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Abstract

The selection coefficient, s, quantifies the strength of selection acting on a genetic variant. Despite
this parameter’s central importance to population genetic models, until recently we have known
relatively little about the value of s in natural populations. With the development of molecular genetic
techniques in the late 20" century and the sequencing technologies that followed, biologists are now
able to identify genetic variants and directly relate them to organismal fitness. We reviewed the
literature for published estimates of natural selection acting at the genetic level and found over 3000
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estimates of selection coefficients from 79 studies. Selection coefficients were roughly exponentially
distributed, suggesting that the impact of selection at the genetic level is generally weak but can
occasionally be quite strong. We used both nonparametric statistics and formal random-effects meta-
analysis to determine how selection varies across biological and methodological categories. Selection
was stronger when measured over shorter timescales, with the mean magnitude of s greatest for
studies that measured selection within a single generation. Our analyses found conflicting trends when
considering how selection varies with the genetic scale (e.g., SNPs or haplotypes) at which it is
measured, suggesting a need for further research. Besides these quantitative conclusions, we highlight
key issues in the calculation, interpretation, and reporting of selection coefficients and provide

recommendations for future research.

Introduction

Since the publication of Lande and Arnold’s landmark methods for calculating selection on
quantitative phenotypic traits (Lande & Arnold 1983), the study of selection in natural populations has
exploded. Hundreds of studies have generated thousands of estimates of selection on phenotypic
traits, and the last 15 years have seen a number of influential reviews and meta-analyses of this data
on phenotypic selection. These studies have improved our understanding of the strength and form of
phenotypic selection in natural populations (Kingsolver et al. 2001; Hoekstra et al. 2001; Hereford et
al. 2004), demonstrated its role in creating phenotypic diversity (Rieseberg et al. 2002), and shown
how selection varies through time and space (Siepielski ez al. 2009; Kingsolver & Diamond 2011;

Siepielski et al. 2011; Morrissey & Hadfield 2012; Siepielski et al. 2013).

Of course, biologists have long recognized that natural selection must be transmitted to the
genetic level for adaptive evolutionary change to occur. Population genetic models explicitly account
for natural selection’s role in changing allele frequencies with the parameter s, the selection
coefficient (Hartl & Clark 2007). Though s can have slightly different meanings in different models
(Box 1), it generally describes the relative fitness advantage or disadvantage of an allele at a genetic

locus. The genetic selection coefficient is thus similar to phenotypic selection gradients and
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differentials and quantifies the magnitude of natural selection acting on genetic variants. Compared to
measures of phenotypic selection, however, we know relatively little about the values of s in natural
populations of organisms. The questions that have been considered in reviews of phenotypic selection
remain unanswered at the genetic level: How strong is selection at the genetic level? Is selection most
often directional, overdominant, or frequency dependent? What is the distribution of selection
coefficients in natural populations, and does that distribution change according to the temporal or
genetic scale at which selection is measured? These are important questions in evolutionary biology,

but it is only recently that biologists have had sufficient genetic data to address them empirically.

Theoretical models have examined these issues, but their results are difficult to apply to
natural populations for a variety of reasons. The first difficulty is the conceptual division between
theories of positive selection and theories of negative selection. The designation of selection as
positive or negative is determined by the choice of the allele used as the reference for calculating
relative fitnesses and is thus somewhat arbitrary (Box 1). Nevertheless, theoretical models often treat
only one mode of selection, and this difference in focus can lead to different results. For example,
theoretical models of the fitness effects of new mutations find that beneficial mutations fixed during
adaptation are likely exponentially distributed, while the distribution of deleterious mutations can be
complex and multimodal (see reviews by Orr 2005b; Eyre-Walker & Keightley 2007; Rockman
2012). Though it is easy to delimit positive and negative selection in theoretical models, drawing this
distinction is more difficult in natural systems, where there is considerable debate about whether most
populations are at fitness optima (and thus likely to experience mostly negative selection) or
maladapted (and thus allowing an opportunity for positive selection). Reciprocal transplant
experiments find frequent but not ubiquitous local adaptation (reviewed in Kawecki & Ebert 2004;
Leimu & Fischer 2008; Hereford 2009), and published estimates of phenotypic selection indicate that
mean trait values for the majority of traits are within two standard deviations of the fitness optimum
(Estes & Arnold 2007). Whether these patterns indicate widespread adaptation or maladaptation is
open to interpretation, so it is difficult to know a priori which set of theory to apply (Hendry &

Gonzalez 2008).
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Second, within the broad fields of positive and negative selection, theoretical predictions vary
greatly based on the assumptions and parameters of specific models. Consider, for example, theories
of adaptation that predict the distribution of fitness factors fixed during an adaptive bout (Orr
2005a;b). Models that assume a stationary fitness optimum (e.g., Orr 1998; 2003; Kryazhimskiy et al.
2009) predict a different distribution of selection coefficients than models with a moving optimum
(e.g., Kopp & Hermisson 2007; Collins et al. 2007; Kopp & Hermisson 2009a;b). Other factors that
can influence this distribution include correlations between traits (Martin & Lenormand 2006),
migration between populations (Yeaman & Whitlock 2011), the use of novel versus standing genetic
variation (Hermisson & Pennings 2005; Barrett & Schluter 2008), the distance to the fitness optimum
(Barrett et al. 2006; Seetharaman & Jain 2013), and the number of fitness optima (Martin &
Lenormand 2015). Once again, applying this theory requires knowledge of parameters (e.g., amount
of migration between locally-adapted populations, current level of (mal)adaptation in the population,
movement of fitness optima) that can be difficult to estimate for natural populations. Finally,
theoretical models usually examine selection at a scale that can be difficult for empiricists to access in
natural populations. Most of the models mentioned above consider the fitness effects of single point
mutations. Often, biologists must measure selection on different alleles of a gene or QTL; selection

acting on these larger genomic intervals might have different properties from selection on SNPs.

In summary, this array of theory is informative but difficult to apply. Until recently, obtaining
the data necessary to address these questions empirically was challenging. Though population
geneticists have inferred selection at the genetic level by observing changes in Mendelian phenotypes
for many years (Box 2), direct estimation of selection on genetic variation was only made possible by
the revolution in molecular genetic techniques that occurred in the 1970s and 1980s. These methods,
and the next-generation sequencing technologies that followed, have allowed researchers to detect
natural selection at the genetic level using a variety of methods. We briefly discuss these methods

below; see Linnen & Hoekstra (2009) and Hohenlohe ez al. (2010) for more thorough reviews.
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Many observational approaches to quantifying selection rely on measuring changes in allele
frequency, which can be detected directly with molecular genetic techniques. Allele frequency
changes can occur over time (e.g., an increase in frequency over multiple generations, Nsanzabana et
al. 2010), across an environmental gradient (e.g., a decrease in frequency across a gradient of
insecticide application, Lenormand et al. 1999), or between contrasting environments (e.g., frequency
differences between two locally-adapted populations, Hoekstra et al. 2004). Another important
observational approach is the detection of selection from features of DNA sequence variation. These
features can include (but are not limited to) haplotype structure (e.g., Quesada et al. 2003), patterns of
linkage disequilibrium (LLD) around a selected locus (e.g., Ohashi ef al. 2011), and reduction in
variation around a selected locus (e.g., Orengo & Aguade 2007). The limitation of these approaches is
that they alone cannot explicitly determine the process that led to the observed patterns of allele
frequency or nucleotide variation (Barrett & Hoekstra 2011). Thus, observational approaches often
use population genetic modeling, simulations, and statistical analysis to rule out the possibility that
only genetic drift or other neutral forces (e.g., changes in demography) could have produced the
observed pattern (Excoffier ef al. 2009; Li et al. 2012; Vitti et al. 2013). Nevertheless, all estimates of
selection likely contain some imprecision due to drift. This problem of determining causality can
sometimes be mitigated with experimental approaches. By tracking changes in allele frequency during
experimentally controlled selection in the field, researchers can accurately measure selection and

identify the agent imposing it (Linnen & Hoekstra 2009).

