almost no relationship between LC:P and CUE (Fig. 3b).  Biomass C:P ratio was the 

best predictor of CUEC:P, but BC:P ratios were not greater than those observed in other systems. 

The EEAC:P ratios were lower than those of temperate biomes by a factor of 2-3, indicating 

greater P limitation but also suggesting that P bioavailability is greater than bulk chemical 

analyses imply. High P use efficiency and tight P cycling as biomass turns over may limit P 

losses to the bulk soil pool, thereby attenuating the relationships among CUEC:P, TERC:P and bulk 

estimates of LC:P.  

Biomass turnover and CUE 

 Equation 2 relates CUE directly to the C:P and C:N ratios of biomass, but the association 

was stronger for C:P than C:N ratio (R
2
 = 0.6 vs. 0.2, regression coefficients of 0.169 vs. 0.115, 

Figs. 2-3).  This trend also appears in the scaling of CUE and biomass (Fig. 6). CUE increased 

with microbial biomass C (MBC) with a scaling coefficient ((ln CUE/(ln MBC)) of 0.302 ± 

0.057 (95% CI, Fig. 6a). This coefficient is not significantly different from those reported 

previously for fungal and bacterial dominated communities that used CUE values calculated 

from rates of growth and respiration (0.27 ± 0.07 and 0.27 ± 0.03, respectively, Sinsabaugh et al. 

2015). A broader comparison of CUEC:N in relation to MBC had a coefficient 0.175 ± 0.035 

(95% CI). It is not possible to determine whether the lower value is the result of a including a 

wider variety of ecosystems or a using a narrower estimation of CUE or both. 

CUE increases with microbial biomass C because production increases relative to 

biomass with a scaling coefficient of approximately 0.75 while the coefficient for respiration is 

approximately 0.50. Sinsabaugh et al. (2015) interpreted this CUE trend as evidence for proto-

cooperative processes that increase metabolic efficiency. However, the trend does not extend to 
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other elemental measures of biomass concentration. The scaling coefficient for microbial 

biomass P (MBP) and CUE was -0.254 ± 0.042 (95% CI, Fig. 6b) and the relationship between 

CUE and microbial biomass N was not significantly different from zero. The inverse relationship 

between microbial biomass P and CUE strengthens the correlation between CUEC:P and biomass 

C:P ratio (R
2 
= 0.6, Fig. 3c) while the poor relationship between CUE and microbial biomass N 

weakens the connection between biomass C:N and CUEC:N (R
2
 = 0.2, Fig. 2c). 

The relationship between microbial biomass P and CUE differs from that for microbial 

biomass C and CUE because cellular P content controls growth rates, i.e. the growth rate 

hypothesis (Sterner and Elser 2002, Allen and Gillooly 2009). Microbial growth increases with 

cellular P content because most cellular P is in the form of ribosomal RNA (Allen and Gillooly 

2009).  In turn, the capacity of a cell to respond quickly to environmental resource pulses is 

linked to rRNA gene copy number, i.e. the capacity to quickly produce new ribosomes 

(Stevenson and Schmidt 2004, Gyorfy et al. 2015). These traits are advantageous in 

environments with generally high, but fluctuating, resource availabilities. As examples, 

Mouginot et al. (2014) isolated bacteria and fungi from decomposing grass litter. For bacteria, 

but not fungi, growth rates in culture were inversely related to biomass C:N and C:P ratios.  

DeAngelis et al. (2014) analyzed the bacterial communities from a 20 y soil warming experiment 

at the Harvard Forest.  Average bacterial rRNA gene copy number has decreased with warming, 

suggesting that the treatment has selected bacteria with a more oligotrophic lifestyle as a result of 

depletion of labile substrate stocks. Figure 6 suggests that the negative effect of faster growth on 

CUE is stronger than the positive effect of biomass concentration on CUE. 

