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ABSTRACT Spacing between stable isotope values in bones and teeth is a valuable tool for examining dietary influences and
diagenesis. This study examines carbon and oxygen isotope values from collagen and hydroxyapatite (structural
carbonate and phosphate) in archaeological human bones and teeth to derive species-specific correlation
equations and isotope spacing values. The d13Ccollagen and d13Cstructural carbonate in bone and dentin collagen show
a strong correlation (R = 0.87, 0.90, respectively) with an averageΔ13Ccarb-coll spacing of 5.4%. The consistency of
this isotope spacingwith other largemammals and in humanswith both low andhighprotein intake (as indicatedby
enriched d15N values) suggests a similar allocation of protein-derived carbon and whole diet-derived carbon to
collagen and structural carbonates, respectively, as other terrestrial mammals regardless of absolute meat intake.
The d18Ostructural carbonate and d18Ophosphate show the strongest correlation in enamel (R = 0.65), weaker correlations
in dentin (R = 0.59) and bone (R = 0.35), with an average Δ18Ocarb-phos of 7.8%. This isotope spacing is slightly
lower than previously reported for large mammals and limited available data for humans. The results potentially
indicate species-specific fractionations and differing access to body water and blood-dissolved inorganic carbo-
nates in the presence of collagen formation. The use of correlation between d18Ostructural carbonate and d18Ophosphate
to determine diagenetic state is not recommended. The strength of this correlation observed in bones and teeth
is variable and alternate indicators of diagenetic state (i.e. C:N ratios of collagen) provide more robust and
independent evidence of isotope preservation despite presence/absence of a strong isotope correlation.
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Introduction

The use of stable isotopes to examine diet and proven-
ance is common practice in archaeological and
paleontological studies. Dietary and regional indications
inherent in carbon, oxygen, and nitrogen isotope values
of bones and teeth are applied to a myriad of terrestrial
vertebrate remains (see reviews in Peterson & Fry,
1987; Ambrose, 1993; Koch et al., 1994; Koch, 1998;
MacFadden, 2000). Stable isotope studies of human
remains are less common due to the paucity of robust
sample sets and the desire to preserve rare or culturally
sensitive specimens. Studies are often limited to a specific
isotope analysis as opposed to a full suite of isotope
indicators, with a few exceptions (Iacumin et al., 1996a;

Loftus & Sealy, 2012). Understanding of the spacing of
isotope values between different components of bones
and teeth in humans specifically is limited.
Inferences involving isotope spacing between differ-

ent tissue and mineral fractions in humans often rely on
data from large terrestrial non-human mammals that are
more thoroughly studied and better understood. While
these data are arguably comparable with humans to some
extent, humans have a uniquely omnivorous diet that is
often unaccounted for in non-human studies of diet-
tissue isotope spacing with a few exceptions (Krueger &
Sullivan, 1984; Lee-Thorp et al., 1989; Hedges, 2003).
This study focuses on an unprecedentedly large data
set of 18th–19th century human remains to determine
accurate human-specific stable isotope spacing values
between bone collagen and hydroxyapatite in bones
and teeth for individuals reliant on largely terrestrial
diets. These data will allow more accurate correlations
between isotope values of different tissues and mineral
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fractions within individuals consuming similar diets,
potentially eliminating the need for a full suite of isotope
analyses. This study also contributes to understanding
pathways between elements in the diet and body tissues
and has implications for archaeological diagenetic studies.

