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Opinion
Glossary

Arbuscular mycorrhiza: a type of mycorrhizal association that forms arbuscules

or coiled hyphae (highly branched exchange structures) within cortical cells of

the root.

Carboxylate: an organic anion, which is the organic acid minus the proton(s).

For example, citrate is the carboxylate released from the deprotonation of the

organic acid, citric acid.

Chelate: a compound that combines reversibly, usually with high affinity, with

a metal ion (e.g., iron, copper, or manganese).

Cluster roots: bottle brush-like or Christmas tree-like structures in roots with a

dense packing of root hairs, releasing carboxylates into the rhizosphere, thus

solubilising poorly available nutrients (e.g., P) in the soil.

Ectomycorrhiza: mycorrhizal association, mostly in woody species, in which a

fungal mantle covers fine roots.

Heavy metal: a metal with a mass density exceeding 5 g ml�1.

Hyperaccumulating plant species: plants that typically accumulate 100 times

more of a specific heavy metal than the concentrations that occur in

nonaccumulator plants growing in the same substrates. For most elements,

including Mn, the threshold concentration is 1000 mg g�1 DW, except for zinc

(10 000 mg g�1), gold (1 mg g�1), and cadmium (100 mg g�1).

Iron-regulated transporter (IRT): associated with the uptake of iron from the

rhizosphere into root cells. It is not highly specific and transports other

micronutrients.

Micronutrient: inorganic nutrients that a plant requires in relatively small

quantities, such as copper, iron, Mn, molybdenum, and zinc.

Mycorrhiza: a structure arising from a symbiotic association between a

mycorrhizal fungus and the root of a higher plant [from the Greek words for

fungus and root, respectively; the Greek plural would be mycorrhizas, but the

Latin plural (mycorrhizae) is also used].

Natural resistance associated macrophage protein (NRAMP): a divalent cation

transporter associated with the uptake of transition metals, such as copper,

iron, Mn, and zinc.

Nonmycorrhizal plant family: a plant family whose members predominantly

are unable to establish a symbiotic association with a mycorrhizal fungus.

Rhizosphere: the zone of soil influenced by the presence of a root.

Scleromorphic: containing a relatively large amount of tough structures
Plants that deploy a phosphorus (P)-mobilising strategy
based on the release of carboxylates tend to have high
leaf manganese concentrations ([Mn]). This occurs be-
cause the carboxylates mobilise not only soil inorganic
and organic P, but also a range of micronutrients, includ-
ing Mn. Concentrations of most other micronutrients
increase to a small extent, but Mn accumulates to sig-
nificant levels, even when plants grow in soil with low
concentrations of exchangeable Mn availability. Here,
we propose that leaf [Mn] can be used to select for
genotypes that are more efficient at acquiring P when
soil P availability is low. Likewise, leaf [Mn] can be used
to screen for belowground functional traits related to
nutrient-acquisition strategies among species in low-P
habitats.

Phosphorus-acquisition strategies
Here we explore the idea of using leaf [Mn] to indicate a
carboxylate-releasing P-acquisition strategy. The ratio-
nale behind this contention is that the availability of both
P and Mn are increased when roots release carboxylates
into the rhizosphere [1] (Figure 1; see Glossary). The
availability of some other micronutrients is also enhanced,
but most of these do not lead to a signal as strong as that
provided by Mn. The release of carboxylates into the
rhizosphere is important for P acquisition, because they
mobilise not only inorganic P, but also organic P, which can
be a major fraction of soil P, especially when P availability
is low [2].

Addressing this topic is timely, because there is a grow-
ing interest among plant ecologists in belowground func-
tional traits, to complement the suite of ‘easy-to-measure’
aboveground traits [3]. Furthermore, because of the grad-
ual decline in phosphate rock that is used to produce P
fertilisers [4], there is an increasing need for more
P-efficient cropping systems [5]. Therefore, a simple tool
to screen for P-acquisition efficiency in crop species would
be welcomed by agronomists and plant breeders.
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Manganese as a plant nutrient
The significance of Mn as an essential plant nutrient was
firmly established in 1922 [6]. More recent work has
revealed the role of Mn in redox processes, as an activator
of a large range of enzymes, and as a cofactor of a small
number of enzymes, including proteins required for light-
induced water oxidation in photosystem II [7,8]. Crop
plants that contain 50 mg Mn g�1 dry weight (DW) in their
(sclerenchyma).

