

Available online at www.sciencedirect.com



Harmful Algae 4 (2005) 1092-1105



www.elsevier.com/locate/hal

# Macroalgal blooms on southeast Florida coral reefs I. Nutrient stoichiometry of the invasive green alga *Codium isthmocladum* in the wider Caribbean indicates nutrient enrichment

Brian E. Lapointe <sup>a,\*</sup>, Peter J. Barile <sup>a</sup>, Mark M. Littler <sup>b</sup>, Diane S. Littler <sup>a,b</sup>, Bradley J. Bedford <sup>c</sup>, Constance Gasque <sup>a</sup>

<sup>a</sup> Harbor Branch Oceanographic Institution, Inc., 5600 US 1 North, Ft. Pierce, FL 34946, USA <sup>b</sup> Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA <sup>c</sup> Department of Environmental Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA

Received 30 November 2004; received in revised form 1 June 2005; accepted 5 June 2005

#### Abstract

Invasive blooms of the siphonaceous green algae *Codium* spp. have been considered a symptom of coastal eutrophication but, to date, only limited biochemical evidence supports a linkage to land-based nutrient pollution. Beginning in the summer of 1990, spectacular blooms of unattached *Codium isthmocladum* developed on deep coral reef habitats in southern Palm Beach County and northern Broward County, and in subsequent years, attached populations formed on reefs in northern Palm Beach County.

To better understand the nutrition of these HABs, we collected *C. isthmocladum* and other reef macroalgae from various locations in southeast Florida as well as the wider Caribbean region for tissue C:N:P analysis in order to gauge variability in the type and degree of N- and/or P-limited growth. Widespread nutrient enrichment in floridian *C. isthmocladum* populations was evidenced by significantly higher tissue P (0.06% versus 0.04% of dry weight) and lower C:N (12 versus 19), C:P (425 versus 980), and N:P (35 versus 50) ratios compared to more nutrient-depleted Caribbean populations. To determine nutrient availability on southeast Florida's reefs, we sampled near-bottom waters at a variety of locations for DIN ( $=NH_4^+ + NO_3^- + NO_2^-$ ) and SRP analysis. In general, concentrations of  $NH_4^+$ ,  $NO_3^-$  and SRP were all high on southeast Florida's reefs compared to values reported for Caribbean coral reefs. Although summertime upwelling provides episodic  $NO_3^-$  and SRP enrichment to reefs in southeast Florida, these transient nutrient pulses have not historically supported *C. isthmocladum* blooms.

We suggest that the widespread P enrichment of *C. isthmocladum* tissue and water column DIN:SRP ratios <16:1 in southeast Florida drive this system toward N limitation where low level NH<sub>4</sub><sup>+</sup> enrichment becomes of paramount importance. Hence, the recent *C. isthmocladum* blooms appear to be supported by increasing land-based nutrient pollution, particularly,

DOI of original article: 10.1016/j.hal.2005.06.002.

<sup>\*</sup> Corresponding author. Tel.: +1 772 465 2400x276; fax: +1 772 465 0134. *E-mail address:* lapointe@hboi.edu (B.E. Lapointe).

<sup>1568-9883/\$ –</sup> see front matter O 2005 Published by Elsevier B.V. doi:10.1016/j.hal.2005.06.004

sewage that is enriched in  $NH_4^+$  and SRP at a low N:P ratio (<10:1) critical to sustaining balanced growth during bloom formation.

© 2005 Published by Elsevier B.V.

Keywords: Nitrogen; Phosphorus; Macroalgae; Coral reefs; Eutrophication

## 1. Introduction

Coral reef ecosystems are adapted to oligotrophic tropical and subtropical waters and are sensitive to low level increases in the concentrations of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) associated with cultural eutrophication (Johannes, 1975; Tomascik and Sander, 1987; Bell, 1992; NRC, 1995; Dubinsky and Stambler, 1996). Nutrient enrichment of coral reefs has many direct and indirect effects that, over time, can result in an alternative stable state dominated by fleshy, noncalcifying macroalgae (Birkeland, 1987; Done, 1992; Lapointe et al., 1993, 1997; Lapointe, 1997; NRC, 2000; Bellwood et al., 2004). Growth and reproduction of macroalgae are nutrient limited in oligotrophic coral reef waters (Lapointe, 1987, 1997, 1999; Larned and Stimson, 1996; Schaffelke and Klumpp, 1998; Lapointe et al., 2004) where low nutrient concentrations and high turbulence favors the dominance of calcifying, hermatypic corals (Adey, 1998; McConnaughey et al., 2000). Case studies in Kaneohe Bay, HI, USA (Banner, 1974; Smith et al., 1981), and more recently, the Negril Marine Park, Jamaica (Lapointe and Thacker, 2002) have demonstrated the pivotal role of low level nutrient enrichment to the development of excessive macroalgal biomass-harmful algal blooms (HABs; ECOHAB, 1997)-on coral reefs. Macroalgal HABs can inhibit the survival of coral recruits (Birkeland, 1977; Sammarco, 1980, 1982) and because of enhanced growth and reproduction in the presence of elevated nutrients, macroalgae can quickly overgrow and replace the slower growing reef-forming (hermatypic) corals (NRC, 1995). Additionally, increases in macroalgal biomass typically result in elevated sea urchin densities and the subsequent bioerosion of reefs (Sammarco, 1982; Lapointe and Thacker, 2002).

Macroalgal HABs have developed in many tropical/subtropical coral reef communities in recent decades as a result of increasing land-based nutrient pollution (UNEP, 1994; ECOHAB, 1997; NRC, 2000). During the summer of 1990, coral reefs off southern Palm Beach and northern Broward counties in southeast Florida experienced an unprecedented succession of macroalgal blooms first evidenced by unattached populations of the green alga Codium isthmocladum on deep (>30 m) reefs. Historically, C. isthmocladum occurred at low standing crops in these deep reef communities (24-58 m) in the 1970s (Hanisak and Blair, 1988). However, the more recent blooms resulted in biomass accumulations up to 2 m thick over the reef surface, which resulted in an emigration of reef fish populations from the impacted areas and die-offs of sponges, hard corals and soft corals via physical smothering and hypoxia/ anoxia (Lapointe, 1997; Lapointe and Hanisak, 1997). By the mid-1990s, blooms of attached populations of C. isthmocladum spread to reefs in northern Palm Beach County, which were followed by extensive blooms of Caulerpa spp. (see Lapointe et al., 2005).

Species in the green algal genus Codium are widely known as invaders of coastal waters (Ramus, 1971; Fralick and Mathieson, 1973: Carlton and Scanlon, 1985; Trowbridge, 1998) and their abundance in certain tropical/subtropical habitats also suggests they may be ecological indicators of nutrient enrichment. Blooms of invasive Codium fragile occurred in the northwestern (Fralick and Mathieson, 1973; Carlton and Scanlon, 1985) and northeastern (Silva, 1957) Atlantic decades ago. In the Niantic River estuary, CT, USA, the invasion of C. fragile was related to DIN availability (Malinowski and Ramus, 1973), although no evidence of anthropogenic nutrient sources was reported. Whereas Codium spp. are not conspicuous in oligotrophic coral reef communities in the wider Caribbean region (Littler and Littler, 2000), they commonly form blooms in nutrient replete habitats. For example, in guano enriched waters surrounding White Cay north of San Salvador, Bahamas, C. isthmocladum formed extensive populations in a

nutrient enriched inner zone around the small island (Urnezis, 1995). A human induced simulation of this enrichment effect followed the maritime shipwreck of the *Arimora* and its cargo of fertilizer (guano) off Egg Island near Spanish Wells, Bahamas. Downstream of the wreck, a halo of macroalgae developed that included *C. isthmocladum* (Lapointe et al., 1992).

Both natural and anthropogenic nutrient sources may be important to C. isthmocladum blooms on reefs in southeast Florida. Episodic summertime upwelling has historically occurred in this area (Green, 1944; Taylor and Stewart, 1958) but, because these HABs developed only recently, we hypothesized that landbased nutrient enrichment resulting from increasing urbanization and associated nutrient pollution from the watershed is a significant factor. The human population in the southeast Florida area is now  $\sim 7$ million, with over 12,000 metric tonnes/year of sewage nitrogen discharged directly into coastal waters from six ocean outfalls between Dade and Palm Beach counties (see Lapointe et al., 2005). In addition, Palm Beach and Broward counties have an estimated 183,645 septic tanks (www.doh.state.fl.us) and nearly 30 Class I injection well facilities that dispose of secondarily treated wastewater under pressure to depths of ~1100 m (USEPA, 2003). Land-based sewage effluent and stormwater runoff can enter coastal waters either via submarine groundwater discharges (SGD, Finkl and Charlier, 2003) or surface water discharges via the Port Everglades, Hillsboro, Boynton, Lake Worth, and Jupiter inlets.

To better understand the nutritional status of the summertime C. isthmocladum blooms, we performed tissue carbon (C), nitrogen (N), and phosphorus (P) analyses on C. isthmocladum populations and other abundant taxa from a variety of reef sites off southeast Florida to compare with those of C. isthmocladum populations collected around the wider Caribbean region. We used this information to gauge the type and degree of N-limited versus P-limited growth of the Florida HABs relative to Caribbean populations and to quantify any effects of anthropogenic nutrient enrichment on C:N:P contents and molar ratios of C. isthmocladum tissue. In addition, we collected near-bottom water samples to determine the availability of DIN and SRP to these HABs at a variety of sites on southeast Florida's reefs.

### 2. Materials and methods

# 2.1. Collection sites for C:N:P analysis of macroalgae: 1994–1998

To assess variability in tissue C:N:P ratios of C. isthmocladum over the wider Caribbean region (Fig. 1), we collected plants by SCUBA from a variety of reef sites in depths of 15-40 m in the Greater Antilles (Isla de Culebra, PR; Dominican Republic; Discovery Bay, Jamaica) and Lesser Antilles (Bird Island, Antigua; Prickley Pear Cays, St. Martin; Point Perces, Guadaloupe; Ile Perle, Martinique; Diamond Rock, Martinique; Dark Head, St. Vincent) in May/June of 1995 and 1996 during research cruises aboard the R/V Sea Diver. Additional collections of C. isthmocladum were made on reefs in the Abacos, Bahamas (Powell Cay, Munjack Cay; 7-10 m depths) in July of 1995 and at several locations in the Negril Marine Park, Jamaica (Little Bay, Ironshore, South Negril, and Davis Cove, 5-23 m depths; Lapointe and Thacker, 2002) during 1998.

In southeast Florida, C. isthmocladum was collected for C:N:P analysis between 1994 and 1996 on reefs in Palm Beach and Broward counties (26-43 m depths; Lapointe and Hanisak, 1997). We collected C. isthmocladum tissue from four sites in Palm Beach and Martin counties in August 1994 (Princess Anne, North Colonel's Ledge, Jupiter Ledge, Hobe Sound; Lapointe, 1997); from Jupiter Ledge, off northern Palm Beach County, monthly between May and August, 1995; and from several sites in northern Broward (Deerfield Reef) and Palm Beach counties (Jupiter Ledge, Hopper Barge, Hole in the Wall, North Colonel's Ledge, Spadefish Point, Juno Ball, South Double Ledges, Princess Anne, Boca Raton near the sewage outfall, and Spanish River Reef) between June and August, 1996. In addition, other abundant macroalgae (Chlorophyta, Rhodophyta, and Phaeophyta) were collected from several reef sites in Broward and Palm Beach counties in 1996 and analyzed to allow broader assessments of phylogenetic variability in C:N:P contents.

### 2.2. Analysis of macroalgae for C:N:P

The collections of macroalgae were processed and analyzed for tissue C:N:P contents. The Caribbean samples (Fig. 1) were prepared aboard the R/V Sea



Fig. 1. Map showing location of study sites in the wider Caribbean region and southeast Florida (inset).

Diver, whereas the Florida samples were processed in the Marine Nutrient Dynamics Laboratory at HBOI in Ft Pierce, FL. In both cases, composite samples (thalli from five to eight different plants) of freshly collected macroalgae were immediately sorted, cleaned of visible epiphytes and sediments, and rinsed briefly (3–5 s) in deionized water to remove salt and debris. The cleaned, composite samples were dried in a Fisher Scientific Isotemp<sup>TM</sup> oven at 65 °C for 48 h. The dried macroalgae were ground to a fine powder using a mortar and pestle and stored in plastic vials in a dessicator. Samples of the dried, powdered macroalgae were analyzed for C:N:P contents at the Nutrient Analytical Services Laboratory, University of Maryland, Solomons, MD. Tissue C and N were measured on an Exeter Analytical, Inc. (EAI) CE-440 Elemental Analyzer, whereas P was measured following the methodology of Asplia et al. (1976) using a Technicon Autoanalyzer II with a IBM compatible Labtronics

Inc. DP500 software data collection system (D'Elia et al., 1997).