Isotope spacing in archaeology

Archaeological bones and teeth contain several compo-
nents that record isotope information and represent a
lifetime average of isotopic input. Collagen is found in
both well-preserved bones and tooth dentin. This dur-
able protein contains carbon and nitrogen incorporated
directly from the diet (Hedges, 2003). Hydroxyapatite,
the inorganic mineral in bones and teeth, contains both
phosphate and structural carbonate (-CO3) substituted
in the -PO4 and -OH locations in this mineral. Both
phosphates and structural carbonates preserve oxygen
isotopes incorporated through drinking water (Luz &
Kolodny, 1985; Bryant & Froelich, 1995; Kohn, 1996).
Structural carbonates also preserve carbon isotopes
which, similar to collagen, are incorporated from the diet
(Hedges, 2003). All isotope values are measured and
reported in standard delta notation:

dX ¼ Rsample � Rstandard

� �
= Rstandardð Þ� � � 1000

where X represents the system of interest (i.e. 13C, 15N,
18O) and R represents the ratio of interest (i.e. 13C/12C,
15N/14N, 18O/16O). The carbon standard is Vienna
Pee-Dee Belemnite (i.e. V-PDB). The nitrogen standard
is atmospheric air. There are two internationally
accepted standards for oxygen; this manuscript refer-
ences all oxygen values to Vienna Standard MeanOcean
Water (i.e. V-SMOW). This study examines the carbon
and nitrogen isotopes of bone and tooth collagen
(d13Ccollagen, d

15Ncollagen), carbon isotopes of structural
carbonate (d13Cstructural carbonate), and oxygen isotopes in
structural carbonates and phosphates (d18Ostructural carbonate,
d18Ophosphate). The different carbon and oxygen compo-
nents are compared for correlations and spacing
(Δ13Ccarb-coll, Δ

18Ocarb-phos).
Carbon isotopes are typically applied to archaeo-

logical data sets to determine dietary input due to
distinct d13C values inherent in plants using the C3
versus C4 photosynthetic pathways (Smith & Epstein,
1971; O’Leary, 1988; Heaton, 1999). Once digested,
carbon pathways to the body differ according to the
ultimate tissue or mineral into which carbon is incorpo-
rated. Previous studies suggest the source of carbon in
collagen is mostly dietary protein with lesser contribu-
tions from dietary carbohydrates or lipids (Krueger &
Sullivan, 1984; Lee-Thorp et al., 1989; Ambrose &
Norr, 1993; Tieszen & Fagre, 1993). More recent

research suggests a complex system where consumer
collagen carbon isotopes are largely influenced by dir-
ect routing of particular amino acids from prey collagen
with limited secondary synthesis of others from precur-
sor amino acids or additional dietary components
(Howland et al., 2003; Jim et al., 2004; Froehle et al.,
2010). This results in an overall diet-collagen fraction-
ation of ~2–5% in herbivorous mammals (van der
Merwe, 1982; Balasse et al., 1999; Roth & Hobson,
2000; Hedges, 2003; Jim et al., 2004; Warinner &
Tuross, 2010; review by Koch, 1998) and ~1–2% in
carnivorous and omnivorous mammals (Bocherens
et al., 1991; Hilderbrand et al., 1996; Bocherens &
Drucker, 2003; Coltrain et al., 2004; Fox-Dobbs et al.,
2007; Coltrain, 2009). The source of carbon in struc-
tural carbonates is blood-dissolved inorganic carbon
(DIC) derived primarily from carbohydrates and lipids
with a smaller contribution from dietary protein result-
ing in a d13C representative of the whole diet (Tieszen
& Fagre, 1993; Hedges, 2003; Zazzo et al., 2010). The
diet-mineral fractionation for structural carbonates is
~12–15% in large herbivorous mammals (Passey
et al., 2005; Zazzo et al., 2010; reviews by Koch,
1998; Kohn & Cerling, 2002; Hedges, 2003).
Given these fractionations, the Δ13Ccarb-coll observed

in mammals is ~5–7% (Krueger & Sullivan, 1984;
Lee-Thorp et al., 1989; Ambrose & Norr, 1993;
Hedges, 2003; Jim et al., 2004; Warinner & Tuross,
2010), with limited data for humans with a mostly terres-
trial diet (Iacumin et al., 1996a; Loftus & Sealy, 2012). It
should be noted that this average Δ13Ccarb-coll value of
~5–7% is often derived from rodents and swine which
arguably have a different metabolism, physiology, and
diet than humans. Considering that blood- DIC contains
contributions from protein, carbohydrates, and lipids,
the varying ratio of these contributions in different diets
and different metabolisms may produce a species-specific
and comparatively unique Δ13Ccarb-coll value in humans.
Humans in this study are examined for a correlation