Over the past few decades, biologists have made use of all of these techniques, and others
(e.g., Robinson et al. 2012) to quantify selection acting at the genetic level in natural populations. In
this study, we gathered those estimates of selection to address a number of key questions. Given the
difficulty of applying population genetic theory to predict the distribution of selection coefficients, we
first plotted this distribution to see how it differs between biological and methodological categories.
Next, we used nonparametric statistics and generalized linear mixed models to quantify how the
magnitude of selection varies across temporal and genetic scales. Meta-analyses of phenotypic

selection and evolutionary rates indicate that strong phenotypic selection is rarely maintained for long
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and that long-term estimates of selection or rates of evolutionary change tend to be weaker than short-
term estimates (Gingerich 1983; Hoekstra et al. 2001; Kinnison & Hendry 2001; Siepielski et al.
2009). We predicted that this inverse relationship between strength of selection and temporal scale
would be true of selection at the genetic level, as well. We hypothesized that selection would also
vary based on the genetic unit at which it was measured. Specifically, we assumed that strength of
selection on a locus would be proportional to the amount of phenotypic variance that the genetic unit
can explain. We reasoned that, with some exceptions, larger genetic units (e.g., allelic variants of a
gene or QTL) would tend to have larger phenotypic effects than SNPs. Thus, we predicted that the
strength of selection would increase with genetic scale. Finally, we highlight a number of important
issues regarding the calculation and interpretation of selection coefficients and make
recommendations for further research that will improve our understanding of this important

evolutionary parameter.

Materials and Methods

Literature Search

To assemble our database, we searched for journal articles reporting selection coefficients in a
number of ways different ways. First, we searched the Web of Science database system using three
different search terms: “selection coefficient*”, “genotyp* selection”, and “adapt* gene”. We
excluded books and search results from scientific fields outside of ecology and evolution (see
supplementary methods). Second, we searched the preliminary literature database of Siepielski et al.
2013, a meta-analysis of spatial variation in phenotypic selection, for journal articles that were
excluded from their analysis for studying genotypes instead of phenotypes. Third, we searched the
weekly tables of contents from a number of journals that focus on evolutionary biology and genetics
(see supplementary methods). Finally, while determining which studies met our inclusion criteria, we
noted references to papers that might have reported selection coefficients and added those to our
database. In total, we examined roughly 2200 papers for estimates of natural selection at the genetic

level.
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Inclusion Criteria

To be included in our quantitative analysis, studies need to satisfy three criteria. First, the
study had to report a selection coefficient on a genetic unit (s). Estimates of s that were equal to zero
were not included, as they did not detect selection acting on a locus (see supplementary analysis).
Selection coefficients can have different meanings under different population genetic models, but in
most cases they quantify the difference in mean relative fitness between the most- and least-fit
homozygotes (Box 1). We excluded a small number of studies that reported selection coefficients that
did not follow this model and thus had different properties from the rest of the calculated estimates.
We also analyzed directional selection separately from over- and underdominance. Selection
coefficients scaled by effective population size (e.g., y or 6) were excluded, as were estimates of s that
reported a range of possible values without specifying a median or point estimate. A number of
studies reported relative fitnesses for genotypes without explicitly calculating a selection coefficient.
In those cases we used the relative fitnesses to calculate selection against the less-fit homozygote (s =

I'Waa)-

Second, selection coefficients needed to be calculated for a specific genetic unit. For our
analysis, we categorized these units as either “SNP”, which includes point mutations and single
nucleotide polymorphisms, or “haplotype”, which includes all larger genetic units (e.g., insertions or
deletions of more than one base pair, allelic variants of genes, allozymes, microsatellite loci, and
quantitative trait loci). A number of studies used DNA sequence data to estimate the distribution of
selection coefficients or average strength of selection acting on a set of genetic loci or type of
mutation but did not calculate locus-specific selection coefficients. For example, Turchin et al. (2012)
estimated the average strength of selection on ~1400 individual SNPs associated with increased height
in Europeans, but did not report estimates of s for each SNP. These average selection coefficients

were excluded from our analysis.
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Finally, studies needed to measure selection operating in natural populations. Thus, we
excluded measures of selection in laboratory populations or in domesticated plants and animals.
Estimates of selection in humans were included, as were estimates of selection from experimentally

manipulated natural populations or organisms introduced into suitable habitat.

For each study that satisfied these criteria, we recorded the absolute value of s, whether
selection was positive or negative, any measures of error, the statistical significance of the coefficient,
the number of generations over which selection was measured, the genetic unit at which selection was
measured, the method used to calculate the selection coefficient, whether the estimate of selection
came from observation or a manipulative experiment, and other information (Table S2). We modified
this raw database in three ways to prepare it for quantitative analysis. First, to avoid
pseudoreplication, we removed estimates of selection that were calculated from the same data as other
selection coefficients. In most cases this occurred when one study reported alternative estimates of
selection for the same genetic unit under different evolutionary parameters (e.g., generation times or
degrees of dominance). When the authors deemed one set of parameters most biologically plausible,
we included the selection coefficient from that model. Otherwise, we flipped a coin to randomly select
one selection coefficient to include. Some studies calculated selection coefficients from data
previously reported in other studies. If the original study also reported selection coefficients, we
included whichever study reported more selection coefficients. If the studies reported equal numbers

of selection coefficients, we included the original study.

Second, some studies reported selection coefficients from the same data at different temporal
scales or for different fitness components. In such cases, we included the selection estimates from the
shorter timescales or more subdivided fitness components in our analysis, as including only the
overall component might obscure relevant selection and result in pseudoreplication. For example,
Bérénos and colleagues calculated selection coefficients based on selection for survival, reproductive
success, and overall lifetime fitness (Bérénos et al. 2015). We included the measures of selection on
survival and reproductive success, but did not include the lifetime fitness selection coefficients in our

quantitative analysis.
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Finally, we standardized all estimates of selection as the magnitude of selection against the
disfavored allele. Because positive selection for beneficial alleles and negative selection against
deleterious alleles are calculated under slightly different models, they are not directly comparable (see
Box 1). Fortunately, a given estimate of positive selection on an allele can be easily converted into the
estimate of negative selection against the corresponding disfavored allele, assuming a di-allelic
system. Hereafter, references to the distribution of selection coefficients or the mean magnitude of

selection coefficients refer to these converted estimates.

Quantitative Analysis

Selection on phenotypes can be measured using standardized, regression-based methods that allow
straightforward comparison in a meta-analysis (Morrissey & Hadfield 2012; Kingsolver et al. 2012;
Siepielski et al. 2013). Selection at the genetic level, on the other hand, can be measured with many
different methods, and this diversity complicates formal meta-analysis. We therefore analyzed the
database using a variety of statistical techniques. All analysis was performed in R version 3.0.1 (R

Core Team).

First, we followed the example of early syntheses of phenotypic selection coefficients by
plotting the distribution of selection coefficients, observing how this distribution differs between
biological and methodological categories, and using non-parametric statistics to evaluate differences
in the mean magnitude of selection between categories (Endler 1986; Kingsolver et al. 2001).
Because two studies accounted for over 90% of selection estimates (see results), we performed all
nonparametric analysis on both the full dataset and the subset of estimates excluding these two

studies, hereafter referred to as the reduced dataset.