#### 2.3. Seawater nutrient analyses

To quantify DIN (= $\rm NH_4^+-N + \rm NO_3^--N + \rm NO_2^--N$ ) and SRP ( $\rm PO_4^{3-}-P$ ) availability on southeast Florida's reefs, SCUBA divers collected near-bottom water samples for low level nutrient analysis from a variety of reef sites in Palm Beach and Broward counties in summer 1996 (June–August). Replicate (n = 3-6) water samples were collected by divers from the near-bottom layer (5 cm above reef surface) into clean, HDPE bottles. The water samples were held on ice in a cooler and subsequently filtered through a Gelman 0.45  $\mu$ m GF/F filter and frozen until analysis. Within 28 days of collection, the samples were analyzed for  $\rm NH_4^+-N$ ,  $\rm NO_3^--N$ ,  $\rm NO_2^--N$ , and  $\rm PO_4^{3^-}-P$ on either a Bran and Luebbe TRAACS 2000 Table 1

Tissue levels (% dry wt.) of carbon (C), nitrogen (N), phosphorus (P), and C:N, C:P, and N:P molar ratios of *Codium isthmocladum* from southeast Florida and the wider Caribbean

| Location                   | Site                 | Date    | %C          | %N         | %P         | C:N        | C:P        | N:P        |
|----------------------------|----------------------|---------|-------------|------------|------------|------------|------------|------------|
| Florida                    |                      |         |             |            |            |            |            |            |
| Martin Co.                 | Hobe Sound           | 8/7/94  | 11.71       | 1.07       | 0.06       | 13         | 503        | 39         |
| Palm Beach Co.             | Jupiter Ledge        | 8/7/94  | 11.93       | 1.00       | 0.05       | 14         | 615        | 44         |
|                            |                      | 5/29/95 | 10.50       | 0.57       | 0.05       | 21         | 542        | 25         |
|                            |                      | 6/30/95 | 6.03        | 0.52       | 0.03       | 14         | 518        | 38         |
|                            |                      | 7/27/95 | 10.30       | 0.72       | 0.03       | 17         | 885        | 53         |
|                            |                      | 8/12/95 | 9.65        | 0.74       | 0.04       | 15         | 622        | 41         |
|                            |                      | 8/16/96 | 10.80       | 1.23       | 0.07       | 10         | 398        | 39         |
|                            | Hole in the Wall     | 7/15/96 | 8.34        | 1.44       | 0.11       | 7          | 196        | 29         |
|                            | Spadefish Point      | 7/15/96 | 8.85        | 1.01       | 0.07       | 10         | 326        | 32         |
|                            | Juno Ball            | 7/21/96 | 9.59        | 0.77       | 0.05       | 15         | 495        | 34         |
|                            | N. Colonel's Ledge   | 8/7/94  | 9.74        | 1.06       | 0.07       | 11         | 359        | 33         |
|                            |                      | 8/16/96 | 10.70       | 1.11       | 0.15       | 11         | 184        | 16         |
|                            | Princess Anne        | 8/7/94  | 10.68       | 0.97       | 0.06       | 13         | 459        | 36         |
|                            |                      | 6/18/96 | 9.21        | 1.12       | 0.08       | 10         | 297        | 31         |
|                            |                      | 7/20/96 | 10.90       | 1.10       | 0.07       | 12         | 402        | 35         |
|                            | S. Double Ledges     | 7/21/96 | 9.45        | 0.85       | 0.06       | 13         | 406        | 31         |
|                            | Boca Raton Outfall   | 8/27/96 | 8.79        | 1.17       | 0.06       | 9          | 378        | 43         |
| Broward Co.                | Deerfield Reef       | 8/27/96 | 12.00       | 1.33       | 0.07       | 11         | 442        | 42         |
| Florida mean $\pm$ 1S.D.   |                      |         | $9.95 \pm$  | $0.99 \pm$ | $0.07 \pm$ | 12.4 $\pm$ | $446 \pm$  | $35.7 \pm$ |
|                            |                      |         | 1.41        | 0.24       | 0.03       | 3.2        | 160        | 7.9        |
| Caribbean                  |                      |         |             |            |            |            |            |            |
| Puerto Rico                | Isla de Culebra      | 6/2/95  | 12.90       | 0.74       | 0.03       | 20         | 1109       | 55         |
| St. Martin                 | Prickly Pear Cays    | 6/6/95  | 17.00       | 0.61       | 0.09       | 33         | 487        | 15         |
| Antigua                    | Bird Island          | 6/9/95  | 14.90       | 0.91       | 0.04       | 19         | 961        | 50         |
| Guadeloupe                 | Pointe Perces        | 6/11/95 | 12.60       | 0.64       | 0.04       | 23         | 812        | 35         |
| Martinique                 | Rocher de la Perle 1 | 6/13/95 | 13.50       | 1.01       | 0.06       | 16         | 580        | 37         |
| *                          | Rocher de la Perle 2 | 6/13/95 | 12.30       | 0.78       | 0.05       | 18         | 634        | 34         |
|                            | Rocher du Diamant    | 6/15/95 | 10.60       | 0.72       | 0.05       | 17         | 547        | 32         |
| Little St. Vincent         | Dark Head            | 6/19/95 | 15.00       | 0.99       | 0.05       | 18         | 774        | 44         |
| Powell Cav                 | Powell Channel 1     | 7/4/95  | 16.00       | 0.95       | 0.04       | 20         | 1032       | 53         |
| •                          | Powell Channel 2     | 7/4/95  | 12.70       | 0.60       | 0.02       | 25         | 1638       | 66         |
| Munjack Cay                | Munjack Cave 1       | 7/5/95  | 16.10       | 1.02       | 0.03       | 18         | 1384       | 75         |
|                            | Munjack Cave 2       | 7/6/95  | 13.60       | 1.06       | 0.04       | 15         | 877        | 59         |
|                            | Munjack Reef 1       | 7/7/95  | 15.10       | 1.04       | 0.03       | 17         | 1298       | 77         |
|                            | Munjack Reef 2       | 7/7/95  | 14.80       | 1.06       | 0.03       | 16         | 1272       | 78         |
| Dominican Rep.             | St. Cruz de Barahona | 5/30/96 | 14.30       | 0.49       | 0.03       | 34         | 1229       | 36         |
| Jamaica                    | Discovery Bay        | 6/2/96  | 14.47       | 0.88       | 0.04       | 19         | 933        | 49         |
|                            | Davis Cove, Deep     | 8/98    | 15.60       | 0.80       | 0.04       | 23         | 1006       | 44         |
|                            | South Negril, Deep   | 8/98    | 16.30       | 1.02       | 0.05       | 19         | 841        | 45         |
|                            | Ironshore            | 8/98    | 17.40       | 1.18       | 0.05       | 17         | 897        | 52         |
|                            | Little Bay, Shallow  | 8/98    | 21.20       | 1.26       | 0.04       | 20         | 1367       | 70         |
|                            | Little Bay. Deep     | 8/98    | 15.70       | 0.76       | 0.03       | 24         | 1350       | 56         |
| Caribbean Mean $\pm$ 1S.D. |                      |         | $14.86~\pm$ | $0.88 \pm$ | $0.04 \pm$ | $20.5 \pm$ | $1001 \pm$ | $50.6 \pm$ |
|                            |                      |         | 2.18        | 0.20       | 0.01       | 4.9        | 306        | 16.0       |
| Grand Mean $\pm$ 1S.D.     |                      |         | $12.60 \pm$ | $0.93 \pm$ | $0.05 \pm$ | 16.7 $\pm$ | $745 \pm$  | $43.7~\pm$ |
|                            |                      |         | 3.08        | 0.23       | 0.02       | 5.8        | 372        | 14.9       |

1096

Table 2

Tissue levels (% dry wt.) of carbon (C), nitrogen (N), and phosphorus (P), and C:N, C:P, and N:P molar ratios in macroalgae from southeast Florida