between d13Ccollagen and d13Cstructural carbonate (i.e. vari-
ability of Δ13Ccarb-coll) and potential differences
explainable by dietary input. The d15Ncollagen is used
as a qualitative indicator of protein consumption. The
d15Ncollagen values become more enriched with
increased consumption of animal proteins due to the
~3–4% trophic shift inherent in terrestrial food chains
(DeNiro & Epstein, 1981; Minagawa & Wada, 1984;
Schoeninger & DeNiro, 1984; Sutoh et al., 1987; Post,
2002; Bocherens & Drucker, 2003). A relatively
enriched d15Ncollagen value should indicate higher
protein input from animal flesh (and therefore higher
carbon input from animal flesh) as opposed to dietary
input from plants and carbohydrates.
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Oxygen isotopes are typically used as proxies for
meteoric drinking water in mammals due to the direct
correlation between d18O of local meteoric drinking
water, body water, and d18Ophosphate or d18Ostructural

carbonate with subtle variations in fractionation accord-
ing to species and climate variables (Longinelli, 1984;
Luz et al., 1984; Luz & Kolodny, 1985; Levinson et al.,
1987; D’Angela & Longinelli, 1990; Bryant & Froelich,
1995; Kohn, 1996; Daux et al., 2008). The relationships
between d18Ophosphate, body water, and drinking water
in mammals are fairly well understood with several
published correlation equations (Longinelli, 1984; Luz
et al., 1984; Levinson et al., 1987; Daux et al., 2008).
Less well understood is the relationship between
d18Ostructural carbonate and d18Ophosphate, and relation-
ships between d18Ostructural carbonate and body/drinking
water. Previously reported fractionation between
d18Ostructural carbonate and d

18Ophosphate (i.e.Δ
18Ocarb-phos)

is ~9–10%, and fractionation between d18Ostructural carbonate
and body water is ~26.3–27.0% in mammals (Bryant
et al., 1996; Iacumin et al., 1996b; Martin et al., 2008;
Pellegrini et al., 2011), with limited data for humans
specifically (Iacumin et al., 1996a). This study examines
the d18O correlation between phosphate and structural
carbonate in an effort to accurately predict d18Ophosphate
values from d18Ostructural carbonate. The former require
more expensive offline chemical purifications, and the
most expedient mass spectrometry methods to analyze
d18Ophosphate typically show poorer reproducibility
(see Methods). It is tempting to streamline the
chemical and mass spectrometry procedures and use
the better understood phosphate equations to obtain
d18Ophosphate from d18Ostructural carbonate. However, this
calculation cannot be performed without observed
consistency in Δ18Ocarb-phos and a value specific for
humans.
This study analyzes a set of 18th–19th century North

American archaeological remains. Individuals from this
time period had a more localized diet than modern
humans thus eliminating variability due to global diet-
ary influences inherent in most modern diets. All

individuals resided primarily in the eastern United
States which shows a limited range in the baseline
d15N values of vegetation of approximately �4.0 to
0.0% with a few isolated exceptions (Handley et al.,
1999; Nadelhoffer et al., 2004; Billings & Richter,
2006; Pardo et al., 2007; Templer et al., 2007). These
similar and localized diets allow the use of d15N values
as independent measures of protein input as opposed to
an indication of provenance. This sample set is also
relatively recent which greatly reduces the likelihood
of post-mortem diagenetic alteration, although all sam-
ples are individually examined for diagenetic alteration
in the course of study.

Methods and materials

Samples

Samples consist of 18th–19th century North American
human remains. Archaeological sites are located
primarily in the mid- and north-eastern United States
with two exceptions in New Mexico (Table 1). All
individuals resided in the eastern United States
although several are buried in the west due to death
during military service.