Some studies reported multiple selection coefficients, and failing to correct for
autocorrelation within studies could influence our conclusions (Gurevitch & Hedges 1999). To
account for this, we implemented generalized linear mixed models (GLMMs) in a Bayesian

framework using the R package MCMCglmm (Hadfield 2010). We included study as a random factor
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and used the exponential distribution to model our response variable, the selection coefficient. For the
fixed effects, we specified independent normal distributions with mean = 0 and large variance (10°).
For the random effects we used parameter expansion, which results in scaled F priors, to improve
convergence. We used flat inverse-Wishart priors for the residual variance (a full specification of the
models and priors, including the function calls in MCMCglmm, can be found in the supplementary
methods). We first modeled the distribution of selection coefficients without any predictor variables
to see how accounting for autocorrelation within studies influenced our results. We then ran separate
models specifying the direction of selection, type of study, time period of selection, and genetic unit
as explanatory variables to understand whether the strength of selection differed between these

categories.

Measurement error can have a significant effect on the conclusions drawn from meta-analyses
of selection (Morrissey & Hadfield 2012). Unfortunately, relatively few studies reported measures of
error around their estimates of selection, and those that did often used different methods to calculate
error bounds. For this reason, we were unable to account for measurement error in our analysis of all
reported selection coefficients. To gain some understanding of how measurement error might
influence our results, we performed three GLMMSs on the subset of our data for which standard errors
were reported or could be calculated and compared their estimates of the mean selection coefficient.
We used the same normal priors for the fixed effects, but did not use parameter expansion and instead
used flat inverse-Wishart priors for both the random effects and residual variance. The first model
included study as a random factor, the second incorporated measurement error, and the third

incorporated both terms.

Results

Database Results

Of the more than 2200 studies we examined, only 79 (~3.5%) met all the inclusion criteria. After
accounting for pseudoreplication and multiple temporal scales within a study, the database contained

3416 directional selection coefficients and 70 instances of heterozygote advantage. Most of the
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directional selection coefficients came from two studies. Anderson et al. 2014 reported 2793 estimates
of selection, and Gompert et al. 2014 contained 300 selection coefficients (see Box 3). All of the
methodological and biological categories were well represented (see Table 1). Of the 79 studies, 15

reported selection coefficients for overdominant selection (see Box 4).

Distributions and Nonparametric Analysis

Overall, directional selection coefficients were roughly exponentially distributed (coefficient of
variation = 1.05, CV =1 for exponential distributions). Estimates of the strength of selection ranged
from extremely weak (s = 9.9 x 107) to extremely strong (maximum s = 1 for two lethal mutations,
otherwise maximum s = 0.891) (Figure 1a). The mean selection coefficient of the full dataset was
0.135 (95% CI: 0.131-0.140, determined by 10,000 bootstrap replicates), while the mean of the
reduced dataset was significantly smaller at 0.093 (95% CI: 0.078-0.110; Wilcoxon rank sum test,
W=697656, p = 3.45 x 10™). The distribution of the reduced dataset was also roughly exponential

(Figure 1b, black bars).

In the full dataset, there was a significant difference in mean strength of selection across
categories of statistical significance (Kruskal-Wallis rank sum test, y’=325, df =2, p=2.2 x 10™'%), with
significant estimates of selection being much greater than estimates that were not significant or of
unknown significance (Figure 2a, Figure 3a, Table 2). In the reduced dataset, there was no difference
among statistical categories (Kruskal-Wallis rank sum test, y°=1.79, df=2, p=0.4; Figure 3a, Table 2).
Estimates of negative selection had larger mean selection coefficients than estimates of positive
selection in both the full and reduced datasets (Figure 3b, Table 2). The mean strength of selection
was greater for manipulative experiments than for observational estimates in both the full and reduced

datasets (Table 2).

The distribution of selection coefficients varied based on the time period over which selection
was measured (Figure 2b, Figure 3c, Table 2). When studies did not report the number of generations

over which selection was measured, we searched the literature for estimates of generation time for the
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studied organism and used these to coarsely estimate the number of generations over which selection
was measured. We grouped estimates of selection into four categories: selection within a generation,
short-term selection operating over less than 200 generations, long-term selection operating over 200
or more generations, or estimates for which the time period was unclear or unspecified. The mean
magnitude of s was significantly different across categories (full dataset: Kruskal-Wallis rank sum
test: Xz =122,df =3, p=2.2x 10’16; reduced dataset: Kruskal-Wallis rank sum test: x2 =48,df =3, p=
2.1x 101 Figure 3b). In both datasets, the mean strength of selection decreased as the timescale over
which selection was measured increased. The distribution of selection coefficients also varied with the
genetic scale at which selection was measured (Figure 2c, Figure 3d). In the full dataset, the mean
strength of selection was greater for SNPs than for haplotypes, though this difference was marginally
non-significant (Table 2). In the reduced dataset, however, selection was significantly stronger on

haplotypes (Table 2).

GLMM Results

The results of our GLMMs were qualitatively similar to the results obtained using non-parametric
statistics. First, we modeled the mean selection coefficient of the full dataset while accounting for
autocorrelation within studies by including study as a random factor. This GLMM estimated a mean
overall selection coefficient of 0.095 (posterior mode, 95% HPD interval: 0.066-0.124). These
confidence intervals do not overlap with those of the uncorrected mean selection coefficient of the full
dataset (0.135, 95% CI: 0.131-0.140). However, the GLMM estimate is very similar to the mean of
the reduced dataset (0.093, 95% CI: 0.078-0.110), albeit with less precision. The GLMMs that
incorporated predictor variables found results similar to the non-parametric analyses, but with weaker
estimates of the strength of selection and wider confidence intervals, such that differences between
categories were not always statistically significant (see Table 3 for posterior modes and 95% HPD
interval estimates for all models). Negative selection was slightly stronger but not significantly

different from positive selection. Selection estimates from experimental studies were nearly equal to
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estimates from observational studies, in contrast to the nonparametric results. Selection over long
timescales was significantly weaker than both selection over short timescales and selection within a
generation. The GLMM that included genetic scale as a predictor estimated that selection was

stronger on haplotypes than on SNPs, though this difference was not significant.

The GLMMs we performed to evaluate the effects of measurement error indicated that
autocorrelation had a much greater effect on our dataset than imprecise estimation of selection
coefficients (Figure 4, Table 3). Compared to the uncorrected mean s estimated by bootstrapping, the
GLMMs that incorporated measurement error had smaller estimates of mean s and wider confidence
intervals, as might be expected. However, incorporating measurement error had much less effect than
accounting for autocorrelation within a study, which greatly reduced the estimate of mean s. This
analysis could only be performed on the roughly 10% of estimates for which we could calculate
standard errors, so generalizing these results to the full dataset requires caution. However, these
models indicate that the results of the GLMM on the full dataset, which accounts for autocorrelation,

are probably robust to measurement error.

Discussion

In this study, we have reported the results of the first meta-analysis of published estimates of
selection coefficients in natural populations. Our search through the literature has uncovered a
dynamic and growing field, with researchers using a wide variety of methodological and analytical
techniques to understand how genetic variation influences fitness across a diverse set of taxa.
Together, these estimates allow us to take the first steps towards answering fundamental questions
about how natural selection operates at the genetic level. The vast majority of selection coefficients
reported were for directional selection, with heterozygote advantage rarely detected (Box 4). We
found that directional selection coefficients were roughly exponentially distributed, a pattern similar
to estimates of selection on phenotypes. Though most estimates of s were small, some studies detected

very strong selection (s > 0.5), especially on short timescales. Selection varied as predicted with
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temporal scale, as selection measured over long time periods was significantly weaker than selection
measured over shorter periods. Selection also varied with the size of the genetic unit at which it was

measured, though our different analyses found conflicting trends.

