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Abstract Social network analysis has become a popular tool for
characterising the social structure of populations. Animal social
networks can be built either by observing individuals and defin-
ing links based on the occurrence of specific types of social
interactions, or by linking individuals based on observations of
physical proximity or group membership, given a certain behav-
ioural activity. The latter approaches of discovering network
structure require splitting the temporal observation stream into
discrete events given an appropriate time resolution parameter.
This process poses several non-trivial problems which have not
received adequate attention so far. Here, using data from a study
of passive integrated transponder (PIT)-tagged great tits Parus
major, we discuss these problems, demonstrate how the choice
of the extraction method and the temporal resolution parameter
influence the appearance and properties of the retrieved network

and suggest a modus operandi that minimises observer bias due
to arbitrary parameter choice. Our results have important impli-
cations for all studies of social networks where associations are
based on spatio-temporal proximity, and more generally for all
studies where we seek to uncover the relationships amongst a
population of individuals that are observed through a temporal
data stream of appearance records.
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Introduction

Social network analysis has become a major analytic technique
in behavioural ecology. The key motivation for employing net-
work analysis is that the web of interconnections between indi-
viduals can provide us with invaluable insights into the under-
lying mechanisms that govern the system under study, as well
as understanding processes that depend on emergent social
structure (Newman 2010). Rooted in graph theory, it provides
a wealth of measures for studying the overall properties of a
web of interconnected individuals and characterising the posi-
tions of single individuals within the network. Yet, despite the
advantages of the network paradigm and the wealth of analyt-
ical and computational tools available for network analysis, the
problem of capturing any given system as a graph is not always
trivial. Not all systems possess an obvious web-like structure
(such as the Internet), where the interconnections between par-
ticipating entities are apparent from direct observation (com-
puters that are connected through physical cables). In behav-
ioural ecology, we usually make the assumption that consistent
physical proximity of individuals is a proxy for social affiliation
(Wilson 1975). This approach is indiscriminative regarding the
underlying causes for the spatio-temporal associations. Based
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on co-occurrences, a link is drawn between individuals using
various indices of associations (Ginsberg and Young 1992;
Beijder et al. 1998; Whitehead 2008).

Traditional approaches of discovering network structure
from occurrence data are based on a discretisation of the ob-
servation stream given an appropriate time resolution param-
eter. There are two major problems intrinsic to these ap-
proaches. The first one is referred to as the BGambit of the
Group^ (Whitehead and Dufault 1999), which is the assump-
tion that social relationships are transitive and that all individ-
uals occurring at a locus within a certain time period are as-
sociated with each other. Problems that arise from such an
assumption have been discussed extensively (Croft et al.
2008; Whitehead 2008; James et al. 2009; Franks et al.
2010). The second problem concerns assumptions about what
constitutes an appropriate time resolution within which bio-
logically meaningful social associations can be identified.
This can be crucial as the choice of the time window size
has marked effects on the retrieved network metrics—even
when the window size falls within a range that is arguably of
biological relevance. Given the weaknesses of traditional link
creation approaches, Psorakis et al. (2012) proposed a meth-
odology that exploits key statistical properties of the data
stream in order to reveal a temporal modular structure of gath-
ering events that allows retrieving groups of connected indi-
viduals. The purposes of this study are to (i) highlight the
frequently overlooked problems associated with the choice
of the graph construction method, (ii) compare the different
available methods and (iii) discuss which approach is most
appropriate for time stamped detection data that are typical
of those collected by many studies (Krause et al. 2013). There
is also the general problem of selecting both a temporal and a
spatial resolution for our data. However, in this work, we only
consider cases where there is a predefined number of sites
where individuals are observed, and the concept of Bco-
appearance^ at a given site between a set of individuals is
defined only within a certain temporal distance.