Chemical extraction

Specimens were exhumed, mechanically cleaned, docu-
mented, and catalogued. All specimens were stored
without chemical treatments or bone consolidants.
Samples were prepared mechanically using a common
rotary tool. Whole bone plugs or tooth roots were
separated for collagen analyses. Bone, dentin, and
enamel were crushed to a coarse powder for phosphate
and structural carbonate analyses.
Bone and dentin collagen was extracted according to

modified methods of Longin (1971), DeNiro & Epstein
(1978), and Bocherens et al. (1991).Whole bone or tooth
roots (~200mg) were sonicated in ultra-pure water and

Table 1. Sample sites, locality, and time period

Site Site Location Time period n

Congressional Cemetery District of Columbia ~1850–1900 34
Trinity Catholic Church District of Columbia ~1800–1850 23
Woodville Cemetery Delaware 1790–1850 10
Walton Family Cemetery Connecticut ~1750–1830 20
Glorieta Pass New Mexico 1862 38
First African Baptist Church Pennsylvania 1824–1842 9
Parkway Gravel Delaware 1800–1900 5
Fort Craig New Mexico 1854–1877 58
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rinsed to remove extraneous dirt and labile salts. Samples
were decalcified in 0.6M hydrochloric acid at 40C for
several days, with fresh acid added daily, until the reac-
tion completed; average reaction time was 3–5 days.
After rinsing in ultra-pure water, the remaining crude
protein was soaked in 0.125M sodium hydroxide for
18 h to remove humic and fulvic acids. Samples were
rinsed and reacted in 0.03M hydrochloric acid at 950C
for 18 h to separate hot water soluble and insoluble
phases. The resulting supernatant was lyophilized to
extract purified collagen.
Phosphate in the hydroxyapatite was extracted

according to the method of Dettman et al. (2001). Bone
and tooth powders (~20mg) were soaked in 2M
hydrofluoric acid solution overnight to liberate phos-
phate ions. The solution was diluted and buffered with
20% ammonium hydroxide before adding 2M silver
nitrate. The resulting silver phosphate precipitate was
rinsed with ultra-pure water and dried (600C).
Structural carbonate in the hydroxyapatite was

extracted according to modified methods of Bryant
et al. (1996). Bone and tooth powders (~20mg) were
soaked in 2–3% sodium hypochlorite overnight to
remove organic substances. After rinsing in ultra-pure
water, samples were soaked in 1M acetic acid solution
buffered with 1M calcium acetate (pH~ 4.5) for 4 h to
remove secondary carbonate phases. The remaining
material was rinsed in ultra-pure water and dried
(600C).

Mass spectrometry methods

All analyses were conducted on Thermo Delta V mass
spectrometers at the Smithsonian OUSS/MCI Stable
Isotope Mass Spectrometry Laboratory. Collagen was
weighed into tin capsules (~0.5mg) and combusted in
a Costech 4010 elemental analyzer (EA) producing
CO2 and N2 gases which were introduced to the mass
spectrometer via a Conflo IV interface and measured
for d13Ccollagen and d

15Ncollagen. Silver phosphates were
weighed into silver capsules (~0.5mg) and thermally
decomposed in a Thermo temperature conversion EA
to CO gas which was introduced to the mass spectrom-
eter via a Conflo IV interface and measured for
d18Ophosphate. Structural carbonate samples were acid-
ified in 102% phosphoric acid (density ≥1.92) at
250C for 18 h in a pure helium environment producing
CO2 gas which was introduced to the mass spectro-
meter via a Gas Bench II system and measured for
d13Cstructural carbonate and d18Ostructural carbonate.
Collagen samples were linearly corrected to a house

acetanilide standard and the urea UIN-3 standard
(Schimmelmann et al., 2009), both of which are

