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Maximum-entropy description of animal movement
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We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-
time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-
Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models,
and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new
models that will emerge as data quality improves to better resolve the underlying continuity of animal movement.
Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes
that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.
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I. INTRODUCTION

Animal movement is a continuous-time process, exhibiting
continuous velocities and accelerations. Animal locations are,
however, measured coarsely in time, even by modern GPS
technology. The degree of continuity that we can actually
resolve is limited by our measurement apparatus. To confront
this scenario, we derive a natural class of maximum-entropy
states for stochastic processes that are assumed to be very
continuous but are only sampled at discrete time intervals.
The constraints with which we maximize entropy equate to
understanding that a finite sampling frequency can only resolve
the continuity of the sampled process to a finite degree. As
for all other behaviors of the process, we are guided by the
principle of maximum entropy.

The class of maximum-entropy states we derive is found
to include within it Brownian motion (BM) [1-3], Ornstein-
Uhlenbeck (OU) motion [4-7], integrated OU motion [8-10],
and a more general movement model that includes all of
the previous models as limiting cases [11]. In contrast with
Brownian motion, which diffuses endlessly, the OU process is
bound to a finite domain. Therefore, OU motion was originally
applied to animal-tracking data to estimate the home-range
areas of range-resident species [5]. On the other hand, as
neither Brownian nor OU motion provide a differentiable
process, integrated OU (IOU) motion was introduced to
estimate instantaneous velocities in noisy telemetry data
sets [8]. Brownian motion has a long history of use in
describing animal movement and, despite its aforementioned
limitations, the Brownian-motion movement model has still
found use in estimating distributions of occurrence from
tracking data with large gaps between observations [2,3].
Brownian motion is a special case of both OU motion, in the
limit of an infinite home-range area, and IOU motion, in the
limit of impersistent movement. Recently, animal tracking data
sets that are sampled finely enough to estimate velocity and
long enough to estimate home-range behavior have spurred
the development of an OUF model that generalizes OU and
IOU motion [11,12]. Here we provide a theoretical framework
that explains this coincident grouping of movement models
in terms of continuity and entropy and predicts a missing

1539-3755/2015/91(3)/032107(7)

032107-1

PACS number(s): 05.40.Jc, 05.10.Gg, 02.50.Ey, 87.10.Mn

model within the same group that corresponds to central-place
foraging. We can also predict what models will become
appropriate as GPS and battery technology improve to the point
that more of the underlying continuity of animal movement is
revealed.

Finally, we find that the multidimensional generalizations
of these stochastic models obey a fluctuation-dissipation
theorem (FDT) when the maximum-entropy constraints are
purely kinematic in that they do not impose dynamical
relationships between the process and its derivatives. On the
other hand, if dynamical constraints are allowed, then the
resulting class of maximum-entropy states is larger than what
can be generated by ordinary Langevin equations without
a FDT.

In thermodynamic systems, fluctuations and dissipation are
engendered by the same microscopic degrees of freedom, even
though they are phenomenologically distinct. As a simple
example, for a damped mechanical system with position x(¢)
driven by thermal white noise &(¢), the Langevin equation is
given by [13]

Mx(t) +2T x(1)-F(x(2)) =§(1) . (D
——— —
dissipation fluctuations

where M is the mass, F(x) is the net deterministic force
on the system, and I' is the motion damping coefficient,
which drives relaxation to the rest state. In our analogous
biological equations of motion, the average trajectory follows
a deterministic mean u(¢), which can be thought of as being
generated by deterministic “forces,” while random movements
about the mean manifest from fluctuations, and relaxation back
to the mean arises from dissipation. In classical nonequilibrium
thermodynamics, the fluctuations and dissipation are related
by [14]

(EMEMN) = Gee 8t —1), Gee =2kpTT, (2

here for white noise, where Gz is the spectral density of
the fluctuations, kp is Boltzmann’s constant, and 7 is the
temperature of the surrounding environment. More generally,
yet still in the classical regime, dissipation can be nonlocal
in time and fluctuations can be colored, but a proportionality
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relation still holds between the dissipation kernel and noise
correlation [14]. In quantum nonequilibrium thermodynamics,
proportionality between the dissipation kernel and noise
correlation still holds in the frequency domain, though the
proportionality constant is nonlinear in 7' [15,16]. Finally,
even when the environment is not in equilibrium and cannot
be assigned a temperature, the dissipation kernel and noise
correlation must always satisfy an inequality due to the
Heisenberg uncertainty principle [17].