Methods

Study site and data collection

Data used in this study have been collected as part of an on-
going long-term field study of great tits near Oxford, UK. All
data used in this study were collected at Bagley Woods
(51°42′ N, 1°15′ W) from a grid of 35 automated feeding
stations from December 10th 2011 to February 26th 2012.
Since spring 2007, all breeding adults and fledged nestlings
as well as a significant proportion of immigrant birds have
been fitted with small passive integrated transponder (PIT)
tags in addition to metal identification rings from the British
Trust for Ornithology. PIT tags are a form of radio frequency

identification (RFID) that allow automatic identification
through the contactless transfer of data. RFID technology en-
ables standardised data collection for large samples of individ-
uals, which has broad applications for ornithological research
(Garroway et al. 2015), but see Gibbons and Andrews (2004),
Krause et al. (2013) and Smyth and Nebel (2013) for potential
caveats of this technology. An antenna at a feeding station is
used to interact with the electric circuit of the PIT tag via
electromagnetic induction. In turn, the PIT tag emits a signal
which encodes its unique ID; this is received by the external
antenna and decoded by an attached PIT tag reader.

During the winter, PIT tag-based data logging systems are
attached to automated bird feeders that are evenly distributed
throughout the study site. Feeders are fitted with RFID anten-
nae in place of perches for two access holes. When an indi-
vidual takes a seed from the feeder, its identity is transmitted
by the tag and stored with a timestamp by the attached data
logger. Therefore, each datum consists of identity, location,
date and time of detection.

By aggregating records from all feeding locations, the data
generated from this scheme consists of a long stream of time
stamped observations. Our spatio-temporal dataD can be rep-
resented in the form D={IDz,tz,lz}z=1

Z ,, where Z is the total
number of records in our database (i.e. the number of detected
visits). If we take a single record {IDz,tz,lz}, we read it as Bbird
IDz appeared at time tz at feeding location lz. Additionally, a
given bird i (out of total N birds) may appear more than once
in the data. That is, there can be many records z in our data
{IDz,tz,lz} for which IDz=x, for a given individual x. The time
window approach involves placing a link between two indi-
viduals, i and j, if they are observed in the data stream at the
same location and within a given time interval Δt. The more
times the two individuals were seen together within such time
windows, the stronger the link weight ai,j between them. In the
following, we present three different ways in which to define
the appropriate time intervals.

Fixed time windows

For the fixed time window approach, the data stream is
discretised into a series of intervals of fixed length Δt, and
for all observations {IDz,tz,lz} that fall within each time win-
dow, a link is created between the corresponding pairs of
individuals (Fig. 1a). The output of the process is an undirect-
ed weighted matrix Awhere ai,j is the number of time intervals
Δt within which individuals i and j co-occurred.

Variable time windows

For the variable time window approach, we pick an individual i
and we place an Binfluence zone^ of sizeΔt around each one of
its observations (Fig. 1b). Every other individual that was ob-
served at the same locationwithin this time zone is assumed to be
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connected to i. In cases where we have successive observations
of the same individual, with overlapping influence zones, we
simply merge the intervals, as done in Fig. 1b, leading to a
variable time window scheme. Similar to the fixed time window
method, we end up with an undirected weighted graph described
by an adjacencymatrixA, where each ai,j is the number of times i
and j co-occurred within a fixed temporal distance ofΔt.

Gaussian mixture model

Under a time windowmodel, interactions ai,j are defined with-
in a given temporal distance Δt. The selection of this scale
parameter is crucial for the extracted topology of the network:
Insufficiently small time windows may omit important co-oc-
currences, while unreasonably large ones lead to an over-
estimation of the population’s social connectivity. So far, the
choice of the parameter was completely arbitrary and either

justified by intuition of what might to be biologically plausi-
ble, or—more commonly—not at all. Psorakis et al. (2012)
suggested a more Bdata-driven^ approach that reduces this
arbitrariness by taking the choice out of the hands of the re-
searcher. This is achieved by exploiting the heterogeneous
feeder observation profile, where bird visitations are not uni-
formly spread across time but occur in Bbursts^; periods of
intense feeding activity where many individuals gather around
the feeder, followed by long periods of inactivity. We consider
such series of temporally focussed aggregations of birds, with
long zero-observation periods between them, as gathering
events of foraging individuals. More details regarding the
identification of gathering event structure is provided in the
Supplementary Material.

