
28. See the supplementary materials on Science Online.
29. C. Bi, Y. Yuan, Y. Fang, J. Huang, Adv. Energy Mater.

10.1002/aenm.201401616 (2014).
30. K. Tvingstedt et al., Sci. Rep. 4, 6071 (2014).
31. S. De Wolf et al., J. Phys. Chem. Lett. 5, 1035–1039 (2014).
32. A. Sadhanala et al., J. Phys. Chem. Lett. 5, 2501–2505

(2014).
33. R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston,

L. M. Herz, Adv. Funct. Mater. 25, 6218–6227 (2015).
34. W. Tress et al., Adv. Energy Mater. 10.1002/aenm.201400812

(2014).
35. H. J. Snaith, Adv. Funct. Mater. 20, 13–19 (2010).
36. U. Rau, Phys. Rev. B 76, 085303 (2007).
37. L. Mazzarella et al., Appl. Phys. Lett. 106, 023902

(2015).

ACKNOWLEDGMENTS

This project was funded in part by the Engineering and Physical
Sciences Research Council through the Supergen Solar Energy Hub
SuperSolar (EP/M024881/1, EP/M014797/1) and the European

Research Council through the Stg-2011 Hybrid Photovoltaic Energy
Relays and the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement 604032 of the MESO
project, and the U.S. Office of Naval Research. M.H. is funded by
Oxford PV Ltd. W.R. is supported by the Hans-Boeckler-
Foundation. We thank our colleagues from the Centre For
Renewable Energy Technologies Photovoltaic Measurement and
Testing Laboratory, Loughborough University, for their
contributions to the measurements of the semi-transparent
devices. We also thank K. Jacob and M. Wittig [Helmholtz-Zentrum
Berlin (HZB), Institute for Silicon Photovoltaics], L. Mazzarella, and
S. Kirner (HZB, Institute PVcomB) for their contributions to
fabricating the SHJ cell. The University of Oxford has filed a patent
related to this work. The project was designed and conceptualized
by D.M. and H.J.S. D.M. performed experiments, analyzed data,
and wrote the first draft of the paper. G.S. fabricated and
measured devices with semi-transparent electrodes. W.R.
characterized the material using THz spectroscopy. G.E. helped
with the experimental work and provided technical feedback on the
writing of the paper. M.S. provided input and technical direction on

the FA/Cs cation mixture. M.H. performed simulations for the
optical modeling and calculated the maximum achievable VOC.
A.H. analyzed XRD data. N.S. provided input on the preparation
of thin films using chemical bath depositions. L.K. and B.R.
designed and supervised the fabrication of the SHJ cells. M.J.
performed and analyzed EQE measurements. L.H. supervised and
analyzed the THz spectroscopy measurements. H.J.S. supervised
the overall conception and design of this project. All authors
contributed to the writing of the paper.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/351/6269/151/suppl/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S15
References (38–42)

5 October 2015; accepted 3 December 2015
10.1126/science.aad5845

FOREST ECOLOGY

Dominance of the suppressed:
Power-law size structure in
tropical forests
C. E. Farrior,1,2* S. A. Bohlman,3,4 S. Hubbell,4,5 S. W. Pacala6

Tropical tree size distributions are remarkably consistent despite differences in the
environments that support them. With data analysis and theory, we found a simple
and biologically intuitive hypothesis to explain this property, which is the foundation
of forest dynamics modeling and carbon storage estimates. After a disturbance, new
individuals in the forest gap grow quickly in full sun until they begin to overtop one
another. The two-dimensional space-filling of the growing crowns of the tallest
individuals relegates a group of losing, slow-growing individuals to the understory.
Those left in the understory follow a power-law size distribution, the scaling of which
depends on only the crown area–to–diameter allometry exponent: a well-conserved
value across tropical forests.

