Detecting Individual Paints in Mixed-Media Paintings #### The Challenge of Conserving Mixed-Media Paintings Conserving modern and contemporary mixed-media paintings is made difficult by the impossibility of visually identifying individual paints in the mix. Furthermore, because paints have different chemical and physical properties, traditional single-media conservation techniques may cause unwanted damage and irreversible changes to the surface of a mixed-media painting. # Mixed-Media Test Panels with Known Ratios of Acrylic, Alkyd, and Oil A 2008 research project at the Smithsonian's Museum Conservation Institute explored procedures that could be used to detect each paint component in a mixed-media painting. This study used Grumbacher oil, Winsor & Newton Griffin alkyd, and Golden acrylic emulsion in weight ratios of 25:75, 50:50, 75:25, 90:10, and 100. Samples were prepared from drawdowns on Mylar sheets and left to age in an indoor environment with stable temperature and humidity. These experimental test panels were used to develop and refine the testing procedures and provided an excellent resource for studying the aging behaviors of mixed media. #### Tests In our studio, examining and interpreting the spectra of the binder media alone using Fourier Transform Infrared Spectroscopy (FTIR) is the first step in paint identification and is a straightforward process. While carbonyl peaks overlap, especially as oil paint ages, the fingerprint and C-H regions are readily distinguishable. The analysis can be completed in one to two minutes. For mixed paint binders, however, FTIR analysis is less straightforward. Pigments and fillers make infrared identification of individual paints more difficult to confirm. Infrared spectroscopy of mixed-media paintings may provide information on multiple components of a paint mixture, but peak overlaps can prevent observation of some less prominent peaks from different paints. Thus, microtesting of physical properties, such as melting points and solubility (often used in forensic and pharmaceutical laboratories), is standard procedure in our protocols and is used to establish safety limits for temperature and solvents for treatments such as lining and cleaning. Our solubility test is adapted from the National Bureau of Standards Special Publication 480-40, Paint Solubility Test, prepared for the National Institute of Justice, issued in 1982. We used a Fisher-Johns melting point apparatus for our melting point tests. We performed the first full-scale investigation of paint mixtures at various ratios in the summer of 2012. It included assessments of gloss, color, melting point, solubility (under visual and 3D microscope examination), FTIR, and gas chromatography-mass spectrometry (GC-MS). Preliminary results indicated that it is not possible to visually identify paints by color or gloss, and that even FTIR identification is not completely reliable. Pyrolysis-gas chromatography/mass spectrometry using tetramethylammonium hydroxide (Py-GS-MS using TMAH) can successfully identify all components, but is not always accessible or affordable for practicing conservators. Findings from this study demonstrated the feasibility of using microsamples of paint to microscopically observe melting points and solubility, and integrating FTIR analysis in the test protocol to detect single-component paints in mixed media. In the second phase of our investigation, carried out in 2013, we employed paint samples we had prepared in 2008, but expanded the investigation to include commercial household paint samples. The scope of our current investigation is smaller and focuses on establishing testing criteria and standardizing reagent concentrations and other parameters for tests of melting points and solubility. When followed rigorously, with controlled time and temperature, these procedures can be used to classify paints by their chemical reactivity and physical properties, and thus characterize individual paint components in mixed media. ## Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) Instrument: Thermo Nicolet 6700 FTIR spectrometer. Resolution: 4 cm-1. Sampling accessory: Golden Gate ATR with diamond crystal, single bounce, 45°. Detector: DTGS. Number of scans: 128. Correction: ATR corrected. Samples for ATR-FTIR were placed directly on the diamond