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Abstract.   An animal’s trajectory is a fundamental object of interest in movement 
ecology, as it directly informs a range of topics from resource selection to energy expend-
iture and behavioral states. Optimally inferring the mostly unobserved movement path and 
its dynamics from a limited sample of telemetry observations is a key unsolved problem, 
however. The field of geostatistics has focused significant attention on a mathematically 
analogous problem that has a statistically optimal solution coined after its inventor, Krige. 
Kriging revolutionized geostatistics and is now the gold standard for interpolating between 
a limited number of autocorrelated spatial point observations. Here we translate Kriging 
for use with animal movement data. Our Kriging formalism encompasses previous methods 
to estimate animal’s trajectories—the Brownian bridge and continuous-time correlated ran-
dom walk library—as special cases, informs users as to when these previous methods are 
appropriate, and provides a more general method when they are not. We demonstrate the 
capabilities of Kriging on a case study with Mongolian gazelles where, compared to the 
Brownian bridge, Kriging with a more optimal model was 10% more precise in interpo-
lating locations and 500% more precise in estimating occurrence areas.

Key words:   autocorrelation; Brownian bridge; CRAWL; Krige; Mongolian gazelle; Procapra gutturosa; 
telemetry error; tracking data; tracking data gaps; utilization distribution.

inTrOduCTiOn

Understanding the drivers and mechanisms of animal 
movement informs our understanding of many ecological 
processes, from the individual to the population level. 
When considering an animal’s activities and behaviors, 
many quantities of interest must be conditioned upon that 
individual’s movement trajectory. These quantities include, 
but are not limited to, distance traveled, speed, regions 
occupied, environmental covariates utilized, behavioral 
states, and energy expended. Many of these quantities 
would be straightforward to calculate if we knew the ani-
mal’s trajectory—i.e., the coordinates r(t) = (x(t),y(t)) at 
all times t. For example, an animal’s velocity is given by 

differentiation, v(t) = ṙ(t), its speed by the absolute value 
of velocity, v(t) = |v(t)|, and distance traveled by integrating 
speed, d(t1,t2) = ∫ t2

t1

v(t)dt. However, we never know an 
animal’s trajectory exactly as we only sample it a limited 
number of times, often with substantial telemetry error.

The existing probabilistic approaches to trajectory esti-
mation are the Brownian bridge (BB) (Horne et al. 2007, 
Benhamou 2011, Kranstauber et al. 2012, 2014, Pozdnyakov 
et al. 2014) and the continuous-time correlated random 
walk library (CRAWL) (Johnson et al. 2008). Discrete-time 
approaches that assume subsequent observations are con-
nected by straight lines, such as the correlated random walk 
(Kareiva and Shigesada 1983), provide no way to reliably 
estimate most of the quantities we consider. Though the 
BB and CRAWL are typically used for different pur-
poses—estimating occurrence distributions with the BB vs. 
smoothing and simulating data with CRAWL—as we will 
show, they both happen to be examples of Kriging with a 
predetermined movement model. The Kriging approach 
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we introduce here allows users to select between these 
special case models, or other candidate models, and identify 
the most appropriate model for their data.