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phylum                        | Site               | Date        | Species                   | %C                                              | %N                                              | %P                                              | C:N             | C:P                                           | N:P                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|-------------|---------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------|-----------------------------------------------|-------------------------------------------------|
| $ \begin{array}{c} \mbox{Hole in the Wall } \mbox{Pirice} \end{tabular} tabula$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chlorophyta                   | Jupiter Ledge      | 8/16/96     | Codium isthmocladum       | 10.80                                           | 1.23                                            | 0.07                                            | 10              | 398                                           | 39                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Hole in the Wall   | 7/15/96     | Anadyomene stellata       | 23.30                                           | 2.38                                            | 0.14                                            | 11              | 429                                           | 38                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                    |             | Codium decorticatum       | 6.09                                            | 0.66                                            | 0.07                                            | 11              | 224                                           | 21                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                    |             | Codium isthmocladum       | 8.34                                            | 1.44                                            | 0.11                                            | 7               | 196                                           | 29                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                    |             | Codium repens             | 11.60                                           | 1.34                                            | 0.07                                            | 10              | 427                                           | 42                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                    |             | Ulva lactuca              | 20.20                                           | 2.26                                            | 0.10                                            | 10              | 521                                           | 50                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Spadefish Point    | 7/15/96     | Anadyomene stellata       | 21.70                                           | 1.78                                            | 0.10                                            | 14              | 560                                           | 39                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                    |             | Codium isthmocladum       | 8.85                                            | 1.01                                            | 0.07                                            | 10              | 326                                           | 32                                              |
| $ \begin{array}{c} \mbox{Colonel's Ledge} & Slo6 & Colum repens & 12.00 & 0.94 & 0.06 & 15 & 516 & 35 \\ \mbox{N. Colonel's Ledge} & Slo96 & Colum isthmocladum & 9.21 & 1.12 & 0.08 & 10 & 297 & 31 \\ \mbox{Ulva lactuca} & 18.70 & 1.96 & 0.10 & 11 & 482 & 43 \\ \mbox{72096} & Colum isthmocladum & 11.10 & 1.09 & 0.07 & 12 & 409 & 34 \\ \mbox{72096} & Colum isthmocladum & 10.70 & 1.11 & 0.06 & 11 & 460 & 41 \\ \mbox{S. Double Ledge} & 7/21/96 & Colum isthmocladum & 9.45 & 0.66 & 0.05 & 15 & 437 & 29 \\ \mbox{Colum isthmocladum } & 9.45 & 0.85 & 0.06 & 13 & 406 & 31 \\ \mbox{Colum isthmocladum } & 9.45 & 0.85 & 0.05 & 16 & 473 & 29 \\ \mbox{Colum isthmocladum } & 9.03 & 1.11 & 0.10 & 9 & 233 & 25 \\ \mbox{Boca Raton Outfall } & 8/27/96 & Colum isthmocladum & 8.79 & 1.17 & 0.06 & 9 & 378 & 43 \\ \mbox{Caluerpa racemosa} & 14.30 & 1.55 & 0.07 & 11 & 527 & 49 \\ \mbox{Decrlield Reef} & 8/15/96 & Colum isthmocladum & 10.20 & 1.23 & 0.06 & 10 & 438 & 45 \\ \mbox{Caluerpa racemosa} & 14.30 & 1.55 & 0.07 & 11 & 527 & 49 \\ \mbox{Decrlield Reef} & 8/15/96 & Colum isthmocladum & 12.00 & 1.33 & 0.07 & 11 & 442 & 42 \\ \mbox{Chlorophyta} & 8/27/96 & Colum isthmocladum & 12.00 & 1.33 & 0.07 & 11 & 442 & 42 \\ \mbox{Chlorophyta} & 15.0 & \mbox{Triperiod} & 7 & 199 & 27 \\ \mbox{Graciaria mammalaria } 18.70 & 2.21 & 0.08 & 11.44 & 403 \pm 35.54 \\ \mbox{Halpmenia foridma} & 7.122 & 1.48 & 0.13 & 6 & 143 & 25 \\ \mbox{Spadefish Point} & 7/15/96 & Chrysymenia sp. & 6.18 & 0.98 & 0.08 & 7 & 199 & 27 \\ \mbox{Graciaria mammalaria } 11.20 & 1.26 & 0.08 & 10 & 361 & 35 \\ \mbox{Spadefish Point} & 7/15/96 & Grysymenia sp. & 3.09 & 0.30 & 0.03 & 12 & 266 & 22 \\ \mbox{Halpmenia foridma} & 11.10 & 1.44 & 0.10 & 14 & 356 & 25 \\ \mbox{Halpmenia foridma} & 11.00 & 1.84 & 0.08 & 11 & 348 & 33 \\ \mbox{Chrysymenia sp. } & 3.09 & 0.30 & 0.03 & 12 & 266 & 22 \\ \mbox{Halpmenia foridma} & 11.00 & 1.44 & 0.10 & 9 & 302 & 32 \\ \mbox{Gravephyta} & \mbox{Hole in the Wall} & 7/15/96 & Srypopodium zonale & 2.000 & 1.18 & 0.08 & 11 & 348 & 33 \\ \mbox{Halpmenia foridma} & 11.00 & 0.03 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Juno Ball          | 7/21/96     | Codium isthmocladum       | 9.59                                            | 0.77                                            | 0.05                                            | 15              | 495                                           | 34                                              |
| N. Colonel's Ledge $8/16/96$ Codium isthmocladum $1.070$ $1.11$ $0.15$ $11$ $184$ $16$ Princess Anne $6/18/96$ Codium isthmocladum $11.10$ $0.05$ $1.01$ $1482$ $43$ $7/20/96$ Codium isthmocladum $11.10$ $1.096$ $0.10$ $11$ $482$ $43$ $7/20/96$ Codium isthmocladum $11.10$ $0.07$ $12$ $409$ $34$ Codium isthmocladum $9.48$ $0.66$ $0.05$ $15$ $437$ $29$ Codium isthmocladum $9.48$ $0.65$ $0.05$ $16$ $473$ $29$ Codium isthmocladum $9.48$ $0.65$ $0.05$ $16$ $473$ $29$ Codium isthmocladum $9.03$ $1.11$ $0.10$ $9$ $233$ $25$ Boca Raton Outfall $8/27/96$ Codium isthmocladum $10.20$ $1.23$ $0.06$ $10$ $438$ $45$ ChlorophytaKeff $8/15/96$ Codium isthmocladum $12.00$ $1.33$ $0.07$ $11$ $442$ $42$ RhodophytaHole in the Wall $7/15/96$ Chrysymenia sp.<br>Gracilaria mammalaris $8.70$ $2.21$ $0.15$ $10$ $321$ $33$ Spadefish Point $7/15/96$ Chrysymenia sp.<br>Gracilaria mammalaris $1.870$ $2.21$ $0.15$ $1.432$ $25$ Spadefish Point $7/15/96$ Chrysymenia sp.<br>Gracilaria mammalaris $8.70$ $0.00$ $11$ $381$ $34$ Chlorophyta $1.92$ $1.92$ $1.92$ <td rowspan="3"></td> <td></td> <td></td> <td>Codium repens</td> <td>12.00</td> <td>0.94</td> <td>0.06</td> <td>15</td> <td>516</td> <td>35</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                    |             | Codium repens             | 12.00                                           | 0.94                                            | 0.06                                            | 15              | 516                                           | 35                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | N. Colonel's Ledge | 8/16/96     | Codium isthmocladum       | 10.70                                           | 1.11                                            | 0.15                                            | 11              | 184                                           | 16                                              |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Princess Anne      | 6/18/96     | Codium isthmocladum       | 9.21                                            | 1.12                                            | 0.08                                            | 10              | 297                                           | 31                                              |
| $ \begin{array}{c} 7/20^{96} & Codium is thmocladum & 11.10 & 1.09 & 0.07 & 12 & 409 & 34 \\ Codium is thmocladum & 10.70 & 1.11 & 0.06 & 11 & 460 & 41 \\ \hline S. Double Ledge & 7/21/96 & Codium decorticatum & 8.48 & 0.66 & 0.05 & 15 & 437 & 29 \\ Codium is thmocladum & 9.45 & 0.85 & 0.06 & 13 & 406 & 31 \\ Codium is thmocladum & 9.03 & 1.11 & 0.10 & 9 & 233 & 25 \\ \hline Boca Raton Outfall & 8/27/96 & Codium is thmocladum & 8.79 & 1.17 & 0.06 & 9 & 378 & 43 \\ Cauter repers a Cautos at 14.30 & 1.55 & 0.07 & 11 & 527 & 49 \\ \hline Boca Raton Outfall & 8/27/96 & Codium is thmocladum & 10.20 & 1.23 & 0.06 & 10 & 438 & 45 \\ 8/27/96 & Codium is thmocladum & 10.20 & 1.23 & 0.06 & 10 & 438 & 45 \\ 8/27/96 & Codium is thmocladum & 10.20 & 1.33 & 0.07 & 11 & 442 & 42 \\ \hline Chlorophyta mean \pm 1 S.D. & 1.93 \pm 1.25 \pm 0.08 \pm 11.4 \pm 403 \pm 35.5 \pm \\ mean \pm 1 S.D. & 1.93 \pm 1.26 & 0.08 & 7 & 199 & 27 \\ Gracitaria mammalaris & 18.70 & 2.21 & 0.15 & 10 & 321 & 33 \\ Alaymenia floridana & 11.20 & 1.26 & 0.08 & 10 & 361 & 35 \\ Scinaia complanata & 7.22 & 1.48 & 0.13 & 6 & 143 & 25 \\ Spadefish Point & 7/1596 & Chrysymenia sp. & 8.43 & 1.02 & 0.07 & 11 & 224 & 21 \\ S. Double Ledge & 7/21/96 & Botryocladia occidentais 10.70 & 1.24 & 0.12 & 10 & 230 & 23 \\ Bryothammion sp. & 19.20 & 2.00 & 0.13 & 11 & 381 & 34 \\ Chrysymenia sp. & 3.09 & 0.30 & 0.03 & 12 & 266 & 22 \\ Halymenia floridana & 11.10 & 0.3 & 0.09 & 15 & 344 & 25 \\ Halymenia floridana & 11.10 & 0.3 & 0.09 & 15 & 344 & 25 \\ Halymenia floridana & 11.70 & 1.44 & 0.10 & 14 & 356 & 25 \\ Halymenia floridana & 11.70 & 1.44 & 0.10 & 9 & 302 & 32 \\ Boca Raton Outfall & 8/2796 & Grateloupia sp. & 13.40 & 1.03 & 0.09 & 15 & 344 & 25 \\ Halymenia floridana & 11.70 & 1.44 & 0.10 & 9 & 302 & 32 \\ Brach \pm 1 S.D. & Holymenia floridana & 11.70 & 1.68 & 0.13 & 13 & 383 & 29 \\ Spadefish Point & 7/15/96 & Grateloupia sp. & 13.40 & 1.03 & 0.09 & 15 & 344 & 25 \\ Halymenia floridana & 11.70 & 1.68 & 0.13 & 13 & 383 & 29 \\ Spadefish Point & 7/15/96 & Dicyota divaricata & 19.30 & 1.68 & 0.13 & 13 & 383 & 29 \\ Spadefish Point & 7/15/96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                    |             | Ulva lactuca              | 18.70                                           | 1.96                                            | 0.10                                            | 11              | 482                                           | 43                                              |
| $ \begin{array}{c} \mbox{Column isthmocialum} & 10.70 & 1.11 & 0.06 & 11 & 460 & 41 \\ \mbox{Column decorricatum} & 8.48 & 0.66 & 0.05 & 15 & 437 & 29 \\ \mbox{Column isthmocladum} & 9.45 & 0.85 & 0.06 & 13 & 406 & 31 \\ \mbox{Column cepens} & 9.18 & 0.65 & 0.05 & 16 & 473 & 29 \\ \mbox{Boca Raton Outfall} & 8/27/96 & Column decorricatum & 9.03 & 1.11 & 0.10 & 9 & 233 & 25 \\ \mbox{Boca Raton Outfall} & 8/27/96 & Column isthmocladum & 8.79 & 1.17 & 0.06 & 9 & 378 & 43 \\ \mbox{Caluerpa racemosa} & 14.30 & 1.55 & 0.07 & 11 & 527 & 49 \\ \mbox{Caluerpa racemosa} & 14.30 & 1.55 & 0.07 & 11 & 527 & 49 \\ \mbox{Caluerpa racemosa} & 14.30 & 1.55 & 0.07 & 11 & 442 & 42 \\ \mbox{Chlorophyta} & 8/15/96 & Column isthmocladum & 12.00 & 1.33 & 0.07 & 11 & 442 & 42 \\ \mbox{Chlorophyta} & 4.5 & 0.86 & 0.08 & 7 & 199 & 27 \\ \mbox{Gracilaria mammalaris} & 18.70 & 2.21 & 0.15 & 10 & 321 & 33 \\ \mbox{Halymenia floriadma} & 11.20 & 1.26 & 0.08 & 10 & 361 & 35 \\ \mbox{Spadefish Point} & 7/15/96 & Chrysymenia sp. & 6.18 & 0.98 & 0.08 & 7 & 199 & 27 \\ \mbox{Gracilaria mammalaris} & 18.70 & 2.21 & 0.15 & 10 & 321 & 33 \\ \mbox{Halymenia floriadma} & 11.20 & 1.26 & 0.08 & 10 & 361 & 35 \\ \mbox{Spadefish Point} & 7/15/96 & Chrysymenia sp. & 8.43 & 1.02 & 0.07 & 11 & 224 & 21 \\ \mbox{S. Double Ledge} & 7/21/96 & Boryocladia accidentalis & 10.70 & 1.24 & 0.12 & 10 & 230 & 23 \\ \mbox{Spadefish Point} & 7/15/96 & Chrysymenia sp. & 3.09 & 0.30 & 0.03 & 12 & 266 & 22 \\ \mbox{Halymenia floriadma} & 11.10 & 0.88 & 0.06 & 15 & 4477 & 32 \\ \mbox{Halymenia floriadma} & 11.10 & 0.38 & 0.06 & 15 & 4477 & 32 \\ \mbox{Halymenia floriadma} & 11.00 & 0.38 & 0.09 & 15 & 384 & 25 \\ \mbox{Halymenia floriadma} & 11.00 & 0.30 & 0.03 & 12 & 266 & 22 \\ \mbox{Halymenia floriadma} & 11.00 & 0.38 & 0.06 & 15 & 4477 & 32 \\ \mbox{Halymenia floriadma} & 11.00 & 0.38 & 0.06 & 15 & 4477 & 32 \\ \mbox{Halymenia floriadma} & 11.00 & 0.48 & 0.06 & 15 & 344 & 25 \\ \mbox{Halymenia floriadma} & 11.00 & 0.48 & 0.06 & 15 & 344 & 25 \\ \mbox{Halymenia floriadma} & 11.00 & 0.48 & 0.09 & 15 & 344 & 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                    | 7/20/96     | Codium isthmocladum       | 11.10                                           | 1.09                                            | 0.07                                            | 12              | 409                                           | 34                                              |
| S. Double Ledge 7/21/96 Codium ishmocladum 9.43 80 0.65 0.05 15 437 29<br>Codium repens 9.18 0.65 0.06 13 406 31<br>Codium repens 9.18 0.65 0.05 16 473 29<br>Boca Raton Outfall 8/27/96 Codium ishmocladum 8.79 1.11 0.10 9 2.33 25<br>Boca Raton Outfall 8/27/96 Codium ishmocladum 10.20 1.23 0.06 10 438 45<br>8/27/96 Codium ishmocladum 10.20 1.23 0.06 10 438 45<br>8/27/96 Codium ishmocladum 10.20 1.33 0.07 11 442 42<br>Chlorophyta<br>mean $\pm$ 1 S.D.<br>Rhodophyta Hole in the Wall 7/15/96 Chrysymenia sp. 6.18 0.98 0.08 7 199 27<br>Gracilaria mammalaris 18.70 2.21 0.15 10 331 33<br>Halymenia floridana 11.20 1.26 0.08 10 361 35<br>Scinaia complanata 7.22 1.48 0.13 6 143 25<br>Spadefish Point 7/15/96 Chrysymenia sp. 8.43 1.02 0.07 11 224 21<br>S. Double Ledge 7/21/96 Botrysocladia ccidentalis 10.70 1.24 0.12 10 230 23<br>Bryothamnion sp. 19.20 2.00 0.13 11 381 34<br>Chrysymenia floridana 11.10 0.88 0.06 15 477 32<br>Spanish River 8/15/96 Grateloupia sp. 13.80 1.14 0.10 14 356 25<br>Halymenia floridana 11.10 0.88 0.06 12 385 33<br>Bryothamnion sp. 19.20 2.00 0.13 11 381 34<br>Chrysymenia floridana 11.10 0.88 0.06 12 384 25<br>Halymenia floridana 11.10 0.88 0.06 12 384 33<br>Boca Raton Outfall 8/27/96 Grateloupia sp. 13.80 1.14 0.10 14 356 25<br>Halymenia floridana 11.70 1.44 0.10 9 302 32<br>Spanish River 8/15/96 Grateloupia sp. 13.40 1.03 0.09 15 384 25<br>Halymenia floridana 11.00 1.80 0.118 0.08 11 348 33<br>Rhodophyta Hole in the Wall 7/15/96 Stypopodium zonale 20.00 1.50 0.08 16 645 41<br>Spadefish Point 7/15/96 Dictyota divaricata 19.30 1.68 0.13 13 383 29<br>Stypopodium zonale 26.00 1.50 0.09 $\pm$ 10.9 $\pm$ 313 $\pm$ 28.6 $\pm$<br>Halymenia floresia 19.30 1.68 0.13 13 383 29<br>Stypopodium zonale 26.00 1.50 0.09 $\pm$ 10.9 $\pm$ 812 $\pm$ 22.2<br>Phaeophyta Hole in the Wall 7/21/96 Dictyota divaricata 19.30 1.68 0.13 13 383 29<br>Stypopodium zonale 28.30 1.65 0.07 20 1043 52<br>Phaeophyta Hole in the Wall 7/21/96 Dictyota divaricata 19.30 1.64 0.07 19 991 52<br>Juno Ball 7/21/96 Dictyota divaricata 19.30 1.65 0.07 20 1043 52<br>Phaeophyta Hole in the Wall 7/21/96 Dictyota divaricata 19.30 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                    | = 12 1 10 4 | Codium isthmocladum       | 10.70                                           | 1.11                                            | 0.06                                            | 11              | 460                                           | 41                                              |
| $ \begin{array}{c} Codium is the codum is $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | S. Double Ledge    | 7/21/96     | Codium decorticatum       | 8.48                                            | 0.66                                            | 0.05                                            | 15              | 437                                           | 29                                              |