crystal of the ATR accessory. For small samples, a piece of aluminum foil backed the sapphire anvil to eliminate any sapphire absorption in the IR spectrum. Samples of medium alone were also available for FTIR analysis. ### FTIR Analysis of Single-Component Paints (Fig. 1) Interpretation of single-component paints (acrylic, oil, and alkyd) is straightforward. Carbonyl peak C=O can overlap, especially in aged oil samples. The C-H and fingerprint region are easily distinguishable: alkyd peaks at 1274 cm-1 and oil peaks at 1170 cm-1. However, when pigments and fillers are added, infrared interpretation becomes more difficult. ### FTIR Analysis of Alkyd and Oil Paints (Fig. 2) Differentiating alkyd and oil paint in mixtures would appear to be easy: alkyd peaks at 1274 cm-1 and oil peaks at 1170 cm-1. However, peaks from fillers can obscure these peaks. Silica's 1100–1000 cm-1 Si-O-Si stretch and sulfate's asymmetric stretching band of 1200–1050 cm-1 can overlap these two markers, making it difficult to identify individual paints. 25% alkyd paint has no peaks that can be attributed to alkyd. As seen in the sample of 75% alkyd: 25% oil paint, peaks from fatty-acid soaps present in the aged oil paint film, at 1540 cm-1, are quite prominent. The main peak in the alkyd paint film, at approximately 1400 cm-1, is actually due to carbonate filler and is not distinctive to alkyd paint. The sample with 25% alkyd: 75% oil paint has no peaks that can be attributed to alkyd paint. #### FTIR Analysis of Alkyd and Acrylic Paints (Fig. 3) With C-H stretching bands of 2986 cm-1 and 2955 cm-1, the overall profile of the C-H stretching region, C=O stretching at 1732 cm-1 and the fingerprint at 1179 cm-1, are indicative of acrylic emulsion. The OH peak of around 3300 cm-1 and Figure 1. IR absorbance spectra for single-component paints. A: acrylic; B: alkyd; C: oil. C=O stretching at 1730 cm-1, peak 1274 cm-1 fingerprint region 1123 cm-1 and 1072 cm-1, are indicative of alkyd paint. Alkyd's fingerprint region peaks of 1123 cm-1 and 1072 cm-1 often mask acrylic's skeletal vibration of 1179 cm-1. #### FTIR Analysis of Acrylic and Oil Paints (Fig. 4) When acrylic and oil paint are mixed, fatty-acid soaps from aged oil paint peak at 1170 cm-1 and dominate the infrared spectrum. An unknown sample with 75% acrylic paint and 25% oil would be difficult to identify as containing acrylic. However, any sulfate or silicate pigments or extenders ruin quantification due to peak overlaps. Acrylic C–O and C–C stretch also have high absorption in the 1100–1300 cm-1 region and prevent quantification of a mixture of three paints. As described, when acrylic and oil paints are mixed, fatty-acid soaps formed in the aged oil paint dominate the infrared spectrum. If the acrylic peak at 1170 cm-1 is attributed to oil paint rather than acrylic, even an unknown sample that is 75% acrylic paint and 25% oil paint would be difficult to identify as containing acrylic. Acrylic C–O and C–C stretch also have high absorption in the 1100–1300 cm-1 region and prevent quantification of a mixture of three paints. ### Summary Interpreting single-component paints (acrylic, oil, and alkyd) is straightforward. However, when pigments and fillers are added, infrared interpretation of individual paints becomes more difficult. Chalk's characteristic ${\rm CO_3}^2$ stretching band of 1490–1370 cm-1, calcium sulfate's characteristic asymmetric ${\rm SO_4}^2$ stretching band of 1140–1080 cm-1, and silica's asymmetric Si-O-Si stretching band of 1100–1000 cm-1 often obscure the telltale peaks of individual paints, and overlapping peaks can inhibit identification. Infrared spectroscopy of mixed-media paintings may provide information on multiple components of a paint mixture, but peak overlaps will prevent seeing some less prominent peaks from different paints. Figure 2. IR absorbance spectra for alkyd/acrylic mixtures. A: 100% alkyd; B: 90% alkyd, 10% acrylic; C: 75% alkyd, 25% acrylic; F: 100% acrylic. Figure 3. FTIR absorbance spectra for alkyd/oil mixtures. - A: 100% alkyd; B: 75% alkyd, 25% oil; - D: 10% alkyd, 90% oil; - C: 50% alkyd, 50% oil; - E: 100% oil. Figure 4. FTIR absorbance spectra for oil/acrylic mixtures. - A: 100% oil; - D: 25% oil, 75% acrylic; - B: 75% oil, 25% acrylic; C: 50% oil, 50% acrylic; - E: 100% acrylic. #### **Detecting