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Abstract

The primary productivity of coastal wetlands is changing dramatically in response to rising
atmospheric carbon dioxide (CO,) concentrations, nitrogen (N) enrichment, and invasions by novel
species, potentially altering their ecosystem services and resilience to sea level rise. In order to
determine how these interacting global change factors will affect coastal wetland productivity, we
quantified growing-season carbon assimilation (R2gross primary productivity, or GPP) and carbon
retained in living plant biomass (~net primary productivity, or NPP) of North American mid-Atlantic
saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two
levels of CO, (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m > yr™ ).
For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation
model, using empirical data from an open-top chamber field study. Under ambient CO, and low N
loading (i.e., the Control), we determined GPP to be 1.66 + 0.05 kg C m ™ yr™ ' at a typical Phragmites
stand density. Individually, elevated CO, and N enrichment increased GPP by 44 and 60%,
respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early
and late in the growing season, while changes from CO, came from stimulation during the early and
mid-growing season. In combination, elevated CO, and N enrichment increased GPP by 95% over
the Control, yielding 3.24 + 0.08 kg Cm > yr~'. We used biomass data to calculate NPP, and
determined that it represented 44%—60% of GPP, with global change conditions decreasing carbon
retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied
saltmarshes are driven, in part, by extended phenology yielding 3.1 x greater NPP than native marsh.
Further, we can expect elevated CO, to amplify Phragmites productivity throughout the growing
season, with potential implications including accelerated spread and greater carbon storage

belowground.

1. Introduction

Global change is altering the fundamental ecological
processes that control coastal wetland productivity,
and is thereby altering ecosystem processes such as soil
accretion, elevation gain, and carbon sequestration
[1, 2]. Global change affects primary productivity, for
example, by altering photosynthetic rates, temporal
patterns of growth, allocation to above- versus below-

ground organs, and plant community composition
[3]. Such changes have the potential to alter the
resilience of tidal wetlands to sea level rise, with
consequences for ecosystem services like providing
wildlife habitat and protecting coasts from storm
surges [4].

The productivity response of marsh ecosystems to
global change is highly context specific, with the
response to rising atmospheric carbon dioxide (CO,)
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concentrations dependent on local abiotic conditions
such as nitrogen (N) loading, salinity, and functional
traits of the biotic community, including the dominant
photosynthetic pathway [5-7]. Although research on
native plant communities has provided strong insights
into the relationships of rising CO,, N loading, and
biotic change in coastal wetlands [6, 8], biological inva-
ders are re-engineering coastal ecosystems, thus mod-
ifying how global change factors influence ecosystem
productivity, resilience to sea level rise, and provision-
ing of ecosystem services [9, 10].

Invasive plant species and genotypes not only
respond to environmental change but also amplify or
fundamentally alter ecological processes through
novel traits or feedbacks [11], and can therefore be
considered a form of global change themselves [12].
Several highly successful plant invasions have pro-
ceeded through this form of ecosystem re-engineer-
ing; the most prominent case in North American
coastal wetlands is that of Phragmites australis (here-
after Phragmites) or common reed. Phragmites is a clo-
nal C; grass that grows in fresh to polyhaline wetlands
throughout the world [13]. Although there are many
genetic lineages of Phragmites globally, one haplotype
(designated M) is highly invasive in North America,
where it was introduced from Eurasia in the 1800s
[14]. Several Phragmites lineages, including haplotype
M, are known to have particularly strong trait respon-
ses to elevated CO,, temperature, and N conditions,
such as increased light-saturated photosynthetic rates,
relative growth rates, and stand densities [15-17].
However, experiments evaluating Phragmites traits
and their responses to global change have been short-
term and have used young, containerized plants [15—
19], thus limiting their ability to provide insight into
ecosystem-level processes. Quantification of carbon
fluxes and storage in Phragmites-dominated marshes,
for example, requires data from mature clones grow-
ing in the field. Such quantification would be useful for
carefully evaluating if and how Phragmites will alter
rates of soil elevation gain under future environmental
conditions. Some have suggested that the negative
effects of Phragmites invasion be weighed against its
potential to enable some coastal wetlands to keep pace
with accelerating rates of sea level rise [20].