Biomass turnover and CUE are correlated because both are functions of growth rate, 

which in turn is connected to the biomass C:P ratio through the growth rate hypothesis. In eq. 2, 
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BC:P is one of variables used to calculate CUE; it was also the variable that was most closely 

correlated with CUEC:P (Fig. 3c).  This association may act to attenuate the correlation between 

CUEC:N and CUEC:P.   

Only three studies included data on microbial biomass and respiration from which 

biomass turnover times could be calculated (Fig. 7a).  Extrapolating from this limited data to the 

full data set yielded a mean microbial biomass turnover time of 67 ± 22 d (SD). For comparison, 

a meta-analysis of fungal biomass turnover based on direct measurements of biomass, growth 

and respiration had arithmetic mean and median turnover times of 90 and 47 d, respectively 

(Sinsabaugh et al. 2015). 

Turnover time and CUE both increased with biomass with a relative scaling coefficient 

(δ(ln TB) / δ(ln CUE), Fig. 7b) of 0.509 ± 0.041. A similar relationship was reported by 

Sinsabaugh et al. (2015) using CUE data calculated from growth and respiration measurements. 

This empirical relationship is significant for process models because it shows that CUE, which 

determines the fraction of assimilated C that is retained in the soil, and biomass turnover, which 

determines the transfer of C into soil organic matter pools, are both functions of biomass as well 

as growth, and biomass is much more often measured. 

Nutrient use efficiency 

Using eq. 5, the mean NUE value for our data was 0.804 ± 0.137 (SD, Table 2, Fig. 8). 

Mooshammer et al. (2014) estimated microbial community NUE across a range of substrates 

from plant litter to organic soil to mineral soil by comparing the uptake of free amino acids to the 

release of ammonium, finding mean NUEs of 0.70, 0.83 and 0.89, respectively. NUE was a 

saturating function of LC:N/BC:N best described by a Michaelis-Menten formulation: NUE = 

1.03*( LC:N/BC:N )/(0.92 + LC:N/BC:N ), R
2
=0.431, n=71). Using our data, the Moosehammer et al. 
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equation yielded a mean NUE similar to that predicted from eq. 5 (0.746 ± 0.096), but the 

predicted NUE estimates were not well correlated with those estimated from eq. 5 (y = 0.3062x 

+ 0.5002, R
2
=0.192, n=2046), in part because eq. 5 combines ecoenzymatic and elemental 

stoichiometry. In addition, the Mooshammer et al. model with our data predicted a minimum 

NUE of 0.50 at CUE = 0 while eq. 5 predicts that NUE = 1 at CUE = 0 (Fig. 8).  Despite these 

issues, both models yield a similar range of NUE estimates within the CUE range that includes 

80% of observed values. 

We are not aware of any direct estimates of PUE for microbial communities. While C and 

N uptake are coupled through the consumption of amino acids and amino sugars, P is assimilated 

independently of C, mostly by membrane associated symport proteins (Plassard et al. 2011, Dick 

et al. 2014).  From eq. 5, the mean PUE for our data (0.814 ± 0.145, SD, Table 2, Fig. 8) was 

similar to the mean NUE. Based on eq. 1, the apparent assimilation efficiencies for N and P were 

also similar (0.66 and 0.69, respectively, Table 2). In the context of our stoichiometric model, 

these similarities arise because the environmental scarcity of P relative to N is offset by 

increased ecoenzymatic activity directed toward P acquisition relative to activity directed toward 

N acquisition.   

Large-scale trends in CUE 

Microbial CUE is an integrative measure of local resource availability and 

physicochemical constraints on growth. At larger scales, gradients in resources, climate, and 

dominant vegetation select community composition, but the connections to community function 

are tenuous (Talbot et al. 2014).  Regressions relating CUE directly to latitude, MAT, MAP or 

soil pH had R
2
 statistics <0.1.  For this reason, structural equation modeling was used to 
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determine whether there were significant trends between geographic variables and the 

constituent variables that define CUE. 

