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ABSTRACT: Diadema is among the most abundant, widely dispersed, and ecologically important
genera of sea urchin in tropical shallow waters. D. mexicanum is distributed from the Gulf of
California to northern Peru, including the oceanic islands of Revillagigedo, Clipperton, Coco,
Malpelo, and Galapagos, and it is one of the most important sea urchin species in Eastern Tropical
Pacific (ETP) coral reefs. In the 1980s, El Nino caused high coral mortality, resulting in an increase
in macroalgal cover. This resulted in higher sea urchin bioerosion activity, which weakened the
reef frameworks. Considering the high vulnerability of the ETP coral reefs, the aim of this study
was to determine regional differences in the density, size (test diameter), and biomass of D. mex-
icanum at 12 localities in 4 countries between 2009 and 2010, and to determine possible causes of
these differences. The average density, size, and biomass of D. mexicanum were 0.47 + 0.15 ind.
m~2, 4.38 + 1.50 cm, and 0.26 = 0.33 g m™2. The test size frequency that predominated was 2 to
3 cm. Predation by macrophagous fishes seems to be one of the most important factors that
explains the presence of low densities and small size of sea urchins throughout the region. The

increase in D. mexicanum predators is probably a result of overfishing of top predators.
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INTRODUCTION

Diadematidae constitutes one of the most impor-
tant sea urchin families. The ability of species in this
family to occupy different niches, associated with
their generalist diet, is an important factor that
explains their success in coral reefs (Birkeland 1989).
They have an important role in reef areas due to their
effect on algal biomass, structure, and distribution, as
well as in the composition of coral reef and reef geo-
morphology (Sammarco et al. 1974, Sammarco 1980,
1982a,b, Scoffin et al. 1980, Birkeland 1989).
Diadema is among the most abundant, widely dis-
persed, and ecologically important genera of sea
urchin in tropical shallow waters (Lessios et al. 2001).

D. antillarum is one of the most studied tropical sea
urchins because of its role in Caribbean coral reefs
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before and after its mass mortality in 1983 (Ogden
1977, Scoffin et al. 1980, Sammarco 1980, 1982a,b,
Bak et al. 1984, Hughes et al. 1987). Its high densities
were probably a result of overfishing of its predators
(Hay 1984), and its feeding on algae resulted in a
greater availability of substrates for coral settlement
and recruitment (Sammarco 1980, 1982a, Carleton &
Sammarco 1987). After the mass mortality event,
along with other disturbances (Mumby et al. 2006), a
phase shift began to be noticed in the Caribbean
reefs (Hughes 1994, Bellwood et al. 2004, Bruno et al.
2009).

D. mexicanum plays a prominent role in Eastern
Tropical Pacific (ETP) reefs, as has been shown off
the western coast of Panama by Glynn (1988) and
Eakin (1992, 1996, 2001). After the El Nino event of
1982-1983, its population densities changed from 3
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to 50-150 ind. m~2. The result of this increase was a
significant erosion of the reef framework (Glynn
1988, Eakin 1996, 2001). At Isla del Coco, Costa Rica,
an increase in density was seen in D. mexicanum
(Guzman & Cortés 1992), causing similar effects to
those in Panama. However, for most of the ETP, the
impact of bioerosion by D. mexicanum was not
documented. Over time, interest in understanding the
status of D. mexicanum populations has increased in
the ETP, resulting in more data on population density
for a variety of sites (e.g. Glynn et al. 1996, Eakin
2001, Edgar et al. 2004, Herrera-Escalante et al.
2005, Guzman & Cortés 2007, Alvarado & Chiriboga
2008, Benitez-Villalobos et al. 2008). However, many
of these studies were conducted using different
methodologies and focused on the density of sea
urchins without providing further information on size,
biomass or other factors that affect their populations.