calibrated to international standards USGS-40 and
USGS-41. All d13Ccollagen and d15Ncollagen data are
reported with the error inherent in the international
standards used for calibration (i.e. �0.2%, 1s);
internal reproducibility was <0.2% (1s). Structural
carbonate samples were linearly corrected to the
international standards NBS-19 and LSVEC. All
d13Cstructural carbonate and d18Ostructural carbonate data are
reported with the error inherent in these standards
(i.e. �0.2%, 1s); internal reproducibility was <0.2%
(1s). Phosphate samples were linearly corrected to
the international standards USGS-34 and USGS-35.
The error inherent in these standards is �0.2% (1s);
internal reproducibility was<0.4% (1s). All d18Ophosphate
data are therefore reported with an error of �0.4% (1s).

Statistical analyses

All regressions are parametric least squares regressions
assuming normal distribution and constant variance.
All correlations are Pearson product moment correla-
tions assuming normal distribution and constant var-
iance of the residuals.

Results

Diagenesis

Although the samples are relatively modern, their
burial introduces potential for post-mortem diagenetic
alteration. Data were selected for inclusion in analyses
based upon the previously established C:N ratio range
of 2.8–3.6 and a weight %N yield of ~11–16% for
well-preserved collagen (DeNiro, 1985; Ambrose,
1990; Bocherens et al., 1991, 1994, 1996, 1997;
Drucker et al., 2001, 2003; McNulty et al., 2002;
Coltrain et al., 2004; Jorkov et al., 2007). Approximately
80% (154 of 197) of analyzed samples satisfied these
requirements (Figure 1). While criteria for the preserva-
tion of original phosphate and structural carbonate
isotope values has been considered (Tuross et al., 1989;
Michel et al., 1995; Person et al., 1995, 1996; Iacumin
et al., 1996b; Kohn et al., 1999; Zazzo et al., 2004), this
study includes only those samples yielding well-
preserved organic collagen per the above stated criteria.
It has been noted that mineral crystals in bones and teeth
are nested within the organic matrix (Francillon-Vieillot
et al., 1990; Veis, 2003), such that the presence of well-
preserved organic matter protects the mineral fraction
of bones and teeth from recrystallization and subsequent
isotope alteration (Nelson et al., 1986; Person et al., 1996;
Tütken et al., 2008).
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Stable isotope ranges and correlations

The d13Ccollagen ranges from �20.9 to �7.5%; the
d13Cstructural carbonate ranges from �14.9 to �5.2%
(Table 2). The d13Ccollagen and d13Cstructural carbonate
are strongly correlated (Figure 2, R = 0.88). Both dentin
and bone exhibit similar trends with strong correlations
(R = 0.90, 0.87, respectively). Basic linear regression
relationships are listed in Table 3. The average
Δ13Ccarb-coll is 5.4� 1.1% (1s) with little variation
between dentin and bone. No significant correlation
exists between Δ13Ccarb-coll and d15Ncollagen (Figure 3,
R = 0.26).
The d18Ostructural carbonate ranges from +20.4 to

+30.9%; the d18Ophosphate ranges from +13.3 to
+22.8% (Table 2). The correlation between
d18Ostructural carbonate and d18Ophosphate is moderate
(Figure 4, R = 0.67). Tooth enamel shows the strongest
correlation between values (R= 0.65), while dentin and
bone show weaker correlations (R= 0.59, 0.35, respec-
tively). Basic linear regression relationships are listed in
Table 3. The average Δ18Ocarb-phos is 7.8� 1.5% (1s)
with little variation between dentin, enamel, and bone.
Enamel shows a notably lower variability (�1.0, 1s)
compared to dentin (�1.5, 1s) and bone (�1.6, 1s).
Note that isotope data is not distinguished by

site locality. While absolute values of d13Ccollagen,
d13Cstructural carbonate, d18Ostructural carbonate, and
d18Ophosphate differ by locality due to differing regional
vegetation andmeteoric water composition, there were no
observable trends between Δ13Ccarb-coll or Δ

18Ocarb-phos
and locality. Likewise, d15Ncollagen shows no correlation
with individual sites. The implications of regional differ-
ences in isotope values will be discussed in a future
manuscript.