Sorption: the process referring to the binding of, for example, phosphate onto

the surface of (i.e., adsorption) and inside (i.e., absorption) soil particles. The

term was coined by McBain in 1909 [79]. In soil science, the noncommittal term

‘sorption’ is used to indicate all processes that result in the transfer of material

from the soil solution to the solid phase.

Transition metal: any metal in the d-block of the periodic table, which includes

groups 3–12 of the periodic table; the f-block lanthanide and actinide series are

also considered transition metals and are referred to as ‘inner transition

metals’.
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Figure 1. Effects of carboxylates (and other exudates with similar effects, e.g., polygalacturonate [80]) on mobilisation of phosphorus (P) and transition metals.

Carboxylates (organic anions) are released via a carboxylate channel. The manner in which phosphatases are released is unknown. Carboxylates mobilise both inorganic

(Pi) and organic (Po) P, which are both sorbed onto soil particles. At acid pH, Pi and Po bind to oxides and hydroxides of iron (Fe) and aluminium (Al); at alkaline pH, these

compounds are precipitated by calcium (Ca). The carboxylates effectively take the place of Pi or Po, thus pushing this into solution. The released phosphatase enzymes

hydrolyse Po compounds after they have been mobilised by carboxylates. Carboxylates also mobilise some of the transition metal cations, especially Fe, manganese (Mn),

zinc (Zn), and copper (Cu). Chelated Fe moves to the root surface, where it is reduced, followed by uptake via a Fe2+ transporter [iron-regulated transporter (IRT)]. This

transporter is not specific and also transports other micronutrients, such as Mn, Cu, and Zn, which have been mobilised by carboxylates in soil. Alternatively, these

transition metals can be taken up by a transporter referred to as natural resistance associated macrophage protein (NRAMP). For further explanation, see the main text.

Modified from [13].
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leaves are considered to have sufficient Mn for maximum
growth and yield [9]. Conversely, Mn toxicity can occur
when plants are grown at moderately low soil pH or in
flooded soils, when Mn availability is increased [10–13]
and its uptake is not tightly regulated. Critical toxicity
concentrations in leaves range from 200 to 3500 mg Mn g�1

DW [14], but some hyperaccumulators, such as Proteaceae
species in New Caledonia, may contain >10 000 mg Mn g�1

DW without harmful effects [14,15]. Mechanisms that
counter Mn toxicity in plants involve Mn export from
the cytoplasm, across the tonoplast for sequestration into
the vacuole, or across the plasma membrane out of the cell
[16]. The Arabidopsis AtMTP family of genes encode pro-
teins of the cation diffusion facilitator family, some of
which have a role in metal tolerance [17]. Expression of
cation diffusion facilitators in a Mn-hypersensitive yeast
mutant restored Mn tolerance to wild type levels, showing
the importance of this transport system for Mn tolerance
[18].

High leaf [Mn] in nonmycorrhizal species with cluster
roots
Relatively high leaf [Mn] are typically found in species that
produce cluster roots, particularly Proteaceae species,
2

which are almost all nonmycorrhizal and occur on soils
with very low P availability [19–22]. Cluster roots also
occur in actinorhizal species and in many Fabaceae
[1,23]. These specialised roots release large amounts of
carboxylates in an ‘exudative burst’ to mobilise P, and this
also mobilises Mn [23,24]. For a large number of Protea-
ceae, the range of [Mn] is 126–10 000 mg Mn g�1 DW
[20,25–29]. In New Caledonia, no Proteaceae species ex-
hibit leaf [Mn] <100 mg Mn g�1 DW [20]. Likewise, in
Fabaceae species with cluster roots, relatively high leaf
[Mn] have been observed: 7370 mg Mn g�1 DW in Lupinus
albus, which is also nonmycorrhizal [30], and 120 mg Mn
g�1 DW in Aspalathus linearis [31]. These high concentra-
tions can be explained by the ability of cluster roots to
mobilise Mn as well as P [24,32,33]. For example, in a
glasshouse experiment with Hakea prostrata (Proteaceae),
variation in leaf [Mn] was positively correlated with in-
vestment in cluster roots [34], and similar results were
found for L. albus [35]. Given that a concentration of 50 mg
Mn g�1 DW is considered sufficient for maximum growth of
crop plants [9], concentrations >100 mg Mn g�1 DW are
considered ‘high’, especially for species with scleromorphic
leaves (e.g., many Proteaceae). However, the exact concen-
trations will also depend on Mn availability in the soil



Opinion Trends in Plant Science xxx xxxx, Vol. xxx, No. x

TRPLSC-1233; No. of Pages 8
(which is strongly pH dependent) and, hence, the concen-
tration in leaves should be compared with that of other
species growing at the same location [22].