The thermodynamic FDT is necessary for microscopic the-
ories of stochastic processes to be consistent with macroscopic
thermodynamics. But we might imagine that dissipation co-
efficients and fluctuation autocorrelations are more generally
unrelated—particularly in systems that have nothing to do with
thermodynamics. For the maximum-entropy distributions we
explore here, we find that the fluctuations and dissipation are
not necessarily proportional, but they must obey nontrivial
commutation relations.

II. MAXIMUM-ENTROPY STATES

In this multivariate treatment, we denote vectors and
matrices in bold, such as the position x(¢) and autocorrelation
function o (¢,t’) [defined in Eq. (A4)]. To constrain the degree
of continuity in the underlying process, we will use the
relationship between the continuity of the stochastic process
and the continuity of its autocorrelation function. As we lack
information about the higher-order cumulants of the process,
we leave everything beyond the second cumulant to ignorance,
and so, upon constraining the autocorrelation function o (¢,t’),
the entropy per unit time functional is given by (Appendix A)

hlo] = %/dftrlog&(f) + const, 3)

in terms of the spectral-density function & ( f), defined by
o(t,t) = /df eI G (), )

for stationary autocorrelations, where o (¢,t') = o (t —t'). We
consider only stationary autocorrelations, because their diag-
onalizing basis elements e*?7/! are universally defined and
stationary autocorrelations can be considered as the time av-
erage of nonstationary autocorrelations when estimating their
parameters from a nonstationary process [12]. Importantly,
we do not assume that the mean function (A3) is station-
ary. Furthermore, as we show in Appendix A, the entropy
functional (3) still holds for nonstationary autocorrelations,
though under a different transformation basis. Therefore our
derived maximum-entropy states also hold for nonstationary
autocorrelations, though under a different set of constraints.

A. Variance constraint

As a simple example, we first consider a process with only
its variance constrained to ¢ (0) and no further information:

(D)oo = 0(0), / ife(f)=o©, ()

where the latter relation is conveniently expressed in the
frequency domain. The quantity to maximize, with Lagrange
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1
mlo) = hlo]+ Jirg [00 _ /df &(f)] ©)

Using matrix derivatives [18, Appendix B], the Euler-
Lagrange equations are then given by

le(H T =1ry, d(H =1y, (7)

which implies that the spectral-density function is a constant
matrix, i.e., the maximum-entropy process with variance o (0)
is a white-noise process with variance o (0). The maximum-
entropy process is not correlated in time without providing any
further kinematic constraints.

B. Kinematic constraints and continuity
The k™ derivative of x(¢) has the autocorrelation function

k k k k

d , Ty — 27
1 o (KO = O = o) = -

Placing a constraint upon the k" derivative of x(t) to have
variance o®(0) takes the form

o(t,t). (8)

_ ka_Zk — 4K
(D o] =a®0), ©)

=0

/ df Qrnf)* &(f) = a®(0). (10)

After maximizing entropy with these constraints, the spectral-
density function is then given by

K —1
§(f) = [Z(znf)%k} : (1)

k=0

when including kinematic constraints up to order K.

As any differentiable function is continuous, if a process
has derivatives that always take finite values, then this process
is always continuous. Therefore, by placing kinematic con-
straints up to order K, we ensure that the process is continuous
with K — 1 continuous derivatives. The K" derivative of the
process is not continuous but is a well-defined white-noise
process.

An important property of the spectral-density function (11)
is that it is an even function of the frequency f, which implies
that the autocorrelation function o (7) is a symmetric function
of the time lag t. More generally, cross correlations between
different spatial dimensions or different individual animals
can be asymmetric in time, which allows for leader-follower
or time-lagged relationships. This can occur when dynamical
constraints are imposed in addition to the kinematic constraints
(Appendix B).