Before discussing these conclusions in more detail, it is important to note some limitations of
this dataset. As with most meta-analyses, our study likely contains some biases, a number of which
could tend to inflate estimates of selection. First, researchers may have chosen to study genetic loci
that have an a priori expectation of being under strong selection (“research bias”, Gurevitch &
Hedges 1999). For example, a number of candidate gene studies examined insecticide resistance
alleles (e.g., Lenormand et al. 1998) or drug resistance alleles (e.g., Roper et al. 2003), which are
expected to be under strong selection. Even studies that started without a priori candidates and took a
genome-wide approach to detecting selection (e.g., Anderson et al. 2014; Gompert et al. 2014)
nevertheless examined populations that could be expected to be under strong selection for local
adaptation. Similarly, there may be publication bias against reporting insignificant or weak estimates
of selection (the well-known “file drawer problem”, Rosenthal 1979). In our dataset there appears to
be some bias against weak estimates of selection (see supplementary analysis and figures S2-S5), but
there was clearly bias against statistically insignificant estimates. Nearly all insignificant estimates of
selection came from the Anderson et al. 2014 and Gompert et al. 2014 studies. In the reduced dataset,
there were only 21 insignificant selection coefficients, compared to 106 significant estimates and 196
with unreported statistical significance. Insignificant selection was rarely reported outside of the
context of genome-wide studies of selection, in which many insignificant estimates are expected.
Perhaps this is not surprising, given the preeminence of neutral theory and the desire to avoid
adaptationism (Gould & Lewontin 1979; Nielsen 2009; Barrett & Hoekstra 2011). However, we agree
with other authors who have urged researchers to think of selection coefficients as continuous
variables, and not to overemphasize categorical distinctions between “significant” and “insignificant”
selection coefficients (Gompert, in press). Failing to report selection coefficients because they are
insignificant puts too much emphasis on p-values, too little on effect sizes and confidence intervals,

and leads to publication bias (Halsey et al. 2015).
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Finally, the full database of selection coefficients is largely made up of estimates from two
studies that combined large-scale field experiments with genome-wide sampling to generate hundreds
of estimates of selection (Anderson et al. 2014; Gompert et al. 2014; see Box 3). Experimental
evolution studies have important advantages over other methods of detecting selection, as researchers
can track evolution in real time and control or mitigate some of the demographic and ecological
factors that complicate the detection and quantification of selection. However, these methods also
have limitations, especially for detecting weak selection (see Box 3). While more studies of this type
will surely follow, for now they complicate the analysis of this dataset. We have sought to account for
this with a variety of statistical techniques, but the accumulation of more estimates of selection at the
genetic level will ensure that future meta-analyses of natural selection at the genetic level are not
unduly influenced by a few studies. Despite these limitations, this dataset is our best source of
information for both preliminary conclusions about selection at the genetic level and for informing

future research.

Quantitative Results

Our analysis found a number of important quantitative results. First, selection coefficients could be
quite large. The uncorrected mean and median of the full dataset were 0.135 and 0.082, respectively,
and there were 112 estimates of selection coefficients greater than 0.5. Selection at the genetic level is
often assumed to be rather weak. For example, some studies in this database that used simulations to
quantify selection considered coefficients only within a narrow range (e.g., 0-0.1 in Ohashi et al.
2004; 0-0.03 in Gerbault et al. 2009). While many published estimates of selection coefficients are
indeed small, our results show that researchers cannot discount the possibility of large selection
coefficients for genetic variants, especially over short time scales. Of course, whether a given
coefficient represents “significant” or “strong” selection is a matter of perspective. All alleles are
affected by genetic drift, and where to draw the line between “selected” and “neutral” alleles is a

matter of debate. Multiple definitions have been proposed, and most rely on an understanding of the
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effective population size (V,), recognizing that selection will be less efficient in smaller populations
(Nei et al. 2010). When estimates of effective population size are unavailable, as in most of the
studies in our database, Nei suggests a threshold of roughly Isl = 0.001 for vertebrates (Nei 2005).
Under this relaxed definition of neutrality, nearly all (3411 of 3416) of the selection coefficients in

our database are not neutral.

Second, the exponential distribution of s is very similar to the distribution of phenotypic
selection coefficients reported in other studies (Kingsolver et al. 2001; Hoekstra et al. 2001). This is
not necessarily expected, as genetic selection coefficients are fundamentally different from
phenotypic selection differentials and gradients. While selection coefficients against a disfavored
allele range from O to 1 (see Box 1), selection differentials and gradients are calculated via linear
regression and their range is thus unrestricted in theory, though in practice the absolute values of most
estimates fall between 0 and 1 (Kingsolver et al. 2001). There is no clear theoretical expectation that
both phenotypic and genetic selection coefficients should be exponentially distributed. Kingsolver et
al. (2001) note that, if most organisms are well adapted to their environments, phenotypic directional
selection should be normally distributed around a mean of 0. Indeed, more recent meta-analyses of
phenotypic selection have used a folded-normal distribution to model the absolute values of selection
gradients (Hereford et al. 2004; Morrissey & Hadfield 2012; Kingsolver et al. 2012). Multiple genetic
models of adaptation predict that the fitness effects of adaptive mutations during a single adaptive
walk will be exponentially distributed (Orr 2005a). However, the assumptions that underlie those
predictions (i.e., a single population adapting to a relatively close, stationary fitness peak solely
through the fixation of new mutations) do not apply to our broad dataset, and other models make
different predictions about how selection coefficients might be distributed (e.g., Kopp & Hermisson
2009b, who model adaptation to a moving fitness optimum and predict a unimodal distribution with

mutations of intermediate effect dominating).

Instead of referring to disparate phenotype- or genotype-level theories, another way to explain
the similarity in these distributions could come from understanding how selection at these levels is

linked. Selection does not act directly at the genetic level; rather it acts on phenotypes and is then
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transmitted to the genetic level based on the genetic architecture of the trait(s) under selection.
Assuming that the phenotypic effects of an allele are proportional to its fitness effects, it may be
possible to work downward from the empirical, roughly exponential distribution of phenotypic
selection coefficients to derive an expected distribution for genetic selection coefficients. To do so
properly would require some understanding of the number and phenotypic effect sizes of the loci
underlying the selected phenotypic traits, as well as the degree of pleiotropy. The general genetic
architecture of traits subject to selection is a topic of much debate (Rockman 2012; Lee et al. 2014).
The two opposing views could be characterized as “exponential-like” (i.e., traits are controlled by a
one or a few loci with large phenotypic effects and many loci with small phenotypic effects) and
“infinitesimal” (i.e., traits are controlled by hundreds to thousands of loci of extremely small effect).
Interestingly, the observed exponential form of selection coefficients acting on phenotypes may be
transmitted to the genetic level to produce an L-shaped (exponential-like) distribution of selection on
alleles, regardless of whether the allelic effects on a phenotype are drawn from an exponential or a
uniform distribution, assuming that the strength of selection acting on a trait does not influence its
genetic architecture and there is no pleiotropy (see Appendix 1, co-authored with S. Otto, for theory).
Though some genotype-phenotype maps transmit the exponential-like distribution of phenotypic
selection unchanged to the genetic level, not all maps will do so. It remains an open theoretical

question to determine which genotype-phenotype maps are most consistent with our observations.

The impacts of natural selection at the genetic level varied across a number of biological and
methodological categories. Statistically significant estimates of selection tended to be stronger than
insignificant ones, which is unsurprising given that stronger selection is easier to distinguish from
drift than weak selection. The mean value of selection coefficients that did not have estimates of error
or significance was similar to the mean of insignificant selection coefficients (Figure 3), which may
suggest that many of these estimates are statistically insignificant. Or course, the statistical
significance of an estimate of selection is dependent on the power of the procedures used to estimate
it. Unfortunately, analyzing the power of each study in our database was not feasible. Statistical

significance will only be indicative of the biological relevance of a variant’s fitness effect with
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sufficient power: underpowered studies may be unable to distinguish selection from drift. Conversely,
significant estimates should not be misunderstood to mean that only selection is driving allele
frequency change. All alleles in finite populations are influenced by drift; significant estimates of s
simply indicate that drift alone could not cause the observed change. Again, we emphasize that
selection coefficients are continuous variables; it is preferable to interpret their statistical and
biological significance by considering their confidence intervals, not their p-values alone. And, absent
knowledge of experimental power for each study, we cannot distinguish estimates of s that are
insignificant due to neutrality from those due to insufficient power. Thus, we caution against over-

interpreting the differences we observe across statistical categories.