Individual Paints in Mixed-Media Paintings, continued** #### **Melting-Point Tests** Melting-point tests were conducted on a Fisher-Johns melting point apparatus, with a small hotplate heating area connected to a thermometer that can measure up to 210°C. All paint samples were exposed to a temperature range of 30°–210°C. An 18-mm circular cover glass was placed between the heating area and the sample to keep the heating area clean. A rotary knob on the apparatus controlled the speed of heating. The melting point apparatus was placed under a microscope to observe sample reactions. Two metal needles were used to manipulate the samples and test their behavior under pressure. ## Melting-Point Characteristics of Acrylic, Alkyd, and Oil Paints (Table 1) The melting behaviors of acrylic, alkyd, and oil paints are highly distinct. Alkyd and oil paints cannot approach the softness and elasticity of acrylic emulsion paint. Moreover, alkyd paint starts to soften at lower temperatures than oil paint (alkyd: 30°–40°C; oil: 40°–100°C) and loses softness at a very specific temperature point (100°–110°C). Oil paint typically chars and discolors at 120°–140°C. The degree of charring is age-dependent: fresh oil paint will char and turn brown-black at a lower temperature than aged oil paint, which chars at around 180°C or above. #### **Melting-Point Characteristics of Acrylic Paint** The acrylic paint samples we analyzed were soft and elastic. Probing left a dent that would return to its original shape when the pressure was released. All of the samples immediately reacted to rising temperature with increasing softness and elasticity. This behavior intensified at higher temperatures, but no other changes were seen. At 210°C nearly all the samples were still very soft and very elastic. No changes in color appeared. #### **Melting-Point Characteristics of Alkyd Paint** The alkyd paint samples were essentially hard and non-elastic. Probing with a needle left a dent that did not bounce back. However, all of the samples showed clear softening and elasticity at temperatures of $30^\circ - 40^\circ C$. This behavior increased up to a point, but at around $100^\circ - 110^\circ C$ the samples lost elasticity and became increasingly hard and brittle and would break when poked with a needle. At $210^\circ C$ all samples hardened and became quite brittle. No color changes were observed. #### **Melting-Point Characteristics of Oil Paint** Oil paint samples ranged from soft (but non-elastic) to very hard and brittle, depending on the age of the sample. Most samples started to soften at 40°–100°C. At 120°–150°C the oil paint samples started to congeal and become increasingly brittle (one sample congealed at 90°C). This was typically accompanied by a color change. Lighter-colored samples yellowed then turned brownish. Darker-colored samples became darker. Color changes were not noticeable in very dark-colored samples. In oil paint, these color changes mark the beginning of charring, a process that is complete at higher temperatures than could be measured in our study. Melting-point characteristics of oil paint are highly variable, depending on the degree of dryness and oxidation. Some samples became hard and brittle and changed color significantly at 210°C, while others remained soft even while becoming brittle and changing color. #### Melting-Point Characteristics of Mixed Media (Table 2) Our observations suggest that a mixture of two paints will exhibit the characteristics of both types of paint present. These dual characteristics were seen in each sample tested, especially upon exposure to mid and upper temperatures. Noting this, it is possible to see that certain combinations encourage certain types of paint to be more prominent. Oil will darken at high temperatures. Alkyd alone will harden but not darken at 110°C, but these reactions require a higher temperature when alkyd is mixed with another type of paint. Acrylic will turn soft and react to probing with a fine needle only at 210°C. Fortunately, in tests the melting-point characteristics of one type of paint will not be dominant. Thus, if conservators carefully examine paint reactions at both lower and upper temperature ranges, they can be confident that a melting-point test will not falsely indicate the presence of only one paint when, in