The Gaussian mixture model (GMM) method works by
firstly detecting regions of increased activity using a Gaussian
mixture model, and next, the data stream is clustered into non-
overlapping gathering events (Fig. 1c). Each observation
{IDz,tz,lz} is assigned to one gathering event and networks
are inferred, equivalently to the time windows approach, by
linking all individuals that are members of the same gathering
event. The purpose of the GMM is to estimate the number of
independent gathering events, their centres of mass and their
Bborders^ to their neighbouring events. This is achieved by
considering each time stamp tz as drawn from a mixture of K
Gaussian distributions, and inference on number of mixtures,
their centroids, density parameters and cluster membership is
achieved via a Variational Bayes (VB) algorithm (more details
in the Supplementary Material). MATLAB code for
performing GMM analyses can be found at https://github.
com/ipsorakis/GMMevents.

In the multiple location setting, we run GMM at each loca-
tion lz of the data stream D={IDz,tz,lz}z=1

Z separately, as a
gathering event is defined only within the context of a partic-
ular location. The whole social network is then reconstructed
simply by aggregating the gathering events from all locations,
and connecting individuals based on their co-occurrences at
those events. The connections are stored in an adjacency ma-
trix A, where if ai,j≠0, then individuals i,j are connected.

The GMMapproach has not only the advantage of not requir-
ing the researcher to guess the appropriate time window sizeΔt,
but also drops the constraint that Δt is constant over the whole
observation period. The two assumptions upon which GMM is
based are that individuals visit feeders in flocks (non-uniform
feeder visitation profile) and that flock membership signifies so-
cial associations to the other flock members.

Association index

Networks extracted directly from the weighted adjacency ma-
trixA have an intuitive interpretation, as every link is weighted
by the total number of times two individuals were observed
together. However, such networks neither consider different
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Fig. 1 Hypothetic example of the temporal data stream and the way how
discretisation methods identify links of co-occurrence between
individuals A and B. Dark bars give the real-time presence of a bird at
one of the two perches of a feeder. Letters A and B below the time axis
denote the discrete visitation events of the individuals identified by the
corresponding method. Ovals around the letters indicate links between
individuals. a Fixed time windows. b Variable time windows. c GMM
time windows. d Example data stream of great tits visiting a feeder. Each
line shows the presence of a specific individual; the bottom line gives the
sum of all recordings
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detection rates of individuals nor different levels of
Bgregariousness^. Different encounter rates might be due to
different activity patterns, different spatial distributions or dif-
ferent levels of habituation to the detection devices (e.g. feed-
ing stations), amongst other factors. Not taking encounter
rates into account will lead to an underestimation of social
relationships of rarely encountered individuals and to an over-
estimation of association strengths amongst frequent visitors
(Whitehead 2008). To resolve this issue, various indices of
association have been suggested (Ginsberg and Young 1992;
Beijder et al. 1998; Whitehead 2008). Our approach consists
of evaluating the three different scenarios that take place in our
visitation data at a single feeder: (i) both individuals i and j
were observed within time bin (i.e. time window or gathering
event) z, (ii) only one of the two individuals was observed in
time bin z and (iii) neither i nor j were present within time bin
z. As we used a fully automated detection system relying on
RFID tags, we can ignore the potential issue of observer bias
and assume that all PIT-tagged individuals are detected with
equal accuracy. We therefore used a simple ratio association
index, which in this case is equivalent to the half weighted
index (Cairns and Schwager 1987)—except for a scaling fac-
tor of 2. The index is given by ri; j ¼ xi; j

xiþx j
;, where ri,j is the

association index for individuals i and j, xi,j is the number of
times individuals i and jwere observed in the same time bin, xi
is the total number of times individual iwas observed and xj is
the total number of times individual j was observed.

Gambit of the gathering

Any construction of social networks that makes use of spatio-
temporal visitation records is based on the assumption that co-
occurrences signify some form of social affiliation. This as-
sumption was dubbed the BGambit of the Group^ (Whitehead
and Dufault 1999), as one deliberately ignores the possibility
that a co-occurrence amongst two individuals i,j can be the
result of a common social tie to a third individual k but with no
actual social association between i,j. By grouping several in-
dividuals, which arrived at a feeder in a sequential order and
by drawing links between all the members of this group, we
are assuming social ties of the same quality between consec-
utively arriving individuals and between individuals with
more distant arrival times. Likewise, as with the gambit of
the group, we are pooling links with different levels of uncer-
tainty, and thus, we can refer to this dilemma, in analogy, as a
BGambit of the Gathering^. In our case, it is, furthermore,
likely that a certain proportion of detected co-occurrences
are purely incidental, not only because of the inherent
stochasticity of ecological environments but also because
feeding stations as employed in our study act as Battractors^
to foraging individuals. An important question to be addressed
in this respect is how sensible the different network extraction

