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The high species richness of tropical forests has long been recognized,
yet there remains substantial uncertainty regarding the actual number
of tropical tree species. Using a pantropical tree inventory database
from closed canopy forests, consisting of 657,630 trees belonging to
11,371 species, we use a fitted value of Fisher’s alpha and an approx-
imate pantropical stem total to estimate the minimum number of
tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e.,
at the high end of previous estimates. Contrary to common assump-
tion, the Indo-Pacific region was found to be as species-rich as the
Neotropics, with both regions having a minimum of ∼19,000–25,000
tree species. Continental Africa is relatively depauperate with a mini-
mum of∼4,500–6,000 tree species. Very few species are shared among
the African, American, and the Indo-Pacific regions. We provide a
methodological framework for estimating species richness in trees that
may help refine species richness estimates of tree-dependent taxa.
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Despite decades of biological inventories worldwide, we still
do not know how many species exist and how they are dis-

tributed (1). Although global patterns of estimated vascular plant
species richness and distribution have become more clear (2–5),
no previous study has focused on trees as a distinct growth form.
As a consequence, our estimation of the number of tree species
in tropical forests still depends on untested expert opinions (6–8)
rather than on an appropriate methodological framework and
data set.
Given the importance of trees as key structural components of

forest ecosystems, sources of timber and nontimber products,
and providers of vital ecosystem services (9, 10), the lack of re-
liable estimates of the total number of tropical tree species
represents a critical knowledge gap that has direct consequences
for estimating the diversity of other tree-dependent taxa (11). A
classic example is Erwin’s (6) estimate of the existence of 30
million arthropod species, which was based on observed host
specificities of arthropods with individual tropical tree species
combined with an estimate of the total number of tropical tree
species. Global arthropod richness has subsequently been revised
downward (7, 11), but current estimates still suffer from the lack
of information on the number of tropical tree species.
In recent decades, the number of tree inventory plots across

the tropics has grown to such an extent that species richness
estimation at the continental and pantropical scale can now be
addressed using standardized species lists with abundance data.
Prior estimates of plant richness at such broad scales have mostly
been based on analyses of incidence data obtained from her-
barium collections and flora treatments (2–5). However, these
methods are highly sensitive to collecting biases and ignore
valuable information on species’ abundances (12). Abundance
data enable extrapolation of richness from local to global scales
using diversity estimators that fit the observed species rank
abundance data (13–15).

Results and Discussion
We estimate the number of tropical tree species from a stan-
dardized dataset of old-growth tropical forest tree inventories,
including gymno- and angiosperms with diameters at breast
height (dbh) ≥10 cm. This dataset contains tree species abun-
dance data for 207 1° grid cells (locations) originally dominated
by closed-canopy forests across the tropics (Fig. 1). By calcu-
lating Fisher’s alpha (16) at the pantropical scale and com-
bining this value with the estimated potential number of stems
present within 500 km of each location, we arrive at a minimum
number of tropical tree species of at least ∼40,000 and possibly
more than ∼53,000 (Table 1), i.e., at the high end of current
total estimates of 37,000 (7), 43,000 (8) and 50,000 (6), which
are based on expert opinion.
When the analysis was restricted to each of the three main

tropical regions, we found that the Indo-Pacific had comparable

tree species richness to that found in tropical America (Table 1).
Moreover, these two regions show similar rates of species turn-
over for a given increase in geographical distance between lo-
cations (Fig. 2). This result contradicts the widely held view that
the Neotropics are the most diverse and species-rich region for
tropical trees (8, 15, 17, 18). This underestimation of Indo-
Pacific tree species richness, and our inclusion of dry as well as
moist and wet forests, may explain why some of the previous
estimates (7, 8) are lower than ours. Nevertheless, the high
species richness in the Indo-Pacific is understandable given the
highly variable topography, complex geological history, steep
environmental gradients, past and ongoing merging of several
contrasting floras from Madagascar, India, Southeast Asia, and
New Guinea–Australia (19, 20), as well as the large current and
time-integrated forest area (8).
Tropical continental Africa has a relatively depauperate tree