T
ree size distributions—the frequency of trees
by size—are important emergent properties
of forests. Tree size distributions signal
community-level interactions, are a critical
diagnostic of the accuracy of scaling in

mechanistic models, and are the basis of many
aboveground forest carbon estimates (1–3). De-
spite differences in the tree vital rates that deter-
mine them, tropical forests worldwide have tree
size distributions that follow tight power func-
tions with very similar scaling for a wide range of
diameters and commonly have deviations in the
tails (4, 5) (Fig. 1). Such a consistent emergent pat-

tern begs an explanation, one that is likely to pro-
vide an important key to understanding the
mechanismsgoverning tropical forest dynamics (6).
Current theories explaining the consistency of

tropical forest size structure are controversial.
Explanations based on scaling up individual me-
tabolic rates (4, 7, 8) are criticized for ignoring the
importance of asymmetric competition for light
in causing variation in dynamic rates (9–11). Other
theories, which embrace competition and scale
individual tree vital rates through an assumption
of demographic equilibrium (5, 10, 12, 13), are crit-
icized for lacking parsimony, because predictions
rely on site-level, size-specific parameterizations
(14). Despite their differences, common to these
theories is the notion that the predicted size
structure is a property of steady-state forests
far removed from the influence of disturbance. We
tested thisprediction.Weexplored the size structure
within a well-studied tropical forest and, with theo-
retical corroboration, present a parsimonious and
biologically intuitive explanation for the power-
function size structure, observed deviations, and
the consistency of the scaling across forests.

We explored temporal and spatial patterns in
tropical forest size structure in 50 ha and 30 years
of data fromBarro Colorado Island, Panama (BCI)
(15–17). Forest patches in the early stages of re-
covery from small-scale disturbances (18) develop
a power function that extends through a greater
range of diameters as time progresses (Fig. 2). At
25 to 30 years after disturbance, the power func-
tion extends through the full range of diameters
present, and unlike in younger patches, a power
law is a likely model of the data [(18), criteria
following (19)]. However, the power-law fit is again
lost in patches with more than 30 years since the
last disturbance.
Having reached the limit of our temporal analy-

ses, we examined forest patches as grouped by
forest size. We used the metric D*est as an es-
timate of the size threshold for tree canopy status
in a patch (18). For each range of D*est, we fit a
power function (with the same scaling as Fig. 1,
fit to all data) that transitions at a single size
class to an exponential distribution (Fig. 3A) (18).
This best-fit size class of transition increases with
D*est (Fig. 3B, P = 0.005, t test, R-squared = 0.76,

SCIENCE sciencemag.org 8 JANUARY 2016 • VOL 351 ISSUE 6269 155

1National Institute for Mathematical and Biological
Synthesis, Knoxville, TN 37996, USA. 2Department of
Integrative Biology, University of Texas at Austin, Austin,
TX 78712, USA. 3School of Forest Resources and
Conservation, University of Florida, Gainesville, FL 32611,
USA. 4Smithsonian Tropical Research Institute, Apartado
0843–03092, Balboa, Ancon, Republic of Panama.
5Department of Ecology and Evolutionary Biology,
University of California, Los Angeles, CA 90095, USA.
6Department of Ecology and Evolutionary Biology,
Princeton University, Princeton, NJ 08544, USA.
*Corresponding author. E-mail: cfarrior@nimbios.org

Stem diameter (mm)

In
di

vi
du

al
s 

( 
ha

−1
m

m
−1

)

10 50 200 2500

1e
−

06
1e

−
02

1e
+

02

BCI forest data
power law fit
power law error

Fig. 1. Size distribution of the 50-ha tropical for-
est dynamics plot on BCI. The average (points)
and range (bars) by size class among all seven
censuses are shown. The best-fit power law distri-
bution to all diameters from censuses 3 to 7 (18) is
drawn (black line).The expected range of variation
for that power law, given the average census sample
size by size class, is in gray [95% range (18)].
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N = 6 ranges of D*est slope = 1.23 mm mm−1).
Trees that are likely in the understory, with di-
ameters less than their patch’s D*est, are well char-
acterized by the power function, whereas those
that are likely in the canopy are not.
Wehave threemain empirical results: (i) Power-