methods are to certain levels of Bgambitness^ (i.e. incidental
co-occurrences). We, therefore, seek to compare the quality of
the extracted social networks given both the GMM and the
time window approach and compare them against aground-
truth network. Unfortunately, ground-truth network structure
is not available to us in real-world scenarios. Yet, we can
compare the effect of the Gambit of the Group assumption
on networks generated by the GMM and time window ap-
proaches using simulated data streams, which can generate
bird visits given a fully observed graph. In such artificial log-
ger data, individuals that are connected with each other in the
ground-truth graph are placed in close temporal proximity,
while individuals with no associations are placed further apart.
We also induce a certain level of noise, or gambitness, so that
individuals with no social affiliation are positioned close to
each other with a given probability. We apply both the GMM
and the fixed time window method on simulated data streams
and compare the extracted networks versus the ground truth
one.

Example data

In this paper, we analyse a single sample of data collected
from the study population, as described above. The data were
collected on Saturday February 4, 2012 and Sunday February
5, 2012 and involve 72,319 detections of 195 individual great
tits (other tit species were also tagged and detected, but are not
considered further) at 35 different loggers. This weekend was
chosen as an example because it was a weekend with the
highest numbers of visits per weekend for this season (range,
26,297–72,319) and the highest number of recorded great tits
per weekend (range, 97–195).

Results

Impact of window sizes

First, we constructed weighted networks using a fixed time
window approach for time window sizes from 1 to 16 s and
furthermore for 20, 30, 60, 100, 150, 200, 300, 600, 1000,
1500, 2000, 3600, 5000, 9000, 18,000 and 36,000 s. For each
resulting network, we calculated four different network mea-
sures: mean degree centrality (Wasserman and Faust 1994),
mean edge weight disparity (Barthelemy et al. 2005), mean
betweenness centrality (of the unweighted graph, Freeman
1979) and mean clustering coefficient (Watts 1999). Addition-
ally, we constructed networks using variable time windows
with influence zones of 1–15 s and furthermore for 20, 25,
30, 45, 60, 120, 250, 500, 1000, 1500, 2500, 3600, 5000,
7500, 10,000, 15,000, 18,000 and 20,000 s on each side of
the visitation bout and calculated the same network measures
likewise.
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Figure 2a–c shows example networks based on time win-
dow sizes of 1, 5 and 3600 s (1 h), respectively. As can be
seen, the three graphs differ markedly from each other despite
the fact that all three are derived from exactly the same set of
raw data. The differences between the three graphs a–c results
only from cutting the data stream into time windows of differ-
ent lengths. The impact of this on the resulting network was
clearly reflected in the computed network measures, which
varied widely depending on window size (Fig. 2d–g). As the-
se data show, betweenness centrality shows strong fluctua-
tions up to time windows of approximately 30 s, while mean
clustering coefficient and degree centrality show the largest
increase over that time window range.

A similar picture emerges when we compare networks cre-
ated using variable time windows with influence zones of
different sizes (Fig. 2h–j) and calculate the corresponding net-
work measures (Fig. 2k–n). Comparing the results for fixed
and variable time windows, one can note that the estimates
based on variable time windows seem to fluctuate a little bit
less, though the overall patterns are the same. Thus, for this
specific case, we would argue that any time window size be-
tween 30 s and 1 h would produce rather similar graphs while
networks based on smaller or larger time windows may devi-
ate substantially.

Applying the GMMmethod, we get 1064 gathering events
at 22 different locations on the first day and 1194 gathering
events for 23 locations on the second day, which makes on
average 100 gathering events per location for the whole week-
end with an average duration of one gathering event of 232
(SD±157)s. The retrieved network based on the gathering
event method (Fig. 3) has a density of 0.08, edge weight
disparity of 0.16, betweenness centrality of 209, degree cen-
trality of 16.9 and clustering coefficient of 0.81.