It is important to note that for any given dataset the 
generalized distribution we introduce here estimates 
occurrences rather than range (Fleming et al. 2015a). The 
occurrence distribution specifies the probability that the 
animal occurred within an area at a randomly chosen 
time within the observation period. In general terms, 
estimating “range” involves extrapolating where an 
animal will travel over a long span of time if similar 
movement behaviors persist, while estimating “occur-
rence” involves interpolating where an animal traveled 
during the observation period. Notably, “range” con-
siders all realizations of the movement process that could 
occur, while “occurrence” pinpoints the one realization 
of the movement process that did occur. The true range 
distribution is sampling independent, with a home-range 
area that reflects the animal’s needs, while the occurrence 
distribution is sampling dependent, with a coverage area 
that reflects our uncertainty in the underlying movement 
path—we refer to this area as an “occurrence area”. And 
while the occurrence distribution does converge to the 
range distribution in the limit of data with infinite 
duration and fixed sampling rate, occurrence estimators 
are relatively biased and inefficient estimators of range 
because they make no attempt at extrapolating this 
future space use. On the other hand, proper range esti-
mators (By a “proper” range estimator, we mean to imply 
one that has its assumptions met by the data, rather than 
assuming, for example, that strongly autocorrelated data 
are independently sampled. As can be seen from the results 
in Fleming et al. (2015a), ignoring autocorrelation causes 
a downward bias in the range estimator that muddles this 
distinction) are relatively biased and inefficient estimators 
of occurrence because they do extrapolate space use. In 
addition to this conceptual clarification, Fleming et al. 
(2015a) derived an autocorrelated kernel density esti-
mator to rigorously estimate the range distribution from 
autocorrelated tracking data. Here we turn our attention 
in the other direction and show how to estimate an ani-
mal’s occurrence distribution, and many other trajecto-
ry-related quantities, in a statistically rigorous way via 
probabilistic path reconstruction.

Kriging

A general and statistically rigorous solution to the 
problem of how to extract and leverage the most infor-
mation from tracking data is to solve for the distribution 
of all possible trajectories conditioned upon the data. 
Mathematically, this problem has been addressed in geo-
statistics, engineering, and computer science, where its 
solution is referred to as Kriging, filtering and smoothing, 
and stochastic process regression respectively (Cressie 
1993, Durbin and Koopman 2001, Rasmussen and 
Williams 2006). While the Krige is a familiar tool in 
spatial and statistical ecology (Legendre and Fortin 

1989), its full statistical framework has never before been 
translated to animal-tracking time series. The Krige esti-
mates missing or erroneous locations in a manner con-
sistent with trends in the data and correlations to other 
data points. For the type of problem we consider, the 
Krige has been rigorously proven to be statistically 
optimal under readily satisfied assumptions (Stein 1988, 
Cressie 1993).

Kriging is a two-step process. The first step is to select 
a movement model, such as Brownian motion, that best 
describes the data (Fleming et al. 2014a,b). At minimum, 
a movement model provides a mean function μ(t), that 
reflects deterministic trends such as migration, and an 
autocorrelation function �(t,t�) (Appendix S1), that 
reflects stochastic movements such as diffusion. The most 
appropriate movement model for an animal tracking 
dataset is determined not only by the animal’s true 
movement behaviors, but also by how well those behaviors 
are resolved by the data. Once the best model for the data 
has been selected, the parameterized mean and autocor-
relation functions for that model can be fed into the Krige. 
The second step is then to solve for the probability of the 
animal’s location r(t), conditioned upon both the observed 
data and a selected movement model (Appendix S1).

An important advantage of the Kriging framework is 
that it has well understood and rigorously proven statis-
tical properties (Stein 1988, Cressie 1993). If an animal’s 
locations r(t) are realizations of a Gaussian stochastic 
process then Kriging with the true autocorrelation model 
provides the minimum variance unbiased (MVU) 
estimate, while for other distributions Kriging with the 
true autocorrelation model still provides the best linear 
unbiased estimate (BLUE) (Cressie 1993). Unbiased esti-
mators yield the true value on average, MVU estimators 
then minimize the squared error on average, and BLUEs 
minimize this variance specifically among estimators that 
are linear functions of the data (Lehmann and Casella 
1998). The true model is never known, so it is important 
to understand how the Krige performs with a misspec-
ified model. On this point, Stein (1988) proved that the 
Krige will still be asymptotically efficient as long as the 
misspecified model process has the same number of con-
tinuous derivatives as the true process. An asymptotically 
efficient estimator is one that becomes as good as MVU 
for large amounts of data (Lehmann and Casella 1998).