Relatively few data sets describe variation in car-
bon assimilation under expected future CO, condi-
tions at timescales necessary to provide insight into the
influence of intra-annual temporal patterns on annual
productivity. However, growth and senescence phe-
nology can strongly influence annual productivity,
e.g., by moderating canopy structure [21, 22] or the
duration of the growing period [23-25]. Further, these
phenological changes are influenced by global change
factors such as CO,, N, and temperature [23, 26, 27].
Much of the research on plant productivity responses
to global change is based on plant biomass measure-
ments, with data collected one to a few times annually
[6, 28]. A lack of fine-scale, temporally explicit data on
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carbon assimilation rates under predicted future con-
ditions limits our ability to understand and model the
effects of global change on coastal wetlands.

Although CO,, N, and other global change factors
can be manipulated in the field, quantifying carbon
fluxes at a high temporal frequency in concert with
such experiments poses methodological challenges.
Eddy covariance generates high frequency data and
has been used successfully in coastal wetlands [29-31],
but fumigation with CO, disrupts the CO, gradients
that are the basis of the technique. Measurements of
carbon assimilation can be made with flux chambers
[32, 33], but collecting data at a sufficient interval to
capture variation in solar radiation is prohibitively dif-
ficult; this is especially true for large-stature species
such as Phragmites (heights reach 4 m). Modeling can
be used to overcome these challenges, though accurate
modeling under global change conditions requires
vegetative responses to these conditions to be deter-
mined and represented. At large spatial scales, this has
been achieved by coupling models of carbon cycling
and climate processes, and running these models
under various emissions scenarios [34]. At the smaller
scales relevant to determining the influence of plant
community composition on productivity, modeling
has enabled leaf-level carbon fluxes to be extended to
the stand scale [24, 35, 36]. Empirical data from
manipulative global change field experiments can pro-
vide the relationships and parameters needed to accu-
rately represent differences in plant physiology and
canopy structure in such models.

We present here a quantification of gross primary
productivity (GPP) by Phragmites in a North Amer-
ican mid-Atlantic Coast wetland that is finely tempo-
rally scaled (hourly to daily) and was derived from a
combination of experimentation and modeling. Using
data and relationships derived from a new, manip-
ulative field experiment on the Chesapeake Bay, we
simulated Phragmites growth, canopy structure, and
carbon assimilation under factorial combinations of
atmospheric CO, and N loading. Although Phragmites
stand dynamics have been modeled successfully sev-
eral times before [37—42], these efforts did not con-
sider the effects of global change on model parameters,
and most focused on aboveground productivity. We
specifically determined how global change will alter
the magnitude of carbon assimilation by Phragmites
tidal marshes at the annual timescale (GPP,) as well as
temporal patterns of carbon assimilation through the
growing season. We also estimated annual net primary
productivity (NPP,) of Phragmites marshes, and used
these values to constrain carbon use efficiency (CUE),
i.e., the fraction of GPP, retained, under the global
change treatments considered. Finally, we compared
the stimulation effects of Phragmites marshes (based
on GPP, and NPP,) to each other and to those of
native marshes (based on NPP,). We expected Phrag-
mites to increase GPP, and NPP, in response to both
elevated CO, and N enrichment, but to experience the
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greatest productivity stimulation under the combined
treatment. Further, we expected Phragmites to
increase its CUE under all global change conditions
and to exhibit stronger stimulation effects than the
native community.

2. Methods

2.1. Field experiment

The field experiment was established in a brackish tidal
marsh within the Smithsonian Global Change
Research Wetland (Kirpatrick Marsh; 38.8742° N,
76.5474° W) in Edgewater, Maryland, USA. Salinity at
the site varies from 4—15 ppt (mean = 10 ppt) and the
mean tidal range is 44 cm. The high-marsh platform is
40-60 cm above the mean low water level, and soils are
predominantly organic (>80%) to 5 m depth. Mean
daily air temperatures range from —4 to 31 °C and
mean annual precipitation is 108 cm. The native plant
community is dominated by the C; sedge Schoenoplec-
tus americanus (formerly Scirpus americanus and S.
olneyi) and the C, grasses Spartina patens and Distichlis
spicata. A single stand of Phragmites was documented
in 1972 [43], whereas it now covers approximately
25% of the site.