Here we describe for the first time, with a regional
focus, the population density, test size, and biomass
distribution of D. mexicanum in the ETP. These
variables are key to understanding ecological pro-
cesses in coral reefs such as herbivory and bioerosion
(Bak 1994, Carreiro-Silva & McClanahan 2001). We
applied a standard methodology at 12 localities off
the west coasts of Mexico, El Salvador, Costa Rica,
and Panama to address the following questions: (1)
Are there differences in the population density, test
size, and biomass of D. mexicanum between locali-
ties, biogeographic provinces, or conservation strate-
gies? (2) If there are differences, what are the most
probable causes?

MATERIALS AND METHODS

This study was carried out at 12 localities with coral
reefs in the ETP (Fig. 1). These included continental,
peninsular, and insular environments, both protected
(national parks or biological reserves) and non-pro-
tected areas (Table S1 in the Supplement at www.
int-res.com/articles/suppl/b024p151_supp.pdf). For
2 additional sites, information from the Archipiélago
de Revillagigedo (Mexico) was provided by the Reef
Systems Laboratory http://lavisauabcs.blogspot.com/
of the Universidad Auténoma de Baja California Sur
(45 transects surveyed in April 2012 in the Socorro
Islands, Roca Partida, and San Benedicto), and for
the Galdpagos Islands (Ecuador) by the Charles Dar-
win Foundation http://www.darwinfoundation.org/es/
investigacion/investigacion-marina/ (40 transects sur-
veyed in March 2000 and May 2001, at the Darwin
and Wolf Islands).

At each locality (A-L, Fig. 1), 3 sites were sampled
(i.e. Al, A2, A3, etc.), with the exception of the Coiba
and Perlas archipelagos, where 5 sites were sampled,
and Carrizales and Marietas, where 2 sites were
sampled due to the size of the study area. At each
site, the density of Diadema mexicanum was quanti-
fied along 3 transects (10 x 2 m; total sampled area of
60 m?) parallel to the coast in the forereef area,
between 4 and 8 m depth. This was done without
removing any live coral colony or destroying any reef
structure.

In each transect, test diameters of a minimum of 50
sea urchins were measured using Vernier calipers
(0.01 cm). The biomass of D. mexicanum was calcu-
lated using the regression reported by Hernandez et
al. (2008) for D. africanum:

DW = 0.00913 x (TD?257867) 1)

where DW is the sea urchin dry weight (g ind.™) and
TD is the test diameter (mm).

The average DW of urchins per site was multiplied
by density at the site to calculate the biomass (g m™2).
The biomass represents a standard measurement for
all sea organisms and allows a simultaneous analysis
across major taxonomic groups of coral reefs. This
approximation is not possible with traditional abun-
dance or coverage measures (Newman et al. 2006).

One-way ANOVA was performed to determine
differences between the localities in terms of urchin
density, size, and biomass (Bakus 2007). To evaluate
differences between biogeographic provinces, the
sites were grouped a priori according to the classifi-
cation by Briggs (1974) (Fig. 2). The 2 sites of the
Cortezian province (Isla Espiritu Santo and Cabo
Pulmo) were included in the Mexican province (Islas
Marietas, Carrizales, Ixtapa-Zihuatanejo, and Huat-
ulco). The other provinces were Panamic (Los
Cobanos, Bahia Culebra, Isla del Cano, Isla Coiba,
and Archipiélago Las Perlas) and Oceanic Islands
(Archipiélago de Revillagigedo, Isla del Coco, and
Darwin and Wolf). A similar analysis was done by
levels of protection: (1) marine protected areas
(MPAs) without fisheries (no-take MPAs: Isla del
Coco, Isla del Cano, Darwin and Wolf, and Revil-
lagigedo); (2) MPAs with fisheries (take MPAs: Isla
Espiritu Santo, Cabo Pulmo, Islas Marietas, Huat-
ulco, Los Cébanos, Coiba, and Las Perlas); and (3)
non-protected areas (non-MPAs: Carrizales, Ixtapa-
Zihuatanejo, Bahia Culebra). One-way ANOVA tests
were performed using the biogeographic province
and the level of protection as factors, and density,
size, and biomass as variables. In the case of any sig-
nificant differences, a posteriori Tukey tests were
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Fig. 1. Localities sampled in the Eastern Tropical Pacific (ETP). A: Isla Espiritu Santo; B: Cabo Pulmo; C: Marietas;
D: Carrizales; E: Ixtapa-Zihuatanejo; F: Huatulco; G: Los Cébanos; H: Bahia Culebra; I: Isla del Cano; J: Isla del Coco;
K: Isla Coiba; L: Archipiélago Las Perlas