Mn is taken up as Mn2+ by roots from the rhizosphere,
partly involving broad-specificity transporters [16,36] (Box
1). The broad specificity of these transporters accounts for
Mn accumulation and toxicity in plants where soil Mn
availability is high. The availability of soil Mn increases
with decreasing soil pH, until approximately pH 5, at
which point the availability declines again [13,37]. Impor-
tantly, Mn availability is also increased by root exudation
of carboxylates, which chelate Mn and reduce Mn4+ to
Mn2+ in either acidic or alkaline soils [38].

The literature reviewed for nonmycorrhizal, cluster-
rooted species discussed above leads to the hypothesis that
leaf [Mn] can be used as a proxy for the carboxylate-
releasing P-mobilising strategy and as a screening tool
for P-acquisition efficiency when soil P availability is
low. Here, we explore this hypothesis.

High leaf [Mn] in other nonmycorrhizal species
A high leaf [Mn] has been found in Phytolacca acinosa and
Phytolacca americana, with up to 19 300 mg Mn g�1 DW
[39–43]; these Mn-hyperaccumulating species belong to
Phytolaccaceae, a nonmycorrhizal and non-cluster-rooting
family [44,45]. Mn-hyperaccumulating species contain
about 100 times more Mn than nonaccumulator species,
reaching at least 1000 mg Mn g�1 DW [46]. There is no
information in the literature on the rhizosphere chemistry
of Phytolacca species and, thus, it is unknown whether Mn
accumulation depends on the release of carboxylates, pro-
tons or both. Based on the high oxalate concentration in
leaves of P. americana [47], we surmise that this species
releases protons generated in the production of oxalic acid,
and that the high internal concentration of carboxylate
anions (oxalate) is used to internally chelate and detoxify
Mn.

Polygonum perfoliatum and Polygonum hydropiper
(Polygonaceae) are also Mn-hyperaccumulating herba-
ceous species, with shoot concentrations up to 18 340 mg
Box 1. Mn transport from the rhizosphere into roots

Plants use transition metal transporters to take up metals such as iron

(Fe), copper (Cu), Mn, nickel (Ni), zinc (Zn), and cadmium (Cd), which

are generally found at low concentration in the soil [81–83]. In

Arabidopsis thaliana [36,84], Solanum lycopersicum (tomato) [85],

and Oryza sativa (rice) [86], a cation transporter (IRT1), has a broad

substrate range (e.g., Fe, Zn, Mn, Ni, and Cd) [83]. Oryza sativa, a

Strategy II plant, which takes up Fe as a chelate, has several yellow

stripe-like (YSL) genes. Among them, OsYSL2 transports Fe(II)-

nicotinamine as well as Mn(II)-nicotinamine [83]. Strategy II of Fe

uptake is found in Poaceae [87]. In Citrus aurantium (Seville orange), a

Strategy I species, increasing the Zn or Mn concentration in the

nutrient solution decreases plant Fe concentrations; likewise, Fe

inhibits the uptake of Zn and Mn [88]. In Ulmus laevis, leaf [Mn]

increases fivefold when plants are grown under Fe-deprived condi-

tions in nutrient solution [89].

The broad specificity of transition metal transporters [90,91] may

partly account for accumulation of Mn (and, to a lesser extent, Zn and

Cu) when Mn is mobilised by exuded carboxylates [34]. However, there

are also more specific Mn transporters, which are essential for Mn

uptake from soil with low Mn availability, such as natural resistance

associated macrophage protein 1 (NRAMP1) in A. thaliana [92] and
Mn g�1 DW [42]. Polygonaceae species lack cluster roots
and are considered nonmycorrhizal [44]; however, Polygo-
num viviparum has been found to be ectomycorrhizal
[48]. No mechanism(s) accounting for their Mn hyperaccu-
mulation are known.