One general problem of all data stemming from a continu-
ous time stream is that successive data points from a single
individual are not statistically independent. How much the
presence of a bird at a feeder at a time point t+Δt is deter-
mined by its presence at time point t depends on the size ofΔt

and can be estimated by the temporal autocorrelation coeffi-
cient r. We calculated for each bird and each day of logging
the autocorrelation coefficient for time lags from one to 240 s
(Fig. 4a). As expected, the correlation is highest for very small
time lags: If a bird is recorded at a feeder, it is likely that it will
be still at the feeder a second later. The temporal autocorrela-
tion reaches a minimum around 20 s, reflecting the feeding
behaviour of the birds, which do not stay at the feeder once
they recovered a seed, but fly off to a nearby tree in order to
open and eat it there. Thereafter, the correlation coefficient
rises again before it slowly decreases, which is due to the birds
staying close to the feeders and repeatedly retrieving seeds for
an extended period. This temporal autocorrelation has conse-
quences for the time window approach, as the presence of
birds in two consecutive time bins will always be correlated,

irrespective of the length of the time window. Figure 4b shows
the autocorrelation for a time window of 10 s, respectively,
suggesting that by taking such a time window and sampling
only every second interval, one could substantially reduce the
temporal autocorrelation. Yet, this wouldmean discarding half
of the data. Note that, in addition to temporal dependencies,
there are also statistical dependencies between data of differ-
ent birds due to the nature of social interactions. These depen-
dencies are not accounted for here.

A method for selecting the appropriate window size

The exploratory analysis done so far suggests that very small
time windows may omit important co-occurrences and intro-
duce temporal dependencies, while unreasonably large ones
can lead to an over-estimation of the population’s social con-
nectivity (compare Fig. 2a and c). Yet, so far, we have no
means of telling which, out of all different network topologies
that result from varyingΔt, is the most appropriate. Therefore,
in cases where we have no expert knowledge of the temporal
scale of our data, we have to examine multiple time windows
and select the one that satisfies some performance metric.
Although there are many graph quantities to consider, such
as the ones we examined in Fig. 2, these are more descriptive
variables of a particular topological structure, rather than a
fitness score of how well a given time window produces an
appropriate network given the data stream at hand. We, there-
fore, define our performance metric based on some form of
deviation from randomness, instead.

Let us consider a randomised version of the data stream,
where for each location we have performed a shuffling of bird
labels while maintaining the order of timestamps. Such a
scheme maintains key characteristics of the data set such as
number of observations per individual, location popularity,
temporal distribution of records, but breaks all dependences
in the observation sequence induced by social structure. Given
a certain time window Δt, we produce one network from the
original and one network from the randomised data stream
and compare them based on a link-by-link mean square error
(MSE) metric. [Other metrics have also been considered, al-
though they do not significantly alter the results. Such metrics
are based on the mean square error of (a) the link-by-link
weight difference, (b) node-by-node difference in clustering
coefficient and (c) node-by-node difference in degree central-
ity. All metrics have been appropriately normalised to keep
consistent scaling. See Supplementary Material for more in-
formation.] We repeat the randomisation process for a given
number of times and produce an empirical distribution of the
MSE scores between the observed and the randomised data.
We then perform such a scheme for a range of candidate win-
dowsΔt, keeping track of the dissimilarity between observed
and randomised data.
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In Fig. 5, we plotted the dissimilarity between the null
and observed networks across a range of different time
window values. As we would expect, for Δt values close
to zero there is minimal difference between the networks
generated from the null and observed data streams, as the
time window is so strict that no social ties can be defined.
Similarly, for inappropriately large Δt (close to the total
observational time span), every individual is connected to
all others, and the actual ordering of visits does not mat-
ter; thus, the observed and null networks converge. Be-
tween the two extreme cases, a maximally non-random
structure emerges for some intermediate Δt value, as
shown in Fig. 5. In our case, we get a maximal dissimi-
lari ty between networks based on observed and
randomised data for a fixed time window size of the order
of 100 s (102 s for weight difference, 89 s for clustering
coefficient and 101 for degree centrality). Selecting this

value as the optimal time window size is a reasonable first
step in analysing such data streams, as it does not require
any prior or expert knowledge about the scaling parameter
Δt, though it makes the strong assumption that the
Binteraction radius^ between individuals (and, hence, the
appropriate time window size) is fixed throughout the
period of data collection. Additionally, the process of
performing multiple runs and network extractions can be
computationally demanding, especially in cases of large
data streams. Finally, a note of caution has to be made at
this point: While choosing the time window based on
maximal dissimilarity is a feasible way to objectify the
choice, it does not guarantee that this window size is
biologically relevant. As such, we have no empirical in-
dication that evolution selects for networks that are max-
imally different from random, nor can we think of any
theoretical reasons why this should be so.