performed to determine which provinces explain the
differences. For the analysis of density and biomass,
Bahia Culebra was excluded because the extreme
values of this locality are the result of a recent
recruitment due to the deteriorating environmental
conditions of the area (Alvarado et al. 2012).

The frequency distribution of test diameters was
compared using a chi-squared test. A Bray-Curtis
similarity index was calculated with the standardized
data to construct an average clustering dendrogram
and a non-metric multidimensional scaling (nMDS)
(Clarke & Gorley 2006). In this case, the factors were
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Fig. 2. (A) Density, (B) test size, and (C) biomass of Diadema mexicanum
along the Eastern Tropical Pacific. (D) Study areas: (1) Isla Espiritu Santo,
(2) Cabo Pulmo, (3) Archipiélago de Revillagigedo, (4) Islas Marietas, (5)
Carrizales, (6) Ixtapa-Zihuatanejo, (7) Huatulco, (8) Los Cdobanos, (9) Bahia
Culebra, (10) Isla del Cano, (11) Isla del Coco, (12) Darwin and Wolf, (13)
Coiba, and (14) Archipiélago Las Perlas. Sites allocated to 3 biogeographic
provinces (a: Cortezian-Mexican, b: oceanic islands, and c¢: Panamic) ac-
cording to Briggs (1974). The horizontal line represents the average. Error
bars: SE. Means with different letters are significantly different at p < 0.05
(Tukey's post-hoc test)

differences between the provinces.
These analyses were performed using
PRIMER 6.0 software (Clarke & Gorley
2006).

RESULTS

In total, 114 transects were surveyed
(2280 m?), along which 9307 sea urchins
were counted and test diameters of
1600 individuals were measured. The
average density (+SE) of Diadema mexi-
canum in the ETP was 0.47 + 0.15 ind.
m~2, being highest in Bahia Culebra
(2.19 + 0.57 ind. m~?) and lowest in Los
Coébanos (0.02 = 0.01 ind. m™%; Fy3 g5 =
4.557, p < 0.001; Fig. 2A). The Cortezian-
Mexican Province had the lowest densi-
ties (0.19 + 0.15 ind. m~?), followed by the
Panamic Province (0.35 = 0.30 ind. m™2),
while the Oceanic Islands had the high-
est density (0.66 = 0.19 ind. m™%; F, =
5.465, p < 0.025). Sea urchin density was
higher in non-MPAs (0.91 + 1.11 ind.
m~2), followed by no-take MPAs (0.57 *
0.24 ind. m™%) and take MPAs (0.23 +
0.36 ind. m™% F,;; = 1.883, p = 0.198;
Fig. 3).

Sea urchin average size (+ SE) was
4.38 + 1.50 cm, with the maximum at Isla
del Coco (6.71 + 0.16 cm) and the mini-
mum in Cabo Pulmo (2.39 + 0.08 cm;
Fi3185 = 22.381, p < 0.001; Fig. 2B). The
largest individual was found at Isla del
Coco (12.30 cm), while the smallest was
found at Carrizales (0.37 cm). The aver-
age size of the sea urchins in no-take
MPA localities was 5.77 + 1.22 cm, 4.11 =
1.11 cm in non-MPAs, and 3.67 + 1.36 cm
in take MPAs (F,; = 3.459, p = 0.068;
Fig. 3).