Similar to the cluster-root forming L. albus, the non-
cluster-root-producing nonmycorrhizal Lupinus angusti-
folius also accumulates high concentrations of Mn in its
leaves: 1108 mg Mn g�1 DW [49]. Such Mn accumulation is
thought to be due to reducing conditions in the rhizo-
sphere, allowing for the increased availability of Mn
[49]. Both L. albus and L. angustifolius are nonmycorrhi-
zal [1] and release relatively large amounts of carboxylates
and protons into their rhizosphere [50]. Therefore, high
leaf [Mn] is not restricted to species producing cluster
roots.

Across a coastal dune chronosequence in Jurien Bay in
Western Australia, leaf [Mn] is consistently greater in
nonmycorrhizal species compared with co-occurring my-
corrhizal species, with most nonmycorrhizal species known
to release carboxylates [22]. Interestingly, this occurs
across all soils along this 2-million year dune chronose-
quence, despite the soils showing a wide range of pH values
(�5–9). At the community level and within individual
nonmycorrhizal species, leaf [Mn] also increases with in-
creasing soil age and associated declines in soil P avail-
ability (Figure 2A) and pH, but is not influenced by total or
exchangeable soil [Mn] [22]. One species with high leaf
[Mn], Conostylis candicans (100 mg Mn g�1 DW), has been
subsequently shown to release a range of carboxylates in
its rhizosphere (F. Albornoz and E. Laliberté, unpublished
data 2014) in soils spanning a wide range of pH (6–8;
determined in 10 mM CaCl2) and total [P] of 20–430 mg
P kg�1. Other noncluster-rooted nonmycorrhizal species
with high leaf [Mn] along the same chronosequence remain
to be further investigated.

High shoot [Mn] (451–1156 mg Mn g�1 DW) have been
observed in Discocatus placentiformis, a nonmycorrhizal
cactus species, abundant in low-P soils in the campos
rupestres of Central Brazil (Figure 2B) [51]. When grown
NRAMP5 in O. sativa, deployed for constitutive uptake of Fe and Mn as

well as Cd [93,94]. Citrus root stocks differ in their Fe-deficiency

tolerance. Murraya exotica (orange jasmine) is more tolerant than

Poncirus trifoliata var. monstrosa (flying dragon) [95]. The Mn

concentration in M. exotica is independent of Fe availability: whereas

the Zn concentration in its roots doubles, that in P. trifoliata var.

monstrosa increases fourfold. Murraya exotica appears to have

mechanisms for regulating uptake of Mn and, to a lesser extent, Zn,

in response to Fe deficiency [95]. We conclude that even closely related

species differ in the specificity of transition-metal uptake from the

rhizosphere. Manganese uptake appears to be the most tightly linked

with Mn availability in the rhizosphere and, thus, offers the best tool to

screen for a P-mobilising strategy based on carboxylate release.

Recently, some of the genes involved in transition metal transport

in plants have been identified, but Mn2+ transport pathways are only

just beginning to be unravelled at the molecular level [16]. Several

transporter gene families have been implicated in Mn2+ transport into

root cells, NRAMP transporters in O. sativa [96] and A. thaliana [92],

and ZIP transporters in [67]. In addition, the characterization of Mn

hyperaccumulator plants allows the identification of genes that confer

this trait [67].
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(i) (ii) (iii) (iv)

Figure 2. (A) Relations between leaf manganese (Mn) concentration and total soil phosphorus (P) concentration along the Jurien Bay dune chronosequence, Western

Australia [22]. Leaf Mn concentrations are calculated either at the community level (i.e., cover-weighted) or individually for the three nonmycorrhizal species that occurred

across at least two chronosequence stages. Lines of best fit are shown for each panel. The increase in cover-weighted leaf [Mn] with declining soil [P] partly reflects the

greater relative cover of nonmycorrhizal Proteaceae (which had high leaf [Mn]) in these soils. Differences in cover-weighted leaf [Mn] were only accounted for by differences

in soil [P] [22], not by differences in soil pH or soil Mn availability, which is low on all dunes [97]. Soil [P] was also the strongest predictor of intraspecific differences in leaf