 Among its component variables, CUE was most closely correlated to the stoichiometry 

of the ecoenzymatic activities that mediate C and nutrient acquisition.  All six SEMs included 

significant paths from latitude to ß-glucosidase, five models included paths from pH to ß-

glucosidase, and four models had paths from latitude to NAG+LAP (Fig. 9, Figs. S1-S5).  For 

the elemental stoichiometry components of CUE, all models included paths from soil pH to LC:N 

or LC:P, five models had paths from MAP to LC:N or LC:P, and four models had paths from latitude 

to LC:N. Biomass composition had the fewest connections to ecosystem variables, suggesting that 

biomass stoichiometry, a measure of homeostasis, was more constrained than other CUE 

component variables. However, for many studies, including the subset of conifer forest data, 

there were no direct measurements of biomass composition, which made it less likely that 

significant paths would emerge.  

Cleveland and Liptzin (2007) did not detect latitudinal trends in microbial biomass C:N 

and C:P in their meta-analysis, but Xu et al. (2013) found that biomass C:N and C:P ratios varied 

across biomes in relation to soil organic matter content.  In contrast, elemental composition of 

phytomass does vary with climate and soil nutrient concentration.  Foliar C:N and C:P ratios tend 

to decrease, and N:P ratios increase, with decreasing latitude and increasing MAT and MAP 

(McGroddy et al. 2004, Reich and Oleksyn 2004, Zechmeister-Boltenstern et al. 2015).  Within 

our global structural equation model, LC:N also decreased with latitude (0.35) and increased with 

MAP (-0.08). Biome specific models for conifer and tropical forests also showed inverse 

relationships between LC:N and MAT and MAP, but also for latitude. However, the latitude 

ranges in these models were small compared to the global range.  
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Temperature and pH are often highlighted as master variables ordering the composition 

and function of microbial communities.  The idea that rising temperature per se increases 

microbial community respiration relative to production, thereby reducing CUE, is common in the 

ecological literature, but difficult to demonstrate at large spatiotemporal scales where 

temperature is conflated with resource gradients and shifts in microbial community composition 

(see discussions by Davidson et al. 2006, Lopez-Urrutia and Moran 2007, Sarmento et al. 2010, 

Billings and Ballantyne 2013, Wagai et al. 2013).  At the biochemical scale, there is no evidence 

that the activation energy of microbial catabolic pathways is intrinsically different from that of 

anabolic pathways (Sarmento et al. 2010, Lopez-Urrutia and Moran 2007, Doi et al. 2010).  A 

complication is that growth rate increases with both temperature and resource availability, and 

CUE is inversely related to growth.  

However, our meta-analysis showed a positive trend for CUEC:N and MAT (0.0150/degC 

± 0.0053, apparent activation energy of 0.119 ± 0.036 eV, Fig. 10) for both the global data and 

the subset of conifer forest data.  Because CUE was calculated from a stoichiometric model, the 

CUE effect is driven by gradients in resource availability and ecoenzymatic activity rather than 

direct temperature effects on respiration and growth.  Regression analysis showed that the 

EEAC:N ratio tended to decrease with MAT (R
2
=0.06) while the BC:N/LC:N ratio tended to 

increase (R
2
=0.01).  Both effects contribute to greater CUE, so it appears that greater CUE 

reflects greater resource availability at lower latitudes, which could be a result of increasing rates 

of net primary production.  

Except for tropical forest BG activity, the paths from soil pH to ecoenzymatic activities 

had negative coefficients.  A meta-analysis of soil enzyme activities found that NAG and AP 

activities generally decreased as soil pH increased with regression coefficients of -0.54 and -0.25, 
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respectively while LAP activity increased (1.25); BG activity did not vary significantly 

(Sinsabaugh et al. 2008).  