| $ \begin{array}{c} \mbox{Colum repens} & 9.18 & 0.65 & 0.05 & 16 & 47.3 & 29 \\ \mbox{Boca Raton Outfall} & 8/27/96 & Colium isthmocladum & 8.79 & 1.17 & 0.06 & 9 & 378 & 43 \\ \mbox{Caulerpa racemosa} & 14.30 & 1.55 & 0.07 & 11 & 527 & 49 \\ \mbox{Decrfield Reef} & 8/15/96 & Colium isthmocladum & 10.20 & 1.23 & 0.06 & 10 & 438 & 45 \\ \mbox{8/27/96 } & Colium isthmocladum & 10.20 & 1.33 & 0.07 & 11 & 442 & 42 \\ \mbox{Chlorophyta} & 8/27/96 & Colium isthmocladum & 10.20 & 1.33 & 0.07 & 11 & 442 & 42 \\ \mbox{Chlorophyta} & 11.93 \pm & 1.25 \pm & 0.08 \pm & 11.4 \pm & 403 \pm & 35.5 \pm \\ \mbox{4.5 } & 0.46 & 0.03 & 2.22 & 107 & 8.41 \\ \mbox{Rhodophyta} & Hole in the Wall & 7/15/96 & Chrysymenia sp. & 6.18 & 0.98 & 0.08 & 7 & 199 & 27 \\ \mbox{Gracilaria mammalaris} & 18.70 & 2.21 & 0.15 & 10 & 321 & 33 \\ \mbox{Halymenia floridama} & 11.20 & 1.26 & 0.08 & 10 & 361 & 35 \\ \mbox{Spadefish Point} & 7/15/96 & Chrysymenia sp. & 8.43 & 10.2 & 0.07 & 11 & 224 & 21 \\ \mbox{Spadefish Point} & 7/15/96 & Chrysymenia sp. & 10.70 & 1.24 & 0.12 & 10 & 230 & 23 \\ \mbox{Spadefish Point} & 7/15/96 & Chrysymenia sp. & 3.09 & 0.30 & 0.03 & 12 & 266 & 22 \\ \mbox{Halymenia floridama} & 11.10 & 0.88 & 0.06 & 15 & 477 & 32 \\ \mbox{Spadefish River} & 8/15/96 & Grateloupia sp. & 13.80 & 1.14 & 0.10 & 14 & 356 & 25 \\ \mbox{Halymenia floridama} & 11.00 & 0.89 & 0.06 & 12 & 385 & 33 \\ \mbox{Boca Raton Outfall} & 8/27/96 & Halymenia floresia & 8.96 & 0.89 & 0.06 & 12 & 385 & 33 \\ \mbox{Boca Raton Outfall} & 8/27/96 & Halymenia floresia & 10.80 & 1.18 & 0.08 & 11 & 348 & 33 \\ \mbox{Rhodophyta} & Hole in the Wall & 7/15/96 & Stypopodium zonale & 20.0 & 1.50 & 0.08 & 16 & 645 & 41 \\ \mbox{Spadefish Point} & 7/15/96 & Stypopodium zonale & 26.90 & 1.64 & 0.07 & 19 & 9 & 15 & 384 & 25 \\ \mbox{Halymenia floresia} & 19.30 & 1.64 & 0.07 & 19 & 9 & 15 & 383 & 29 \\ \mbox{Sypopodium zonale} & 25.86 \pm & 1.59 \pm & 0.09 \pm & 19.0 \pm & 812 \pm 4.24 \pm 24 & 24 & 24 & 24 & 24 & 24 & 24 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                    |             | Codium isthmocladum       | 9.45                                            | 0.85                                            | 0.06                                            | 13              | 406                                           | 31                                              |
| Hopper Barge $\$1/19^{40}$ Codium decorricatum $9.03$ $1.11$ $0.10$ $9$ $223$ $25$ Boca Raton Outfall $\$/27/96$ Codium isthmocladum $8.79$ $1.17$ $0.06$ $9$ $378$ $43$ Deerfield Reef $\$/57/96$ Codium isthmocladum $10.20$ $1.23$ $0.06$ $10$ $438$ $45$ Boca Raton Outfall $\$/27/96$ Codium isthmocladum $12.00$ $1.33$ $0.07$ $11$ $442$ $42$ Chlorophyta mean $\pm 1$ S.D.LassLass $11.93 \pm$ $1.25 \pm$ $0.08 \pm$ $11.4 \pm$ $403 \pm$ $35.5 \pm$ RhodophytaHole in the Wall $7/15/96$ Chrysymenia sp.<br>Gracilaria mammalaris $6.18$ $0.98$ $0.08$ $7$ $199$ $27$ Spadefish Point $7/15/96$ Chrysymenia sp.<br>Gracilaria mammalaris $6.18$ $0.98$ $0.08$ $10$ $361$ $35$ Spadefish Point $7/15/96$ Chrysymenia sp.<br>Botryochaduia occidentalis $10.70$ $1.24$ $0.12$ $10$ $230$ $23$ Spadefish Point $7/15/96$ Chrysymenia sp.<br>Botryochaduia sp.<br>Botryochaduia sp. $3.09$ $0.30$ $0.03$ $12$ $266$ $22$ Halymenia floridana $11.10$ $0.88$ $0.06$ $15$ $477$ $32$ Spanish River $\$/15/96$ Grateloupia sp.<br>Halymenia floridana $11.10$ $0.88$ $0.06$ $12$ $385$ $33$ Boca Raton Outfall<br>Mean $\pm 1$ SD. $\$/15/96$ Grateloupia sp.<br>Halymenia floresia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                    | 044404      | Codium repens             | 9.18                                            | 0.65                                            | 0.05                                            | 16              | 473                                           | 29                                              |
| Boca Raton Outrall $8/2/96$ Codum istimociadum $8.9$ $1.17$ $0.06$ $9$ $378$ $43$ Deerfield Reef $8/15/96$ Codium istimociadum $10.20$ $1.23$ $0.06$ $10$ $438$ $45$ Mean $\pm 1$ S.D. $8/27/96$ Codium istimociadum $12.00$ $1.33$ $0.07$ $11$ $442$ $42$ Chlorophyta<br>mean $\pm 1$ S.D.Hole in the Wall $7/15/96$ Chrysymenia sp.<br>Gracillaria mammalaris $6.18$ $0.98$ $0.08$ $7$ $199$ $27$ Gracillaria mammalaris $18.70$ $2.21$ $0.15$ $10$ $321$ $33$ Spadefish Point $7/15/96$ Chrysymenia sp.<br>Gracillaria mammalaris $6.18$ $0.98$ $0.08$ $7$ $199$ $27$ Gracillaria mammalaris $11.20$ $1.26$ $0.08$ $10$ $361$ $35$ Spadefish Point $7/15/96$ Chrysymenia sp.<br>Bryothannion sp. $8.43$ $1.02$ $0.13$ $11$ $281$ $23$ Spanish River $8/15/96$ Grateloupia sp.<br>Halymenia floridana $11.10$ $0.88$ $0.06$ $15$ $477$ $32$ Spanish River $8/15/96$ Grateloupia sp.<br>Halymenia floridana $11.10$ $0.89$ $0.06$ $12$ $385$ $33$ Boca Raton Outrall $8/27/96$ Halymenia floridana $11.10$ $0.89$ $0.06$ $12$ $385$ $33$ Boca Raton Outrall $8/27/96$ Halymenia floridana $11.10$ $0.46$ $0.03$ $2.55$ $87$ $4.82$ <td></td> <td>Hopper Barge</td> <td>8/16/96</td> <td>Codium decorticatum</td> <td>9.03</td> <td>1.11</td> <td>0.10</td> <td>9</td> <td>233</td> <td>25</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | Hopper Barge       | 8/16/96     | Codium decorticatum       | 9.03                                            | 1.11                                            | 0.10                                            | 9               | 233                                           | 25                                              |
| $ \begin{array}{c ccccc} Caluer paracemosa & 14.30 & 1.55 & 0.07 & 11 & 527 & 49 \\ Codium is thmocladum & 10.20 & 1.23 & 0.06 & 10 & 438 & 45 \\ 8/27/96 & Codium is thmocladum & 12.00 & 1.33 & 0.07 & 11 & 442 & 42 \\ \hline \\ Chlorophyta mean \pm 1 S.D. & 11.93 \pm & 1.25 \pm & 0.08 \pm & 11.4 \pm & 403 \pm & 35.5 \pm \\ Rhodophyta & Hole in the Wall & 7/15/96 & Chrysymenia sp. & 6.18 & 0.98 & 0.08 & 7 & 199 & 27 \\ Gracilaria mammalaris & 18.70 & 2.21 & 0.15 & 10 & 321 & 33 \\ Halymenia floridana & 11.20 & 1.26 & 0.08 & 10 & 361 & 35 \\ Spadefish Point & 7/15/96 & Chrysymenia sp. & 8.43 & 1.02 & 0.07 & 11 & 224 & 21 \\ S. Double Ledge & 7/21/96 & Chrysymenia sp. & 8.43 & 1.02 & 0.07 & 11 & 224 & 21 \\ S. Double Ledge & 7/21/96 & Chrysymenia sp. & 8.43 & 1.02 & 0.07 & 11 & 224 & 21 \\ S. Double Ledge & 7/21/96 & Botryocladia occidentalis & 10.70 & 1.24 & 0.12 & 10 & 230 & 23 \\ Pryothammion sp. & 19.20 & 2.00 & 0.13 & 11 & 381 & 34 \\ Chrysymenia sp. & 3.09 & 0.30 & 0.03 & 12 & 266 & 22 \\ Halymenia floridana & 11.10 & 0.88 & 0.06 & 15 & 477 & 32 \\ Spanish River & 8/15/96 & Grateloupia sp. & 13.80 & 1.14 & 0.10 & 14 & 356 & 25 \\ Halymenia floresia & 8.96 & 0.89 & 0.06 & 12 & 385 & 33 \\ Boca Raton Outfall & 8/27/96 & Halymenia floridana & 11.70 & 1.44 & 0.10 & 9 & 302 & 32 \\ Halymenia floresia & 10.80 & 1.18 & 0.08 & 11 & 348 & 33 \\ Rhodophyta Mean \pm 1 S.D. & 11.03 \pm 1.22 \pm 0.09 \pm 10.9 \pm & 313 \pm 28.6 \pm \\ Halymenia floresia & 10.80 & 1.18 & 0.08 & 11 & 348 & 33 \\ Rhodophyta Mole in the Wall & 7/15/96 & Stypopodium zonale & 20.0 & 1.50 & 0.08 & 16 & 645 & 41 \\ Spadefish Point & 7/15/96 & Dictytot divaricata & 19.30 & 1.68 & 0.13 & 13 & 383 & 29 \\ Stypopodium zonale & 26.90 & 1.64 & 0.07 & 19 & 991 & 52 \\ Juno Ball & 7/21/96 & Dictytot divaricata & 19.30 & 1.68 & 0.13 & 13 & 383 & 29 \\ Stypopodium zonale & 28.30 & 1.65 & 0.07 & 20 & 1043 & 52 \\ Phaeophyta & DD & Dictytot divaricata & 19.30 & 1.65 & 0.07 & 20 & 1043 & 52 \\ Phaeophyta & DD & DD & 0.07 & 0.09 \pm & 19.0 \pm & 812 \pm 42.2 \pm & 0.09 \pm & 19.0 \pm & 812 \pm 42.2 \pm & 0.09 \pm & 19.0 \pm & 812 \pm 42.2 \pm & 0.09 \pm $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | Boca Raton Outfall | 8/2//96     | Codium isthmocladum       | 8.79                                            | 1.17                                            | 0.06                                            | 9               | 3/8                                           | 43                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | Deerfald Deef      | 0/15/00     | Caulerpa racemosa         | 14.30                                           | 1.55                                            | 0.07                                            | 11              | 527                                           | 49                                              |
| Chlorophyta mean $\pm 1$ S.D.<br>Rhodophyta Hole in the Wall 7/15/96 <i>Chrysymenia</i> sp. 6.18 0.98 0.08 7 199 27<br><i>Gracilaria mammalaris</i> 18.70 2.21 0.15 10 321 33<br><i>Halymenia floridana</i> 11.20 1.26 0.08 10 361 35<br><i>Scinaia complanata</i> 7.22 1.48 0.13 6 143 25<br>Spadefish Point 7/15/96 <i>Chrysymenia</i> sp. 8.43 1.02 0.07 11 224 21<br>S. Double Ledge 7/21/96 <i>Chrysymenia</i> sp. 19.20 2.00 0.13 11 381 34<br><i>Chrysymenia</i> sp. 3.09 0.30 0.03 12 266 22<br><i>Halymenia floridana</i> 11.10 0.88 0.06 15 477 32<br>Spanish River 8/15/96 <i>Grateloupia</i> sp. 13.80 1.14 0.10 14 356 25<br><i>Halymenia floridana</i> 11.70 1.44 0.10 9 302 32<br>Spanish River 8/15/96 <i>Grateloupia</i> sp. 13.40 1.03 0.09 15 384 25<br><i>Halymenia floridana</i> 11.70 1.44 0.10 9 302 32<br>Phaeophyta Hole in the Wall 7/15/96 <i>Stypopodium zonale</i> 20.0 1.50 0.08 11 348 33<br>Rhodophyta Hole in the Wall 7/15/96 <i>Stypopodium zonale</i> 20.0 1.50 0.08 16 645 41<br>Spadefish Point 7/15/96 <i>Stypopodium zonale</i> 26.90 1.64 0.07 19 991 52<br>Juno Ball 7/21/96 <i>Lobophora variagata</i> 34.80 1.50 0.09 27 997 37<br><i>Stypopodium zonale</i> 28.30 1.65 0.07 20 1043 52<br>Phaeophyta Phaeophyta Phaeophyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | Deerneid Keel      | 8/15/90     | Coalum Isthmoclaaum       | 10.20                                           | 1.23                                            | 0.06                                            | 10              | 438                                           | 45                                              |
| $ \begin{array}{c} \mbox{Chlorophyta} \\ \mbox{mean $\pm 1$ S.D.} \\ \mbox{Rhodophyta} \\ \mbox{Hole in the Wall} \\ \mbox{Hole in the Wall} \\ \mbox{Tr} 15/96 \\ \mbox{Chrysymenia sp.} \\ \mbox{Gracilaria mammalaris} \\ \mbox{Halymenia floridana} \\ \mbox{Tr} 12.0 \\ \mbox{Chrysymenia sp.} \\ \mbox{Spadefish Point} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                    | 8/2//90     | Coalum Isthmoclaaum       | 12.00                                           | 1.55                                            | 0.07                                            | 11              | 442                                           | 42                                              |
| RhodophytaHole in the Wall7/15/96Chrysymenia sp.<br>Gracilaria mammalaris<br>Halymenia floridana<br>scinaia complanata6.180.980.08719927Spadefish Point7/15/96Chrysymenia sp.<br>Hole1.201.260.081036135Spadefish Point7/15/96Chrysymenia sp<br>Horysymenia sp.8.431.020.071122421S. Double Ledge7/21/96Botryocladia occidentalis<br>Bryothamnion sp.19.202.000.131138134Chrysymenia sp.<br>Halymenia floridana11.100.880.061547732Spanish River8/15/96Grateloupia sp.<br>Halymenia floresia8.960.890.061238533Boca Raton Outfall<br>Deerfield Reef8/15/96Grateloupia sp.<br>Halymenia floresia13.401.030.091538425Hadamenia floresia10.801.180.08113483333Rhodophyta<br>Mean ± 1 S.D.Hole in the Wall<br>Spadefish Point7/15/96Stypopodium zonale20.01.500.081664541Phaeophyta<br>Juno Ball7/21/96Lobophora variagata<br>Stypopodium zonale26.901.640.071999152Phaeophyta<br>Duo Ball7/15/96Stypopodium zonale26.901.640.071999152PhaeophytaMal<br>Phaeophyta7/21/96Lobophora variagata<br>Stypopodium zonale26.901.64 <td>Chlorophyta mean <math>\pm 1</math> S.D.</td> <td></td> <td></td> <td></td> <td><math display="block">\begin{array}{c} 11.93 \pm \\ 4.5 \end{array}</math></td> <td><math display="block">\begin{array}{c} 1.25 \pm \\ 0.46 \end{array}</math></td> <td><math display="block">\begin{array}{c} 0.08 \pm \\ 0.03 \end{array}</math></td> <td><math>11.4 \pm 2.22</math></td> <td><math display="block">\begin{array}{c} 403 \pm \\ 107 \end{array}</math></td> <td><math display="block">\begin{array}{c} 35.5 \pm \\ 8.41 \end{array}</math></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chlorophyta mean $\pm 1$ S.D. |                    |             |                           | $\begin{array}{c} 11.93 \pm \\ 4.5 \end{array}$ | $\begin{array}{c} 1.25 \pm \\ 0.46 \end{array}$ | $\begin{array}{c} 0.08 \pm \\ 0.03 \end{array}$ | $11.4 \pm 2.22$ | $\begin{array}{c} 403 \pm \\ 107 \end{array}$ | $\begin{array}{c} 35.5 \pm \\ 8.41 \end{array}$ |
| $ \begin{array}{c} \mbod matrix matrix matrix matrix matrix matrix a labor of the matrix m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rhodophyta                    | Hole in the Wall   | 7/15/96     | Chrysymenia sp.           | 6.18                                            | 0.98                                            | 0.08                                            | 7               | 199                                           | 27                                              |
| $ \begin{array}{c} Halymenia floridana \\ Scinaia complanata \\ Scinaia \\ Scinaia$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                    |             | Gracilaria mammalaris     | 18.70                                           | 2.21                                            | 0.15                                            | 10              | 321                                           | 33                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                    |             | Halymenia floridana       | 11.20                                           | 1.26                                            | 0.08                                            | 10              | 361                                           | 35                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                    |             | Scinaia complanata        | 7.22                                            | 1.48                                            | 0.13                                            | 6               | 143                                           | 25                                              |
| S. Double Ledge7/21/96Botryocladia occidentalis10.701.240.121023023Bryothamnion sp.<br>Chrysymenia sp.<br>Halymenia floridana19.202.000.131138134Chrysymenia sp.<br>Halymenia floridana3.090.300.031226622Spanish River8/15/96Grateloupia sp.<br>Halymenia floresia13.801.140.101435625Boca Raton Outfall<br>Deerfield Reef8/27/96Halymenia floridana11.701.440.10930232Boca Raton Outfall<br>Deerfield Reef8/15/96Grateloupia sp.<br>Halymenia floresia13.401.030.091538425Halymenia floresia10.801.180.08113483333Rhodophyta<br>Mean $\pm$ 1 S.D.11.03 $\pm$ 1.22 $\pm$ 0.09 $\pm$ 10.9 $\pm$ 313 $\pm$ 28.6 $\pm$ Phaeophyta<br>Juno Ball7/15/96Stypopodium zonale20.01.500.081664541Synopodium zonale<br>Stypopodium zonale26.901.640.071999152Juno Ball7/21/96Lobophora variagata<br>Stypopodium zonale34.801.500.092799737Stypopodium zonale<br>Stypopodium zonale25.86 $\pm$ 1.59 $\pm$ 0.09 $\pm$ 19.0 $\pm$ 812 $\pm$ 42.2 $\pm$ PhaeophytaPhaeophyta25.86 $\pm$ 1.59 $\pm$ 0.09 $\pm$ 19.0 $\pm$ 812 $\pm$ 42.2 $\pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | Spadefish Point    | 7/15/96     | Chrysymenia sp            | 8.43                                            | 1.02                                            | 0.07                                            | 11              | 224                                           | 21                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | S. Double Ledge    | 7/21/96     | Botryocladia occidentalis | 10.70                                           | 1.24                                            | 0.12                                            | 10              | 230                                           | 23                                              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                    |             | Bryothamnion sp.          | 19.20                                           | 2.00                                            | 0.13                                            | 11              | 381                                           | 34                                              |