flora, a finding consistent with earlier studies (21, 22). This re-
gion shows comparatively low species turnover; in other words,
as sample area increases, the number of tree species increases at
a much slower rate than in either the Indo-Pacific or the Neo-
tropics (Fig. 2). The differences in species richness and spatial
turnover, when comparing continental Africa with the other
tropical regions, cannot be explained solely by Africa’s smaller
forest area or lower environmental variability (Table 1 and Figs.
S1 and S2). Rather, these disparities further support the hy-
pothesis that African forests have experienced severe extinction
events due to repeated shrinkage of forest area during the
Pleistocene (19, 23). When these forests expanded to their
present size, they could only be repopulated by a severely depleted
species pool derived from a limited number of refugia. In contrast,
tropical America retained considerable forest cover and equatorial
forests of the Indo-Pacific may even have expanded during the
same period (19, 20, 23, 24).
We provide, to our knowledge, the first survey-based minimum

estimate of tropical tree species richness and its distribution. We
acknowledge, however, that the current estimate is just a first step
in an ongoing effort. Estimates of species richness will become
more refined and increasingly accurate as forest surveys continue
to expand. This study highlights the usefulness and critical impor-
tance of forest surveys, and we emphasize once more the existence
of large numbers of tree species with exceptionally small pop-
ulation sizes, which may necessitate novel conservation approaches
for effective preservation of current tree diversity (25, 26).

Materials and Methods
Data Set. Tree inventory data (gymnosperms and angiosperms only; trunk
dbh ≥10 cm) from old-growth forest plots without signs of recent human
disturbance were compiled from across the tropics and subtropics (i.e.,
within 30° north and south of the equator). Individual trees from the in-
ventories were pooled within their respective 1° grid cells (henceforth called
locations). Species names were standardized using The Plant List (www.
theplantlist.org), Taxonomic Name Resolution Service (tnrs.iplantcollaborative.
org/TNRSapp.html), and The Asian Plant Synonym Lookup (phylodiversity.net/
fslik/synonym_lookup.htm). Unknown taxa were not used in diversity and
composition analyses. We removed all locations with fewer than 250 identified
individuals to minimize effects of sample size, resulting in 207 retained loca-
tions (Dataset S1), each showing a reasonably high sample coverage (0.96 ± 0.3,
mean ± SE) that did not differ among geographic areas (Table S1), thus sug-
gesting that our estimations of species richness were not biased by differences
in sample coverage among regions.

Phylogeographic Analyses. To identify the main tropical regions for species
richness comparison, we performed minimum variance clustering with
squared Euclidean distances on square root-transformed relative abundance
data at the genus level (Fig. S1). These analyses were conducted at the genus
level because virtually no overlap existed between continents at the species
level. We subsequently ran a detrended component analysis to visualize
these floristic patterns across the tropics (Fig. 1). To assess if difference in
species richness and turnover among regions are related to differences in
environmental variability among regions, we performed a principal component

Significance

People are fascinated by the amazing diversity of tropical for-
ests and will be surprised to learn that robust estimates of the
number of tropical tree species are lacking. We show that there
are at least 40,000, but possibly more than 53,000, tree species
in the tropics, in contrast to only 124 across temperate Europe.
Almost all tropical tree species are restricted to their respective
continents, and the Indo-Pacific region appears to be as spe-
cies-rich as tropical America, with each of these two regions
being almost five times as rich in tree species as African tropical
forests. Our study shows that most tree species are extremely
rare, meaning that they may be under serious risk of extinction
at current deforestation rates.
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analysis of locations vs. environmental variables [climatic data (27) and edaphic
data (28)] (Fig. S2).

Sample Coverage and Nonparametric Estimators of Species Richness. Because
estimates of species richness can be strongly dependent on differences in
inventory completeness (29, 30), we estimated the inventory completeness
for the complete database and for each region separately using the sample
coverage estimator recommended by Chao and Shen (31), which is a re-
duced-bias estimator of sample completeness:

Ĉn = 1−
f1
n

� ðn− 1Þf1
ðn−1Þf1 + 2f2

�
,

where f1 and f2 are the number of species represented by one (singletons)
and two (doubletons) individuals in the sample, respectively, n is the total
number of individuals in the sample, and Ĉn is the proportion of the total
number of individuals in an assemblage (observed and not observed) that
belong to the species represented in the sample. Sample coverage was al-
most identical in all regions (Table S1), suggesting that our regional com-
parisons of species richness were not biased by differences in sample
coverage among regions, and our pantropical estimate were not dispro-
portionately influenced by any one region (30).