For soils with pH<7, both CUEC:N and CUEC:P were inversely related to pH suggesting 

that resources decline, or alternatively that growth rates increase (Fig. 10). For tropical forest 

data, the EEAC:P ratio increased exponentially with increasing pH from about 0.1 to 0.6 (exp = 

0.66, R
2
=0.41), indicating lower P limitation and faster growth at circumneutral pH. BC:P/LC:P 

followed a similar, but weaker trend (exp= 0.27, R
2
=0.10).  A similar pattern occured for 

CUEC:N; EEAC:N increased exponentially with pH, depressing CUE (exp=0.17, R
2
=0.15).  But 

BC:N/LC:N  remained flat.  For the conifer data, both EEAC:N and BC:N/LC:N increased with pH, but 

similar to the tropical forest C:P data, the effect was greater for EEAC:N so CUEC:N declined 

(EEAC:N exp=0.30, R2=0.10. BC:N/LC:N exp=0.10, R
2
=0.06).  For arid soils, the CUEC:N trend 

reversed as pH increased beyond 7.0, consistent with slower growth.  

Underlying these stoichiometric trends is the relationship between pH and the relative 

abundance and growth of fungi and bacteria.  Fungal C:N ratio is greater than that of bacteria 

(Strickland and Rousk 2010, Mouginot et al. 2014), which can increase CUE.  Fungal biomass 

and growth decline, and respiration increases, as soil pH increases from 4 to 7 (Rousk et al. 

2010), which directly reduces CUE.  Conifer forest soils with ectomycorrhizal-dominated fungal 

communities showed the same pattern as tropical forest soils with arbuscular-mycorrhizal 

dominated fungal communities (Fig. 10A). Lauber et al. (2008) found that soil pH was the best 

predictor of bacterial community composition while fungal community composition was most 

closely associated with changes in soil nutrient availability, specifically extractable P and soil 

C:N ratio.  The upturn in CUE with alkaline pH is associated with arid soils.  In these systems, 

much of the soil surface is colonized by biological crusts composed of primary producers in the 
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form of mosses, lichens and cyanobacteria in symbiotic association with fungi (Pointing and 

Belnap 2012).  

Conclusions 

 Carbon use efficiency and microbial biomass turnover are critical parameters for 

mechanistic models of soil C dynamics.  Our analyses show that values predicted from 

stoichiometric models are generally similar to those reported from direct measurements of rates, 

although we have no examples where both approaches have been applied to the same soil 

samples. Because stoichiometric data are broadly available, the utility of ecosystem models can 

potentially be improved by adopting site- and season-specific parameters for microbial CUE and 

biomass turnover based on the empirical relationships presented. At larger scale, the growing 

body of stoichiometric data makes it possible to resolve patterns in CUE along resource gradients 

associated with mean annual temperature and soil pH. The existence of such gradients as bases 

for predicting long-term responses to climate drivers is a topic of considerable interest and 

debate.   

The low congruence of CUE values derived from C:N and C:P models highlights the 

problem of representing C and nutrient bioavailability using bulk chemical analyses, especially 

in the case of P.  Calculations based on analyses of potentially more labile organic matter pools 

such as soil solution or soil extracts may lead to better correspondence.  Like C use efficiency, 

the use efficiencies of N and P are critical parameters for biogeochemical models of soil 

processes. These values can be predicted from our stoichiometric model, but are difficult to 

independently verify. Despite data gaps and methodological diversity, the integration of 

stoichiometric and metabolic models provides a quantitative description of the functional 
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organization of soil microbial communities in relation to edaphic variables that can improve the 

representation of CUE in microbial process and ecosystem simulation models. 
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Supplemental Tables and Figures 

Table S1.  Data and metadata from published sources. 

Table S2:   Data and metadata for tropical forest sites provided by Turner. 

Table S3.   Data and metadata for conifer forest sites provided by Talbot et al. 

Table S4.  Data from Duke forest FACE study provided by Kuske et al. and data from Costa Rica 
tropical forest sites provided by Waring and Powers. 