1. K=1: 0U and BM motion

As we have already shown, K = 0 corresponds to uncor-
related motion of a particular variance. K = 1 corresponds
to Ornstein-Uhlenbeck motion [5—7], which is a continuous
process with autocorrelation function

o(t) =o0(0)e /17, (12)
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in one dimension. This model describes Brownian motion
bound to a finite area around the mean location [4], and the
time scale 1/f determines how long it takes the animal to cross
its home-range area.

The semivariance function [11] is a standard measure of
diffusion [19] and for stationary processes it is given by

y(1) = H(x(t+1) — pt+1) —x@®) + n@®F),  (13)

=0(0) —o(7), (14)

with the latter relation holding for processes with a finite
variance. Ordinary Brownian motion is a limiting case of
OU motion for small f, whereupon the semivariance function
limits to

}ILI})J/(T)ZDIII, DZ}IE})U(O)f, 5)

where D is the diffusion rate. This linear dependence upon lag
7 by y(7) is referred to as regular diffusion. For the OU pro-
cess, the diffusion is regular for small lags, as can be seen from
a Taylor-series expansion of y(t), while for larger lags the
diffusion is limited by the existence of a finite variance o (0).

2. K =2: OUF and IOU motion

K = 2 includes within it OUF motion, which extends the
OU model to continuous velocities, thought possibly to explain
the ballistic foraging behavior of Mongolian gazelles [11]. The
OUF autocorrelation function is given by

—f-Irl —fltl
o =0 I
fr—J-
This model describes correlated velocity movement within a
home range of variance o (0). At time scales finer than 1/f,,
motion appears ballistic as

y(1) = 10,(0) 2 + O(?),  0,(0) = fyf-0(0), (17)

while at time scales coarser than 1/f,, motion is OU-like with
a home-range crossing time of 1/f_.

In the limit of uncorrelated velocities, OUF motion reduces
to OU motion as

flim o(1) =0(0)e /I, (18)

f-<fr. (16)

On the other hand, in the limit of unbounded motion, OUF
motion simplifies to integrated OU motion [8-10], as the
semivariance function limits to

o,(0 X
U(z)(f+|f| — 1+ 4, (19)
+

li =
f,lgloy(r)

which can be differentiated twice to obtain the OU velocity
autocorrelation function

flimo 0,(7) = oy(7) e . (20)

Like Brownian motion, the integrated OU process exhibits
unbounded diffusion. However, IOU velocities only vary by a
finite amount o, (0) from the mean 4t(#) and relax back the mean
with characteristic rate f,. IOU motion is ballistic at time
scales finer than 1/f,. Some peculiarities of purely ballistic
diffusion are discussed in Ref. [20].
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3. K =2: Central-place foraging

Considering the general structure of Eq. (11), there is one
remaining model included in K = 2 that has not previously
been considered in the movement-ecology literature:

o(t) =0 (0)e /T (cos ot + g sina)|t|) . @D

In this model there are periodic episodes of diffusion from and
relaxation back to the mean location w. The phenomenological
behavior of this model is particularly relevant for describing
central-place foraging [21], where an animal has a nest or
den at its mean location u and periodically leaves to perform
a random search for resources. This periodic motion stands
in contrast to periodicities in the mean, such as migration,
where the animal cycles between its summering and wintering
grounds. The probability density of a central-place forager
is unimodal, whereas the probability density of a migratory
species is bimodal.

4. K = 1: An excluded model

It is also interesting to note what models are not included
in this class. For instance, the autocorrelation function

o(t) = o (0)e 1" cos(wT) (22)

does not have a spectral-density function consistent with
Egs. (2), (11), or (B1) with any finite number of constraints,
even though this model can be considered as an oscillatory
generalization of the OU process in other, physical con-
texts [22-24].