Estimates of sample coverage indicated that more than 90% of all of the
trees present in the tropics belonged to species included in our recorded
samples (Table S1). We also computed estimates of species richness based on
several nonparametric estimators (Table S2). In particular, we considered
nine of the estimators available in the software Species Prediction and Di-
versity Estimation (SPADE) (31), and they estimated that, on average, we
have recorded between 79% and 91% of the species present in all regions
(Table S2). However, consistent with ter Steege et al. (15), we found that
these methods underestimated the species richness, because estimates for
each tropical region (1,539–1,680 species in Africa; 4,959–5,540 in America;
and 6,232–6,784 species in Asia) were between one-half and one-third of
previous estimates based on expert opinion and available floras (6–8). In
fact, recent estimates suggest that there are ∼16,000 tree species in the
Amazon (15), so having fewer than 5,540 tree species in the whole Neo-
tropics is highly unlikely (Table S2). As ter Steege et al. (15) argued, the
failure of these nonparametric methods to yield plausible estimates arises
from fact that these estimators are designed to estimate the expected
number of species at a local scale, based on samples that are fully repre-
sentative of the area sampled (15, 32). However, like ter Steege et al. (15),

we are attempting to estimate the number of species for the whole tropics,
including areas that have been poorly sampled.

Selection of Species Abundance Distribution Model to Predict Species Richness.
Several models have been proposed to describe observed species abundance
distributions (SADs) within a community (33). SAD models allow for an un-
derstanding of the abundance structure of biological communities, and can be
useful for predicting unsampled portions of communities. The fit of SAD models
to the data depends, among other factors, on community evenness and sam-
pling intensity (33, 34). For instance, extremely uneven SADs are predicted by the
geometric series (35), whereas unusually even SADs are predicted by the broken
stick model (36). The log series (16) and log normal (37) models are intermediate,
differing in the assumed proportions of rare species: Fisher’s log series assumes
very high proportions of rare species, whereas the log-normal model assumes
very low proportions of rare species (33). Regarding sampling intensity,
complete surveys usually follow log-normal types of SADs, whereas in-
complete sampled communities usually deviate from log normality (34).

Here we used Fisher’s log series to estimate the expected number of species
within each region. The log series distribution is one of the most frequently
used and thoroughly investigated models of the relationship between species
richness and the relative abundance of species (33), and it has been successfully
used to estimate the number of species at different spatial scales (14, 15, 25),
although not previously at an intercontinental scale. To fit and compare the log
series model with other commonly used SAD models [i.e., log normal, broken
stick, and Pareto (power law) distributions], we used maximum-likelihood tools
with the sads package for R 3.0.3 (38). We ranked the models from the best to
the worst based on Akaike’s information criterion (AIC). The set of models with
a difference in AIC (Δ) <2 can be considered to have equivalently strong em-
pirical support and similar plausibility (39).

Graphical comparison of the models showed that the log series provided
the best fit to our data (Fig. S3); this result was confirmed by the AIC analyses,
in which the log series model had the strongest support (Table S3). The visual
analysis of the frequency of species in octaves of abundance (so-called
“Preston plots”) predicted by each SAD model also supported the idea that
log series fit the data well and was the best model to predict the proportion
of rare species (Figs. S4–S7). Therefore, we can conclude that the log series is
an appropriate SAD model to fit our data.

Application of Fisher’s Log Series. Fisher’s alpha values can be used to extrap-
olate species richness of a defined region if the number of individuals is known.
Extrapolations with Fisher’s alpha, however, rely on two assumptions: (i) species

5
4
3
2
1
0

Fig. 1. Overview of sample locations and their floristic affinities (point colors correspond to scores on the first DCA axis with similar colors indicating similar
generic composition, and the lines indicate the floristic affinities as determined by cluster analysis).

Table 1. Species richness estimates for the tropics and the three main tropical subregions

Region
Species
observed

Stems
observed

Unidentified
stems, %

Fisher’s alpha
minimum

Fisher’s alpha
maximum

Stems
estimated

Species
minimum

Species
maximum

Africa 1,376 117,902 8.4 218.7 286.6 3.4 × 1011 4,626 5,984
America 4,375 116,754 13.5 897.2 1,203.4 8.9 × 1011 18,589 24,580
Indo-Pacific 5,672 422,974 9.6 925.8 1,225.2 7.7 × 1011 19,014 24,819
Pantropical 11,371 657,630 10.1 1953.0 2,607.7 2.0 × 1012 40,517 53,345