Figure S1.  Structural equation model for microbial carbon use efficiency based on C:N 
stoichiometry for the tropical forest soils.  Data in Table S2. 

Figure S2. Structural equation model for microbial carbon use efficiency based on C:P 
stoichiometry for the tropical forest soils. Data in Table S2. 

Figure S3.  Structural equation model for microbial carbon use efficiency based on C:N 
stoichiometry for the conifer forest soils.  Data in Table S3. 

Figure S4.  Structural equation model for microbial carbon use efficiency based on C:N 
stoichiometry for the conifer forest O horizon soils.  Data in Table S3. 

Figure S5.  Structural equation model for microbial carbon use efficiency based on C:N 
stoichiometry for the conifer forest A horizon soil.  Data in Table S3. 
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Tables 

Table 1. Distribution of data cases by ecosystem type and soil horizon.  Records are data sets that 

correspond to a specific site or treatment. 

Ecosystem Horizon Records Cases 

Tropical forest mineral soil 84 787 

 
litter/organic 2 22 

Arid/semiarid mineral soil 7 117 

 
litter/organic 2 17 

Temperate grassland mineral soil 4 66 

 
litter/organic 3 9 

Temperate deciduous forest mineral soil 12 112 

 
litter/organic 7 24 

Temperate coniferous forest mineral soil 28 280 

 
litter/organic 23 234 

Boreal forest mineral soil 7 53 

 
litter/organic 10 73 

Arctic/alpine tundra mineral soil 7 32 

 
litter/organic 3 40 

Agriculture mineral soil 16 169 
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Table 2. Definitions, abbreviations and mean values for parameters associated with carbon use 

efficiency calculations. 

Stochiometric parameter Abbreviation Arithmetic 
Std 
Dev Median Geometric Cases Range 

    mean     mean     

Labile organic matter C:N ratio LC:N 22.2 14.9 16.7 19.3 2046  4.2 - 185 

Microbial biomass C:N ratio BC:N 7.91 2.42 8.60 7.59 2046  1.2 - 44 

Ecoenzymatic activity C:N ratio EEAC:N 1.316 1.214 1.022 0.988 2046  0.1 - 20 
Carbon use efficiency from C:N 
data CUEC:N 0.269 0.110 0.267 0.243 2046 

 0.022 - 
0.563 

Apparent assimilation efficiency 
for N AN 0.658 0.213 0.667 0.609 2046  0.074 - 1.0  

Threshold element ratio for C:N TERC:N 28.8 34.9 17.4 19.0 2046  1.1 - 393 

Nitrogen use efficiency NUE 0.804 0.137 0.834 0.787 2046 0.05 - 0.91 

        
Labile organic matter C:P ratio LC:P 1211 1074 890 897 713  42 - 8962 

Microbial biomass C:P ratio BC:P 42.2 49.6 31.5 33.2 700  5 - 309 

Ecoenzymatic activity C:P ratio EEAC:P 0.180 0.198 0.124 0.107 707  0.01 - 1.11 
Carbon use efficiency from C:P 
data CUEC:P 0.252 0.125 0.242 0.216 694  0.02 - 0.57 
Apparent assimilation efficiency 
for P AP 0.687 0.240 0.714 0.632 696  0.06 - 1.0 

Threshold element ratio for C:P TERC:P 138 235 92.3 96.6 694  10 - 3257 

Phosphorus use efficiency PUE 0.814 0.145 0.855 0.797 694 0.17 - 0.99 
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Table 3. Regression coefficients for structural equation model paths connecting geographic 

variables to the component variables used to calculate carbon use efficiency (CUE). Results are 

shown for six post hoc models: two models that used A horizon data from tropical forests (Table 

S2) to calculate CUE based on C:P and C:N stoichiometry; three models that used O, A and 

O+A horizon data from conifer forests to calculate CUE based on C:N stoichometry (Table S3); 

and a global model that uses data from all sites to calculate CUE based on C:N stoichiometry 

(Tables S1, S2, S3). 