C. Multivariate Ornstein-Uhlenbeck motion

Constraining the process up to its velocity results in the
spectral-density function

§(f) =[ho+QufyAl™, (23)

where both A matrices must be positive definite for this to be a
valid spectral-density function. Factoring this expression, we
have

G(f) =X, R+ Qrfy1'a, :, 24)

where F? = A, 20 Ay "2 must then be a positive-definite
matrix of square frequencies. Fourier transforming back into
the time domain, we have the autocorrelation function

| o—ITIF

o=k Al 25)

This describes a multivariate Ornstein-Uhlenbeck process of
various dissipation rates and unit variance I that is linearly
transformed to have a variance of

_1 _1
o) =11, F ', (26)

III. FLUCTUATION-DISSIPATION THEOREM
A. Ornstein-Uhlenbeck theorem

To compare with Eq. (25) and without loss of generality, we
will consider the Langevin equation of a multivariate, mean-
zero OU process x(7), which represents the difference between
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the animal’s location and its mean:

x(1) = =T x(t) + £(1), (EOEW) =6z 8t —1), 27)
—— ~——
dissipation  fluctuations

where £(f) is a zero-mean white-noise process. In terms
of animal movement, the “fluctuation” terms in Langevin
equation (34) represent the random aspect of movement that
gives rise to diffusion, while the “dissipation” terms generate
advection back towards the mean location and keep the animal
bound within a well-defined home-range area despite its
tendency to move about randomly.

Note that the spectral density 6zz must be Hermitian and
real, and therefore it is symmetric. Standardizing our Langevin
equation so the fluctuations have unit spectral density, we have

y(t) = =Gy() +u(), (28)
in terms of the transformed variables

1 1
YO = 657 x(),  u() = 6, £0), (29)
a3 ~ts
G = 0. 6" (30)
The dissipation matrices I' and G are related by a similarity
transform and therefore they share the same eigenvalues, but in

general they will not share the same symmetries. Transforming
to the frequency domain, we have

2 f§(f) = =Gy(f) +u(f), €2y

Y() = Rmuf + Gl acf), (32)

and with this the spectral-density function is given by

5(f)= ®OXN) =5 GHIHH G, (33

1 . 1
=6 [G+2mfl ' [G+2mf1T 6. (34)

From Eq. (24), if this is to represent a maximum-entropy state,
then we must have

=1, GGT=F, G=G" (35)

This final symmetry, applied to Eq. (30), implies that the
dissipation matrix and autocorrelation matrix must commute
in the sense of

[T,6eslr =T 6:e —6:: T' =0, (36)

which reduces to ordinary commutation if I" is symmetric. We
refer to this relation as comprising the Ornstein-Uhlenbeck
fluctuation-dissipation theorem. This FDT is more general
(and weaker) than the thermodynamic relation, where the two
matrices are strictly proportional.

B. General theorem

The analogous Langevin equation for a continuous process
x(¢) with mean zero and K — 1 continuous derivatives is given
by

d K K d K—k
[d—t] x()+ ) Ty [ﬂ x()=§@0. (37
k=1
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By a similar procedure we have the transformed solutions

K -1
¥y = |:(2mf)K + Z(sz)""Gk:| a(f),  (38)

k=1

and for the spectral-density function to take the form (11), we
must have the transformed commutation relations

G =G|, GG =Gy, Gy, (39)

which then implies the commutation relations
[16 =6::T], T.6, T, =Tiad T (40)

IV. RANGE-RESIDENCE VERSUS
CENTRAL-PLACE FORAGING

In one dimension the mean-zero Langevin equation for
K = 2is given by
F(t)+2 fx@) + F2x(t) = £(1), 41

which is the equation of motion of a simple, damped harmonic
oscillator driven by white noise. Central-place foraging corre-
sponds to the underdamped regime with relaxation rate f and
foraging frequency w parameters

fP<F, o=F-f2 (42)

where w determines the frequency with which foraging bouts
occur and f determines the rate at which correlations decay
between successive foraging bouts. In central-location forag-
ing, the animal periodically leaves its mean location to search
for resource patches and returns. Just as a thermodynamic
environment sets the Lagrange multiplier 7 to its temperature,
an animal’s environment can determine the animal’s foraging
frequency w, which is often fixed to 27 /day.

For the range-resident OUF model, which corresponds to
the overdamped regime, the two relaxation rates are given by

fP>F fo=fxJf2-F? (43)

where the smaller f_ roughly determines the amount of
correlation in successive positions and the larger f roughly
determines the amount of correlation in successive velocities.
In range-resident motion, the animal exhibits autocorrelated
velocities within a finite home range. Specifically for Mongo-
lian gazelles, it has been observed that f_ is associated with
the seasonal time scale [25], and so this Lagrange multiplier
is also likely set by the environment.