[Mn] for the three nonmycorrhizal species shown in (i–iv), although pH also had a significant (but smaller) effect. (B) Leaf Mn concentrations of campos rupestres species of

central Brazil with different nutrient-acquisition strategies. Each bar represents average values for three to five individual plants. See [103] for details on characteristics of

campos rupestres soils where these species were collected. (C) Leaf Mn concentrations of arbuscular mycorrhizal (AM) and nonmycorrhizal (NM) campos rupestres species

of central Brazil. The central vertical bar in each box represents the median, the box represents the interquartile range, and the whiskers represent the most extreme data

points that are still within 1.5 of the upper or lower quartiles. The circles outside the whiskers are values that are more than 1.5 from the upper and lower quartiles. The

notches represent confidence intervals around the median. The dashed line indicates the leaf [Mn] adequate for crop growth.
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in a low-P nutrient solution, the roots of this cactus in-
crease their exudation of carboxylates, predominantly
oxalate, but also malate and citrate. Other nonmycorrhizal
species in the campos rupestres also show high leaf [Mn]
when compared with mycorrhizal species in the same
communities (Figure 2B). We speculate that the high leaf
[Mn] of nonmycorrhizal campos rupestres species is
accounted for by root carboxylate release.

High leaf [Mn] in species of typically mycorrhizal
families
Thirty one Alyxia species (Apocynaceae) from New Cale-
donia all contain high leaf [Mn] [15], with no information
on their Mn-uptake mechanisms. Alyxia species are con-
sidered arbuscular mycorrhizal [52]. Cupania tenuivalvis
(Sapindaceae) is a species native on acidic soils in cerradão
4

vegetation in Brazil, with leaf [Mn] of 3300 mg Mn g�1 DW
[53]. We can only speculate that the mechanism accounting
for Mn hyperaccumulation in Alyxia and Cupania species
are similar to those we discuss for other species in this
section. If so, carboxylates would be released by the plant,
because there is no conclusive evidence that arbuscular
mycorrhizal fungi access significant amounts of insoluble P
or Mn sources in soil [54].

Within the genus Eucalyptus (Myrtaceae), the two sub-
genera Symphyomyrtus and Monocalyptus differ nutrition-
ally, based on [Mn] in their leaves, stem and bark; [Mn] are
consistently greater in symphyomyrts than in monocalypts
[55]. These two subgenera are likely either arbuscular
mycorrhizal or both arbuscular mycorrhizal and ectomy-
corrhizal [52]. There is no evidence that these differences
in foliar [Mn] are accounted for by differences in soil [Mn]
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and, hence, it is hypothesised that they are most likely due
to differences in Mn mobilisation in the rhizosphere. Leaf
[Mn] in eucalypts are so high (800 mg Mn g�1 DW in green
leaf-fall and up to 2800 mg Mn g�1 DW in leaves of glass-
house-grown seedlings) that they are within the toxic
range for most plants [14]. The mechanism for Mn accu-
mulation is unknown for these and other eucalypts [56],
but we do know that Eucalyptus gummifera can access
poorly soluble forms of inorganic P (aluminium phosphate
and iron phosphate) [57], presumably through the releases
of carboxylates.

Austromyrtus bidwillii (Myrtaceae), a tropical rainfor-
est tree in north-eastern Australia, hyperaccumulates Mn
in its leaves (up to 19 200 mg Mn g�1 DW) and bark (up to
26 500 mg Mn g�1 DW) [58]. Given that its leaves contain
about three times more carboxylates (up to 123 000 mg g�1

DW) than required to chelate all Mn, it is likely that, as in
the Phytolacca species discussed above, it releases predom-
inantly protons and not carboxylates, thereby acidifying
the rhizosphere and consequently mobilising soil Mn [58].

Gossia bidwillii (Myrtaceae) is a Mn-hyperaccumulat-
ing eastern Australian subtropical rainforest tree
[59,60]. There is no published information on the mecha-
nism accounting for the Mn accumulation of this species. In
another Australian Mn-hyperaccumulating species, Den-
hamia fournieri (previously known as Maytenus founieri)
(Celastraceae), Mn appears to be associated with carbox-
ylates in leaves [61], suggesting that Mn accumulation is
associated with proton release, as in the Phytolacca species
discussed above.