Discussion

The correlation between d13Ccollagen and d13Cstructural

carbonate is robust with fairly consistent Δ13Ccarb-coll
values of ~4.2–6.4%. Previous studies of humans show
Δ13Ccarb-coll values of ~2.6–6.2%, the lower range of
which is found in individuals with a partially marine
diet (Iacumin et al., 1996a; Loftus & Sealy, 2012). Data
from this study originates from individuals with strictly
terrestrial diets and agrees with the larger spacing
observed in similar individuals (Iacumin et al., 1996a),
as well as previous determinations of the offset for
omnivorous non-human mammals (Krueger & Sullivan,
1984; Lee-Thorp et al., 1989; Hedges, 2003). This ob-
servation suggests that carbon diet-tissue fractionations
between different organic and mineral fractions of bone
and dentin function similarly in humans and other large
mammals. The strong correlation supports consistent
fractionation of carbon isotopes between diet and
carbon-containing fractions (i.e. collagen or hydroxya-
patite) in bones and teeth. The Δ13Ccarb-coll does not
correlate with d15Ncollagen which suggests that diet in
these humans is balanced such that the ultimate source
of collagen carbon is consistently protein from animal
flesh while the contribution to hydroxyapatite contains
components from the whole diet. While the d15Ncollagen
serves as a rough indicator of the relative meat propor-
tion in the diet, it appears that individuals with
relatively lower animal protein intake are still allocat-
ing a similar proportion of animal derived carbon
(compared to carbohydrate or lipid derived carbon)
to their collagen.
The average Δ18Ocarb-phos of 7.8� 1.5% (1s) is less

than previously observed values of ~9–10% (Bryant
et al., 1996; Iacumin et al., 1996a, 1996b; Martin et al.,
2008; Pellegrini et al., 2011). While Δ18Ocarb-phos
variation between dentin, enamel, and bone is minimal,
enamel and dentin show notably lower intra-variability.
Correlation between d18Ostructural carbonate and d

18Ophosphate
values is only moderate at best with the strongest
correlation noted for tooth enamel. All data included in
these calculations demonstrated good collagen quality,
thereby rendering diagenetic alteration an unlikely ex-
planation for variability observed in these correlations
or the Δ18Ocarb-phos. This observation suggests that
fractionation of oxygen when incorporated into –CO3
or –PO4 differs according to the mineral and body
element. It is typically assumed that both the carbonate
and phosphate precipitate from the same body water
pool (Bryant & Froelich, 1995; Kohn, 1996); the result-
ing d18O values should therefore correlate. Data from
human enamel in this study support this idea, but data
from bone and dentin show support to a lesser degree.

Figure 1. C:N ratios and weight %N yields from organic extracts. The
rectangle identifies the samples that meet the criteria for good
preservation.
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It is however known that the carbonate fraction of
hydroxyapatite also incorporates an isotope contribution
from blood- DIC. This same pool of blood-DIC is
tapped during collagen formation, albeit to a much lesser
degree (Jim et al., 2004; Froehle et al., 2010). It is possible
that the pool of blood-DIC is therefore fractionated
during collagen formation, which occurs before
mineralization of hydroxyapatite (Francillon-Vieillot
et al., 1990; Veis, 2003), thus diminishing the correlation
between the d18Ostructural carbonate and d18Ophosphate
values in bone and dentin. The noted difference between
the Δ18Ocarb-phos value of 7.8% in humans from
this study and values of ~9–10% observed in other
research focusing on non-human mammals could
also be due to a species-specific metabolic or
physiological mechanism.

Figure 2. Carbon isotope values from structural carbonate and collagen.
The displayed formula is a linear regression on all data.

Table 3. Linear regression equations

Carbon isotope comparisons. All formulas based on d13C referenced to V-PDB.