| Halymenia floridana11.100.880.061547732Spanish River $8/15/96$ Grateloupia sp.<br>Halymenia floresia13.801.140.101435625Boca Raton Outfall<br>Deerfield Reef $8/27/96$ Halymenia floridana11.701.440.10930232Boerfield Reef $8/15/96$ Grateloupia sp.<br>Halymenia floresia13.401.030.091538425Nean $\pm 1$ S.D.II.03 $\pm$ $1.22 \pm$ $0.09 \pm$ $10.9 \pm$ $313 \pm$ $28.6 \pm$ PhaeophytaHole in the Wall<br>Spadefish Point $7/15/96$ Stypopodium zonale $20.0$ 1.50 $0.08$ 1664541Juno Ball $7/21/96$ Lobophora variagata<br>Stypopodium zonale $34.80$ 1.50 $0.09 \pm$ $19.0 \pm$ $812 \pm$ $42.2 \pm$ Phaeophyta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                    |             | Chrysymenia sp.           | 3.09                                            | 0.30                                            | 0.03                                            | 12              | 266                                           | 22                                              |
| Spanish River $8/15/96$ Grateloupia sp.<br>Halymenia floresia $13.80$ $1.14$ $0.10$ $14$ $356$ $25$ Boca Raton Outfall<br>Deerfield Reef $8/27/96$ Halymenia floridana $11.70$ $1.44$ $0.10$ $9$ $302$ $32$ Deerfield Reef $8/15/96$ Grateloupia sp.<br>Halymenia floresia $11.70$ $1.44$ $0.10$ $9$ $302$ $32$ Rhodophyta<br>Mean $\pm 1$ S.D. $Rhoden period11.701.440.10930232PhaeophytaJuno Ball7/15/96Stypopodium zonaleStypopodium zonale20.01.500.09 \pm10.9 \pm313 \pm28.6 \pmPhaeophytaPhaeophytaHole in the WallSpadefish Point7/15/96Stypopodium zonaleStypopodium zonale20.01.500.081664541Juno Ball7/21/96Lobophora variagataStypopodium zonale34.801.500.09 \pm19.0 \pm812 \pm42.2 \pmPhaeophyta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                    |             | Halymenia floridana       | 11.10                                           | 0.88                                            | 0.06                                            | 15              | 477                                           | 32                                              |
| Halymenia floresia8.960.890.061238533Boca Raton Outfall<br>Deerfield Reef $8/27/96$<br>$8/15/96$ Halymenia floridana $11.70$ $1.44$ $0.10$ 9 $302$ $32$ Deerfield Reef $8/15/96$<br>$Halymenia floresiaGrateloupia sp.Halymenia floresia13.401.030.091538425RhodophytaMean \pm 1 S.D.11.03 \pm1.22 \pm0.09 \pm10.9 \pm313 \pm28.6 \pmPhaeophytaJuno Ball7/15/96Stypopodium zonaleDictyota divaricata20.01.500.08166454199152Stypopodium zonale26.901.640.07199915299737Stypopodium zonale28.301.650.072010.4352PhaeophytaHole in the WallSpadefish Point7/21/96Lobophora variagataStypopodium zonale34.801.500.09279973799752Stypopodium zonale28.301.650.0720104352Phaeophyta10.9 \pm19.0 \pm812 \pm42.2 \pm42.2 \pm42.2 \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | Spanish River      | 8/15/96     | Grateloupia sp.           | 13.80                                           | 1.14                                            | 0.10                                            | 14              | 356                                           | 25                                              |
| Boca Raton Outfall<br>Deerfield Reef $8/27/96$<br>$8/15/96$ Halymenia floridana<br>Grateloupia sp.<br>Halymenia floresia $11.70$<br>$1.340$ $1.44$<br>$1.03$ $0.10$<br>$9$ $9$<br>$302$ $32$<br>$32$ Rhodophyta<br>Mean $\pm 1$ S.D. $1.13$<br>$1.03 \pm 1.22 \pm$ $0.09 \pm 10.9 \pm 313 \pm 28.6 \pm 4.24$ $0.46$ $0.03$ $2.55$ $87$ $4.82$ Phaeophyta<br>Juno Ball $7/15/96$<br>$7/21/96$ Stypopodium zonale<br>Stypopodium zonale<br>Stypopodium zonale $20.0$ $1.50$<br>$1.68$ $0.08$ $16$<br>$1.3$ $645$<br>$41$ Phaeophyta<br>PhaeophytaHole in the Wall<br>Spadefish Point $7/15/96$<br>$7/21/96$ Stypopodium zonale<br>$Stypopodium zonale$ $20.0$<br>$26.90$ $1.64$<br>$0.07$ $0.99 \pm 313 \pm 28.6 \pm 4.82$ Phaeophyta<br>PhaeophytaHole in the Wall<br>Spadefish Point $7/15/96$<br>$7/21/96$ Stypopodium zonale<br>$Stypopodium zonale$ $20.0$<br>$26.90$ $1.50$<br>$0.09$ $0.08$<br>$16$ $645$<br>$41$ Phaeophyta<br>Phaeophyta $7/21/96$ Lobophora variagata<br>$Stypopodium zonale$ $34.80$<br>$28.30$ $1.50$<br>$0.09$ $0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 2.2 \pm 2.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 2.2 \pm 2.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 2.2 \pm 2.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 2.2 \pm 2.86 \pm 1.59 \pm 0.09 \pm 1.90 \pm 812 \pm 42.2 \pm 2.86 \pm 1.59 \pm 0.09 \pm 1.90 \pm 812 \pm 42.2 \pm 2.85 \pm 1.59 \pm 0.09 \pm 1.90 \pm 812 \pm 42.2 \pm 1.85 \pm 1.59 \pm 0.09 \pm 1.90 \pm 1.90 \pm 812 \pm 42.2 \pm 1.85 \pm 1.59 \pm 0.09 \pm 1.90 \pm $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                    |             | Halymenia floresia        | 8.96                                            | 0.89                                            | 0.06                                            | 12              | 385                                           | 33                                              |
| Deerfield Reef $8/15/96$ Grateloupia sp.<br>Halymenia floresia $13.40$ $1.03$ $0.09$ $15$ $384$ $25$ Rhodophyta<br>Mean $\pm 1$ S.D. $11.03 \pm 1.22 \pm 0.09 \pm 10.9 \pm 313 \pm 28.6 \pm 4.24$ $11.03 \pm 4.24$ $0.46$ $0.03$ $2.55$ $87$ $4.82$ Phaeophyta<br>Juno Ball $7/15/96$ Stypopodium zonale<br>Stypopodium zonale $20.0$ $1.50$ $0.08$ $16$ $645$ $41$ Juno Ball $7/21/96$ Lobophora variagata<br>Stypopodium zonale $26.90$ $1.64$ $0.07$ $19$ $991$ $52$ PhaeophytaPhaeophyta $7/21/96$ Lobophora variagata<br>Stypopodium zonale $34.80$ $1.50$ $0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 163$ PhaeophytaMench $1 \le D$ $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 125$ $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | Boca Raton Outfall | 8/27/96     | Halymenia floridana       | 11.70                                           | 1.44                                            | 0.10                                            | 9               | 302                                           | 32                                              |
| Halymenia floresia10.801.180.081134833Rhodophyta<br>Mean $\pm$ 1 S.D. $11.03 \pm 1.22 \pm 0.09 \pm 10.9 \pm 313 \pm 28.6 \pm 4.24$ $0.46 - 0.03 - 2.55 - 87 - 4.82$ Phaeophyta<br>Juno Ball7/15/96Stypopodium zonale<br>Dictyota divaricata $20.0 - 1.50 - 0.08 - 16 - 645 - 41$ $645 - 41 - 482 - 52 - 87 - 482$ Juno Ball7/21/96Dictyota divaricata<br>Stypopodium zonale $26.90 - 1.64 - 0.07 - 19 - 991 - 52$ $383 - 29 - 52 - 52 - 87 - 37 - 52 - 52 - 52 - 52 - 52 - 52 - 52 - 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Deerfield Reef     | 8/15/96     | Grateloupia sp.           | 13.40                                           | 1.03                                            | 0.09                                            | 15              | 384                                           | 25                                              |
| Rhodophyta<br>Mean $\pm$ 1 S.D. $11.03 \pm 4.22 \pm 0.09 \pm 10.9 \pm 313 \pm 28.6 \pm 4.24$ Phaeophyta<br>PhaeophytaHole in the Wall<br>Spadefish Point $7/15/96$<br>$7/15/96$ Stypopodium zonale<br>Dictyota divaricata<br>Stypopodium zonale $20.0$ $1.50$<br>$1.68$ $0.03$ $16$<br>$1.3$ $645$<br>$13$ $4.82$ Juno Ball $7/21/96$ Lobophora variagata<br>Stypopodium zonale $34.80$ $1.50$<br>$28.30$ $0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 10.99 \pm 19.0 \pm 19.0 \pm 19.0 \pm 10.99 \pm 10.90 $                                                                                                                                                                                                                                                                                                                                                                             |                               |                    |             | Halymenia floresia        | 10.80                                           | 1.18                                            | 0.08                                            | 11              | 348                                           | 33                                              |
| Mean $\pm 1$ S.D.       4.24       0.46       0.03       2.55       87       4.82         Phaeophyta       Hole in the Wall       7/15/96       Stypopodium zonale       20.0       1.50       0.08       16       645       41         Spadefish Point       7/15/96       Dictyota divaricata       19.30       1.68       0.13       13       383       29         Juno Ball       7/21/96       Lobophora variagata       34.80       1.50       0.09       27       997       37         Phaeophyta       Phaeophyta       52       25.86 ±       1.59 ±       0.09 ±       19.0 ±       812 ±       42.2 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rhodophyta                    |                    |             |                           | $11.03 \pm$                                     | $1.22 \pm$                                      | 0.09 +                                          | $10.9 \pm$      | $313 \pm$                                     | $28.6 \pm$                                      |
| PhaeophytaHole in the Wall<br>Spadefish Point $7/15/96$ Stypopodium zonale<br>Dictyota divaricata $20.0$ $1.50$ $0.08$ $16$ $645$ $41$ Juno Ball $7/21/96$ Dictyota divaricata<br>Stypopodium zonale $26.90$ $1.64$ $0.07$ $19$ $991$ $52$ Phaeophyta $7/21/96$ Lobophora variagata<br>Stypopodium zonale $34.80$ $1.50$ $0.09$ $27$ $997$ $37$ Phaeophyta $25.86 \pm$ $1.59 \pm$ $0.09 \pm$ $19.0 \pm$ $812 \pm$ $42.2 \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean $\pm 1$ S.D.             |                    |             |                           | 4.24                                            | 0.46                                            | 0.03                                            | 2.55            | 87                                            | 4.82                                            |
| Phaeophyta       Hole in the Wall $7/15/96$ Stypopodium zonale $20.0$ $1.50$ $0.08$ $16$ $645$ $41$ Spadefish Point $7/15/96$ Dictyota divaricata $19.30$ $1.68$ $0.13$ $13$ $383$ $29$ Juno Ball $7/21/96$ Lobophora variagata $34.80$ $1.50$ $0.09$ $27$ $997$ $37$ Phaeophyta $25.86 \pm$ $1.59 \pm$ $0.09 \pm$ $19.0 \pm$ $812 \pm$ $42.2 \pm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                    |             |                           |                                                 |                                                 |                                                 |                 |                                               |                                                 |
| Spadefish Point $7/15/96$ Dictyota divaricata<br>Dictyota divaricata $19.30$ $1.68$ $0.13$ $13$ $383$ $29$ Juno Ball $7/21/96$ Lobophora variagata<br>Stypopodium zonale $26.90$ $1.64$ $0.07$ $19$ $991$ $52$ Juno Ball $7/21/96$ Lobophora variagata<br>Stypopodium zonale $34.80$ $1.50$ $0.09$ $27$ $997$ $37$ Phaeophyta $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 1.59 \pm 0.09 \pm 19.0 \pm 19$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Phaeophyta                    | Hole in the Wall   | 7/15/96     | Stypopodium zonale        | 20.0                                            | 1.50                                            | 0.08                                            | 16              | 645                                           | 41                                              |
| Stypopodium zonale $26.90$ $1.64$ $0.07$ $19$ $991$ $52$ Juno Ball $7/21/96$ Lobophora variagata $34.80$ $1.50$ $0.09$ $27$ $997$ $37$ Stypopodium zonale $28.30$ $1.65$ $0.07$ $20$ $1043$ $52$ Phaeophyta $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 522$ $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 522$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | Spadefish Point    | 7/15/96     | Dictyota divaricata       | 19.30                                           | 1.68                                            | 0.13                                            | 13              | 383                                           | 29                                              |
| Juno Ball $1/21/96$ Lobophora variagata<br>Stypopodium zonale       34.80       1.50 $0.09$ $27$ $997$ $37$ Phaeophyta       28.30       1.65 $0.07$ 20       1043       52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                    | 7/21/07     | Stypopodium zonale        | 26.90                                           | 1.64                                            | 0.07                                            | 19              | 991                                           | 52                                              |
| Stypopodium zonale       28.30       1.65 $0.07$ $20$ $1043$ $52$ Phaeophyta $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 2523$ $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm 2523$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | Juno Ball          | //21/96     | Lobophora variagata       | 34.80                                           | 1.50                                            | 0.09                                            | 27              | 997                                           | 37                                              |
| Phaeophyta $25.86 \pm 1.59 \pm 0.09 \pm 19.0 \pm 812 \pm 42.2 \pm$                                                             |                               |                    |             | Stypopodium zonale        | 28.30                                           | 1.65                                            | 0.07                                            | 20              | 1043                                          | 52                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phaeophyta                    |                    |             |                           | $25.86 \pm$                                     | $1.59~\pm$                                      | $0.09 \pm$                                      | $19.0~\pm$      | $812 \pm$                                     | $42.2 \pm$                                      |
| Mean $\pm 1$ S.D. 5.73 0.08 0.02 4.69 258 8.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mean $\pm 1$ S.D.             |                    |             |                           | 5.73                                            | 0.08                                            | 0.02                                            | 4.69            | 258                                           | 8.89                                            |
| Grand $12.20 \pm 1.20 \pm 0.00 \pm 12.1 \pm 421 \pm 24.0 \pm 12.1 \pm 1$ | Grand                         |                    |             |                           | 13 <b>2</b> 0 ±                                 | 1 29 ⊥                                          | 0.09 ±                                          | 12 1 <i>⊥</i>   | <i>4</i> 21 ⊥                                 | 340-                                            |
| Mean + 1 SD 		 652 	0.05 	12.1 	2.1 	2.1 	2.1 	2.1 	2.1 	2.1 	2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mean $\pm 1.5 D$              |                    |             |                           | 6.52 ±                                          | 0.45                                            | $0.03 \pm 0.03$                                 | 3.73            | +∠1 ⊥<br>197                                  | 5 <del>-</del> .0 ⊥<br>8.66                     |