Twelve open-top chambers (OTCs;
1.25 x 2.5 x 4.4 m) were installed at the leading edge
of an expanding Phragmites stand in 2011. During the
2011-2013 growing seasons (May through October)
half of the OTCs were fumigated with air approxi-
mately 300 ppm CO, above ambient levels (denoted
eCQO,), while the remaining chambers were fumigated
with unamended air. This CO, level is representative
of those predicted for year 2100 under a moderate rise
in global atmospheric CO, (e.g., scenario RCP6 [44]),
and has been used in other experiments at the site
[2, 5]. Three OTCs of each CO, treatment type
received 25gNm 2 yr~' (denoted Ng,,), which was
applied monthly during the growing season as dis-
solved NH,Cl (5gNm 2 per month). This enrich-
ment level represents moderate N loading in wetlands
of the Chesapeake Bay [45] and has been used in an
experiment in the native community at the site [2].
Treatments were randomly assigned to OTCs, thus
preventing treatment effects from being confounded
with spatially autocorrelated patterns, e.g., in Phrag-
mites genetic relatedness or in microtopography.

Aluminum skirts at the base of each chamber
(extending to 30 cm depth), in combination with low
lateral movement of water at this site and the low
mobility of NH,, ensured that minimal fertilizer was
removed by tidal flooding [46]. Air temperatures mea-
sured in the middle and upper Phragmites canopy (175
and 230 cm, respectively) in one OTC from July—
October were 2.0 4= 2.8 °C (24 h mean 4 SD) war-
mer than outside the chamber but above the native
plant canopy (at 175 cm). Warming was greater during
the day (3.6 + 2.8°C; 7:00-19:59 h) than at night
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(0.0 £ 0.6 °C; 20:00-6:59 h), and ~1 °C less in the
lower canopy (85 cm). This magnitude of warming is
comparable to that reported for another OTC experi-
ment at the field site [27], and is likely due to heat
being trapped by both the plant canopy and by the
chambers. Phragmites abundance within OTCs
increased from 2010-2013, but the composition of
most chambers in 2013 was transitional between
Phragmites- and native-dominated. An intensive data
collection effort was undertaken during the 2013
growing season to define the properties and relation-
ships used in a simulation model of canopy growth
and carbon assimilation.

2.2. GPP simulation model

We determined canopy-level carbon assimilation by
combining empirical data on plant growth, canopy
structure, leaf senescence, and leaf-level photosynth-
esis in a simulation model. Methodological details of
the model structure, the empirical data we collected,
and the relationships we defined from these data are
provided in supplement 1; a summary is provided in
table 1. Briefly, we used the R computing environment
(R Foundation for Statistical Computing, Vienna,
Austria) to generate virtual, monotypic stands of
Phragmites that had characteristics of plants growing
in each of the four treatments at our field site (i.e.,
Control, eCO,, N, and eCO, + N,,,). Empirical
data from the three replicate chambers of each
treatment type were pooled to determine plant char-
acteristics in simulations.

Stand densities were established at the outset of
each simulation (table 1). At daily intervals, plants
grew in height (figure 1) and added leaves according to
relationships derived from field data (figures S1-S3).
Daily representations of Phragmites canopy were divi-
ded into 10 cm thick layers such that total leaf area and
associated aggregate characteristics (e.g., light attenua-
tion) could be quantified. At hourly intervals spanning
the 261 days of the growing season, empirical records
of light availability and air temperature were applied to
the canopy. Gross carbon assimilation by each canopy
layer was determined as the sum of photosynthesis and
respiration rates. These were based on monthly light
response curves (figure S4) recorded at the leaf level
near the top of the canopy. Measured rates were adjus-
ted to account for declines with canopy position
(figure S5) as well as diurnal changes in air tempera-
ture (table 1). Adjusted rates were summed across
canopy layers and through all hours of the day to yield
daily GPP values (GPPy); these were then summed
through the growing season to yield GPP,.