Test diameters ranged from 0.37 to
12.30 cm (Fig. 4). In general, most sizes
were 2-3 cm (n = 406), 3—4 cm (n = 300),
and 4-5 cm (n = 229). Sizes classes 1-2,
5-6, 6-7, and 7-8 cm included between
200 and 100 individuals each, while the
rest of the sizes were represented by

biogeographic province (Cortezian-Mexican, Pan- fewer than 10 individuals. In the majority of locali-
amic, and Oceanic Islands) and the level or protec- ties, except for Isla del Coco, Revillagigedo, Darwin
tion (0: non-protected areas; I: no-take MPAs; and II: and Wolf, and Marietas, sea urchins were small (x2 =

take MPAs). An ANOSIM was done to determine 1795.46, df = 156, p < 0.001). Isla del Coco was the
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1. Espiritu Santo

only locality that had a high range of size intervals
(10). Cabo Pulmo had only 3, Los Cébanos 4, Espiritu
Santo, Isla del Cano, and Las Perlas 5, Ixtapa-Zihu-
atanejo and Bahia Culebra 6, Carrizales 7, and Mari-
etas had 8 (Fig. 4).

The size frequencies grouped the localities in 4 sets
with 60 % similarity (Fig. 5A,B): (1) Isla del Coco, Dar-
win and Wolf, Archipiélago de Revillagigedo, and
Marietas; (2) Los Cébanos and Ixtapa-Zihuatanejo;
(3) Bahia Culebra, Isla del Cano, Carrizales, and
Huatulco; and (4) Las Perlas, Coiba, Isla Espiritu
Santo, and Cabo Pulmo. Group 1, the larger sizes
(6-12 cm), includes all the localities that belong to
the Oceanic Islands Province, that are no-take MPAs
and 1 locality from the Cortezian-Mexican Province
that is a take MPA. The other groups included a mix-
ture of biogeographic provinces. Group 2 included a
take MPA and a non-protected area, while group 3
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Fig. 4. Test size frequency of Diadema mexicanum in the study areas along the Eastern Tropical Pacific. n: number of sea
urchins measured
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included all levels of protection. Group 4, however,
included only localities that are take-MPAs. This last
group had the smallest sizes (2-4 cm), while groups 2
and 3 had sizes between 3 and 5 cm (ANOSIM, R =
0.298, p < 0.05).

Sea urchin average biomass (+ SE) was 0.26 + 0.33 g
m~2, with the maximum at Revillagigedo (1.07 + 1.52 g
m~?) and the minimum at Cabo Pulmo and Los
Coébanos (0.01 * 0.01 g m™ for both localities;
Fi3,185 = 4.433, p < 0.001; Fig. 2C). Significant differ-
ences were also found between the biogeographic
provinces (F, 9 = 24.750, p < 0.001; Bahia Culebra
excluded), the 2 continental provinces being differ-
ent from the Oceanic Province (p < 0.001).

DISCUSSION
Global patterns

The average Diadema mexicanum density in the
ETP was 0.47 +0.15ind. m™ (min.: 0.02, max.: 2.19 ind.
m~?), which is intermediate compared to other reef
regions harboring the genus Diadema (Table S2 in
the Supplement at www.int-res.com/articles/suppl/
b024p151_supp.pdf). Low densities (<0.10 ind. m™)
have been found in Fiji, Australia, and Hawaii (Cop-
pard & Campbell 2007, Vermeij et al. 2010, Young &
Bellwood 2011). Intermediate densities (0.1-1.0 ind.
m’z) have been found in Fiji, Cuba, and the ETP
(Coppard & Campbell 2007, Martin Blanco et al.
2010, this study), and high densities (>1.0 ind. m™2)
have been found in the Caribbean, Brazil, the Canary
Islands, and Kenya (Table S2). The highest densi-
ties in the Caribbean (71-100 ind. m™%; Table S2)

occurred prior to the 1983 mass mortality of D. antil-
larum (Sammarco 1980). As stated by Hay (1984),
these high densities were likely the result of the lack
of sea urchin predators caused by overfishing. More-
over, the reefs during the 1970s and the early 1980s
were structurally more complex, providing shelter
to sea urchins (Haley & Solandt 2001, Lee 2006,
Alvarez-Filip et al. 2009). Other localities with high
densities of Diadematidae such as Kenya (5.7 ind.
m~2; McClanahan & Shafir 1990) and the Canary
Islands (2.82 ind. m~2, Hernandez et al. 2008), lack
sea urchin predators due to overfishing.