Chengiopanax sciadophylloides (synonyms: Eleuthero-
coccus sciadophylloides and Acanthopanax sciadophyl-
loides) (Araliaceae) is a Mn-hyperaccumulating Japanese
tree; Mn accumulation is based on acidification of the
rhizosphere, but not carboxylate release, as in the other
species discussed above [62,63]. Hyperaccumulation in this
species occurs in noncontaminated forest soils and is spe-
cific to Mn, not other metals [64–66]. A zinc-regulated
transporter/iron-regulated transporter (ZRT/IRT1)-relat-
ed protein (ZIP) gene analogue (Box 1) encodes a protein
with 65% or less sequence identity with ZIPs of other
herbaceous species. Expression of this gene is induced in
the callus of Mn-deficient C. sciadophylloides, but it does
not show Zn or Fe transport [67].

Schima superba (Theaceae) is a Mn-accumulating sub-
tropical tree species native to China [68], without known
mechanisms accounting for its Mn accumulation.

In summary, Mn hyperaccumulation in mycorrhizal
species does not reflect soil [Mn], [P] or pH, but is associ-
ated with Mn mobilisation in the rhizosphere, most likely
due to the release of protons and subsequent acidification
of the rhizosphere. The carboxylates generated to produce
the protons released into the rhizosphere are used inter-
nally to bind Mn inside plant tissues, thus reducing the
toxic effects of Mn hyperaccumulation.

Variation in leaf [Mn] or root [Mn] as dependent on P
treatments
In barley (Hordeum vulgare), an elevated P supply reduces
Mn acquisition [69], suggesting a role for carboxylates in
mobilising both P and Mn in this species. For example,
under a high P supply, carboxylate release would be sup-
pressed, thus reducing Mn uptake. It has been shown that
mycorrhizal plants of subclover (Trifolium subterraneum)
grown at a limiting P supply had higher leaf [P], but a
relatively lower leaf [Mn] compared with their nonmycor-
rhizal counterparts [70], indicating alternative strategies
to acquire P, depending on the presence of mycorrhizal
inoculum [71]. Following a pulse of P, the root [Mn] de-
clined, suggesting a role for P- and Mn-mobilising exu-
dates, as indicated by the reduced uptake of Mn at a high P
supply.

In summary, plants that exhibit a P-mobilising strategy
dependent on the release of carboxylates or protons, show
lower leaf [Mn] when supplied with sufficient P compared
with that of P-limited plants.

Effects of carboxylate-releasing plants on leaf [Mn] in
neighbouring plants
When wheat (Triticum aestivum) is grown in a cropping
situation together with the nonmycorrhizal cluster-rooted
L. albus, its leaves contain higher leaf [Mn] [30]. This
shows that wheat can enhance its Mn uptake when neigh-
bouring white lupins mobilise Mn in soil. Similarly, when
grown in pots together with Banksia attenuata (Protea-
ceae), leaf [Mn] and growth of the ectomycorrhizal species
Scholzia involucrata (Myrtaceae) are enhanced, indicating
facilitation of Mn uptake by a cluster-rooted species [72].

Concluding remarks
Plants that release relatively large amounts of carboxy-
lates tend to have relatively high leaf [Mn], for example,
Proteaceae and some lupin species [20]. However, some
species that hyperaccumulate Mn may not release carbox-
ylates, but strongly acidify their rhizosphere instead,
such as C. sciadophylloides and Phytolacca species
[62,63]. Therefore, we suggest that high leaf [Mn] in an
environment with a low P availability should be taken only
as a strong indication of root carboxylate exudation, pri-
marily for nonmycorrhizal species. High leaf [Mn] by itself
does not provide firm evidence for carboxylate exudation.
Results showing high leaf [Mn] must be followed up with
analyses of rhizosphere carboxylates, or possibly other
exudates, before inferring that the studied species must
have a specialised P-mobilising strategy. High leaf [Mn] is
possibly only associated with carboxylate release into the
rhizosphere in nonmycorrhizal species of the ‘Proteaceae
type’, sensu [73] and in mycorrhizal species that can
switch to a carboxylate-releasing strategy [71]. These
are typically associated with soils of low P availability,
such as along the Jurien Bay chronosequence [22] and on
the sandplains of the Brazilian cerradão [51]. By contrast,
high leaf [Mn] in species of the ‘Brassicaceae type’, which
occur on nutrient-rich soils, might be associated with
release of protons and internal carboxylate accumulation.
Acidification of the rhizosphere at low soil pH will render P
less available, rather than more [74]. This holds for both
inorganic and organic P [75].