Analytical Console or an Alpkem nutrient autoanalyzer at the HBOI Environmental Laboratory (HBEL) in Ft. Pierce, FL. The analytical detection limits for these analyses were 0.08  $\mu$ M for NH<sub>4</sub><sup>+</sup>, 0.05  $\mu$ M for NO<sub>3</sub><sup>-</sup> + NO<sub>2</sub><sup>-</sup>, 0.003  $\mu$ M for NO<sub>2</sub><sup>-</sup>, and 0.009  $\mu$ M for SRP. The methods for collection, handling, and processing of the water samples for low level nutrient analysis followed a quality assurance/quality control protocol designed to prevent problems associated with sample contamination and excessive holding times in order to provide accurate and reliable data (Gunsalus, 1997).

### 2.4. Statistical analyses

Analysis of tissue C:N:P contents between the Caribbean region and southeast Florida and nutrient data from southeast Florida involved both parametric (ANOVA) and non-parametric tests. We utilized non-parametric tests (e.g., Kruskall–Wallis *H*-test, Mann–Whitney *U*-test) when assumptions of homogeneity of variance and sample distribution normality were not met. Summary statistics are provided in the results below; reports of significance imply that the probability of the null hypothesis (*p*) is <0.05.

## 3. Results

# 3.1. C:N:P analyses of macroalgae

The mean tissue C:N:P composition of C. isthmocladum sampled from reefs in southeast Florida in 1996 was markedly different than in populations from the Bahamas, Greater Antilles, and Lesser Antilles sampled between 1995 and 1998 (Table 1; Fig. 2). Although the mean %N of C. isthmocladum from southeast Florida (0.99  $\pm$  0.25) was statistically similar (Mann–Whitney, p = 0.179) to that from the wider Caribbean region (0.89  $\pm$  0.21), the mean %P of the Florida populations  $(0.06 \pm 0.03)$  was significantly higher than the Caribbean populations  $(0.04 \pm 0.01;$ Mann–Whitney, p < 0.001). The floridian C. isthmocladum population had lower %C (9.83  $\pm$  1.56 versus  $14.83 \pm 2.21$ ; p < 0.001), C:N ( $12.22 \pm 3.07$  versus 19.15  $\pm$  5.21; p < 0.001), C:P (425  $\pm$  146 versus  $980 \pm 278$ ; p < 0.001), and N:P ratios  $(35.0 \pm 8.2)$ versus  $50.1 \pm 15.0$ ; p < 0.001) compared to the Caribbean populations (Table 1). These regional



Fig. 2. Tissue carbon:nitrogen (C:N), carbon:phosphorus (C:P), and N:P molar ratios of *Codium isthmocladum* at sites in southeast Florida vs. the wider Caribbean region (locations sampled near urbanized areas of the Caribbean are omitted from this plot). Values represent means  $\pm$  S.D. (n = 3-12).

differences become even more apparent when urbanized sites from the Caribbean (e.g., sites around Fortede-France, Martinique; see Littler et al., 1993) are removed from the comparison (Fig. 2).

Significant phylogenetic differences in mean C:N:P composition among species of Chlorophyta, Rhodophyta and Phaeophyta were detected (Kruskall–Wallis test) on reefs in southeast Florida in 1996 (Table 2). Although the overall mean %P of the three groups were statistically similar (p = 0.267), significant differences were observed for %C (Kruskall–Wallis, p = 0.003), C:N (p = 0.004), C:P (p = 0.001), and N:P (p = 0.008). Differences in %N were only marginally significant (p = 0.063). With the exception of %P, which was similar among the three phyla, most of the significant differences in other tissue variables resulted

from large differences between species of Phaeophyta and the Chlorophyta/Rhodophyta. For example, the mean %C was over two-fold higher in the Phaeophyta  $(25.86 \pm 5.73)$  compared to either the Chlorophyta  $(11.93 \pm 4.5)$  or Rhodophyta  $(11.03 \pm 4.24)$ . Likewise, differences between the Phaeophyta and the Chlorophyta/Rhodophyta occurred for %N  $(1.59 \pm$ 0.08 versus  $1.25 \pm 0.46/1.22 \pm 0.46)$ , C:N  $(19.0 \pm$ 4.69 versus  $11.4 \pm 2.22/10.9 \pm 2.55)$ , C:P  $(812 \pm 258)$ versus  $403 \pm 107/313 \pm 87)$ , and N:P ratios  $(42.2 \pm$ 8.89 versus  $35.5 \pm 8.41/28.6 \pm 4.82)$ .

#### 3.2. Water column nutrient concentrations

Concentrations of  $NO_3^-$  and  $NH_4^+$  in near-bottom reef waters in Palm Beach and Broward counties ranged from 0.07 to 8.91  $\mu$ M and from undetectable (<0.05  $\mu$ M) to 2.99  $\mu$ M, respectively, between June and August 1996 (Fig. 3). The highest  $NH_4^+$  concentrations occurred on shallow reefs (e.g., 4 m, Lake Worth Pier, Fig. 3) compared to the highest  $NO_3^-$  concentrations that occurred on the deepest reefs during upwelling events (e.g., August 1996 at Hole in the Wall, North Colonel's Ledge, Spanish River, Fig. 3). This depth-related pattern was apparent in August 1996 off Spanish River (Boca Raton) during an upwelling event when  $NO_3^-$  concentrations increased with increasing depth; whereas,  $NH_4^+$  concentrations decreased with increasing depth (Fig. 4A and B).

Significant differences occurred in mean DIN concentrations between the northern and southern regions of the study area during summer 1996. Overall, DIN concentrations were significantly (ANOVA, F = 9.01, p = 0.0073) greater in the southern (5.22  $\pm$  0.48  $\mu$ M) compared to the northern region (3.23  $\pm$  0.35  $\mu$ M, Fig. 3). This difference was largely the result





Fig. 3. Concentrations ( $\mu$ M) of dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP), and the DIN:SRP ratio for north vs. south regions of the southeast Florida study area from June to August of 1996. Values represent means  $\pm$  S.D. (n = 3-6).

Fig. 4. Regressions for: (A) dissolved inorganic nitrogen (DIN =  $NH_4^+$ - $N + NO_3^-$ - $N + NO_2^-$ -N) concentrations ( $\mu$ M) vs. depth (m), and (B)  $NO_3^-$  concentrations ( $\mu$ M) vs. depth (m). Samples were collected from reefs off Spanish River, Boca Raton, August 15, 1996.

of higher concentrations of NO<sub>3</sub><sup>-</sup> (ANOVA, F = 13.92, p = 0.0014) in the southern compared to the northern region during the 1996 sampling. Concentrations of NH<sub>4</sub><sup>+</sup> were not significantly (p > 0.05) different between the two regions and averaged 0.82  $\mu$ M throughout the study area.

SRP concentrations ranged from 0.066 to 0.766  $\mu$ M during the summer 1996 sampling with the highest concentrations at the site nearest the Boca Raton sewage outfall (Fig. 3). The mean SRP concentration in the northern region (0.35  $\pm$  0.05  $\mu$ M) was lower, but not significantly (p > 0.05) different than that of the southern region (0.48  $\pm$  0.07  $\mu$ M; Fig. 2). The DIN:SRP ratio averaged 15.3 in the northern region and 14.4 in the southern region with peak values >20 associated with low SRP concentrations (Fig. 3).

### 4. Discussion

# 4.1. Importance of *P*-availability to bloom development and species composition

Our comparative studies of C:N:P contents in C. isthmocladum among a broad spectrum of sites support previous findings (Lapointe, 1997) of reduced P limitation in coastal waters of southeast Florida compared to stronger P limitation in carbonate-rich Caribbean waters. Lapointe et al. (1992) sampled a wide variety of taxa, including Chlorophyta, Phaeophyta and Rhodophyta, from several carbonate-rich environments throughout the Caribbean and from a temperate, siliciclastic environment at Woods Hole, MA, USA. Whereas %C and %N were similar in macroalgal tissue between these regions (22.6% versus 20.1% and 1.0% versus 1.2%, respectively), P levels were two-fold lower (0.15% versus 0.07%) in the carbonate-rich sites of the Caribbean region. We found parallel results for C. isthmocladum in the present study, which had similar tissue %N values between southeast Florida and the Caribbean region, but elevated levels of %C and depleted levels of %P in the Caribbean region. The relatively low C:P and N:P ratios of C. isthmocladum in southeast Florida versus the Caribbean region indicate P enrichment in southeast Florida compared to strong P limitation throughout the Caribbean sites. The strong P limitation in the Caribbean region may explain the higher %C levels of C. isthmocladum, which would result from accumulation of photosynthetic products in the absence of rapid growth under P limitation. Conversely, reduced P limitation in the floridian C. isthmocladum populations suggests that this P enrichment is a primary physiological factor supporting excessive biomass development of HABs characterized by rapid growth and relatively low %C contents. The highest SRP concentrations in the 1996 nutrient survey in southeast Florida were near the Boca Raton outfall and off Juno Beach during a strong upwelling event, suggesting the importance of P enrichment from both chronic sewage inputs as well as from natural episodic inputs. More broadly, the limestone platform of the southeast Florida study area has been covered with siliciclastic sediments transported southwards from Piedmont and coastal plain rivers over geologic time (Meade, 1969; Hine, 1997). This would provide naturally higher background SRP concentrations compared to those in carbonaterich waters of the Caribbean (Lapointe et al., 1992).