Phragmites stand densities vary widely in the field
[16, 47, 48], and the associated changes in canopy leaf
area alter carbon assimilation both positively via pho-
tosynthetic area and negatively via within-canopy
shading. To assess how these countervailing processes
would combine to determine carbon gain at the stand
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Table 1. Simulation model components and associated properties.
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Component Property Determination Details
Stand Treatment Established at outset Four levels: Ctrl, eCO;, Ny, €CO5 + Nepr
Density Established at outset Five levels: 50, 75, 100, 125, 150 culms m >
Culm Height Random draw from curve set, Logistic equation fit to weekly measurements from
treatment 113 plants (figure 1)
Number of leaves Culm height Linear regression using data from 24 plants
(figure S1)
Leaf Rank Numbered sequentially Apicalleaf = 1
Vertical position Leafrank, culm height, Spline functions fit to data from 24 plants (figure S2)
treatment
Area Leafrank, treatment Means of data by leaf rank from 36 plants (figure S3)
Living/dead Leafage Constant lifespan assumed (75 d) [50]
Canopy layer Total leaf area Leafarea, vertical position Allleaves included (=LAI)
Living leaf area Leafarea, living/dead Live leaves only
PPFD fraction Total leaf area Beer’s law using coefficient from [51]
Positional correction Treatment Quadratic function applied to A, and Ry; data
from [52] (figure S5)
Carbon assimilation ~ Photosynthesis rate Treatment, month, PPFD time A, from light response curves (figure S4) based on
series 3 plants per chamber per month
Respiration rate Treatment, month R4 from light response curves used at all PPFD

Temperature correction

Qo coefficient, temperature
time series

Qo values derived from [53] for photosynthesis and
[54] for respiration

Note: Determination lists dependencies among properties and other factors used in calculations. Details include the datasets, functions, and

other information used in calculations. A complete description of the simulation model is provided in supplement 1.
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Figure 1. Mean growth curves for culm height in each of the four treatments. Lines depict the means (£1 SE) of fitted parameters from
27-29 plants per treatment being used in a logistic growth equation (see supplement 1).

scale, we ran simulations at stand densities spanning
the range typically seen in Atlantic Coast marshes
[16, 49]: 50, 75, 100, 125, 150 culms m 2. Specifically,
we ran simulations at 50, 75, 100, 125,
150 culms m 2. To characterize the influence of sto-
chasticity associated with the selection of plant growth

and

curves (figure 1), ten replicate model runs were carried
out at each stand density. Where not stated otherwise,

we report the means of replicate runs, with means
computed at the daily scale. All computations were
carried outinR3.1.1.

2.3. Estimates of NPP and CUE

We calculated the NPP, of Phragmites marsh under
each treatment condition from estimates of above-
ground biomass (BM,g). Biomass was derived from
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morphometric measurements on individual plants
that were collected during late July 2013, near peak
standing biomass; we applied allometric relationships
derived from plants collected outside of the chambers
to determine BM,,. We then computed the mean mass
per culm in each of the four treatments, and scaled
these values to 100 culms m ™~ (table S1 in supplement
2). We applied belowground mass fractions from an
experiment with identical treatment levels as used in
this study [55]. Note that plants in that experiment
were containerized and grown from seed, potentially
yielding smaller biomass allocation responses than
mature plants exhibit. To convert biomass production
to NPP,, we summed above and belowground biomass
estimates and assumed that plant tissue was 45%
carbon by mass [56]. We calculated Phragmitess CUE
as the ratio of NPP, to GPP,.

We also compared stimulation effects between
GPP, and NPP, for Phragmites-dominated marsh and
with NPP,-based values for the native high-marsh
community at the field site. Atmospheric CO, and N
loading have been manipulated in factorial combina-
tion in the native marsh experiment (n = 5 chambers
of each of the four treatment types) using identical
enrichment rates to those used in the Phragmites
study, though it began in 2005 [6]. Dominant species
in the native experiment included Schoenoplectus
americanus, Spartina patens, and Distichlis spicata, all
of which produce new aboveground organs annually.
Chambers were censused near peak standing biomass
(late July to early August) and BM,, was determined
using allometric equations. Annual production of
belowground biomass was measured with ingrowth
bags (to 30 cm depth; collected in November). Given
the low rates of decomposition in Chesapeake Bay
tidal marshes [57] and the lack of dead fine roots in
ingrowth bags (A Langley, personal observation), root
turnover is likely to be negligible in this system. As
with Phragmites, we assumed that biomass was 45%
carbon.