Sammarco (1985) indicated that in the Great Bar-
rier Reef in Australia, the densities of sea urchins are
insignificant (i.e. D. setosum: 0.06-0.76 ind. m72).
Clark (1938) stated that the sea urchins are conspi-
cuously absent from the Great Barrier Reef. Unlike
the Caribbean where overfishing produced high
densities of D. antillarum (Hay 1984), fishing in the
Great Barrier Reef has been more specific and
directed toward Serranidae, Lutjanidae, and Lethrin-
idae (Sammarco 1985). This specific type of fishing
probably allowed more predatory fish species to
survive, resulting in low sea urchin abundances.
This may suggest a similar situation in the ETP with
D. mexicanum.

Biomasses of D. mexicanum in the ETP were lower
than those of other Diadema species in Tanzania
(D. savignyi: 54.2 g m~2; D. setosum: 4.3 g m~2), but
similar to those found in protected areas in Kenya
(D. savignyi: 0.03 g m™% D. setosum: 0.09 g m™%
Muthiga & McClanahan 2007). In the Canary Islands,
D. africanum had high biomass in fishing areas
(81.6 g m~2) compared to protected areas (2.41 g m~%;
Hernandez et al. 2008).
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Survivorship and predation

The abundance of macrophagous fish associated
with the unavailability of shelter are the factors that
seem to explain the density, size, and biomass distri-
bution of D. mexicanum in the ETP. It is likely that
overfishing of top predatory fish has allowed popula-
tions of macrophagous predators to increase. Preda-
tion can alter the structure of the communities and
ecosystem functions (Hairston et al. 1960, Duffy &
Hay 2000), reflecting its influence on the distribution
and abundance of prey organisms (Paine 1966, Levi-
tan & Genovese 1989) and on community structure
(Clemente & Hernandez 2007). Fish predation is one
of the most likely causes of differences in size distri-
bution, abundance, and foraging behavior in sea
urchins (Birkeland 1989, Sala & Zabala 1996,
Guidetti 2007, Coma et al. 2011). However, other
factors such as recruitment, competition, diseases,
and physical factors may be equally important (Sala
1997, Coma et al. 2011).

Pocillopora reefs (of low complexity) provide very
little shelter for sea urchins, compared to reefs that
have a greater presence of massive species like
Porites lobata (of higher complexity) (Palacios & Zap-
ata 2014) (Fig. S1 in the Supplement). In most conti-
nental localities, Pocillopora reefs dominate, whereas
in oceanic islands there is a greater presence of P.
lobata reefs. As sea urchins grow, they cannot use
small shelters such as those provided by Pocillopora
reefs and become more exposed to predation (Sala &
Zabala 1996). More structurally complex reefs pro-
vide shelter from predation, and Diadema can have
higher densities and attain larger sizes (Haley &
Solandt 2001), finally reaching a size large enough to
escape from predators (Sala & Zabala 1996, Sala
1997). Also, sea urchin populations are small under
high predator abundance (McClanahan & Sala 1997),
and small increases in fish biomass dramatically
reduce sea urchin biomass (Harborne et al. 2009).

The decrease in top predators combined with
eutrophication can have drastic impacts on lower
trophic levels by generating cascading changes in
the composition of herbivores (Sieben et al. 2011).
Overfishing of top carnivorous fish (snappers,
groupers, sharks) has resulted in an increase in
lower trophic level carnivores that prey on sea
urchins. This would explain the predominance of
small-sized sea urchins in several reefs where they
can hide from predators.