Geographic  
variable 

CUE 
component 
variable 

Tropical 
C:P 

Tropical 
C:N 

Conifer 
C:N 

Conifer 
C:N  

Conifer 
C:N  

Global 
C:N 

A horizon A horizon  O horizon A horizon  
O+A 

horizon  
O+A 

horizon 

Latitude BG 0.10 0.22 0.73 -0.32 0.27 -0.20 

 
NAG+LAP 

 
-0.22 0.79 -0.32 0.26 

 

 
LC:N 

  
-0.75 -0.78 -0.73 0.39 

 
BC:N 

 
0.16 

   
0.27 

MAT BG 
  

0.23 -0.37 
 

-0.35 

 
NAG+LAP 

  
0.35 -0.37 

 
-0.13 

 
LC:N 

  
-0.52 -0.52 -0.48 

 

 
BC:N 

     
-0.12 

MAP BG 
 

-0.13 0.18 
  

-0.09 

 
AP 0.48 

     

 
NAG+LAP 

 
0.38 

   
-0.1 

 
LC:P 0.32 

     

 
LC:N 

  
-0.39 -0.54 -0.46 -0.08 

 
BC:P 0.24 

     

 
BC:N 

 
-0.37 

   
-0.17 

Soil pH BG 0.35 0.35 
 

-0.16 -0.14 -0.08 

 
AP -0.50 

     

 
NAG+LAP 

  
-0.15 -0.18 

 
-0.10 

 
LC:P -0.42 

     

 
LC:N 

 
-0.33 -0.47 -0.27 -0.31 -0.13 

  BC:P -0.17           
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Figure legends 

Figure 1.  Frequency distribution of soil microbial carbon use efficiencies (CUE) calculated from 

stoichiometric C:N and C:P models.  The median values for CUEC:N and CUEC:P are 0.27 

(n=2046) and 0.24 (n=694), respectively. 

Figure 2.  Soil microbial carbon use efficiency (CUE) in relation to its component C:N variables.  

A. The ratio of ecoenzymatic C and N acquisition activities: CUE =  -0.1234ln(EEAC:N) + 

0.2498, R
2
 = 0.79, n=1037, F= 3829.  B. Soil C:N ratio: ln(CUE) = -0.01587LC:N – 1.0617 

R
2
=0.23, n=2046, F=602.  C. Microbial biomass C:N ratio:  CUE = 0.1148ln(BC:N) + 0.0737, 

R
2
=0.195, n=964, F=232.  D. The ratio of biomass C:N and soil C:N: CUE = 

0.1092ln(BC:N/LC:N) + 0.3714, n=2046, R
2
=0.24, F=632. 

Figure 3.  Soil microbial carbon use efficiency (CUE) in relation to its component C:P variables.  

A. The ratio of ecoenzymatic C and P acquisition activities: CUE = -0.0739ln(EEAC:P) + 0.0858, 

R
2
=0.380, n=691, F=422. B. Soil C:P ratio:  CUE = 0.0178ln(LC:P) + 0.1327, n=689, R

2
=0.012, 

F=8.0, p=0.0047. C. Microbial biomass C:P ratio: CUE = 0.169ln(BC:P) - 0.3291, R
2
 = 0.604, 

n=650, F=990. D. The ratio of biomass C:P and soil C:P: CUE = 0.05585ln(BC:P/LC:P) + 

0.43815, n=694, R
2
 = 0.168, F=140. 

Figure 4.  Comparison of CUE estimates from C:N and C:P stoichiometry.  A. CUEC:P vs. 