Estimates of negative selection were of greater magnitude than estimates of positive selection
in both the full and reduced datasets, though this difference was not significant in the GLMM.
Selection coefficients for both forms of selection were roughly exponentially distributed (Figure S1).
In some sense, comparing the magnitude and distributions of these categories is not biologically
informative, as the designation of selection as positive or negative is relative (Box 1). The difference
in magnitude between these categories perhaps suggests research bias, with researchers who focus on
negative selection choosing to study populations that experience slightly stronger selection. It is
reasonable to expect that experimental manipulations may be associated with selection that is stronger
than selection that is simply observed. While the nonparametric statistics indicated that this was the
case, the estimates of mean s for experimental and observational studies were nearly equal in the
GLMM. The vast majority of estimates of selection from experiments came from the Anderson et al.
2014 and Gompert et al. 2014 studies, only 8 other studies contributed 31 total estimates, so there is

little statistical power for firm conclusions.

Natural selection on shorter timescales tended to be stronger than selection on longer
timescales, as we predicted. This was true in both the full and reduced datasets, and the GLMM

corroborated the trend, though differences between some categories were insignificant. The absolute
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differences in magnitude between categories were fairly small: mean s for long-term estimates was
0.044 in the both datasets, while mean s within a generation was ~ 3x greater (0.141) in the full
dataset and ~5x greater (0.232) in the reduced dataset. This overall trend may be partially due to the
fact that studies over shorter time periods, and especially within generations, are often unable to
distinguish between direct and indirect selection on a locus, which could lead to larger estimates of s
(see Box 1, Box 3). However, the patterns we see in the strength of genetic selection coefficients are
consistent with those observed in measures of evolutionary rates and phenotypic selection. Short-term
rates of phenotypic change are often orders of magnitude greater than long-term rates (Gingerich
1983), phenotypic selection on viability is stronger when measured over shorter time periods
(Hoekstra et al. 2001), and long-term rates of phenotypic evolution are often slower than one would
expect when extrapolating from short-term estimates of phenotypic selection (Kinnison & Hendry
2001). This tendency for evolutionary rates, phenotypic selection coefficients, and genetic selection
coefficients to be of smaller magnitude when measured over longer periods of time is likely to be
partially a mathematical artifact of averaging that is inherent to all measures that compare differences
between initial and final states (Gingerich 1983). Such measures must assume that the rate of change
(in the case of s, change in allele frequencies) is constant between measured instances and will thus
average out the instantaneous rates into a less extreme long-term rate. However, the effects of
averaging almost certainly reflect biological reality. Meta-analysis of phenotypic selection shows that
selection may fluctuate through time such that short-term estimates of selection are not indicative of

long-term trends (Siepielski ez al. 2009, but see Morrissey & Hadfield 2012).

This effect is illustrated in the few studies that examined selection on the same locus or loci
through time. For example, Barrett et al. (2008) found opposing patterns of strong selection at
different life stages on an allele for reduced armor plating in threespine sticklebacks, such that the
lifetime s was much weaker than the per-life-stage estimates of selection coefficients. Anderson et al.
also found negative correlations between selection coefficients across some (but not all) episodes of
selection, indicative of fitness trade-offs within a generation (see table 4 in Anderson et al. 2014, and

our supplementary analysis). These trade-offs did not necessarily lead to estimates of weak lifetime
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selection. For example, plants in Montana experience trade-offs between flowering/fruiting and
overwinter survival. However, selection on survival was relatively weak and selection on both fruiting

and flowering was quite strong, leading to large estimates of lifetime s.

Perhaps the best example of how temporal variation can affect the magnitude of selection
estimates comes from a study on drug resistance alleles in the malaria parasite, Plasmodium
falciparum (Taylor et al. 2012). The authors calculated both annual selection coefficients and overall
selection coefficients on mutations at individual codons across a nine-year study. Annual selection
coefficients varied in magnitude and direction, and were often statistically insignificant. The selection
coefficients calculated across all nine years, however, were smaller in magnitude, statistically
significant, and favored resistance alleles. This study could not be included in our quantitative
analyses, as the regression-based selection coefficients they calculated were not comparable to the
other estimates in our dataset. However, it clearly demonstrates that long-term patterns of selection

are the results of fluctuating moment-by-moment forces of selection.

The magnitude of s also varied based on the genetic unit at which selection was measured, but
interpreting those trends is more complicated. We predicted that selection would be stronger on
haplotypes than on SNPs, as allelic variants for haplotypes should, in general, have larger phenotypic
effects than allelic variants of SNPs. In both the reduced dataset and the GLMM this prediction was
supported, though the difference in mean s between these categories was not significant in the
GLMM. In the reduced dataset, the difference in mean s was large (0.052 for SNPs, 0.121 for
haplotypes). In the GLMM, the difference was much smaller (posterior mode of s = 0.086 for SNPs, s
= 0.093 for haplotypes). In the full dataset, however, selection was stronger on SNPs, though this
difference was marginally not significant. Some of this inconsistency across analyses is due to the
outsized effects of the Anderson et al. 2014 and Gompert et al. 2014 studies. Gompert et al. 2014, in
particular, measured 300 instances of selection on SNPs, and their methods were biased toward the

detection of very strong selection (Box 3). This may have inflated the mean s for SNPs in the full
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dataset. While the GLMM accounts for autocorrelation within studies, the confidence intervals around
the estimate of mean s for both categories are quite broad, indicating little statistical support for either
interpretation. There are also other possible hypotheses for how selection might vary with genetic
scale. For example, larger genetic units could contain multiple loci with contrasting fitness effects, so
that they experience weaker selection that is the average effect of the individual loci contained within
them. In that case haplotypes would tend to experience weaker selection than SNPs, as we see in the
full dataset. Given the conflicting trends among the different datasets and methods of analysis, it
seems that we need further data before we can determine whether, how, and why the strength of

selection varies with genetic scale.

Recommendations for Future Research

In addition to our observations about the distribution and variation of selection coefficients,
our review of the literature uncovered a number of important issues to consider when studying natural
selection at the genetic level. First, consider that the acceptance rate for inclusion in our dataset was
extremely low (~3.5%). Of course, this low rate is partly due to our inclusion criteria, as we excluded
some studies that quantified selection in ways that were incompatible with our analysis. Another
possible reason might have been our Web of Science search terms. They seemed to be simultaneously
too broad (our search results included many studies on agricultural plants, purely theoretical models,
and phenotypic selection coefficients) and ineffective at locating studies (we found almost as many
studies that reported selection coefficients by searching references as we did in our Web of Science

searches).

While this is certainly part of the explanation, we suspect that the discrepancy between the
number of plausible studies and the number of studies that report estimates of s exposes a larger issue:
natural selection is frequently invoked or detected, but very rarely quantified, even in studies which

contain raw data from which selection coefficients could be calculated. Of course, not all biologists
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are interested in quantifying natural selection, and it is understandable that many researchers do not
take this final step. However, we hope that our analysis has shown that quantifying selection can lead
us toward answers for important questions in evolutionary biology. We therefore encourage

researchers to endeavor, not only to detect selection, but also to quantify its strength.