We propose leaf [Mn] as a valuable tool to screen for P-
efficient crop genotypes in a common environment with
low soil P availability, provided the promising genotypes
are subsequently further investigated, focussing on
5



Box 2. Leaf [Mn] as a proxy for the exudation of P-mobilising carboxylates: a tool to screen for efficient crop cultivars and

belowground functional traits

Phosphorus is a macronutrient that is limiting for plant productivity in

many natural and managed ecosystems [98]. To sustain crop

productivity requires a continuous input of P fertilisers, which are

produced from mined phosphate rock, a nonrenewable resource that

is gradually being depleted [4]. Therefore, there is a growing need to

develop crops that are better at acquiring soil P. One such strategy is

based on mycorrhizal associations; another, which is particularly

effective when soil P availability is very low, is based on the exudation

of P-mobilising carboxylates [21]. Measuring carboxylates in the

rhizosphere is laborious. In addition, carboxylate exudation depends

on climatic conditions and can occur as relatively short pulses, thus

complicating sampling. We propose to use leaf [Mn] as a first step to

obtain information on the carboxylate-releasing P-mobilising strategy

in a range of genotypes screened for variation in P-acquisition

efficiency [1]. If the results provide an indication for rhizosphere

carboxylates, this can then be followed up by measurements of

exuded carboxylates [99].

Plant ecologists are increasingly interested in functional traits, that

is, traits that allow grouping of species that have similar roles in an

ecosystem [3,100,101]. Most of these traits pertain to aboveground

plant characteristics, because these are easiest to measure.

Belowground functional traits are mostly restricted to mycorrhizal

status, the capacity to symbiotically fix nitrogen, and morphological

traits [3,102]. Traits related to nutrient acquisition are considered

desirable to include, but hard to measure [3]. We propose to use leaf

[Mn] as a first step to obtain information on the carboxylate-

releasing P-mobilising strategy in natural environments where the

P availability is low [22].

The proposed approach is expected to be particularly promising for

plants growing in alkaline soil, where carboxylate release is an

effective strategy to release P and mobilise Mn [13]. It should be

equally effective on slightly acidic soils, as demonstrated along the

Jurien Bay dune chronosequence in Western Australia [22]. On more

acidic soils in campos rupestres in Brazil, below pH 5 [51,103], Mn

availability declines with decreasing pH [74]. Here, carboxylate

release is expected to be associated with increasing Mn availability

only if the accompanying cations are not protons, which is a

possibility [104,105].

In summary, the proposed approach looks promising for a range of

soil conditions where P is a major limiting nutrient, but further

experimental work is required to determine the exact soil conditions

for which the approach is most useful.
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rhizosphere exudates, primarily, carboxylates (Box 2).
Within a plant community on soils with low P availabili-
ty, leaf [Mn] also provides a strong indication of specific
species utilising P-mobilising carboxylate-releasing
strategies [22] (Box 2). When plants that lack such a
strategy are analysed, as dependent on neighbouring
species, some of which do and others that do not depend
on the P-mobilising carboxylate-releasing strategy, some
evidence might be obtained for facilitation of nutrient
acquisition, as shown in a mixed cropping situation [30]
and a pot experiment [72]. The approach is not advocated
for use between sites, because these may differ in soil pH
and Mn availability [53].

We also propose leaf [Mn] as a useful trait for within-site
comparisons to add to the standard set of traits typically
considered in trait-based community ecology studies and
comparative functional ecology [3]. In these two fields of
study, a small number of traits are typically measured
across a range of co-occurring species. Consequently, easily
measured aboveground traits (e.g., specific leaf area or leaf
dry matter content) are favoured, with the underlying (but
generally untested) assumption that above- and below-
ground traits are coordinated among species [76]. There-
fore, most trait-based community ecology and comparative
functional ecology studies are currently biased towards
aboveground traits. Leaf [Mn] could provide an easily
measured aboveground trait that reflects belowground
functioning as a time-integrated proxy for P acquisition
via carboxylate release. This is especially important be-
cause carboxylate release can occur in pulses over a short
period of time [77,78].

In conclusion, we propose that leaf [Mn] analysis is a
valuable screening tool, both in breeding crops for a high P-
acquisition efficiency and in identifying species in a com-
munity that use a P-mobilising strategy.
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