On the other hand, Newtonian mechanics places strict 
constraints on what models can be appropriate. Realistic 
animal movement processes must have continuous posi-
tions, velocities, and accelerations, but a finite sampling 
rate may not reveal all of the process’ continuity (Fleming 
et al. 2015b, and Appendix S2). Therefore, to achieve 
asymptotic efficiency, Stein’s proof necessitates modeling 
every degree of continuity supported by the data. For 
example, in many ungulates continuous-position models 
are necessary even when sampling intervals range from 
weeks to months, as this is the scale at which the ungu-
lates’ sequential locations appear related (McNay et al. 
1994, Rooney et al. 1998, Boyce et al. 2010, Fleming et al.  
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2014a,b). In contrast, continuous-velocity models may 
not become necessary for ungulates unless one is working 
with sampling intervals comparable to an hour, as this 
is the scale at which directional persistence is perceptible 
(Fleming et al. 2014a,b). Further continuity beyond what 
is apparent in the data is not required because the differ-
ences in predictions between the “true” model and an 
effective model—one negligibly different at the resolved 
timescales—will also be negligible.

THe Krige and iTs PrOduCTs

The Krige yields a distribution of trajectories r(t) con-
ditioned upon the data R, which is Gaussian with mean 
and autocorrelation functions defined

(1)

which are derived in Appendix S1 and given by Eqs (S1:6) 
and (S1:9), where 〈A|B〉 denotes the expectation value of 
A conditioned upon B. The distribution of a single, 
unknown location is therefore normally distributed with 
mean �K(t) and covariance �K(t,t) or

(2)

In the absence of location error, the Krige interpolates 
observed locations. Otherwise, it yields predictions of 
true locations for sampled times that depend on the 
movement model, data, and observation error. In either 
case, the location of the animal at times not sampled can 
be estimated. We note that the conditional probability 
distribution here in Eq. (2) is equivalent to that of the 
BB and CRAWL. Specifically, Kriging based on a 
Brownian motion model is equivalent to the BB, while 
Kriging based on an integrated Ornstein–Uhlenbeck 
model (IOU, Appendix S3) is equivalent to the CRAWL.

The occurrence distribution is obtained by averaging 
(2) over a set window of time

(3)

which results in the probability distribution of the loca-
tions of the tracked animal during intermediate times. 
Occurrence distribution (3) generalizes the Brownian 
bridge and CRAWL derived utilization distributions 
(UDs) (Horne et al. 2007, Johnson et al. 2011), in that 
selecting Brownian motion yields the BB UD, while 
selecting IOU motion yields the CRAWL UD, and we 
may equivalently refer to both as the BM Krige and IOU 
Krige, respectively. A key advantage of the Kriging 
framework is that the most appropriate movement model 
for the data, whether BM, IOU, or otherwise, can be 
used to derive the occurrence distribution. Occurrence 
distributions leverage autocorrelation to filter and inter-
polate where the animal was located, though they do not 
typically reflect an animal’s home range in any given 

dataset. However, if we want to know what environ-
mental covariates the animal experienced in its travel, 
then the occurrence distribution is the appropriate 
quantity for this task.

In addition to resource utilization, many other quan-
tities can be obtained from the distribution of trajec-
tories. As a particularly salient example, the Krige can 
estimate how far an animal travels, say, on a daily or 
yearly basis. How to rigorously estimate kinematic quan-
tities such as distance traveled from movement data has 
been an open question in movement ecology (Rowcliffe 
et al. 2012). Like the home-range area, these should be 
sampling independent quantities that can be meaning-
fully compared across species and sampling schedules, 
yet estimators that ignore autocorrelation render such 
comparisons uninformative. The distance/time esti-
mator, in particular, will underestimate speed in coarse 
data because it assumes minimal-distance straight-line 
motion between sampled times (Rowcliffe et al. 2012), 
while overestimating speed in fine data because it con-
founds error with movement (Ranacher et al. 2016). 
Kriging based on a model of Brownian motion is also 
not helpful for this task because BM predicts an infinite, 
fractal distance traveled between any two times. In con-
trast, Kriging based on a continuous-velocity model (e.g., 
IOU) can be used to estimate kinematic quantities in a 
rigorous way. Speeds are particularly convenient to 
estimate in CRAWL’s hidden-Markov IOU model; 
however, as we derive in Appendix S1: Eq. 1, kinematic 
quantities like velocity can be estimated from the Krige 
even if they are not hidden-state variables, provided that 
the data and selected model support these features.