l

a cb

d ge f

Time window size (s)

k nm

h ji

Time window size (s)

Fig. 2 Networks of co-foraging
based on different fixed time
window sizes a 1 s, b 5 s and c
3600 s and on variable time
windows with an influence
interval of h 1 s, i 5 s and j 1800 s.
Vertices represent single
individuals. An edge was drawn
between two individuals if they
have been observed in the same
time window. Edge thickness
represents absolute frequency of
co-occurrences. Vertex position
indicates the approximate spatial
position of the birds given by the
centre of gravity of their activity
area. A small random error was
added to the vertex positions in
order to avoid complete overlap
of birds that visited only a single
feeder. Change of four network
metrics: mean edge weight
disparity (d), mean betweenness
centrality (e), mean clustering
coefficient (f), mean degree
centrality (g) in dependence of
fixed time window size and of
mean edge weight disparity (k),
mean betweenness centrality (l),
mean clustering coefficient (m),
and mean degree centrality (n) in
dependence of the influence
interval for variable time
windows. Horizontal grey dotted
lines indicate the estimates for
network measures based on the
GMM approach, vertical grey
lines indicate the values for the
example networks
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Analysis of gambitness

In order to study how strongly the Bgambit of the
gathering^ affects the constructed networks, we generated
artificial data streams and extracted each time two net-
works, one using the GMM method and another one using
the fixed time window. We parameterised the time window
method using the maximum-dissimilarity scheme present-
ed previously. For producing the data stream, we first gen-
erated a reference (ground-truth) network of a hypothetical
social network of 128 birds and 4 flocks, using the Girvan–
Newman random graph model (Girvan and Newman
2002).We then converted the graph to data stream form,
so that connected individuals (members of the same flock)
appear in close temporal proximity. Additionally, we allow
a certain level of Bnoise^, by placing a number of randomly
selected individuals across the artificially generated data

stream. Algorithmic and computational details for the arti-
ficial data stream generator are presented in the online
Supplementary material. For each network, we extracted
its community structure (i.e. the groups of individuals that
are closely connected to each other) and compared it
against the corresponding community structure of the
ground-truth graph via the normalised-mutual-information
(NMI) score (Danon et al. 2005). The quantity NMI takes
values from 0 to 1, with two networks yielding 1 when they
have identical community structure and zero if there is no
similarity in the grouping pattern of their members. In
Fig. 6, we illustrate the effect of gambitness, i.e. the prob-
ability that unaffiliated individuals will appear in close
temporal proximity in the data stream, based on the quality
of the extracted networks from the GMM and time window
methods. We can see that, across a range of noise levels
(0 for no probability of unaffiliated individuals co-occur-
ring and 1 for a completely random sequence of
occurrences), the GMM method produces a considerably
more accurate extraction of the underlying ground-truth
graph, as reported by 100 cases of artificially generated
data streams per noise level. Notably, the relative perfor-
mance of the GMM approach, versus a fixed time window
approach, improves as the noise level increases. Finally,
we were interested if the algorithm produces stable
solutions across multiple runs on the same data. For this
purpose, we considered 1000 runs of GMM for each of 100
randomly generated data streams. We compared the
similarity of those 100 different solutions via their NMI
values. We can see that GMM possesses excellent solution
stability, with most NMI values (x±SD) falling within
0.9916±0.0022 for weekend 1 and 0.992±0.002 for
weekend 2 (Supplementary material).