V. DISCUSSION

This framework takes all of the major continuous-time,
animal-movement models that have been used for empirical
reasons—because they have appropriate phenomenology—
and puts them into a coherent theoretical framework. The
principle of maximum entropy provides a useful perspective
as our constraints are very natural for animal location data, in
that animal movement is extremely continuous, yet location
data are relatively coarse. This leads to a hierarchy of models
whereupon an increasing degree of continuity can be modeled
and all finer scale behaviors are conceded to ignorance. As GPS
and battery technology improve, or possibly by combining
current relocation and accelerometery data, our theory predicts
that we can increase the number of kinematic constraints K to
derive more suitable models.
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A fluctuation-dissipation theorem is derived, which pro-
vides important criteria for model construction in cases
where there is significant spatial anisotropy in the movement
dynamics or interactions between individuals that diffuse at
different rates. There can be significant variability in move-
ment parameters among the individuals of population [12], and
so if individual animals coordinate their movements then they
can exhibit a mixture of movement modes. Our FDT constrains
these interactions, which would arise from the off-diagonal
terms of Eq. (34), and reduces the number of multivariate
models that would need to be considered for model selection.
Importantly, an information criteria can be used to compare the
constrained, parameter-sparse and unconstrained, parameter-
rich models and determine if our FDT finds empirical support.
Therefore, these two findings—the maximum-entropy models
and their FDT—provide a concrete example of how ideas and
techniques from physics can contribute to other disciplines.

From a biological perspective, it is interesting that range-
residence and central-place foraging can be considered as two
parameter regimes of the same model, because they correspond
to different movement strategies that are typically found in
different taxonomic groups. Central-place foragers, like many
birds and canids, maintain a nest or den at their mean location,
while range-resident species, like moose and gazelle, are only
found in the vicinity of their mean location, which is more of
a statistical abstraction. Even though the major time scales
of this theory are likely set by the environment, it does
not seem reasonable to imagine that all parameters can be
adjusted, for a given species, such that a transition between
movement behaviors occurs. This fact suggests the hypothesis
that the remaining time scales might be set by the evolutionary
lineage that the species descends from, which can still be
considered as part of the “environment” with respect to the
system-environment partitioning of the physics formalism.

There are some mathematical similarities between our
class of maximum-entropy states and Burg’s for discrete-time
processes [26]. By constraining the autocorrelation function
up to a fixed number of lags, Burg derived the entire class of
discrete-time autoregressive (AR) processes. Our constraints
are better suited to our system of interest, and while we
derive a class of continuous-time autoregressive processes,
they are restricted to obey a fluctuation-dissipation theorem
when only kinematic constraints are considered. On the other
hand, if dynamical constraints are considered (Appendix B),

J
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states are obtained that do not correspond to continuous-time
autoregressive processes.

A natural question that arises from this perspective regards
how strong the analogy between our maximum-entropy states
and thermodynamics might be. In both cases, the entropy is
maximized with respect to natural constraints that regard what
we can reasonably measure; in both cases there are Lagrange
multipliers that are determined by the environment. Finally, in
both cases there is a fluctuation-dissipation theorem, though
in our case it is comparatively weak. In Brownian motion
derived from Hamiltonian mechanics, there will always be
a relationship between the fluctuations and dissipation, even
outside of the context of thermodynamics [17], and so we
might ask if there is any unifying microscopic theory that
generates the FDT here and what sort of interpretation it has.
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APPENDIX A: DERIVATION OF ENTROPY FUNCTIONAL

Here we will show a result that is well known for
multivariate random variables—if we constrain ourselves to
the first two cumulants or moments of the stochastic process,
then the distribution that maximizes entropy is the normal
distribution. Alternatively, the mean function can be left
unconstrained and the same results can be derived. The entropy
of a distribution p is given by

Mlpl = H[pl+ o (1 - /DXP[X]> +/dtk1(t)T (M(l)— /DXP[X] X(t)>

+ / /dzdz/trxz(t,t’) (a(t,t’)— /Dx pIx] [x(t)—p()] [x(t’)—u(t’)]T>.

where the A are Lagrange multipliers. The Euler-Lagrange equations are then given by

log p[x]+1=Xp+ f de M (0)x(t) + / / dt di' tr Ay (2,1") [x(8) — ()] [x(t)— p(2)]T,

plx] = exp<ko -1+ /dt MO x() + //dt dt' trhy(t,1) [x(2)— p(t)] [X(t’)—u(t’)]T> .