What, then, are the best practices for calculating, reporting, and interpreting selection
coefficients? Methods for calculating selection coefficients will depend on the type of data available
to a researcher. An extensive review of methods is beyond the scope of this work; for specifics we
direct readers to previous reviews of methods for the detection and quantification of selection (Linnen
& Hoekstra 2009; Hohenlohe et al. 2010; Vitti et al. 2013), to the examples cited in our introduction,
and to the papers within our literature database (see supplemental material). We also note that new
methods are frequently being developed, especially methods which estimate selection coefficients
based on sequence data (Charlesworth & Wright 2004; Slatkin 2008; Messer & Neher 2012; Chen &
Slatkin 2013; Vitalis et al. 2014; Foll et al. 2015). Whatever method is used, researchers should take
careful note of the mathematical model used to calculate s so that its biological meaning is clear. Of
particular importance is understanding whether models calculate positive selection or negative
selection, as these quantities are not directly comparable without a conversion (see Box 1). Further,
researchers should calculate statistical significance, ideally from some form of confidence interval,
and be cognizant of the specific statistical issues particular to their data (e.g., considerations of
multiple testing, linkage between sites, population structure, etc.). When feasible, researchers should
also seek to calculate or determine other parameters that will aid in the interpretation of selection
coefficients. These include experimental power (to establish the minimum s that could be reliably
detected), source of genetic variation (i.e., standing genetic variation or new mutations), effective

population size, and the ancestral allelic state of the locus under selection.

At minimum, researchers should clearly report (1) the model used to calculate s, (2) some
form of confidence interval for the estimate of s, and (3) the data necessary to understand the time
period over which selection was measured (ideally in generations). Researchers should report both

significant and insignificant estimates to reduce publication bias. As genomic data become more
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available, the question of whether to calculate selection coefficients on all loci versus only those that
show evidence of selection will become more important. This decision will depend, at least in part, on
the interests and computational resources of the researcher. When calculating selection for all loci is
not feasible, we recommend researchers follow the example of Gompert et al. (2014) by clearly

stating the selection criteria for quantified loci.

We also strongly recommend that researchers report estimates of effective population size,
which aids in interpreting the strength of selection. Information about the source of genetic variation
and levels of linkage disequilibrium in the population tested is also valuable, as levels of LD can
determine the extent to which researchers can partition genetic selection as direct or indirect. This
complication arises in the application of one-locus models of selection, which assume that s represents
direct selection, to natural populations in which allelic variants are also influenced by selection on
linked loci and s should properly be interpreted as quantifying both direct and indirect selection.
Models used to study genome-wide selection often have more parameters (genetic variants) than
statistical replicates (individuals), inhibiting the ability to measure direct selection (Gompert et al.
2014). Linkage disequilibrium, epistasis, and pleiotropy can all complicate the simple goal of
measuring the direct fitness effects of an allele and muddle the distinction between direct and indirect
selection (Barton & Servedio 2015). Further theoretical work to address these issues will be especially
welcome. Nevertheless, we note that, in many cases, quantification of direct selection is not
necessarily the ultimate goal. Understanding direct selection is crucial for elucidating the genetic and
phenotypic mechanisms that drive adaptive evolutionary change. However, the total amount of
selection (both direct and indirect) that impacts a locus is what drives allele frequency change each

generation, and understanding it is more important for predicting the trajectory of evolution.

Conclusions

Our analysis has taken important first steps toward improving our understanding of the
impacts of selection at the genetic level. Where should researchers direct their attention with future

studies of selection at the genetic level? Keeping in mind our methodological guidelines above,
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simply accumulating more estimates of selection will be extremely useful. Our conclusions are
necessarily limited by the data that have been published so far, and the practice of estimating genetic
selection coefficients is still rather young. More estimates of selection from a wider variety of taxa are
needed for a fuller understanding of how natural selection shapes genetic variation. Fortunately,
technological advances in collecting and analyzing genetic data make it possible to quantify selection
without requiring a priori knowledge or expectation of selection, and to do so in the context of
manipulative field experiments. And, as with phenotypic selection, it will be informative to consider
how selection coefficients vary with space, time, and across sexes and life history stages,. Such
studies will give insight into fundamental questions about local adaptation, developmental trade-offs,
and sexual conflict. We expect that, in the coming years, the number and scope of studies that
quantify selection at the genetic level will rapidly increase. With larger datasets, future researchers

will be able to more conclusively answer the questions we have begun to consider here.
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Box 1 - The meaning(s) of s

The selection coefficient, s, can have slightly different meanings in different evolutionary models. In
most models s represents the difference in mean relative fitness between a reference genotype and
another genotype. By definition, the reference genotype has a relative fitness of one. The choice of
reference genotype, however, leads to subtle differences in the properties of s. First, consider
directional selection at a locus with two alleles, A and a, with allele A having higher fitness.
Researchers studying mutation have tended to focus on selection against new, deleterious alleles. The
homozygote of the most-fit allele is used as the reference genotype, such that s = 1 — w,, and w,, = 1-
s. In this case, s quantifies the strength of selection against the deleterious allele and has a range from
0 to 1. Studies of adaptation, however, typically focus on selection in favor of beneficial alleles and
thus set the homozygote of the less-fit allele as the reference: s = waa - 1, or wap = 1 + s. Here, s

measures the strength of selection acting in favor of the beneficial allele and has a range from O to
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infinity, as genotypes can have a greater than 100% fitness advantage, at least in theory. It should be
noted that under this scenario s,, 44 is not equal in magnitude to S,gqins 40 (S€€ SUpplementary
methods). When the magnitude of s is small the difference between sy, 44 and Sqgains oo Will be small,
but as the strength of selection increases the difference grows. When S,gains_aqc €quals 1 (a lethal allele),

Sor_aa €quals infinity.

So far this model has ignored dominance, which has important implications for the
calculation of s. In population genetic models of directional selection, dominance is most often
accounted for with the dominance coefficient, 4. In the single locus, two-allele model described
above, the fitness of each genotype would be wap =1, Wa,=1-hs, wy,=1-5s. Whenh =0, Ais
completely dominant and waa = Wa,. When i = 1, A is completely recessive and w,, = Wa,. Though
the definition of s remains the same, the calculated value of s could change significantly depending on
the assumed or known level of dominance and the method used to estimate selection. While methods
that estimate s by directly measuring fitness differences between homozygotes are robust to changes
in , methods that track changes in allele frequency or that measure fitness in heterozygotes are
sensitive to assumptions about dominance. The dominance coefficient was rarely empirically
estimated in the studies included in our database. Most studies assumed additive fitness effects (h =

0.5) or calculated multiple possible s under difference assumptions of dominance.

In the case of over- or underdominance, slightly different genetic models are used. The
heterozygote is defined as the reference, and selection coefficients for or against each homozygote are
calculated. Selection may be assumed to be symmetric such that s for each homozygote is equal, but
other models allow s to vary, and might use s; and s, or s and ¢ to denote the two selection

coefficients.

In the simple, one-locus models described above, s quantifies the direct fitness effects
of the genetic variant. In real organisms, of course, allelic variants do not occur in isolation.
Each generation, the fate of an allele is determined by both the direct effects of that locus on

fitness and by the indirect effects of selection operating on other sites that are in linkage
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disequilibrium (LD) with the focal locus (Smith & Haigh 1974; Charlesworth et al. 1993). The
situation is analogous to correlated selection on phenotypic traits (Lande & Arnold 1983). At the
phenotypic level, biologists can use multiple regression to distinguish between direct selection and
total (direct and correlated) selection on a specific phenotype (selection gradients and differentials,
respectively; Lande & Arnold 1983; Brodie et al. 1995). At the genetic level, isolating the direct
effects of an individual locus on fitness is quite difficult (Barrett & Hoekstra 2011). Accounting for
the effects of linked sites requires either (1) sufficient recombination to break apart associations with
other alleles, (2) complex, multi-generation crosses such as near-isogenic lines, (3) replicate
populations subject to the same experimental treatment, (4) sufficient sample sizes and genetic
variation such that selected alleles are present in multiple genetic backgrounds, or (5) transgenics. In
most other cases, genetic selection coefficients should be interpreted as being analogous to phenotypic

selection differentials, not gradients.