Fig. 3 Networks of co-foraging based on the GMM approach. Vertices
represent single individuals. An edge was drawn between two individuals
if they have been observed in the same gathering event. Graphs are drawn
as in Fig. 2
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Fig. 4 Temporal autocorrelation for presence at a feeder. a Mean
autocorrelation coefficient for all individuals over 24 days of data
collection (bold line) and standard deviation (thin line) for time lags of
1–240 s. b Mean autocorrelation coefficient for fixed time windows of
10 s. Error bars give the standard deviation

time window size Δt
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Fig. 5 Three dissimilarity metrics between the observed network and the
null network across various time window sizes. Link-by-link weight
difference (dark grey), node-by-node difference in clustering coefficient
(black) and node-by-node degree centrality difference (light grey). Each
point gives the mean difference between the observed and R=100
randomisations of the data stream of visits of great tits on one example
day. Error bars indicate standard deviation
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Discussion

Capturing the behaviour of animals (or humans) by continu-
ously observing individuals brings along with it a fundamental
problem: The behaviour expressed at a specific time point is
not independent from the behaviour expressed only an in-
stance earlier. The same is true for spatial relationships. To
deal with these temporal dependencies, one can try to
discretise the temporal data stream into discrete and indepen-
dent behavioural events. How to do this properly for identify-
ing social associations is the main focus of this paper. As an
example, we used data from our own work where the presence
of PIT-tagged individual great tits at feeding stations was con-
tinuously recorded. Yet, the solution that we present is not
restricted to a system with PIT-tagged individuals but can also
be applied to any other system where proximity data of indi-
viduals are recorded continuously (i.e. with a high sampling
frequency), as it is the case with Encounternet (e.g. Rutz et al.
2012), sirtrack (Sirtrack Ltd., Hawkes Bay, NZ) or e-obs (e-
obs GmbH, Gruenwald, DE).

Constructing a social network from a time-stamped data
stream is not a trivial task.Whatever clustering scheme is used
in order to discretise the time stream, by choosing very small
time bins one risks excluding biologically meaningful associ-
ations, while by choosing very large time bins one risks in-
cluding too much noise. At the same time, small time bins will
increase the temporal dependencies of successive bins, and
consequently threaten statistical independence, while large
time bins will lead to an overestimation of meaningful links
up to a point where a ceiling effect obstructs the detection of
contrasts. In order to deal with the temporal dependencies, one
could arguably set a threshold value of what would be an
acceptable auto-correlation value and chose a time bin size
that produces temporal auto-correlations just below this

threshold. In order to increase the likelihood of capturing only
meaningful associations, we have suggested that comparing
how different produced measures are from expectations for
random networks and choosing the bin size in a way that
maximizes this difference might be one way forward. Yet,
while we can argue that biologically meaningful signals
should deviate from random patterns, we know of no convinc-
ing indication that biological processes necessarily produce
maximal deviation from randomness.

Given that, in our example, birds will usually stay at a
feeder for a certain time, any fixed time interval will occasion-
ally cut such an individual foraging bout into two and the bird
will be recorded as being present in two consecutive time bins.
This produces temporally dependent data. For the flexible
time window, we defined an influence zone around each re-
cording of a bird, and if influence zones of consecutive visits
of a single bird overlapped, these were merged to a single
influence zone and counted only once. By doing this, we
effectively reduce the temporal dependencies. The GMM
deals with the problem in a different way. Instead of defining
influence zones for single individuals, it defines the duration
of gathering events by considering all birds present simulta-
neously. Here, it can—in principle—happen that a foraging
bout of an individual is cut into two and counted twice in
successive gathering events (producing temporal dependent
data), though the mixture model effectively minimises the
instances of such bout splits. Reducing temporal autocorrela-
tion in social group structure is also particularly important as
many permutation procedures aimed at defining non-random
social structure assume temporal independence of observed
groups (Beijder et al. 1998).

A basic problem intrinsic to all methods for constructing
networks based on spatio-temporal association data is the
Bgambit of the group^ (Whitehead and Dufault 1999). The
problem might be most apparent in the Gaussian mixture
model or for the fixed time window approach with large bin
sizes, where often enough a large proportion of the population
(i.e. the birds visiting the specific location on that day) is
observed in the same time bin or gathering event and links
are drawn between all these birds. The effect of the gambit of
the group is an overestimation of meaningful associations.
Clearly, the problem increases with increasing bin sizes,
though it is impossible to quantify it in real social networks,
as the underlying structure of Btrue^ social associations is not
known. We have, however investigated how the different data
extraction methods perform in this respect, by creating artifi-
cial networks and simulated sampling. As, in this case, we
have the full information about the underlying data, we can
estimate the level of overestimation of links and, hence, give a
measure for gambitness for the different methods. For the
hypothetical example network, the GMM method was more
reliable in recovering the original graph structure than the time
window approach for all levels of added noise. Thus, while we