CUEC:N: CUEC:P = 0.568CUEC:N + 0.0911,  R
2
=0.162, n=690, F=133. B.  CUEC:P vs. CUEC:N 

normalized to the substrate N:P ratio (LN:P): (CUEC:P / LN:P) = 0.9697 (CUEC:N/ LN:P) + 0.00035, 

R
2
=0.792, n=688, F=2615. 
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Figure 5.  CUE and threshold element ratios.  A.  ln(CUEC:N) = -0.5227ln(TERC:N) + 0.1296, 

R
2
=0.86, n=2021, F=12332.  B.  CUEC:N in relation to the difference between the C:N ratio of 

available substrate (LC:N) and the threshold element ratio (TERC:N).  C.  ln(CUEC:P) = -

0.7013ln(TERC:P) + 1.659, R
2
=0.71, n=671, F=1640. D. CUEC:P in relation to the difference 

between the C:P ratio of available substrate (LC:N) and the threshold element ratio (TERC:P).   

Figure 6.  Carbon use efficiency in relation to microbial biomass.  A.  CUE vs. MBC:  ln(CUE) = 

0.302ln(MBC) – 3.373, 95% CI for slope ±0.067, R
2
 = 0.144, n=641, F = 108.    B. CUE vs. 

MBP:   ln(CUE) = -0.254ln(MBP) – 0.395, 95% CI for slope ±0.056, R
2
 = 0.174, n=653, F = 

137. 

Figure 7.  Microbial biomass turnover time (TB) in relation to carbon use efficiency (CUE).  A. 

Turnover time calculated from qCO2 data: TB = -197.98CUE + 120.08, R
2
=0.40, n=28, F=17.0, 

p=0.00034.  B. Scaling of biomass specific turnover time and CUE: ln(TB/MBC) = 

0.509ln(CUE/MBC) + 2.443, 95% CI for slope ±0.042, R
2
=0.474, n=641, F=575. 

Figure 8.  Nutrient use efficiency (XUE), calculated from eq. 5, in relation to carbon use 

efficiency (CUE), calculated from eq. 2. The relationship follows a polynomial regression:  XUE 

= -12.922CUE
4
 + 9.408CUE

3
 - 3.5401CUE

2
 - 0.0601CUE + 0.9872, R² = 0.99987, where 

XUE is N or P use efficiency. XUE equals CUE at a value of 0.48.  

Figure 9.  Structural equation model linking microbial carbon use efficiency based on C:N 

stoichiometry to ecosystem variables (n=1827).  The model captures 16% of variance in CUEC:N.   

Figure 10.  Microbial carbon use efficiency (CUE) in relation to soil pH.  A. CUE declined with 

pH for both conifer (CUEC:N = -0.0246pH + 0.3432, R
2
=0.041) and tropical forest soils 

(CUEC:N = -0.0197pH + 0.4001, R
2
=0.065; CUEC:P =  -0.0472pH + 0.5066, R

2
=0.142).  B. 
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CUE vs. soil pH for all data showing a minimum value at pH 7 (CUE = 0.0099(pH)
2
 – 0.1073pH 

+ 0.5416, R
2
=0.023, n=2617). 

Figure 11.  Microbial carbon use efficiency (CUE) in relation to mean annual temperature 

(MAT).  For the conifer forest soils, CUEC:N increased with MAT (0.0154/degC  ± 0.0075 (95% 

CI), R
2
=0.043, n=511, F=23.1).  The broader data set showed a similar trend (0.0150/degC ± 

0.0053, R
2
=0.051, n=816, F=44.1).  The tropical forest data were excluded from the analysis 

because all sites had the same MAT of 26C.   

Figure 12.  Comparative frequency distributions for microbial community CUE estimates.  The 

aquatic sediment values (n=2100) were calculated from data of Hill et al. (2012) using the same 

stoichiometric model used for the terrestrial soil calculations (n=2002).  The bacterial and fungal 

distributions are based on direct measures of community growth and respiration (bacteria n=1000, 

fungal n=400)  (Sinsabaugh et al. 2015). 
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