Our findings also indicate that strong P limitation resulting from reduced SRP availability is a major factor limiting bloom formation of C. isthmocladum in the Caribbean region. Land-based nutrient discharges from carbonate-rich islands around the Caribbean region typically have low SRP concentrations and high N:P ratios (D'Elia et al., 1981; Lapointe and Clark, 1992; Lapointe and Thacker, 2002), resulting in depleted SRP concentrations and strong P limitation in coastal waters. SRP concentrations in southeast Florida averaged  $>0.29 \,\mu\text{M}$  during the summer 1996 studies, a value that is an order-of-magnitude higher than the SRP concentrations reported for shallow and deep reefs in the Negril Marine Park, Jamaica, and the Belize Barrier Reef (Lapointe and Thacker, 2002; Lapointe et al., 1997; Lapointe, 2004). This regional pattern of depleted SRP in the Caribbean parallels observations of ~five-fold higher alkaline phosphatase activity (APA) in C. isthmocladum at Discovery Bay, Jamaica, compared to southeast Florida (Lapointe, 1997), demonstrating the strong P limitation in Jamaica. The primary P limitation at Discovery Bay was further evidenced by nutrient enrichment assays where SRP significantly increased P<sub>max</sub> of the green filamentous alga Chaetomorpha *linum* compared to insignificant effects of NO<sub>3</sub><sup>-</sup> (Lapointe, 1997). The higher water column SRP concentrations and reduced P limitation in southeast Florida can support blooms of chlorophyte "SRP indicators" like *C. isthmocladum*. This species is abundant with other SRP indicators (e.g., *Ulva*, *Chaetomorpha*, *Enteromorpha*) surrounding seabird rookeries or sewage-impacted waters where elevated SRP concentrations and low N:P ratios occur (Lapointe et al., 1993).

The relatively low SRP concentrations on many carbonate-rich Caribbean reefs would make DOP cycling an adaptive strategy for macroalgal growth in these environments. Several phaeophyte genera, including Dictyota, Sargassum, and Lobophora, have high capacities for APA and would be favored in waters with low SRP concentrations. Klausmeier et al. (2004), using a stoichiometrically explicit model, suggested that competitive equilibrium favors greater allocation to biochemical pathways for SRP-poor resource acquisition (e.g., APA), and therefore, a higher optimal N:P ratio; exponential growth favors greater allocation to P-rich assembly processes, and therefore, a lower N:P ratio. This physiological mechanism may explain why phaeophytes such as Dictyota spp. have become dominant bloom species on reefs formerly dominated by live coral cover in the nutrient enriched (high N:P) coastal waters of the Florida Keys (Lapointe and Clark, 1992; Lirman and Biber, 2000; Lapointe et al., 2004). Similarly, lush meadows of the phaeophytes Sargassum polyceratium and Sargassum hystrix, with an extensive understory of Lobophora variegata (Lapointe, 1997; Lapointe and Thacker, 2002), have replaced the hermatypic (reef-forming) coral genera that historically dominated shallow and deep reefs on Jamaica's north coast (Goreau, 1959). These Jamaican reefs have also experienced high N:P ratios associated with human activities from the upland watershed (D'Elia et al., 1981; Lapointe, 1997; Lapointe and Thacker, 2002).

Tropical phaeophytes typically have higher %C content, C:N and C:P ratios than chlorophytes and rhodophytes (Table 2), indicating their greater ability for storage of structural C under nutrient limited growth. This physiological characteristic allows for the production of C-rich secondary compounds known to be important for chemical defense from herbivores in the Phaeophyta. For example, a decrease in chemical defense production under elevated nitrogen conditions has been demonstrated in the field for the temperate *Fucus vesiculosus* (Yates and Peckol, 1993)

and in laboratory conditions for the tropical Lobophora variegata (Arnold et al., 1995). For phaeophytes, plant phenols tend to accumulate under environmental conditions where plants have excess C above the level needed for balanced growth and where phenylalanine, the substrate of phenylpropanoid synthesis, accumulates due to suppressed protein synthesis (Ilvessalo and Tuomi, 1989). While phaeophytes have not formed widespread HABs on the northern portion of the Florida Reef Tract (Palm Beach County), they have formed conspicuous blooms on reefs in the Florida Keys where considerable grazing activity occurs (Lapointe and Clark, 1992; Lirman and Biber, 2000). The extensive meadows of phaeophytes that have developed on Jamaica's north coast have elevated tissue C:N ratios (~28; Lapointe et al., 1992), suggesting that these populations likewise benefit from the production of anti-herbivore secondary compounds (e.g., polyphenolics).

# 4.2. The role of $NH_4^+$ in bloom nutrition in southeast Florida

The lower N:P ratios of C. isthmocladum in southeast Florida compared to the Caribbean populations would not only reduce P limitation, but would also increase the potential for N limitation on southeast Florida's reefs. Enrichment assays with NH<sub>4</sub><sup>+</sup> significantly increased  $\alpha$ , the initial slope of the P versus I curve, of C. isthmocladum compared to insignificant effects of SRP (Lapointe, 1997). The mean C:N ratio of C. isthmocladum in southeast Florida (12.2) was lower than that of Caribbean populations (19.2), suggesting that the floridian populations were relatively N enriched relative to C demands. The chronically elevated NH<sub>4</sub><sup>+</sup> concentrations reported for this study area (see Fig. 3) suggest that the availability of NH<sub>4</sub><sup>+</sup> would increase photosynthetic efficiency under low light, leading to nitrogen saturation of growth and bloom formation (see Lapointe, 1999).

During summer months, episodic upwelling with high NO<sub>3</sub><sup>-</sup> concentrations occur in the study area (Atkinson, 1985; Lapointe et al., 2005) and provide additional enrichment to the NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> derived from land-based nutrient inputs. In the Niantic River estuary, CT, USA, the invasion of *C. fragile* was related to NH<sub>4</sub><sup>+</sup> enrichment in addition to the available NO<sub>3</sub><sup>-</sup> in that system (Malinowski and Ramus, 1973). Nutrient kinetic studies with macroalgae provide evidence as to why episodic, upwelled NO<sub>3</sub><sup>-</sup>, by itself, could not have historically supported bloom formation of C. isthmocladum in southeast Florida. In controlled laboratory studies, Hanisak and Harlin (1978) reported that uptake of DIN by C. fragile subsp. tomentosoides was highly dependant upon light, temperature, and the source of DIN (i.e.,  $NO_3^-$  versus  $NH_4^+$ ). At temperatures of 20–25  $^{\circ}$ C, the uptake rate of NH<sub>4</sub><sup>+</sup> was  $\sim$ seven-fold greater than that of NO<sub>3</sub><sup>-</sup> and the presence of  $NH_4^+$  inhibited uptake of  $NO_3^-$ . Similar preferences for NH4<sup>+</sup> over NO3<sup>-</sup> have been reported in other kinetic studies with macroalgae (D'Elia and DeBoer, 1978) as well as for natural phytoplankton communities (Conway, 1977). Because an average of  $0.82 \mu M NH_4^+$  was present in the near-bottom waters during the summer 1996 upwellings, it is unlikely that  $NO_3^-$  was a major DIN source supporting the C. isthmocladum blooms. In a seasonal upwelling system similar to that of southeast Florida, Fujita et al. (1989) found that relatively low concentrations of NH4<sup>+</sup>  $(1.22 \ \mu\text{M})$  supplied >100% of the N required for maximum growth of the chlorophyte Ulva rigida, even in the presence of much higher  $NO_3^-$  concentrations (10.8 µM).

# 4.3. Understanding nutrient enrichment and eutrophication on coral reefs

Within the past decade, many coral reef biologists and managers have not fully appreciated the severity of nutrient enrichment and eutrophication problems facing coral reefs (Risk, 1999). We suggest that this has led to the use of inadequate analytical methods and concomitant misinterpretations of nutrient data. For example, in the Great Barrier Reef lagoon, the effects of "water quality" on biomass of Sargassum spp. transplants from an inshore fringing reef to a mid-shelf reef (Otter Reef) were assessed (McCook, 1996). Although no water samples were actually analyzed for nutrients, McCook (1996) concluded that the "tissue analyses indicate that mid-shelf Sargassum transplants were not limited by nitrogen or phosphorus supplies". However, his reported C:N ratio of 32:1 and C:P ratio of 1261:1 indicated significant N limitation and severe P limitation, even higher than that of pelagic Sargassum in nutrient-depleted surface waters of the Sargasso Sea (C:P = 877; Lapointe, 1995). McCook's study (1996) was cited by Fong et al. (2003) as evidence that calls into question whether macroalgae in tropical systems are ever limited by nutrients. Fong et al. (2003) collected water samples from two sites on the southwest coast of Puerto Rico. However, their analytical methods were not sensitive enough (detection limits of 3.57  $\mu$ M for NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>, and 1.61 µM for P) to assess nutrient availability in that oligotrophic environment. Because the resulting nutrient data of Fong et al. (2003) were below detection limits, inferences regarding water column nutrient availability in those studies could not reasonably be made. Similar problems with inadequate detection limits plagued another recent study at Glover's Reef offshore the Belize Barrier Reef that reported background SRP concentrations of 0.36-1.0 µM (McClanahan et al., 2002). Those values are some 20-fold higher than the typical SRP concentrations reported for this location ( $\sim 0.05 \mu$ M, Lapointe, 2004) and for offshore waters of the Caribbean Sea (Rajendran et al., 1991). For the coral reefs off southeast Florida, failure to establish reasonable background concentrations for NH4<sup>+</sup> have confounded the SEFLOE II (Hazen and Sawyer, 1994) dilution model for the discharge of partially-treated sewage from ocean outfalls (see Lapointe et al., 2005).

Although macroalgal HABs on coral reefs have long been attributed to nutrient enrichment and eutrophication (e.g., Littler, 1973; Banner, 1974; Johannes, 1975; Smith et al., 1981; Lapointe, 1997), some reef biologists have concluded that such changes in benthic community structure on Caribbean coral reefs result solely from overfishing of herbivorous fish stocks (Hughes, 1994) and/or loss of keystone grazers, such as the long-spined sea urchin Diadema antillarum (Jackson et al., 2001). However, these conclusions are not supported by numerous grazer reduction experiments that generally report an expansion of algal turfs (<2 cm high) rather than macroalgal blooms (>2 cm high, see Lapointe, 1999) in oligotrophic environments. These include studies in the Red Sea (Vine, 1974), Fiji (Littler and Littler, 1997), Belize (Lewis, 1986), the Great Barrier Reef (Sammarco, 1983), and St. Croix (Carpenter, 1988). The widely cited study by Lewis (1986) on the Belize Barrier Reef reported a statistically significant though relatively small increase (28% over 10 weeks) in algal turfs and no significant increase in the macroalgae Halimeda sp. and Turbinaria turbinata. These particular macroalgae have both overgrown coral reefs in the Negril Marine Park, Jamaica, following decades of nutrient enrichment from sewage pollution associated with tourism development and from use of fertilizers for agriculture (Lapointe and Thacker, 2002). Another confounding issue is that many invasive, bloomforming macroalgae (such as Codium spp.) on reefs are not preferred by generalist grazers (Ramus, 1971; Malinowski and Ramus, 1973; Hanisak, 1980; Trowbridge, 1995). Overfishing of herbivorous fishes and other keystone grazers has been implicated as the sole cause of macroalgal HABs on reefs in southeast Florida and Jamaica (Hughes et al., 1999) without recognition of the escalating rate and scale of anthropogenic nutrient pollution and its consequences to coral reefs (Lapointe, 1999). This explanation for the decline of coastal ecosystems (see Jackson et al., 2001), including the emergence of macroalgal HABs, has been noted and criticized by Boesch et al. (2001). We encourage coral reef biologists and managers to consider more broadly the complex role that escalating nutrient enrichment plays in the regulation of macroalgal HABs in coral reef ecosystems.

# Acknowledgements

We thank the crew of the R/V Sea Diver for ensuring safety and for their assistance during our research cruises in the Caribbean region. For the Florida research, small boat support was provided by the Palm Beach County Department of Environmental Resources Management. The Harbor Branch Environmental Laboratory (Ft. Pierce, FL, USA) and the Nutrient Analytical Services Laboratory (University of Maryland, Solomons, MD, USA) provided analytical support for this work. Two anonymous reviewers are gratefully acknowledged for improving this manuscript. This research was supported by the Florida Sea Grant College Program with support from NOAA, Office of Sea Grant (Grant #R/C-E-34) and the National Science Foundation (Grant #DEB-9400523). This is contribution #1595 from the Harbor Branch Oceanographic Institution and contribution #614 from the Smithsonian Marine Station at Fort Pierce.[SES].

## References

- Adey, W.H., 1998. Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J. Phycol. 34, 393–406.
- Arnold, T.M., Tanner, C.E., Hatch, W.I., 1995. Phenotypic variation in polyphenolic content of the tropical brown alga *Lobophora variegata* as a function of nitrogen availability. Mar. Ecol. Prog. Ser. 123, 177–183.
- Asplia, I., Agemian, H., Chau, A.S.Y., 1976. A semi-automated method for the determination of inorganic, organic, and total phosphate in sediments. Analyst 101, 187–197.
- Atkinson, L.P., 1985. Hydrography and nutrients of the southeastern U.S. continental shelf. Oceanogr. Southeast U.S. Cont. Shelf (AGU) 2, 77–91.
- Banner, A.H., 1974. Kaneohe Bay, Hawaii: urban pollution and a coral reef ecosystem. In: Proceedings of the Second International Coral Reef Symposium, vol. 2. pp. 685–702.
- Bell, P.R.F., 1992. Eutrophication and coral reefs: some examples in the Great Barrier Reef lagoon. Water Res. 26, 553–568.
- Bellwood, D.R., Hughes, T.P., Folke, C., Nystoem, M., 2004. Confronting the coral reef crisis. Nature 429 (6994), 827– 833.
- Birkeland, C., 1977. The importance of rate of biomass accumulation in early successional stages of benthic communities to the survival of coral recruits. In: Proceedings of the Third International Coral Reef Symposium, vol. 1. pp. 15–21.
- Birkeland, C., 1987. Nutrient availability as a major determinant of differences among coastal hard-substratum communities in different regions of the tropics. In: Birkeland, C. (Ed.), Comparison Between Atlantic and Pacific Tropical Marine Coastal Ecosystems: Community Structure, Ecological Processes, and Productivity. UNESCO Reports in Marine Science 46, pp. 45–97.
- Boesch, D.F., Burreson, E., Dennison, W., Houde, E., Kemp, W., Kennedy, V., Newell, R., Paynter, K., Orth, R., Ulanowicz, R., 2001. Factors in the decline of coastal ecosystems. Science 293, 1589–1590.
- Carlton, J.T., Scanlon, J.A., 1985. Progression and dispersal of an introduced alga *Codium fragile* on the Atlantic coast of North America. Bot. Mar. 28, 155–165.
- Carpenter, R.C., 1988. Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc. Natl. Acad. Sci. U.S.A. 85, 511–514.
- Conway, H.L., 1977. Interaction of inorganic nitrogen in the uptake and assimilation by marine phytoplankton. Mar. Biol. 39, 221– 232.
- D'Elia, C.F., DeBoer, J.A., 1978. Nutritional studies of two red algae. 2. Kinetics of ammonium and nitrate uptake. J. Phycol. 14, 266–272.
- D'Elia, C.F., Webb, K.L., Porter, J.W., 1981. Nitrate-rich groundwater inputs to Discovery Bay, Jamaica: a significant source of N to local reefs? Bull. Mar. Sci. 31, 903–912.
- D'Elia, C.F., Connor, E.E., Kaumeyer, N.L., Keefe, C.W., Wood, K.W., Zimmerman, C.F., 1997. Nutrient Analytical Services Laboratory: Standard Operating Procedures. Technical Report Series No. 158-97, Chesapeake Biological Laboratory, Solomons, MD, USA.