mOvemenT mOdel seleCTiOn

Selecting an appropriate model for the data is a key step 
in Kriging that strongly affects the quality of trajectory and 
occurrence distribution estimates. The full specification of 
a “model” requires both a movement process model and an 
error process model. As a demonstration of model selection 
within the Kriging framework, we consider the five basic 
continuous-time movement models that have been applied 
to animal-tracking data: bivariate normal (Winkle 1975), 
Brownian motion (BM, Horne et al. 2007, Pozdnyakov 
et al. 2014), Ornstein–Uhlenbeck motion (OU, Uhlenbeck 
and Ornstein 1930, Dunn and Gipson 1977), integrated OU 
motion (IOU, Johnson et al. 2008, Gurarie and Ovaskainen 
2011), and a hybrid IOU-OU model coined OUF after the 
ballistic foraging behavior observed in grazing ungulates 
(Fleming et al. 2014a). These models—summarized in Table  
1 and described in Appendix S3—specify the autocorre-
lation function of the movement process, while determin-
istic trends such as migration events are straightforward to 
implement in the mean function.

GPS telemetry data now come standard with “dilution 
of precision” (DOP) estimates, which ameliorate much 
of the need to model telemetry error as an unknown 
process. When telemetry errors cannot be estimated or 

�
K
(t)≡ ⟨r(t)�R⟩,

�
K
(t,t�)≡ ⟨[r(t)−�

K
(t)]

�
r(t�)−�

K
(t�)

�T�R⟩,

p(r(t)|R)= (�K(t),�K(t,t)).

p(r(tA < t< tB)|R)=
1

tB− tA
�

tB

tA

dt (�
K
(t),�

K
(t,t)),
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calibrated independently, an error model can be fit to the 
data simultaneously with the movement model (e.g., 
Johnson et al. 2008). However, this should be done spar-
ingly and cautiously, and we only consider this possibility 
as an exercise. If not carefully constrained, sporadic 
movements that occur over durations shorter than the 
sampling interval can easily be “explained” by an error 
model when in fact there is far less error to explain.

To make optimal predictions, we base model selection 
on AIC rather than BIC (Yang 2005). The selected model 
should also be compared to the x-y scatter plot and 
empirical variogram (Fleming et al. 2014a) to ensure that 
it explains the most significant features of the data. In 
short, substantial telemetry error would correspond to 
an initial discontinuity in the variogram, continuous 
velocities correspond to the positive curvature at short 
time lags, Brownian motion corresponds to linearity in 
the variogram, and range residence corresponds to an 
asymptote in the variogram (qualitatively similar to 
Appendix S3: Fig. 1). Variogram, model selection, and 
basic Kriging functionality is provided in the ctmm R  
package  (v 0.3.0, Fleming and Calabrese 2015), which 
we demonstrate in the  supplement.

As we will demonstrate, Kriging based on the selected 
model has a strong tendency to make better predictions 
than Kriging based on higher-AIC models. Especially 
given the proof of Stein (1988), under-performance is often 
a forseeable consequence of Kriging based on a model that 
does not adequately account for the key features in the 
data. First, the BM and OU movement models exhibit 
infinite, discontinuous velocities (Appendix S1: Fig. 1) and 
therefore they will not be asymptotically efficient for data 
that are sampled finely enough to reveal finite, continuous 
velocities. In this case, diffusion is overestimated at scales 
shorter than the sampling interval, which comprise the 
bulk of occurrence estimation, and the general effect is to 
overestimate the occurrence area (Appendix S3: Fig. 1). 
Second, the BM and IOU models exhibit endless diffusion 
and will therefore overestimate diffusion in large gaps, 
which makes their occurrence distributions more sensitive 
to gapping in the data (Appendix S4: Fig. 2). As a specific 
example, if a maned wolf patrols its territory daily and 
there is a month-long gap in the data, then a BM or IOU 
Krige will project an occurrence area during that month 
extending far beyond the wolf’s territory. In contrast, 

Kriging based upon a model featuring restricted space use 
(e.g., OU & OUF) would predict an occurrence area 
bound by the territory size.