function size structure emerges progressively after
likely gap-generating disturbances (Figs. 1 and 2);
(ii) understory trees, but not canopy trees, gen-
erally follow power-function structure (Fig. 3);
and (iii) forest patches far in time from the last
local disturbance are responsible for thedeviations
in the high tail of the landscape-level distribution
(Fig. 2). Together these pieces of evidence point
to a new hypothesis: Small-scale, gap-generating
disturbances maintain power-function size struc-
ture whereas later-successional forest patches are
responsible fordeviations in thehigh tail. To explore
and test this hypothesis, we turned to a model.
In a small, gap-sized patch of forest (1000 m2),

the simulation started from bare ground. Indi-
viduals were characterized by their diameter (d)
and crown area (fd q). Crown area is the projected
two-dimensional area of a tree’s canopy. We as-
sumed that the allometric exponent q was a con-
stant, following theoretical predictions at the
individual-plant level (20, 21). Seedlings recruit
at a constant rate and grow in diameter in full
sun at a constant rate with a constant probability

of mortality until the canopy closes. Assuming
phototropic growth (22), when the sum of the
crown areas of all trees exceeds the patch area,
the canopy closes. At this point, the largest in-
dividuals whose summed crown area is less than
the patch size remain in full sun, maintaining can-
opy growth and mortality rates. All other individ-
uals are overtopped and grow in the understory
at a single slower rate and have a single higher
probability ofmortality. At each time step, the patch
has a probability of a gap-generating disturbance,
setting the patch back to bare ground. A forest
landscape is assembled by compiling snapshots
of the simulation (18). We estimated all model
parameters (table S1) from BCI individual tree
vital-rate data (18), except for the gap-generating
disturbance rate, which was estimated from the
central Amazon (2) and assumed to be responsi-
ble for half of the observed canopy mortality. The
critical parameter of q (1.28)wasmeasured directly
on BCI (22).
The resulting landscape-level size distribution

matches the probability distribution of diame-
ters on BCI well throughout the full range of the
diameters (Fig. 4A). It captures the power func-
tion throughout intermediate diameters and
the departures in both tails. Size-dependent de-
mographic rates also comparewellwith this simple
model (fig. S2). To understand the mechanisms

that generate this goodness of fit, we turn to its
mathematical approximation.
Consider the succession of a single patch of

forest (size P), initiated by one cohort of seedlings
after a patch-clearing disturbance. After the can-
opy closes, the number of canopy individuals (Nc)
is a function of only their size (stem diameter dc
and crown area = fdc

q)

Nc ¼ P
fdq

c
(1)

As trees grow, the number that can fit in the
canopy decreases

dNc

ddc
¼ −Pq

fdqþ1
c

(2)

The decrease in canopy trees is achieved in
two ways: random mortality (mc), which kills the
trees, and overtopping, which moves canopy
trees to the understory. Over the time period it
takes for 1 mm of growth in stem diameter (Gc

−1)

Pq
fdqþ1

c
¼ new understory treesþ mc

Gc

P
fdq

c
(3)

While dc is small, new understory trees in Eq. 3
are approximately equal to Pq

fdqþ1 , which is a power
law in d of scaling –(q + 1) (Fig. 4B). Taking the
approximation that the slow-growing understory
trees do not grow at all (Gu = 0) (23, 24) and have
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Fig. 2. Tree size dis-
tributions and time
since local distur-
bance. Size distribu-
tions for combined 5m
by 5 m subplots at the
same time in recovery
(panel titles) from a
gap (18). For clarity,
deviations in log space
from the power law are
plotted (black, individ-
uals mm−1 ha−1).The
area sampled is shown
(in ha). Gray shows the
expected range of
deviation for the power law, given the area of data sampled (95% confidence interval).The P values are the proportion of synthetic distributions that fit worse than
the data to the power law, using the Kolmogorov-Smirnov statistic as the metric of goodness of fit [P > 0.1 indicates a likely fit (18)].
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butions and forest size.
(A) Size distributions
for combined, circular,
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(points) grouped by esti-
mated minimum diame-
ter of canopy trees [D*est
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power-law best fit to all
data (Fig. 1) with the size
class best fit for transition
(dashed vertical lines) to
an exponential tail is
shown in black. (B) The full range of D*est and the size class of transition from power-law to exponential distribution.
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a constant mortality rate (mu) the size distribution
of understory trees at time t is (note: dc = Gct)