3. Results

3.1. Annual carbon assimilation

Our simulations of Phragmites australis stands growing
under current atmospheric CO, concentrations and
ambient N conditions (i.e., the Control) yielded a
GPP, of 1.66 + 0.05kg C m 2 yr~ ' (mean 4 SD) ata
typical stand density for Atlantic Coast marshes
(100 culms m™%; figure 2). A 300 ppm rise in CO, (i.e.,
the eCO, treatment) induced a 44% stimulation to
GPP, (we define stimulation as the percent increase
over the Control), which equated to 2.39 £
0.05kgCm ?yr '. Moderate N loading (i.e., the Ny,
treatment) yielded a 60% stimulation at ambient CO,,
raising GPP, to 2.65 + 0.02kgCm *yr ', while
eCO; + Ng,, induced a 95% stimulation, raising
GPP, to 3.24 & 0.08 kg C m ™ >yr . Phragmites culm
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heights, total leaf areas, and photosynthesis rates all
increased under eCO, and N, (figures 1, S3, and S4),
contributing to these effects.

Altering stand density had a curvilinear effect on
GPP, (figure 2) that was strongest under N.,,, and weak-
est under the Control. Specifically, a 50% increase in
stand density (from 100 to 150 culmsm °) yielded
increases in GPP, of 11%-31%, while a 50% decrease in
density (100 to 50 culmsm?) yielded decreases in
GPP, of 27%—-39%. Despite the curvilinear relationship,
treatment rankings were consistent across all densities.
The margins by which eCO, exceeded the Control
(0.56-0.73 kg C m~2 yr_l) and by which eCO, + N,
exceeded eCO, (0.79-0.88 kg Cm 2yr ") were rela-
tively consistent (CV = 0.10 and 0.05, respectively).
However, the margin by which N, exceeded eCO,
(0.36-0.11 kg Cm > yr ') decreased with stand density
and was therefore more variable (CV = 0.42).

3.2. Daily carbon assimilation

Temporal patterns of carbon assimilation differed
among global change scenarios, with rates on a given
day strongly influenced by PPFD (figures 3(a) and (c)).
GPP4 under all global change conditions exceeded
rates under the Control by increasingly wide margins
through most of the early growing season (March—
May; figures 3(a) and (b)). Rates under N, with or
without simultaneous CO, addition, were greater than
rates under eCO, through this period, and surpassed
50% stimulation through most of April and May. By
the end of May, cumulative carbon assimilation
represented for 17%-19% of GPP, under the Control,
eCO,, and eCO, + N, treatments, but 22% of
annual GPP, under N,.

During the middle of the growing season (June—
July), the temporal trend in GPP4 was nearly linear
under Control and eCO, conditions, though the rise
was steeper under eCO, (figure 3(a)). GPP4 also
increased under N, but the trend was more variable
and less steep than for the Control; rates rarely excee-
ded those reached in late May. Given the greater rise in
GPP4 under eCO, than under N, the two treatments
had similar rates during the peak period of July 15-20
(34.6 + 2.1and 32.8 + 1.9gCm >d ', respectively;
mean + SD). Under eCO, + N.,,, the temporal
trend in GPP4 paralleled that of the Control, but was
1.7x greater during the peak in mid-July (40.1 & 2.2
versus23.0 + 1.3gCm *d ).

GPPy continued to exceed all other treatments
under eCO, + N, for the remainder of the growing
season (August-November), exhibiting >100% sti-
mulation for the majority of August and September.
Carbon assimilated during the late growing season
represented 27% of GPP, under eCO, + Nep,. This
delay in the end-of-season GPP4 decline also occurred
under N, though it was less pronounced; stimula-
tion effects were half as strong as those under
eCO,; + Ng,, and carbon gains during the late
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2

growing season accounted for 22% of GPP,. In con-
trast, stimulation by eCO, declined throughout this
period, with GPP4 rates falling below those of the

Control in late August. Carbon assimilated from
August—November represented 18% of GPP, for eCO,
and 21% for the Control.