emPiriCal examPle

To compare the capabilities of Kriging based on a 
selected movement model relative to the special cases of 
the BM and IOU models on a real tracking data set, where 
the true model is not known, we used GPS tracking data 
from 36 Mongolian gazelles (Procapra gutturosa) collected 
over a span of 5 yr, with individual time series up to 2.5 yr 
in length, and individual sampling intervals ranging from 
1 to 25 h (Fleming et al. 2013). In Appendix S4, we per-
formed the same comparative analysis on a longer and 
more regularly sampled fisher (Martes pennanti) dataset 
(LaPoint, et al. 2013a, b), where the performance differ-
ences were comparable to the gazelles.

Our model selection was performed on an individual 
basis. All of the individuals we considered were range 
resident (not migratory) and so we only fit stationary 
mean functions. Both circular and elliptical covariances 
were included in the model selection. An OUF process 
was selected for 33 gazelles, while an OU process was 
selected for the remaining three gazelles. The continu-
ous-velocity OUF model was supported for all indi-
viduals with hourly data, but not for all individuals with 
more coarsely sampled data. 23 of the selected covari-
ances were elliptical, while 13 were circular.

The gazelles’ GPS fixes were not annotated with 
“dilution of precision” (DOP) estimates, but blanketly 
assigned a 5-m spatial resolution. The mean distance 
between sequential observations was ∼ 6 km across all 36 
animals. Relative to these observed displacements, spatial 
error on the observations (∼ 5 m) was small enough to be 
neglected, though we still included it to demonstrate the 
methodology. We selected among three error models: one 
with no telemetry error, one with a fixed 5-m error, and 
one with an unknown error variance for each individual 
gazelle that is on the order of 5 m. The default 5-m error 
model was selected for all 36 gazelles, though the AICc 
only improved on-average by 0.02 over the zero-error 
model. For the individually-tailored error model, the 
errors’ standard deviations were generally estimated to be 
close to 5 m, but ranged up to 15 m and degraded the 
AICc in all cases, even if only compared to the zero-error 
model. Concordant with these estimates, we previously 
analyzed the locations of dead gazelles and found the 
collars typically consistent to within 1–3 m, but occa-
sionally up to 20–30 m (Fleming et al. 2014a). On the 
other hand, the fisher example in Appendix S4 had DOP 
estimates provided that were found to be significant 
(ΔAICc >20), as the fisher moved shorter distances 
between observations relative to his telemetry errors.

We next compared Kriging with a selected best model 
to Kriging based on an a priori assumption of BM or IOU 
motion via leave-one-out cross validation, all with the 
fixed 5-m telemetry error. In each case we estimated the 

Table 1. Comparison of  movement models: Bivariate normal 
(BN), Brownian motion (BM), Ornstein–Uhlenbeck motion 
(OU), integrated Ornstein–Uhlenbeck (IOU), and Ornstein–
Uhlenbeck–F motion (OUF)

Model Range Position Velocity

BN Finite Discontinuous Discontinuous

BM Infinite Continuous Discontinuous

OU Finite Continuous Discontinuous

IOU Infinite Continuous Continuous

OUF Finite Continuous Continuous
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model parameters using the full time series of the focal 
gazelle, and then for each time ti we removed the ith point 
from the data set and predicted the known location r(ti). 
More accurately, the ith point should also be left out of 
the autocorrelation estimation step, but with long time 
series, the computational cost of this differentiation is pro-
hibitive and the parameter estimates will be negligibly 
different.