H[p] = —/DXP[X] log p[x], (A1)
and we will maximize it under the constraints
1= /DX plx], (A2)
n() = /DX pIx]x(1), (A3)
o) = / Dx plx] [x()— O X(C)— (I, (Ad)
which is equivalent to maximizing
(AS)
(A6)
(A7)
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Choosing the Lagrange multipliers that satisfy our constraints, we finally have

plx] =

1
Jdet2mwo

o3 1 dr adr Ix@ )] To " L HIXA (]

(A8)

which is the distribution of a Gaussian stochastic process. The entropy of a Gaussian stochastic process is then given by

Hp,o]

1
> fdt tr (log o)(¢,t) + const,

which only depends on the autocorrelation function and not
the mean. The mean is deterministic and does not carry with
it any entropy.

Viewing the autocorrelation function o(z,t") as a large,
positive-definite matrix, its eigen-decomposition is given by

o(t.1) = /de(nf)&(f)U(z’,f)T, (ALD)
8(1—/)1:/de(t,f)U(t/,f)T, (A12)
5(f—f’)1=/dtU(t,f)TU(t,f/), (A13)

where for stationary autocorrelations U(f,7) is a harmonic
function, 6 (f) is the spectral-density function, and f is their
frequency. The entropy functional is then given by

Hlo] = %/dl/df UG, £) log& (UG, )], (Al4)

= % / df trlogé(f) |dt UG, f)TUG, f), (A15)
=? df trlog & (f), (A16)

to within a constant. The entropy functional is, in general, an
infinite quantity. Equivalently, we may consider the the average
entropy per unit time,

hlo] = %/df trlog 6 (f) + const, (A17)

which is a finite quantity. For stationary autocorrelation
functions, this functional is not only the average entropy rate
but also the instantaneous entropy rate.

APPENDIX B: DYNAMICAL CONSTRAINTS

Placing dynamical constraints on the system, such as a cross
correlation between x(¢) and x(), allows for odd powers of
frequency in the spectral-density function. To produce a valid
autocorrelation function we must have a Hermitian spectral-

%/Dx plx] <10g det2mwo + f/dt dt’ [x(t)—;L(t)]Tal(t,t/)[x(t')—u(t/)]> ,

1
3 (/dt tr(logo)(t,1) + //dl dt’trI(S(t—t/)) + const,

(A9)

(A10)

(

density function, which requires that the more general form

K K-1
F(f)=| D @rfAu+ Y Quif) Ay | (BD)
k=0 j=0
have anti-Hermitian Lagrange multipliers A; = —A; in ad-

dition to the Hermitian Lagrange multipliers A; = )\,t. With
this structure of autocorrelation function, there are maximum-
entropy states that cannot be generated by an ordinary
Langevin equation, even without a FDT constraining its
dynamics.

As an example, for the generalized multivariate Ornstein-
Uhlenbeck process, where the cross-correlation between posi-
tion and velocity ([x(t)— u(t)] [X(¢)— t(¢")]T) is constrained
in addition to the covariances of position and velocity, the
spectral-density function is given by

6(f) =[ho+ Qmif)Ar + Quf) Al (B2)

=0, [F2+ Qup)F; + Qe A7, (B3)

but if this spectral-density function is to be generated by an
ordinary Langevin equation with time-local dissipation and
white noise, then by Eq. (34) it must be equivalent to

1 ~+3

5(f) = 61676 + Qi fG™-G) + /)6,
(B4)

Furthermore, the Lagrange multipliers must relate to the
dynamical parameters via

' =6, F3=GG", F,=G" -G, (B5)

which is not general enough to produce all valid maximum-
entropy states. To see this, one can start with Eq. (B4) and
add a positive-definite matrix to G GT in F3, which results
in a positive-definite spectral-density function that cannot be
factored into a single Hermitian square.
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