Box 2: Selection on Mendelian Phenotypes

Prior to the development of molecular genetic techniques, biologists were unable to directly
observe an organism’s genotype. Instead, population genetic studies were restricted to phenotypes that
displayed Mendelian inheritance such that underlying allele frequencies could be estimated from
phenotype frequencies. Studies of the change in frequency of Mendelian phenotypes laid the
foundation for the empirical study of selection in natural populations and sparked much debate about
the relative roles of natural selection and genetic drift for driving allele frequency changes (Fisher &

Ford 1947; Kettlewell 1958; Owen & Clarke 1993; Cook 2003).

In our literature search, we found 38 studies that reported 336 estimates of selection on alleles
underlying a Mendelian phenotype. We chose to analyze these estimates of selection separately, as
they infer selection on alleles by tracking changes in phenotype without directly measuring genotypes.
Further, for most studies the Mendelian inheritance of the phenotype was assumed or determined with

crosses, though in rare cases (e.g., Rosser et al. 2014) the location and identity of the genetic region
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controlling the phenotype was known. Most estimates of selection came from studies of three
organisms that display some of the most famous polymorphisms known to biology: the peppered
moth, Biston betularia; the scarlet tiger moth, Panaxia dominula; and the snail Cepaea nemoralis.
Datasets on these organisms, especially B. betularia, have been studied intensively since the middle of
the 20" century, making it difficult to account for pseudoreplication. While we could eliminate strict
pseudoreplication (that is, multiple estimates of selection calculated from exactly the same data), more
recent studies often incorporated data from earlier studies to calculate selection across different spatial

or temporal scales. As such, many estimates of selection for B. Betularia are not independent.

The distribution of selection on Mendelian phenotypes was significantly different from the
distribution of directional selection coefficients at the genetic level (Kolmogorov-Smirnov test, D =
0.123,p=1.69 x 107, Figure B2). While weaker estimates of selection were still most common, the
distribution was less exponential. The mean magnitude of s for Mendelian phenotypes was 0.158
(95% CI 0.140-0.176, 10,000 bootstrap replicates), significantly greater than the mean s for all
selection coefficients at the genetic level (see results). The mean s was similar if we excluded all B.
betularia estimates (mean = 0.167, 95% CI 0.144-0.192), or included only the estimates from
(Mathieson & Mcvean 2013), a recent paper which used a novel hidden Markov model and all
available historical data to estimate selection coefficients for the melanic allele in B. betularia (mean
=0.161, 95% CI 0.139-0.185). In our analysis of directional selection coefficients, we hypothesized
that strength of selection would be correlated with the proportion of phenotypic variance explained by
the genetic unit under selection. Thus, selection would be weaker on SNPs than on haplotypes, as
SNP variants would tend to have smaller phenotypic effects. Following this logic, mean s should be
greatest for the genetic variants underlying Mendelian phenotypes, which by definition explain nearly
all of the variation in a trait. This was indeed the case, although the 95% confidence interval of the
estimate for Mendelian phenotypes overlaps with that of the estimate for SNPs in the full dataset and
haplotypes in the reduced dataset. Together, these data suggest that selection on Mendelian
phenotypes and their underlying genes is of similar form but generally greater strength than selection

on genetic units that explain less phenotypic variation.
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Box 3- Field Studies of Selection: Anderson ef al. 2014 and Gompert et al. 2014

Two studies reported a large portion of the selection coefficients in our database. Both studies tracked
changes in allele frequency on hundreds to thousands of loci in large-scale field experiments, and
there was no a priori understanding of whether these markers would influence fitness. This is in
contrast to many of the other papers in our database, and in principle such field studies could give a
more unbiased view into how selection operates across the genome. However, details of the
experimental design and analytical procedures for these studies can also influence the selection

coefficients they report, so it is useful to discuss each paper in more detail.

Anderson et al. 2014

Anderson and colleagues used multi-year field transplants to study local adaptation and fitness trade-
offs in Boechera stricta, a perennial mustard native to the Rocky Mountains. Anderson ef al. crossed
plants from two potentially locally-adapted populations in Colorado and Montana to create 172 Fg
recombinant inbred lines (RILs), and genotyped each RIL at 62 microsatellite loci and 102 SNPs.
They planted two cohorts containing replicates of each RIL and parental line into two common
gardens near the source populations, and tracked each cohort for multiple years, measuring survival,
flowering success, and fecundity for each individual. From this individual-level data on fitness
components, they calculated relative fitnesses for the different genotypes at each locus and used
permutation to estimate selection coefficients and significance thresholds for each genotyped locus
(Anderson et al. 2013; 2014). This permutation procedure does not calculate error bounds, so the
precision of each estimate is unknown. They calculated s at both experimental sites for multiple
within-generation episodes of selection and multi-year selection coefficients based on lifetime
flowering probability and fruit production. For our quantitative analysis, we included all within-
generation estimates of selection, but not the lifetime selection coefficients (see main text). We also
used the more conservative genome-wide threshold when classifying estimates of s as significant or
insignificant. Thus, most estimates of s were insignificant, and this might tend to increase the mean of

the significant category. However, Anderson et al. calculated and reported a selection coefficient for
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every genetic marker at every instance of selection, regardless of strength or significance. There is
therefore no within-study publication bias, and Anderson et al. present an objective report of the
impact of selection in their experiments. Their study is also unusual in that it calculates selection
coefficients for each locus in two locations across multiple time periods, providing some insight into

how selection at the genetic level can vary through space and time.

Gompert et al. 2014

Gompert and colleagues studied two ecotypes of Timema cristinae stick insects that are differentially
adapted to live on the host plants Adenostoma fasciculatum and Ceanothus spinosus. Visual predation
by birds drives phenotypic divergence in T. cristinae: insects with a white dorsal stripe are cryptic on
Adenostoma and conspicuous on Ceanothus, while the opposite is true of unstriped morphs (Sandoval
1994; Nosil 2004; Nosil & Crespi 2006). Gompert et al. collected 500 total 7. cristinae from a mostly
Adenopoda-adapted population that receives some gene flow from other populations with different
host plants (Nosil et al. 2012). They cut off a portion of leg from each individual for tissue sampling
and transplanted groups of insects onto individual Adenostoma and Ceanothus plants in experimental
blocks at a nearby site. After 8 days they resampled the experimental plants and recaptured 140
insects, from which they took a post-selection tissue sample. Using a genotype-by-sequencing
approach, they determined the pre- and post-selection allele frequencies of almost 200,000 SNPs.
They developed statistical models to identify loci that showed parallel changes in allele frequency
across experimental blocks that were unlikely to occur due to drift alone, and then used MCMC to
calculate the mean selection coefficient and 95% credible intervals for these loci. Thus, for
quantifying selection, Gompert et al. take a different approach from Anderson et al.. Though they
have the data, in principle, to calculate selection coefficients for all loci, they calculate selection
coefficients only for loci that demonstrated large, parallel allele frequency changes across
experimental blocks. Weak selection is unlikely to drive such changes, and the Gompert et al. method
is thus biased against the quantification of weak selection. Indeed, the distribution of selection
coefficients reported in Gompert et al. is quite different from the distribution of both Anderson et al.