To assess the relative accuracy of the point estimates, 
we fit a normal distribution to the residuals—e.g., 
d(ti)=�K(ti)−r(ti). Zero fell well within the 95% CI on 
the mean residual for all methods, indicating a general 
lack of bias in the point estimates. However, on average, 
Kriging with the selected model produced a point estimate 
that was 0.9–1.3 km (95% CI) closer to the true value than 
the BM Krige in terms of the square root of the difference 
in the variances, which corresponds to a 10% increase in 
precision. In contrast, the average model-selected Krige 
estimate was an insignificant 0.0–0.9 km closer to the true 
value than the IOU Krige, reflecting the fact that the IOU 
and OUF models are both likely to be asymptotically 
efficient at the short timescales being probed. The IOU 
and OUF models differ only at longer timescales, where 
the OUF model exhibits range-resident behavior while 
the IOU model diffuses endlessly. Unfortunately the time-
series did not have large enough gaps, relative to the 
gazelles’ ranging timescales, to highlight where these 
models differ with the gazelle data. However, with the 
longer fisher dataset we were able to demonstrate the 
robustness against gapping that can be obtained with a 
range-resident model in Appendix S4: Fig. 2.

To compare the reliability of the confidence regions, we 
fit a normal distribution to the standardized residuals, 
which amounts to z(ti)=�K(ti,ti)

−1∕2
[
�K(ti)−r(ti)

]
. As 

expected, the BM Krige generally overestimated occur-
rence area, as shown in Fig.  1, and the predicted occurrence 
area was 56–63% larger than the cross-validated occur-
rence area on average. As a result, occurrence distributions 
estimated by the BM Krige on this dataset are wider than 
they should be, such as in Fig.  1 where there is ∼5 km2 
excess predicted area (a 600% over-prediction). For the 
model-selected and IOU Krige, the standardized residuals 
were much closer to falling from a standard normal distri-
bution, in that on average the cross-validated occurrence 
area was only larger than the predicted occurrence area by 
4–9%—a 500% increase in precision over the BB.

The fact that both the selected OUF and related IOU 
models perform comparatively well relative to the 
 higher-AIC BM and OU models (results not shown) 
strongly suggests that the efficiency difference here is due 
to the ability to model continuous velocity, as this is the 
sole difference between the BM and IOU movement 
models. The resolution of continuous velocities was a 
visually apparent feature of this dataset’s population 
variogram (Fleming et al. 2014a) and manifests in the 
curves and fine detail of the occurrence distribution (Fig.  
1). On the other hand, Appendix S4: Fig.  2 demonstrates 
that the range resident OU and OUF models are less 
sensitive to large gaps in the data.

disCussiOn

We have introduced time-series Kriging as a general and 
statistically optimal method for estimating trajectory infor-
mation from animal-tracking data. Trajectory estimation is 
a fundamental problem in movement ecology because it 

Fig. 1. Two occurrence distribution estimates (blue) for the 
same hourly sampled segment of gazelle timeseries (red). On the 
top is the Kriged distribution using the selected OUF movement 
model, while on the bottom lies the Brownian bridge. For this 
high-resolution data, the Brownian bridge is inappropriately 
large, as can be confirmed by cross validation. Persistence of 
motion is highly visible in these data, which also suggests that a 
continuous-velocity movement model is appropriate.

−88.5 −87.5 −86.5

−2
5.

5
−2

4.
5

−2
3.

5

x (kilometers)

y 
(k

ilo
m

et
er

s)
Krige

−88.5 −87.5 −86.5

−2
5.

5
−2

4.
5

−2
3.

5

x (kilometers)

y 
(k

ilo
m

et
er

s)

Brownian bridge



March 2016 ESTIMATING WHERE AND HOW ANIMALS TRAVEL 581
S

ta
tistica

l R
ep

orts

provides the statistical backbone for making inferences 
about a wide variety of animal behaviors, from energy 
expenditure to resource utilization. Our framework includes 
within it the Brownian bridge (BB Krige) and CRAWL 
(IOU Krige), and allows users to select among a set of can-
didate models to let the data decide which is most appro-
priate. As we have demonstrated with real data, the selected 
model can significantly outperform higher-AIC models in 
a predictable manner. The improvements in occurrence-area 
estimation are of practical importance because they translate 
into improved resolution of passageways and better sam-
pling of the environmental covariates that animals encounter 
as they move. As ongoing technological advances facilitate 
increasingly finely sampled datasets, the usefulness of these 
techniques will improve commensurately.