Observed values represent the numbers in the original dataset. Unidentified stems were excluded from estimation of minimum Fisher’s alpha, but used
to calculate maximum Fisher’s alpha. Estimated stems represent the number of stems predicted to occur within 500 km of each of the 207 sample
locations.
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abundances are distributed in a log-series manner, and (ii ) the plant
community is homogeneous at the scale of the sampling. The first as-
sumption held true in our case and is generally valid even for small sample
sizes in tropical forests (13). The second assumption may be an adequate
approximation at small spatial scales for most lowland tropical forests
(15, 40) but is unquestionably violated at larger spatial scales due to in-
creasingly biogeographically, environmentally, and spatially structured
plant communities. In such cases, a large number of randomly placed sample
sites are needed to capture this heterogeneity, which might adequately
approximate the homogeneity assumption at a large spatial scale. Despite
the large number of plots used in this study, the second assumption was
not completely met at the continental scale, as shown by the incomplete
leveling off of the Fisher’s alpha curves (Fig. 2A); this means that our regional
Fisher’s alpha values, and thus our species richness estimates, remain minimum
estimates of the true values.

Lower-Bound Estimation of Species Richness. For each 1° grid cell locatedwithin
500 km of our 207 locations (excluding major water bodies), we calculated the
total number of stems as the inverse distance-weighted average of the stem
density observed in the five nearest locations, multiplied by the size of each grid
cell (Fig. S8). Latitudinal change in grid cell size was taken into account. Because
our analysis was focused on original (potential) tree species richness, we
ignored recent deforestation. Uncertainty in this spatial extrapolation was
assessed with a jackknife approach using 100 runs. Jackknifing removes each
data point in turn and recomputes the spatial surface based on the remaining
points. The differences between the original data values and the cross-vali-
dated values indicate the prediction accuracy of the surface model (Fig. S8).

The lower boundof species richness at the pantropical and continental scales
was then calculated using Fisher’s log series, with Fisher’s alpha and total
number of stems as input variables at each spatial scale. Because the total
number of stems was upscaled by several orders of magnitudes, one might
expect that this extreme extrapolation could potentially cause a large error in
our species richness estimates. However, a simple sensitivity test, in which we
varied stem numbers between 0.1 and 1.9 times the estimated values for each

spatial scale (a range much larger than the observed error in our stem number
predictions), showed that this extreme perturbation in stem number resulted
in only a 3–11% difference in number of species predicted (Table S4).

Upper-Bound Estimation of Species Richness.Our species richness estimates are
near the true value if the unidentified species (individual recorded, but not
identified) in the tree inventories, which we excluded from the analyses,
follow the same rank abundance pattern as the identified species. However, if
rare species are disproportionately represented in the unidentified category,
our analyses may have underestimated the true Fisher’s alpha and thus the
species richness estimates. Because we did not know the relative abundance
of rare species in the category of unidentified individuals, we selected a
dataset of multiple tree inventories with a total of 10,647 individual trees
from eastern Borneo for which this information was available. All individuals
in this dataset were either identified to species or only to morphospecies
(unidentified). A Mann–Whitney U test showed that, not surprisingly, rare
species were disproportionately represented in the unidentified category
(df = 1, n = 1,103, W = 194,798, P < 0.0001).

Using logistic regression of species square root-transformed abundance vs.
identification status (identified vs. unidentified), we predicted the probability
that a tree species would be classified as identified. This classification prob-
ability was then assigned to each individual tree belonging to that species.
After adding a random number between 0 and 1 to the classification prob-
ability of each individual tree, to account for the fact that even individuals
belonging to common species may remain unidentified, we sorted the whole
list of individuals from high to low.We produced 10 such sorted lists, each time
varying the random number added to the classification probability of an in-
dividual tree. For each list we could then count the number of species present
within any level of identified individuals and calculate a minimum Fisher’s
alpha. The average of these 10 minimum Fisher’s alpha values could then be
compared with the actual Fisher’s alpha observed for the whole list. Dividing
the actual Fisher’s alpha by the minimum Fisher’s alpha gives an inflation
factor with which observed Fisher’s alpha values can be multiplied to estimate
the upper boundary of Fisher’s alpha for any percentage of identified species.
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Fig. 2. Increase in Fisher’s alpha with (A) increasing numbers of locations (average of 50 replicates per region with random input order of locations), i.e.,
regional diversity, and (B) increasing distance around locations (based on 50 replicates per region each with a randomly selected starting location), i.e., species
turnover. Error bars indicate SD among location reorderings. Fisher’s alpha can decline if the number of stems added to the sample increases disproportionally
to the number of new species detected.
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The inflation factor (Y) showed a power–function relationship with ratio of
identified individuals (X) given by Y = 1.2237 × X−0.767. Using the appropriate
inflation factor, we calculated the maximum expected species richness at all
spatial scales (Table 1).
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