6



10P Publishing

Environ. Res. Lett. 10 (2015) 115006

J S Caplan et al

4.0

m Phragmites GPP
m Phragmites NPP
B Native NPP

w
o

GPP or NPP (kgcm=2yr")
N
o

—
o

0.0
Control

the native marsh are means over 2006—-2013.

eCO,
Treatment

Figure 4. Primary productivity (mean =+ SD) for North American mid-Atlantic coastal marshes dominated by Phragmites australis
(100 culms m ™2 density) or a native high-marsh plant community. Values for the Phragmites marsh reflect year 2013, while values for

Nenr €COs + Negpy

3.3. Estimates of NPP and CUE

NPP, estimates for Phragmites-dominated coastal
marshes ranged from 1.00-1.68 kg Cm > yr ', with
Control and eCO, + N, conditions yielding the
least and greatest rates, respectively (figure 4). NPP,
varied among treatments primarily according to their
N enrichment level; this largely derived from mean
aboveground biomass being similar within each N
level (table S1). NPP, was substantially greater for
Phragmites than for the native saltmarsh community,
with Phragmites 2.3 and 2.4x more productive than
the native marsh under low N loading (i.e., Control
and eCO, conditions, respectively), but 3.1 and 3.2x
more productive under high N loading (N, and
eCO, + Ny, respectively). Carbon retained as NPP,
represented approximately half of GPP, for Phrag-
mites, although it lost less carbon to respiration under
the Control (CUE = 0.60 £ 0.09; mean =+ SD, where
SD was propagated from NPP, and GPP,) than under
any global change condition; CUE was 0.44 + 0.08
under eCO,, 0.57 & 0.09 under N, and 0.52 + 0.09
under CO, + N,

Elevated CO, stimulated NPP, in the Phragmites
marsh far less than GPP, (6 versus 40%, respectively),
but NPP, stimulation was similar to the multi-year
average of the native marsh (9%; figure 4). N, stimu-
lated Phragmites GPP, and NPP, similarly (60 and
51%, respectively), whereas the native marsh experi-
enced a far smaller stimulation to NPP, (13%). The
combination of eCO, + N, induced the greatest sti-
mulation effects for Phragmites; effects were slightly
less than additive for GPP, (95%) but more than addi-
tive for NPP, (68%). The native marsh experienced an

NPP, stimulation under eCO, + N, that was less
than half of that experienced by Phragmites (32%).

4. Discussion

4.1. Carbon assimilation

The annual carbon assimilation computed here for
monotypic Phragmites stands indicates that the wet-
lands it invades will experience a sharp increase in
GPP, under future CO, concentrations, especially
where N loading is high. GPP, is typically
<2kg Cm™?yr ! in temperate ecosystems, including
wetlands [29, 58—60], but rates can exceed that value
under eutrophied conditions (e.g., 2.3kgCm >yr'
[33]). At 3.24kgCm *yr ', the rate we computed
under eCO,; + N,,, for a stand containing
100 culms m 2, Phragmites-dominated  marshes
would assimilate carbon more rapidly than many
other temperate ecosystems, including those mea-
sured under elevated CO, [61-63].

Our simulations indicate that changes in Phrag-
mites’ growth and senescence phenology are key com-
ponents of its enhanced productivity under elevated N
conditions, and suggest that Phragmites will sub-
stantially increase carbon assimilation as atmospheric
CO, rises. Most notably, we observed far greater GPP4
early and late in the growing season under high versus
low levels of N loading. This temporal pattern can be
attributed to a combination of earlier initiation of
canopy growth, prolonged canopy expansion, and
maintenance of high leaf-level photosynthetic rates
from June through September (figures 1, S3, S4). In
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addition, Phragmites carbon assimilation declined late
in the growing season under eCO,. This response con-
trasts with that of the dominant native C; species at
our site (Schenoplectus americanus), whose biomass is
elevated through delays in senescence under
eCO, [27].