fact, there are mixed media. #### **Summary** Melting point tests cannot provide the weight ratio of the mixture. However, the individual paint melting behavior is noted in the mixture. Acrylic emulsion and alkyd paint have predictive and consistent melting behaviors. Acrylic emulsion will soften at 30°C and remain soft without drying or darkening at 210°C. Aged and young acrylic paint behave similarly. Alkyd paint will harden but not darken at 110°C and remain that way up to 210°C. This is true for aged and young alkyd paint. The melting-point characteristics of oil paint are age-dependent. At 30°C oil paint is hard. It will soften at around 60°C and melt at 120°–160°C, depending on the age of the sample. It will char and darken at 160°–210°C. #### **Solubility Tests (Table 3)** For the solubility tests, each sample was placed in the depression of a porcelain plate that was positioned under a microscope. The depression was then filled by syringe with one of the testing solvents (acetic acid 10%, sodium hydroxide 30%, xylene, and isopropanol) until the sample was immersed in the solvent. The sample was left in the solvent for 5 minutes and observed visually, after which it was probed with a needle to look for changes in consistency. ### **Immersion Solubility Tests of Oil Paint** Sodium hydroxide 30%: Oil paint reacted to sodium hydroxide 30% by becoming partially soluble to soluble. In most cases, after being placed in the solvent the binder began to leach, appearing as a yellowish ring around the sample. After 5 minutes of exposure to the solvent, the samples seemed not to have changed in structure, yet they disintegrated when poked with a needle. *Xylene:* Exposing oil paint samples to xylene resulted either in non-elastic softening or no reaction at all, depending on the age and degree of oxidation of the oil paint. Younger paint tended to soften, while aged paint showed no effect on exposure to xylene. Acetic acid 10%: Exposing oil paint samples to acetic acid 10% resulted in non-elastic softening. *Isopropanol:* Exposing oil paint samples to isopropanol caused no reaction. ## **Detecting Individual Paints in Mixed-Media Paintings, continued** Table 1. Melting-point characteristics of acrylic, alkyd, and oil paints. | | 30°C | 110°C | 130°C | 210°C | |---------|---------------------|--------------------------|------------------------------|------------------------------| | Acrylic | Soft and elastic | Soft and elastic | Soft and elastic | Soft and elastic | | Alkyd | Remains non-elastic | Hardens; does not darken | Hardens; does not darken | Hardens; does not darken | | Oil | Remains hard | Softens | Melts, darkens, then hardens | Hardens, darkens, then chars | Table 2. Melting-point characteristics of mixed media of acrylic, alkyd, and oil paints. | | 30° C | 40° C | 50° C | 60°C | 110° C | 120° C | 130° C | 150° C | 160° C | 210° C | |--------------------------|--------|--------|--------|--------|----------|-----------------------------------|-----------|----------------------|------------------|--------------------------------| | 75% alkyd
25% acrylic | soften | soft | | | hard & s | ome softness
ning | | | | | | 90% alkyd
10% acrylic | hard | soften | soft | soft | hard & s | ome softness | | | | | | 50% alkyd
50% acrylic | soften | soft | | | | hard some softnes
no darkening | S | | | | | 75% acrylic
25% alkyd | soften | soft | | | | hard some softnes
no darkening | S | | | | | 75% acrylic
25% oil | soft | soft | | soften | soft | | | | soft
& harden | soft, non
elastic, darken | | 50% oil
50% acrylic | soft | soft | | soften | soft | | | darken,
very soft | | | | 75% oil
25% acrylic | soft | soft | soften | soft | | | melting w | some softne | ≎ss | soft, deformed
mess, darken | | 75% alkyd
25% oil | hard | soften | soft | | | | harden br | ittle and no c | larkening | | | 90% oil