2014 and all other estimates of s (Figure 1b).
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Box 4: Heterozygote Advantage

Overdominant selection was rarely detected, with only 140 estimates of s from 15 studies (70
instances of heterozygote advantage, two selection coefficients per instance). With so few estimates, it
is difficult to draw firm conclusions about the strength of overdominant selection, especially because
most estimates were insignificant or did not report statistical significance (Figure B4). Overall,
selection ranged from very weak (s = 0.0003) to very strong (s = 1 for homozygote lethal alleles). The
distribution of overdominant selection coefficients was significantly different from that of directional
selection coefficients (Kolmogorov-Smirnov test, D = 0.34, p = 1.14 x 10™"*), and was more uniformly
distributed, though weak estimates of selection were still most common. Multiple studies reported
selection coefficients for HLA loci in humans or MHC loci in other vertebrates. These immune
system genes are classic examples of heterozygote advantage (Hedrick 2012). Heterozygote
advantage was also detected at a number of allozyme loci in various species of plants, though
determining phenotypic effects and agents of selection on these loci is more difficult. The prevalence
of heterozygote advantage and its importance for the maintenance of genetic variation has long been a

topic of debate

(Lewontin & Hubby 1966; Garrigan & Hedrick 2003; Mitchell-Olds et al. 2007; Hedrick 2012;
Fijarczyk & Babik 2015). There are few cases in which heterozygote advantage has been suggested in
natural populations (Hedrick 2012), and, as we find in this study, even fewer cases in which selection
has been quantified. This may be due to the inherent difficulties in detecting heterozygote advantage
(Garrigan & Hedrick 2003). For example, genome scans can be used to detect a signature of balancing
selection in nucleotide polymorphism data, which may be indicative of heterozygote advantage.
However, other processes can also lead to a signature of balancing selection, including spatial or
temporal variation in selection and frequency-dependent selection (Fijarczyk & Babik 2015).
Distinguishing between these possibilities is often not possible using DNA sequence data alone
(Hedrick 2012). Alternatively, heterozygote advantage may be rarely detected because it is, in fact,
rare. Resolving the debate over whether heterozygote advantage is truly rare or simply hard to detect

is beyond the scope of our study.
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Figure Captions:

Figure 1: The distribution of directional selection coefficients. A) The distribution of directional
selection coefficients, s, included in the quantitative analysis. All selection coefficients are
represented as selection against the less fit allele. B) Directional selection coefficients, colored by the
study in which they were reported. Anderson et al. 2014, in light blue, reported 2793 selection
coefficients. Gompert et al. 2014, in orange, contained 300 selection coefficients. All other studies, in

brown, contained 323 estimates of selection.

Figure 2: The distribution of directional selection coefficients in the full dataset for different
biological and methodological categories. Coefficients were categorized by A) statistical significance,
B) time period over which selection was measured, and C) genetic scale at which selection was
measured. The vertical line in each histogram marks the uncorrected mean of selection coefficients in

that category.

Figure 3: Summary of mean selection coefficients across different biological and methodological
categories. Diamonds and error bars represent the mean and 95% confidence intervals based on
10,000 bootstrap replicates. Unfilled diamonds represent the reduced dataset and filled diamonds
represent the full dataset. Selection coefficients were categorized by (A) statistical significance, (B)
form of selection, (C) timescale, and (D) genetic scale. N.B. that estimates of selection for beneficial
alleles were converted into selection against the less favored allele. The means and confidence

intervals presented here are from those standardized estimates.

Figure 4: Effect of accounting for autocorrelation and measurement error, in the subset of data for
which standard errors were reported or could be calculated. The uncorrected estimate shows the mean
and 95% confidence interval of the selection coefficient, based on 10,000 bootstrap replicates. The
other estimates are the posterior mode of the estimate of mean s from the three GLMMs that
incorporated measurement error (error), study as a random factor (study ID), or both (error and study

ID). Error bars show the upper and lower bounds of the 95% highest posterior density interval.
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Figure B2: The distribution of selection coefficients for Mendelian phenotypes. A) The distribution
of all selection coefficients. B) The distribution of selection coefficients across different categories of

statistical significance.

Figure B4: The distribution of overdominant selection coefficients. A) The distribution of all
overdominant selection coefficients. B) The distribution of overdominant selection coefficients across

different categories of statistical significance.

Table 1: Summary of database and directional selection coefficients. Numbers in parenthesis indicate
the number of selection coefficients in the reduced dataset. * Estimates of overdominant selection
report two selection coefficients per locus, one for the selective advantage over each of the two

homozygotes.

Table 2: Mean s and 95% confidence intervals (determined by 10,000 bootstrap replicates) of various

methodological and biological categories, for both the (A) full dataset and (B) reduced dataset.

Table 3: Results of the generalized linear mixed models. Estimates are the posterior mode and lower
and upper bounds of the 95% highest posterior density interval. A) Results of GLMMs performed on
the full dataset. Bolded text shows the form of the fixed effect model specification, and normal text
shows each fixed factor within that analysis. All models incorporated study ID as a random factor. B)
Results of GLMM:s performed on the subset of data for which standard errors could be calculated.
Bolded text shows the form of the fixed effect model specification, and normal text lists the random

factors included in the three models: study ID, measurement error, or both.
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Results of generalized linear mixed models

A) Full Dataset B) Subset with Standard Errors
posterior mode = 95% HPD interval posterior mode = 95% HPD interval
Selection coefficeint ~ 1 0.095 (0.066-0.124)  Selection coefficeint ~ 1
Selection coeffient ~ form of selection study ID 0.141 (0.055-0.231)
positive selection 0.086 (0.065-0.117)  measurement error 0.186 (0.174-0.202)
negative selection 0.096 (0.074-0.133)  study ID + measurement error 0.113 (0.050-0.217)
Selection Coefficient ~ Type of Study
experimental 0.097 0.057-0.163
observational 0.095 0.067-0.124
Selection coefficient ~ time period
within generation 0.201 (0.123-0.351)
short-term (< 200 gens.) 0.111 (0.077-0.174)
long term (>= 200 gens.) 0.036 (0.023-0.065)
not specified 0.032 (0.017-0.079)
Selection coefficient ~ Genetic unit
haplotypes 0.093 (0.067-0.124)
SNPs 0.086 (0.065-0.123)
Full Dataset Directional Selection
Studies 79 Taxon Type Unit of Selection Time Period Statistical significance
Taxa 30 Vertebrates 202 SNP 2160 (131) Within generations 3131 (38) Significant 398 (106)
Total # s 3556 Invertebrates 350 (50 Haplotype 1256 (192} Short-term 125 Mot significant 2822 (21)
Positive 1596 (224) Plants 2844 (51) Long-term 141 Not reported 196
MNegative 1820 (99) Microbes 20 Unspecified 19
Overdominant 140%
A} Full Dataset B) Reduced Dataset
mean 95% Cl mean 95% Cl
Overall mean selection coefficeint 0.135 (0.131-0.140) 0.093 (0.078-0.110)
Statistical Significance
significant 0.279 (0.260-0.298) 0.106 (0.076-0.141)
not significiant 0.118 (0.114-0.123) 0.074 (0.031-0.129)
not reported 0.088 (0.070-0.108) 0.088 (0.070-0.108)
Form of selection
positive selection 0.121 (0.116-0.127) 0.063 (0.055-0.072)
negative selection 0.147 (0.140-0.155) 0.160 (0.115-0.208)
Type of Study
experimental 0.140 (0.135-0.144) 0.122 (0.084-0.167)
observational 0.050 (0.074-0.108) 0.090 (0.073-0.108)
Time period
within generation 0.141 (0.136-0.146) 0.232 (0.141-0.333)
short-term (< 200 gens.) 0.114 (0.094-0.137) 0.114 (0.094-0.137)
long term (>= 200 gens.) 0.044 (0.036-0.053) 0.044 (0.036-0.053)
not specified 0.040 (0.024-0.062) 0.040 (0.024-0.062)
Genetic unit
haplotypes 0.128 (0.120-0.135) 0.121 (0.097-0.147)
SNPs 0.140 (0.134-0.146) 0.052 (0.039-0.067)
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