Body Element Regression Formula R Average Δ13Ccarb-coll

Bone and dentin combined d13Ccollagen = 1.03(d13Cstructural carbonate) �5.21 0.88
Bone d13Ccollagen = 1.00(d13Cstructural carbonate) �5.48 0.87
Dentin d13Ccollagen = 1.07(d13Cstructural carbonate) �4.78 0.9

5.4�1.1% (1s)

Oxygen isotope comparisons. All formulas based on d18O referenced to V-SMOW.

Body Element Regression Formula R Average Δ18Ocarb-phos

Bone, dentin, enamel combined d18Ostructural carbonate = 0.88(d18Ophosphate) + 9.9 0.67
Bone d18Ostructural carbonate = 0.51(d18Ophosphate) + 15.9 0.35
Dentin d18Ostructural carbonate = 0.87(d18Ophosphate) + 11.3 0.59
Enamel d18Ostructural carbonate = 0.63(d18Ophosphate) + 14.9 0.65

7.8�1.5% (1s)

Figure 3. Nitrogen isotope data from collagen and the spacing between
carbon isotopes in structural carbonates and collagen.

Figure 4. Oxygen isotope values of structural carbonates and phosphates.
The displayed formula is a linear regression on all data.
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With only moderate correlation between d18Ostructural

carbonate and d
18Ophosphate, the use of one to predict the

other is unfeasible. Various contrasting studies have
suggested that an observed correlation indicates good
preservation (Bryant et al., 1996; Iacumin et al., 1996a,
1996b), while divergence from a strict correlation is
still observed in some well-preserved samples (Martin
et al., 2008; Kirsanow & Tuross, 2011; Pellegrini et al.,
2011). Given that this study incorporated external
controls for diagenesis and included only well-preserved
samples in all subsequent correlation calculations, we
hereby contend that presence/absence of correlation
between d18Ostructural carbonate and d18Ophosphate is not
indicative of diagenetic state. Given that this study
produced different correlations in different body ele-
ments (i.e. enamel, dentin, or bone), it appears that this
method of examining diagenesis is unreliable, and we
recommend using it with caution. Consideration must
be given to the body element tested if such a correla-
tion is used as a diagenetic indicator. Rather it is
hereby recommended that an alternate method of
examining diagenesis be used, such as collagen quality
indicators or examination of recrystallization (Person
et al., 1995; Kohn et al., 1999; Thompson et al., 2011).
All such methods have their own inherent level of
error, but with proper consideration of the data are
likely to provide a better indication of diagenesis than
isotope comparisons alone.

Conclusion

This study determined human-specific isotope spacing
values and regression equations for the relationships
between d13Ccollagen, d

13Cstructural carbonate, d
18Ostructural

carbonate, and d18Ophosphate in individuals with a largely
terrestrial diet. The average Δ13Ccarb-coll of 5.4% is
fairly consistent between bone and dentin with a strong
correlation between d13Ccollagen and d

13Cstructural carbonate.
The lack of correlation between Δ13Ccarb-coll and d

15N
suggests that these individuals allocate a similar pro-
portion of animal protein to their carbon input regard-
less of absolute meat intake. The average Δ18Ocarb-phos
of 7.8% is lower than previous studies, but is consist-
ent between bone, dentin, and enamel. Enamel shows
the strongest correlation between d18Ostructural carbonate
and d18Ophosphate values compared to dentin and bone.
This has potential implications concerning isotopic
fractionation of blood-DIC during collagen formation,
as well as potential implications for species-specific
fractionations of oxygen during bone/tooth
mineralization. Using the d18Ostructural carbonate and
d18Ophosphate correlation for determination of

diagenetic state is tenuous and should be used with
caution and attention to the particular body element
(i.e. bone, dentin, enamel) being considered. This
robust data set can now provide a basis of comparison
for human isotope studies which typically involve
small sample numbers and an attempt to limit destruc-
tive analyses of valuable and rare specimens.
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