- Done, T.J., 1992. Phase shifts in coral reef communities and their ecological significance. Hydrobiology 247 (1), 121–132.
- Dubinsky, Z., Stambler, N., 1996. Marine pollution and coral reefs. Global Change Biol. 2, 511–526.
- ECOHAB, 1997. The Ecology and Oceanography of Harmful Algae Blooms. A National Research Agenda. In: Anderson, D.M. (Ed.), WHOI, Woods Hole, MA.
- Fralick, R.A., Mathieson, A.C., 1973. Ecological studies of Codium fragile in New England, USA. Mar. Biol. 19, 127–132.
- Finkl, C.W., Charlier, R.H., 2003. Sustainability of subtropical coastal zones in southeastern Florida: challenges for urbanized coastal environments threatened by development, pollution, water supply, and storm hazards. J. Coast. Res. 19 (4), 934– 943.
- Fong, P., Boyer, K.E., Kamer, K., Boyle, K.A., 2003. Influence of initial tissue nutrient status of tropical marine algae in response to nitrogen and phosphorus additions. Mar. Ecol. Prog. Ser. 262, 111–123.
- Fujita, R.M., Wheeler, P.A., Edwards, R.L., 1989. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Prog. Ser. 53, 293–303.
- Goreau, T.F., 1959. The ecology of Jamaican coral reefs. 1. Species composition and zonation. Ecology 40, 67–90.
- Green, C., 1944. Summer upwelling—northeast coast of Florida. Science 100, 546–547.
- Gunsalus, N.M., 1997. High frequency monitoring of wastewater nutrient discharges and their ecological effects in the Florida Keys National Marine Sanctuary: Appendix I, Quality Assurance Summary, Nutrient Analysis. Final Report to the Water Quality Protection Program, United States Environmental Protection Agency, Marathon, FL.
- Hanisak, M.D., 1980. *Codium:* an invading seaweed. Maritimes 24, 10–11.
- Hanisak, M.D., Blair, S.M., 1988. The deep water macroalgal community of the East Florida continental shelf (USA). Helgolan. Meeres. 42, 133–163.
- Hanisak, M.D., Harlin, M.M., 1978. Uptake of inorganic nitrogen by *Codium fragile* subsp. *tomentosoides* (Chlorophyta) J. Phycol. 14, 450–454.
- Hazen and Sawyer, 1994. SEFLOE II Final Report: Broward County Office of Environmental Services North Regional Wastewater Treatment Plant; City of Hollywood Utilities Department Southern Region Wastewater Treatment Plant; Miami-Dade Water and Sewer Department North District Wastewater Treatment Plant; Miami-Dade Water and Sewer Department Central District Wastewater Treatment Plant Hollywood (FL): Hazen and Sawyer. National Oceanic and Atmospheric Administration (AOML, Miami, FL).
- Hine, A.C., 1997. Structural and paleoceanographic evolution of the margins of the Florida platform. In: Randazzo, F.A., Jones, D.S. (Eds.), The Geology of Florida. University Press of Florida, Gainesville, pp. 169–194.
- Hughes, T.P., 1994. Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551.
- Hughes, T.P., Szmant, A.M., Steneck, R., Carpenter, R., Miller, S., 1999. Algal blooms on coral reefs: what are the causes? Limnol. Oceanogr. 44, 1583–1586.

- Ilvessalo, H., Tuomi, J., 1989. Nutrient availability and accumulation of phenolic compounds in the brown alga *Fucus vesiculo*sus. Mar. Biol. 101, 115–119.
- Jackson, J.B.C., et al., 2001. Historical over-fishing and the recent collapse of coastal ecosystems. Science 293, 629–638.
- Johannes, R.E., 1975. Pollution and degradation of coral reef communities. In: Wood, E., Johannes, R.E. (Eds.), Tropical Marine Pollution. Elsevier, New York, pp. 13–51.
- Klausmeier, C.A., Lichtman, E., Daufresne, T., Levin, S.A., 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174.
- Lapointe, B.E., 1987. Phosphorus and nitrogen-limited photosynthesis and growth of *Gracilaria tikvahiae* (Rhodophyceae) in the Florida Keys: an experimental field study. Mar. Biol. 93, 561– 568.
- Lapointe, B.E., 1995. A comparison of nutrient-limited productivity in *Sargassum natans* from neritic vs. oceanic waters of the western North Atlantic ocean. Limnol. Oceanogr. 40 (3), 625–633.
- Lapointe, B.E., 1997. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol. Oceanogr. 42 (5, part 2), 1119–1131.
- Lapointe, B.E., 1999. Simultaneous top-down and bottom-up forces control macroalgal blooms on coral reefs (reply to the comment by Hughes et al.) Limnol. Oceanogr. 44 (6), 1586–1592.
- Lapointe, B.E., 2004. Phosphorus-rich waters at Glovers Reef Belize? Mar. Poll. Bull. 48, 193–195.
- Lapointe, B.E., Clark, M., 1992. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15, 465–476.
- Lapointe, B.E., Hanisak, M.D., 1997. Algal blooms in coastal waters: eutrophication on coral reefs of southeast Florida. Final Report, Florida Sea Grant Project R/C-E-34.
- Lapointe, B.E., Thacker, K., 2002. Community-based water quality and coral reef monitoring in the Negril Marine Park, Jamaica: land-based nutrient inputs and their ecological consequences. In: Porter, J.W., Porter, K.G. (Eds.), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, FL, pp. 939–963.
- Lapointe, B.E., Littler, M.M., Littler, D.S., 1992. Nutrient availability to marine macroalgae in siliciclastic versus carbonaterich coastal waters. Estuaries 15, 75–82.
- Lapointe, B.E., Littler, M.M., Littler, D.S., 1993. Modification of benthic community structure by natural eutrophication: the Belize Barrier reef. In: Proceedings of the Seventh International Coral Reef Symposium, vol. 1. pp. 323–333.
- Lapointe, B.E., Littler, M.M., Littler, D.S., 1997. Macroalgal overgrowth of fringing coral reefs at Discovery Bay, Jamaica: Bottom-up versus top-down control. In: Proceedings of the Eighth International Coral Reef Symposium, vol. 1. pp. 927– 932.
- Lapointe, B.E., Barile, P.J., Matzie, W.R., 2004. Anthropogenic nutrient enrichment of seagrass and coral reef communities in the Lower Florida Keys: discrimination of local versus regional nitrogen sources. J. Exp. Mar. Biol. Ecol. 308 (1), 23–58.
- Lapointe, B.E., Barile, P.J., Littler, M.M., Littler, D.S., 2005. Macroalgal blooms on southeast Florida coral reefs. II. Cross-

shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4, 1106–1122.

- Larned, S.T., Stimson, J., 1996. Nitrogen-limited growth in the coral reef chlorophyte *Dictyosphaeria cavernosa*, and the effect of exposure to sediment-derived nitrogen on growth. Mar. Ecol. Prog. Ser. 145, 95–108.
- Lewis, S., 1986. The role of herbivorous fishes in the organization of a Caribbean reef community. Ecol. Monogr. 56, 183–200.
- Lirman, D., Biber, P., 2000. Seasonal dynamics of macroalgal communities of the northern Florida Reef Tract. Bot. Mar. 43, 305–314.
- Littler, M.M., 1973. The population and community structure of Hawaiian fringing-reef crustose corallinaceae (Rhodophyceae, Cryptonemiales). J. Exp. Mar. Biol. Ecol. 11, 103–119.
- Littler, D.S., Littler, M.M., 2000. Caribbean Reef Plants. Offshore Graphics, Washington, DC.
- Littler, M.M., Littler, D.S., Lapointe, B.E., 1993. Modification of tropical reef community structure due to cultural eutrophication: the southwest coast of Martinique. In: Proceedings of the Seventh International Coral Reef Symposium, vol. 1. pp. 343–353.
- Littler, M.M., Littler, D.S., 1997. Disease-induced mass mortality of crustose coralline algae on coral reefs provides rationale for the conservation of herbivorous fish stocks. In: Proceedings of the Eighth International Coral Reef Symposium, vol. 1, pp. 719– 724.
- Malinowski, K.C., Ramus, J., 1973. Growth of the green alga *Codium fragile* in a Connecticut estuary. J. Phycol. 9, 102–110.
- Meade, R.H., 1969. Landward transport of bottom sediments in the estuaries of the coastal plain. J. Sediment. Petrol. 39, 229–234.
- McClanahan, T.R., Cokos, B.A., Sala, E., 2002. Algal growth and species composition under experimental control of herbivory, phosphorus and coral abundance in Glovers Reef, Belize. Mar. Poll. Bull. 44, 441–451.
- McConnaughey, T.A., Adey, W.H., Small, A.M., 2000. Community and environmental influences on reef coral calcification. Limnol. Oceanogr. 45 (7), 1667–1671.
- McCook, L.J., 1996. Effects of herbivores and water quality on Sargassum distribution on the central Great Barrier Reef: crossshelf transplants. Mar. Ecol. Prog. Ser. 139, 179–192.
- National Research Council, 1995. Understanding Marine Biodiversity. Ocean Studies Board, Biology Board.
- National Research Council, 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. Ocean Studies Board, Water Science and Technology Board.
- Rajendran, M., Kumar, D., Kahan, A.D., Knight, D., O'Reilly, A., Yen, I.C., Wagh, A.B., Desai, B.N., 1991. Some aspects of nutrient chemistry of the Caribbean Sea. Caribb. Mar. Stud. 2 (1 and 2), 81–86.
- Ramus, J., 1971. Codium: the invader. Discovery 6, 59-68.

- Risk, M.J., 1999. Paradise lost: how science and management failed the world's coral reefs. Mar. Freshwater Res. 50, 831–837.
- Sammarco, P.W., 1980. *Diadema* and its relationship to coral spat mortality: grazing, competition, and biological disturbance. J. Exp. Mar. Biol. Ecol. 45 (2–3), 245–272.
- Sammarco, P.W., 1982. Effects of grazing by *Diadema antillarum* Philippi (Echinodermata: Echinoidea) on algal diversity and community structure. J. Exp. Mar. Biol. Ecol. 65 (1), 83–105.
- Sammarco, P.W., 1983. Effects of fish grazing and damselfish territoriality on coral reef algae. I. Algal community structure. Mar. Ecol. Prog. Ser. 13, 1–14.
- Schaffelke, B., Klumpp, D.W., 1998. Nutrient-limited growth of the coral reef macroalga *Sargassum baccularia* and experimental growth enhancement by nutrient addition in continuous flow culture. Mar. Ecol. Prog. Ser. 164, 199–211.
- Silva, P.C., 1957. Codium in Scandinavian waters. Stensk Botanisk Tidskrift 51, 117–134.
- Smith, S.V., Kimmerer, W.J., Laws, E.A., Brock, R.E., Walsh, T.W., 1981. Kaneohe Bay sewage diversion experiment: perspectives on ecosystem response to nutritional perturbation. Pac. Sci. 35, 279–397.
- Taylor, C., Stewart, H., 1958. Summer upwelling along the east coast of Florida. J. Geophys. Res. 64, 33–39.
- Tomascik, T., Sander, F., 1987. Effects of eutrophication on reef building corals. II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies. Mar. Biol. 94, 53–75.
- Trowbridge, C.D., 1995. Establishment of the green alga Codium fragile ssp. on New Zealand rocky shores: current distribution and invertebrate grazers. Ecology 83, 949–965.
- Trowbridge, C.D., 1998. Ecology of the green macroalga Codium fragile: invasive and non-invasive subspecies. Ann. Rev. Oceanogr. Mar. Biol. 36, 1–64.
- UNEP, 1994. Regional overview of land-based sources of pollution in the wider Caribbean region. Caribbean Environment Program Technical Report 33, UNEP Caribbean Environment Program, Kingston, Jamaica.
- Urnezis, C.M., 1995. Alkaline phosphatase activity and phosphorus limitation in marine macroalgae from the Florida Keys and the Bahamas. Master's Thesis. Nova Southeastern University, Ft. Lauderdale, FL.
- USEPA, 2003. Relative risk assessment of management options for treated wastewater in south Florida. Office of Water. EPA 816-R-03-010.
- Vine, P.J., 1974. Effects of algal grazing and aggressive behaviour of the fishes *Pomacentrus lividus* and *Acanthurus sohal* on coralreef ecology. Mar. Biol. 24 (2), 131–136.
- Yates, J.L., Peckol, P., 1993. Effects of nutrient availability and herbivory on polyphenolics in the seaweed *Fucus vesiculosis*. Ecology 74, 1757–1766.