4.2. Carbon retention

Under future atmospheric CO, concentrations, our
results indicate that Phragmites-dominated wetlands
are likely to experience stronger stimulation of NPP,
than most other wetland or upland systems. Many
CO, enrichment studies have found small or negligible
stimulation effects on productivity, especially when C,
grasses are dominant [28, 64]. Few field studies have
quantified combined eCO, + Ng,, stimulation
effects; the three we found for grass-dominated com-
munities that did [65-67] all based their values on
current-year biomass production (=NPP,). Stimula-
tion effects ranged from 7 to 42% in the three studies.
Similarly, the CO, x N experiment of the native
community at the Global Change Research Wetland
experienced a mean eCO, + N, stimulation of 32%
over eight years. All of these NPP, stimulation
estimates are therefore well below the 68% that we
found for Phragmites.

Our estimates of Phragmites’ growing season CUE
(0.44-0.60) are in the middle of the range reported for
wetland plant species (0.34—0.77) [33, 60, 68], suggest-
ing that Phragmites’ high NPP, and strong stimulation
by global change factors are due to advantages in car-
bon assimilation rather than an ability to minimize
carbon losses via respiration. The decrease in CUE
under eCO, relative to the Control is consistent with
patterns seen in some, but not all, other studies [63].
Such decreases can arise if elevated CO, facilitates
greater nonstructural carbohydrate production, as
their metabolism can induce a greater rise in rates of
respiration than photosynthesis [68]. The fertiliza-
tion-induced increase in CUE seen under elevated, but
not ambient, CO, may have been due to decreased
allocation to roots causing respiration to increase less
than photosynthesis [63].

4.3. Model evaluation

Results from two other studies of carbon assimilation
by Phragmites suggest that our GPP, values are reason-
able. A study using eddy covariance reported GPP, for
a Phragmites-dominated marsh in northeastern China
as 0.71kgm “yr ' [29]. Given that this haplotype
had approximately half the maximum height (1.5 m;
stand density not reported) of the Phragmites at our
field site under ambient conditions, a GPP, that is 52%
of our modeled values for Control conditions over the
range of likely stand densities (50-100 culms m™?)
suggests good agreement. Further, Stefanik and Mitsch
[33] measured GPP for North American introduced
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Phragmites using flux chambers in a constructed fresh-
water wetland. Although the stand density was lower
at their site than our simulation evaluated
(42 culms m~ % K Stefanik, pers comm), N loading was
substantially ~greater (~100gNm *yr > [69]).
Nevertheless, the estimate of GPP, in that study
(3.09kg Cm 2 yr ') was similar to the value gener-
ated by our N, simulations at 150 culms m >
(2.93kgCm 2yr "). The results of these studies
demonstrate that our quantification of GPP, is in line
with values determined via more direct measurements
than we used, at least under the treatment conditions
considered.

Our quantification of GPP in Phragmites-domi-
nated marshes had several inherent limitations. For
one, we could not determine the effects of salinity,
which changes inter-annually due to variation in rain-
fall and sea level, and reduces productivity and CO,
stimulation effects when high [7]. Because our focal
growing season had moderate salinity conditions
(monthly means ranged from 8.2-12.4 ppt), years
with more (or less) rainfall than occurred in 2013
would likely yield greater (or lesser) GPP, than repor-
ted here. However, we would not expect the effect of
salinity to be consistent among treatments, as elevated
CO, is known to reduce the effects of salinity on
Phragmites growth [70]. Second, we assumed that vari-
ables were unaffected by CO, and N conditions when
we did not have empirical data demonstrating other-
wise; these included leaf lifespan, Qo values, and the
decay constant for PPFD attenuation. This assump-
tion is unlikely to hold true in many cases. For exam-
ple, N enrichment can increase leaf longevity in
Phragmites [71]. Third, although chamber tempera-
tures reflected warming in the range expected by year
2100 [72], our temperature time series reflected con-
temporary conditions. If acclimation substantially
altered the nature of Phragmites’ photosynthesis
response to varying temperature, our results could
have been biased. However, it is difficult to predict the
magnitude or direction of this potential bias, especially
given that some of Phragmites’ physiological responses
to temperature are CO, dependent [18]. We expect to
be able to address many of these limitations with
empirical data once Phragmites densities increase in
our field experiment.