The preferential predation on small sea urchins
can result in urchins not reaching adult sizes. The
most important predators of D. africanum in the

Canary Islands prefer sizes between 3 and 5 cm
(Clemente et al. 2010). With D. mexicanum, we infer
that the presence of small or juvenile sea urchins
(Fig. 4) is the result of high predation pressure. In
environments with moderate- or large-sized urchins,
shelters are important as they allow urchins to reach
‘escape sizes' (Sala 1997), after which they experi-
ence reduced predation (Clemente et al. 2010).

The size frequencies of D. mexicanum reported in
this study (Fig. 4) represent very specific moments in
time. There are 2 possible explanations: (1) they
reflect specific settlement events of new recruits,
explaining why predominantly small sizes are
observed, or (2) they may reflect a pattern typical of
the region. Thus, the sizes are the result of other
effects such as over-fishing, predators, MPA enforce-
ment, or a non-quantified combination of all of these
factors. Whereas several factors influence the pres-
ence of sea urchins, such as recruitment, shelter
availability, and physical conditions, predation is
among the key factors controlling sea urchin popula-
tions (Guidetti 2007). It is important to focus on the
maximum sizes observed, because they are an excel-
lent indicator not influenced by recruitment events
(Ebert 2010). The oceanic localities of the ETP,
including Islas Marietas (Fig. 5B), had a higher num-
ber of large individuals (6—12 cm; Fig. 4). Size distri-
bution can provide indirect evidence of intensity of
predation on sea urchins (Behrens & Lafferty 2004).
A bimodal distribution of frequencies occurs when
there are spatial shelters against predation for the
small sizes and a shelter in size for the larger ones.
When sea urchin predators are less abundant, sea
urchins have a normal distribution. This type of
distribution is found in fished areas, while bimodal
frequencies are found in protected areas (Behrens &
Lafferty 2004).

In the ETP, 7 species of predators of D. mexicanum
have been reported (Arothron meleagris, A. hispidus,
Diodon holocanthus, Bodianus diplotaenia, Pseudo-
balistes naufragium, Balistes polylepis, and Suffla-
men verres; Glynn et al. 1972, Guzman 1988, Eakin
2001). The abundance of these fishes can be a limit-
ing factor for the presence of sea urchins at Isla del
Cano, resulting in their cryptic behavior (Guzman
1988). In Cabo Pulmo, sea urchins are the second
most important item in the diet of the puffer A. me-
leagris (26.3 %), but higher in smaller fishes (9-15 cm,
38.0%) (Moreno et al. 2009). At Isla Espiritu Santo,
coral coverage, sea surface temperature, and the
interaction between substrate heterogeneity and
the abundance of Labridae, specifically the Mexican
hogfish B. diplotaenia, explained 50.3 % of sea urchin
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density (Rojero-Le6n 2009). The author stated that
environmental variables have a greater effect on sea
urchin density than predation, but when the environ-
mental effects decrease, predation by the triggerfish
B. polylepis seems to be stronger. In the majority of
the localities studied in this research, for which infor-
mation about fish abundance is available, sea urchin
predatory species are abundant and common (Domi-
nici-Arosemena et al. 2005, Rodriguez-Romero et al.
2005, Alvarez-Fﬂip et al. 2006, Chévez-Comparan &
Macias-Zamora 2006, Dominici-Arosemena & Wolff
2006, Ramirez-Gutiérrez et al. 2007, Benfield et al.
2008).

Trends across management levels

Marine reserves restore populations of predators
that reduce sea urchin populations (Harborne et al.
2009), as trophic interactions between sea urchins
and their predators are reestablished (McClanahan
et al. 1999). Predation in marine reserves with a high
abundance of fish predators cannot completely
reduce the densities of sea urchins because most of
them may be protected in crevices or under large
blocks of stone or coral (Hereu et al. 2005). In Fiji,
Coppard & Campbell (2007) found a relationship
between the quantity and the size of crevices and
diadematid distribution. Large sea urchins were
found where size and availability of crevices were
higher. Small sea urchins were found in areas with
small crevices. This may explain why there are larger
sea urchins and a larger range of sizes in no-take
MPAs located in oceanic islands, compared to take
MPAs and localities that are not protected. This same
pattern has been observed in other sea urchin spe-
cies, where large sea urchins are found in protected
areas (Shears & Babcock 2002, Tuya et al. 2004). In
take MPAs or in areas that are not MPAs, sea urchins
cannot reach sizes larger than 4 cm, probably due to
predation pressure and lack of shelter for individuals
larger than 4 cm.