noise level
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Fig. 6 Quality of community structure recovered from simulated noisy
data. Mean normalised-mutual-information (NMI) score is plotted for
different noise levels for networks constructed using the GMM
approach (black), fixed time window approach (dark grey) and variable
time window approach (light grey). Error bars indicate standard
deviation based on 100 simulations per noise level
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can never exclude the risk of falsely interpreting random as-
sociations as group memberships completely (hence the term
Bgambit^), the GMM method will usually produce networks
that are only slightly affected by this, as long as random asso-
ciations do not occur too frequently.

Finally, we want to note that the time window approach
goes against our biological intuition in at least one important
aspect. It assumes that the optimal time window stays constant
over the whole observation period. However, we also know
that the activity of birds changes over the course of the day
(e.g. Lahti et al. 1997), and it is sensible to assume that the
optimal time window for defining associations changes with
the prevailing activity. Additionally, plenty of observations
collected over several decades suggest that, during winter,
great tits tend to forage and move around in flocks (Hinde
1952; Saitou 1978; Perrins 1979; Gossler 1993). Ignoring
these well-established facts would mean ignoring some well-
established facts about the biology of our subjects.

Closing remarks

The data used for this study stem from a long-term monitoring
project where we equipped a large proportion of a population
of wild birds with PIT tags and recorded their appearance at 35
feeding stations during one winter. This resulted in a data
stream of over half a million recordings of birds at the feeders.
Given this—for a behavioural study—substantial data set, it
might be expected that it would be easy to construct reliable
and meaningful social networks out of the temporal data
stream of feeder visits. Yet, in contrast, our analyses here
demonstrate a remarkable degree of variability in how differ-
ent the networks looked and in how much estimates of net-
work measures differ depending on the chosen time window
size. Although some effects of time window size are expected,
the realised magnitude of this effect and the non-linearity and
unpredictability of its direction were striking. If a
summarising network statistic which scales between zero
and one can take on any value between 0.3 and 0.9 for net-
works based on exactly the same data stream—only depend-
ing how we chose the size of the time windows—then we
cannot have much confidence in any network based on an
arbitrarily chosen fragmentation of a temporal data stream.
At its best, this means that the results researchers get might
be a random effect of chosen time window size; at its worst,
researchers can just chose the time window size which pro-
duces measures supporting their preferred hypothesis.

In order to eliminate this arbitrariness in the parameter
choice for the time window, we introduced a simulation meth-
od that finds the time window size which maximises dissim-
ilarity of generated networks with the same underlying data
structure. In addition to being computationally burdensome,
this method makes the assumptions that the optimal time win-
dow size is constant over the whole observation period and

that maximal potential dissimilarity is biologically meaning-
ful. Both assumptions are not necessarily warranted.We there-
fore opted for an alternative approach (Psorakis et al. 2012),
which allows variation of the time window size over time and
does not rely on maximising a statistical dissimilarity measure
but instead incorporates assumptions about the bird’s biolo-
gy—namely that birds move around in flocks (producing a
non-uniform observation profile). This method has already
been successfully applied in several studies of this population
(e.g. Farine et al. 2012; Aplin et al. 2013).

In summary, we can say the following. (1) Analyses that
require a discretisation of a temporal data stream must be
distrusted if the choice of the time window size is arbitrary
and not further justified. (2) The GMM approach can better
reconstruct the underlying social affiliation patterns, by incor-
porating information about the animals’ social biology and
exploit the non-uniform or flocking nature of bird visits at
the feeders. As such, it does not commit to a rigid temporal
resolution. (3) For applications where the visitation profile is
uniform, we have proposed an appropriate methodology for
setting timewindow size, by selecting the one that gives rise to
the most Bnon-random^ network structure. These observa-
tions hold for all social networks reconstructed from temporal
data (which is the case for most networks in behavioural ecol-
ogy), but potentially also for any other analysis that makes use
of time windows for discretisation of a data stream.
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