10 % alkyd | hard | hard | soften | soft | | | | melting | melting | dry out & darken | Table 3. Solubility of single-component paints. | | Acetic acid 10% | Sodium hydroxide 30% | Xylene | Isopropanol | |---------|---------------------------------------|--|---|---------------------------------------| | Acrylic | Becomes soft and elastic, then swells | No reaction | Becomes soft and elastic, then swells | Becomes soft and elastic, then swells | | Alkyd | No reaction | Becomes partially soluble, then completely soluble | Becomes soft, non-elastic | Becomes soft, non-elastic | | Oil | Becomes soft, non-elastic | Becomes soluble | Aged sample: no reaction | | | | | | Fresh sample: becomes soft, non-elastic | No reaction | ### **Detecting Individual Paints in Mixed-Media Paintings, continued** #### **Immersion Solubility Tests of Alkyd Paint** Sodium hydroxide 30%: When exposed to sodium hydroxide 30%, alkyd paint reacted with partial solubility. Similar to oil paint samples, the paint binder leached during exposure, creating a yellowish ring around the sample. The samples retained their shape until they were poked with a needle. *Xylene:* Alkyd paint samples reacted to xylene with nonelastic softening. A few of the samples also reacted with slow, minor swelling during exposure. Acetic acid 10%: Exposing alkyd paint samples to a 10% acetic acid solution caused no reaction. *Isopropanol:* Exposing alkyd paint samples to isopropanol resulted in non-elastic softening. #### **Immersion Solubility Tests of Acrylic Paint** Sodium hydroxide 30%: Exposing acrylic paint samples to sodium hydroxide 30% caused no reaction. *Xylene*: Acrylic paint samples reacted to xylene with elastic softening and immediate, marked swelling. Acetic acid 10%: Exposing acrylic paint samples to acetic acid 10% resulted in elastic softening and slow, minor swelling. *Isopropanol:* Exposing acrylic paint samples to isopropanol resulted in elastic softening and slow, minor swelling. #### **Immersion Solubility Tests of Mixed Paints (Table 4)** Individual paints in a mixture react independently to solvents. For example, in a 75% alkyd / 25% acrylic mixture, xylene and isopropanol will soften and swell the acrylic paint, but non-elastically soften the alkyd paint. Sodium hydroxide 30% will dissolve the alkyd paint in the mixture but will not dissolve the acrylic paint. These and other telltale signs can alert conservators to the presence of both alkyd and acrylic paint in the mix. #### Summary The solubility test cannot provide weight ratio of the individual paints in the mixture. However, the individual paints in the mixture will react to the solvents independently, and their solubility and chemical properties can be used to classify the paint. #### Conclusion With practice and patience, conservators can perform practical, low-cost tests of melting points and solubility in their studios, and use criteria for chemical and physical characterization to detect individual paints in mixed-media paintings and develop treatment strategies. FTIR can be used as the first step in the identification process or as the final step to backtrack the spectra or sharpen FTIR identification skills. Our modest study aimed to follow the great tradition of "looking into paint" by extending that looking to include alkyd, acrylic emulsions, and modern mixed paints. Table 4. Solubility of various paint mixtures. | | Acetic acid 10% | Sodium hydroxide 30% | Xylene | Isopropanol | |--------------------------|------------------------------|--|--|---| | 75% alkyd
25% acrylic | No reaction | Becomes partially soluble, then swells | Becomes soft,
non-elastic | Becomes soft,
non-elastic | | 75% oil
25% acrylic | Becomes soft,
non-elastic | Becomes soft,
non-elastic | Becomes soft,
then swells suddenly | Becomes soft and
non-elastic,
then swells slowly | | 75% alkyd
25% oil | Becomes soft,
non-elastic | Becomes soluble | Becomes soft,
non-elastic | Becomes soft,
non-elastic | | 90% alkyd
10% acrylic | Becomes soft,
non-elastic | Becomes soluble | Becomes soft,
non-elastic | Becomes soft,
non-elastic | | 90% oil
10% alkyd | Becomes soft,
non-elastic | Becomes partially soluble, then dissolves | Becomes soft,
then swells slowly | Becomes soft,
non-elastic | | 50% alkyd
50% acrylic | Becomes soft,
non-elastic | Becomes partially soluble | Becomes soft and
non-elastic,
then swells slowly | Becomes soft and
non-elastric,
then swells slowly | | 75% acrylic
25% alkyd | Becomes soft,
non-elastic | Becomes soft,
non-elastic | Becomes soft and
non-elastic,
then swells slowly | Becomes soft and
non-elastic,
then swells slowly | | 75% acrylic
25% oil | Becomes soft,
non-elastic | Becomes soft and
non-elastic,
then swells slowly | Becomes soft and
non-elastic,
then swells suddenly | Becomes soft and
non-elastic,
then swells slowly |