Nuðd; tÞ¼
0; t <

d

Gc

Pq
fdqþ1

−
mc
Gc

P

fdq

� �
e
−mu t−

d

Gc

� �
; t ≥

d

Gc

8>>><
>>>:

(4)

The expressions for Nc and Nu (Eqs. 1 and 4
and fig. S1) hold until the crown area lost by the
mortality of canopy trees is greater than their
increase from growth (until t = q/mc). Assuming
that the contribution of sites with t > q/mc is
negligible, and a stochastic stand-clearing distur-
bance rate of m, the landscape-level size distribution
(for d < Gcq/mc) is (18)

NðdÞ ≈ P

fdq
e−m

d
Gc − e−m

dþ1
Gc

� �
þ

Pq
fdqþ1

−
mc
Gc

P

fdq

� �
m

mu þ m
e
mud
Gc e−

d
Gc
ðmuþmÞ−e−

q
mc
ðmuþmÞ

� �
(5)

Plotting Eq. 5 against the data and simulations
(Fig. 4A, red) shows, despite simplifications, that
the analytical model holds the mechanisms driv-
ing the power function shape of the size distri-
bution. Here, the dominant power function is of
the form d−(q+1) (in Eq. 5) (Fig. 4B), originating
from the production of understory trees by over-
topping (Eqs. 2 and 3).
In tropical forests, deviations from the power

law occur at both tails, which are precisely the
trees for which the overtopping process is not
significant. Overtopping begins when the new
seedlings are large enough to close the gap, and
overtopping stops when crown area loss from
canopy tree mortality catches up to gains from
growth, setting, respectively, lower and upper
limits on the power function.
Many terms of Eq. 5, including the upper di-

ameter limit of applicability, may be important in
forests that are unlike BCI, explaining the lack of

power-law size structure in some temperate and
dry tropical forests. For example, of the nine forests
presented by Muller-Landau et al. (5, 10), the two
driest forests (Huai Kha Khaeng and Mudu-
malai) have the weakest power-law size structure.
These two forests also lack evidence of the slow-
growing overtopped trees that make up the pow-
er law in themodel. In both theHuai KhaKhaeng
and Mudumalai forests, growth rates remain
high across the full range of diameters. Temperate
forests also often lack power-law size structure
(25–27). When parameterized with slow growth
rates and infrequent stand-clearing disturbances,
which are likely parameters for temperate forests
(table S3), model simulations also produce a lack
of power-law size structure (fig. S3).
The vital-rate scaling with size that drives the

consistent power-law size structure of tropical
forest trees is the scaling of the number of in-
dividuals by diameter that are experiencing the
shift from fast growth in the sun to slow growth
in the shade during the process of recovery from
a gap disturbance (Eq. 2). In both the model and
the data, the power-law size structure emerges
after gap-generating disturbances (Fig. 2), and
the overtopped (understory) individuals are those
that follow the power law (Fig. 3). The scaling
exponent of the underlying power law is depen-
dent on only the allometric exponent of the crown
area–to–diameter relationship (q). Site-level aver-
age values of q are consistent across diverse tropical
forests (table S2), explaining the consistency of scal-
ing of the power function.
Here, we have presented evidence that the

consistency among tropical forest tree size dis-
tributions is driven by the unifying mechanisms
of gap-generating disturbances and subsequent
asymmetric competition for light. This explana-
tion is in stark contrast to the energy equivalence
prediction of metabolic scaling theory (4, 7, 8, 14)
and models based on demographic equilibrium
(5, 10, 12, 13), inwhich vital rates are constantwith
respect to tree size. Specifically, in order tomecha-

nistically predict ecosystem services, including
carbon storage, tropical forest models must incor-
porate canopy gaps [as in the Ecosystem Demog-
raphy model (28)], the phototropic growth of
individuals [as in the Perfect Plasticity Approx-
imation model (29)], and the strong dependence
of individual growth rates on light.
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