Low to medium densities of sea urchins have been
found in MPAs with high fish densities, while urchin
densities were higher in fished areas (Sala & Zabala
1996, Brown-Saracino et al. 2007, Hernandez et al.
2008). A similar pattern was found between take and
no-take MPAs and localities that are not MPAs
(Fig. 3). Nonetheless, in take MPAs, the average den-
sity of sea urchins was lower. Tuya et al. (2004) found
that the density of D. antillarum diminishes as the
richness of fish species increases. A low abundance
and biomass of predatory fish is associated with high

densities of D. antillarum. These fish control the
structure of sea urchin populations.

Localities in the ETP with varying levels of protec-
tion and management, no-take MPAs, and with a
high level of protection (e.g. Isla del Coco) possess a
greater biomass of carnivorous fish, low sea urchin
densities, and high coral coverage compared to
MPAs with limited protection or non-MPAs (Edgar et
al. 2011). They found that D. mexicanum densities
were always higher in no-take MPAs than in take
MPAs or fished zones. The highest densities of these
sea urchins were found inside no-take MPAs in the
oceanic islands, while in the continental localities,
densities were lower, being more similar to fishing
areas than to take-MPAs. The lowest density values
were found in this second category. The authors sug-
gested that the impact of over-fishing on trophic
chains has been more intense on the mainland than
in the oceanic islands. Similarly, the authors found
that certain fish types such as planktivores, herbi-
vores, and some macrophagous predators did not
show a significant decrease in their populations in
fished areas in relation to no-take MPAs, which dif-
fers from what has been reported in other regions
such as the Indo-Pacific or the Caribbean. This dis-
crepancy suggests that these species have not been
the focus of fisheries in the ETP as they have been in
other regions. The consequence of this type of fishing
is reflected in the reduction of macroinvertebrate
populations in areas with a low protection level.
Edgar et al. (2011) stated that the pufferfish A.
meleagris is more abundant in MPAs with low pro-
tection levels than in fishing areas, affecting the sea
urchin populations in these localities.

Some take MPAs allow fishing in some parts of the
protected areas. Fishing is prohibited in core zones
that are small or recently created, where the effect
of fishing closure is not yet perceptible. This is an
essential aspect in understanding the role of protec-
tion of fish populations, and the time that they have
had to recover and reach an almost ‘pristine’ state
with unaltered trophic chains. Marine reserves that
have been established for over 15 yr have more and
larger fish compared to non-protected areas (Molloy
et al. 2009). These populations of large fish species
take longer to recover because they have larger
home ranges that overlap with non-protected areas,
but which in turn makes it easier to find and colonize
marine reserves. Hence, the older reserves will allow
a greater number of recruitment events for this group
of fishes (Molloy et al. 2009). In addition, Claudet
et al. (2008) stated that by increasing the area of non-
fishing zones, the density of commercial fish inside
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and outside the marine reserves increases. In marine
reserves where populations of sea urchin predators
are re-established (Harborne et al. 2009), trophic
interactions between sea urchins and their predators
are restored (McClanahan et al. 1999). It is likely that
in take-MPAs or in the surrounding areas, an
increase in the abundance of macroinvertebrate
predators is being favored due to more time needed
by large predators to reach established populations,
as well as by the effect of fishing in the surrounding
area. In unprotected areas, fishing may be affecting
both top predator populations and macroinvertebrate
predators, resulting in higher sea urchin sizes and
densities than the ones observed in take MPAs.
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