Persistence of motion has long been viewed as critically 
absent from the BB and several attempts have been made 

to address this issue from within the Brownian-motion 
paradigm. Benhamou (2011) extended the Brownian 
motion model by including a linear drift term. However, 
as pointed out by Kranstauber et al. (2014) and as we 
derive in Appendix S3: Eq. 1.1, this modification to the 
movement model only changes the Brownian bridge’s 
diffusion rate. Kranstauber et al. (2014) then proposed a 
model of anisotropic Brownian motion, wherein the dif-
fusion rate is allowed to take one value in the direction 
of motion and another value in the perpendicular 
direction. As we discuss in Appendix S3: Eq. 1.2, there 
are some issues with this model due to the fact that a 
Brownian particle has no well-defined heading. The 
approach we advocate here—Kriging the data based on 
a selected movement model—naturally incorporates per-
sistence of motion when and how it is revealed in the data. 
Essentially, a solution for this particular problem already 
existed in CRAWL (Johnson et al. 2008), which predates 
both Benhamou (2011) and Kranstauber et al. (2014), yet 
these connections were not noticed. A similar story played 
out with the incorporation of telemetry errors, which were 
not correctly implemented in the BB until Pozdnyakov 
et al. (2014). Telemetry errors had already been correctly 
implemented in CRAWL by Johnson et al. (2008) in a 
manner that is more computationally efficient than the 
method of Pozdnyakov et al. (2014). A key contribution 
of our work, therefore, is to place these related approaches 
under a generalized framework for probabilistic path 
reconstruction and occurrence estimation.

We have presented the general Kriging relations for any 
movement model, with which trajectories and occurrence 
distributions can be estimated from sparse and noisy tracking 
data in a statistically efficient way. We note the critical need 
for more general software packages, that allow for any of 
the mentioned models to be selected and any of the men-
tioned outputs to be calculated, including occurrence distri-
butions, location estimates, and trajectory simulations (Fig. 
2). In this way the movement model can be decoupled from 
the biological question of interest, so that model selection 
can facilitate statistically-optimal solutions. Second, Kalman 
filtering techniques, such as those introduced by Johnson 
et al. (2008), are absolutely necessary for large tracking 
datasets because of their vastly superior computational effi-
ciency. Future development of Kalman-filter implementa-
tions for a diverse array of continuous-time movement 
models would allow the Kriging techniques introduced here 
to be efficiently applied to the ever-larger tracking datasets 
that are becoming the norm in movement ecology. Many of 
these features are presently included in the ctmm R  package 
(v 0.3.0, Fleming and Calabrese 2015, and R supplement). 
Finally, we note that many unsolved ecological questions 
are straightforward to address within the Kriging framework. 
Co-Kriging (Cressie 1993, Diggle and Ribeiro 2007), in par-
ticular, allows for multiple, related data sources to be simul-
taneously Kriged with a model that accounts for the 
correlation between them. For instance, improved trajectory 
estimates could be obtained by co-Kriging GPS-derived esti-
mates of both location and velocity data, based on a 

Fig. 2. Simulation and interpolation of the best-fit gazelle 
model. In panels A–B, the right half of the spatial plane is 
missing (gray), for example because of canopy cover that blocks 
out location fixes (orange). In A, which uses Brownian Bridge 
interpolation, the occurrence area is biased along the boundary. 
In B, which uses the Krige estimate, continuity in the observed 
data is leveraged to more accurately predict the region where 
missing observations occur. In this example, the Krige point 
estimate lacks details in the unobserved region because the gap is 
large compared to the velocity timescales, though the 
corresponding confidence regions sufficiently cover these details. 
Panels C–D present high resolution data (red) with a periodic 
loss of signal (orange). In C, distance traveled is significantly 
underestimated in the BB, whereas in D, the Kriged estimate 
leverages continuity and autocorrelation structure present in the 
observed data to more accurately predict the missing locations. 
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movement model that accounts for position autocorrelation, 
velocity autocorrelation, and their cross-correlation. Three-
dimensional accelerometry data combined with elevation, 
altitude, and depth information would allow for an even 
more detailed co-Kriged estimation, though continuous-ac-
celeration models, such as those introduced by Fleming et al. 
(2015b), would be necessary.
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