5. Conclusions

The data-driven simulation of Phragmites canopy
growth used here allowed us to translate leaf-level
photosynthesis data to the stand scale, and thereby
calculate GPP at a fine temporal resolution. The
approach provided information on GPP that was
independent of NPP measurements, making it possi-
ble to constrain CUE under global change conditions.
Although the method’s data requirements are not
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small, similar approaches could be used in other
annual systems where plant canopy structure is
relatively simple. Perhaps the greatest advantage of the
approach is that it can provide insight into intra-
annual temporal shifts in carbon assimilation induced
by global change.

By quantifying GPP at a daily resolution, we were
able to determine that N enrichment sharply increased
carbon assimilation both early and late in the growing
season, whereas CO, elevation increased assimilation
more moderately and through the early and mid-
growing season. Given that N loading is already ele-
vated in many North American estuaries [73], pro-
ductivity advantages due to extended leaf phenology
help to explain the close landscape-level association
between the distribution of Phragmites and N enrich-
ment [74, 75]. Our results also confirm earlier specula-
tion that delayed leaf senescence by introduced versus
native Phragmites in North America contributes sub-
stantially to its productivity, especially in eutrophied
wetlands [56]. Further, the strong increase in late sea-
son carbon assimilation that we found under
eCO, + N, compared to N, conditions suggests
that late season carbon gains will comprise an increas-
ing fraction of Phragmites’ annual production.

Our results indicate that Phragmites could increase
in productivity through the coming century, given that
atmospheric CO, levels will likely reach 700 ppm and
that eutrophication will likely become increasingly
widespread in that time [44, 76]. Although the pro-
ductivity of native saltmarsh plants is also projected to
increase in response to global change, taxa investigated
previously have responded much less strongly than
Phragmites to combined increases of CO, and N [6].
The plastic response to eCO, + Ny, found here indi-
cates that Phragmites will be able to capitalize on these
two global change factors simultaneously, likely yield-
ing stronger competitiveness than it exhibits currently.
Together with other advantages that Phragmites gains
under global change conditions, like access to deep-
soil nutrients [55] and elevated patch-level genetic
diversity, floret production, and therefore potential
for spread via seeds [77, 78], this productivity advan-
tage will likely translate into accelerated rates of Phrag-
mites invasion in tidal marshes of the North American
Atlantic Coast.

Global change-induced increases in Phragmites
productivity may have particularly strong effects
belowground. Phragmites allocates a substantial pro-
portion of its growth to roots and rhizomes (82% of
standing biomass in the Meadowlands of New Jersey)
[79], and these penetrate more deeply into soils than
do belowground organs of native plants [80, 81]. In
addition to the greater root and rhizome biomass
that can be expected to accompany high Phragmites
GPP in the coming decades, belowground biomass is
also likely to deepen further into the soil profile [55].
Rhizome construction costs are also lower under
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eCO, + N, than under Control conditions [19],
suggesting that rhizome growth could be particularly
strongly enhanced under future conditions, together
with rhizome-dependent processes like convective gas
flow [82]. A key effect of greater rhizome and root pro-
duction may be accelerated mineralization rates of
sequestered nutrients, which could provide an addi-
tional N source for Phragmites and thereby accelerate
its vegetative growth, seed production, and spread,
even in sites that have low N inputs [55]. Further,
exports of dissolved carbon (DOC and DIC) from wet-
lands invaded by Phragmites may increase through
greater belowground productivity, potentially affect-
ing the carbon balance of coastal aquatic commu-
nities [83].

Increases in Phragmites productivity also have the
potential to influence carbon sequestration below-
ground, which determines the soil building capacity
(i.e., surface accretion) of tidal wetlands, especially in
peat-based systems [1]. Given rising sea levels, our
estimates of NPP suggest that Phragmites marshes will
have an increased likelihood of outpacing sea level rise
than native communities [20, 84], although more
refined quantifications of accretion will be needed to
address this possibility with greater certainty. Coastal
wetland conservation may therefore require strategic
planning in order to decide whether to prevent or
allow re-engineering by Phragmites at small spatial
scales, such that ecosystem functions can be optimized
at broad spatial scales. Development and refinement
of predictive models like the one used here will be
required to accurately forecast the local- and land-
scape-scale effects of global change on coastal wetland
ecosystems, and to support management decisions
that will mitigate the threat that accelerated sea level
rise poses to their future stability.
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